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Optimal deployment of limited emergency resourcesin alarge areais
of interest to public agencies at all levels. In this paper, the problem of
allocating limited emer gency service vehiclesincluding fireengines, fire
trucks, and ambulancesamong a set of candidate stationsisformulated
asamixed integer linear programming model, in which the objectiveis
tomaximizetheservicecoverageof critical transportation infrastructure
(CTI). Onthebasisof thismodel, theeffectsof demand at CT| nodesand
of transportation networ k performance on the optimal coverageof CTI
arestudied. In addition, given afixed total budget, themost efficient dis-
tribution of investment among the three types of emergency service vehi-
clesisidentified. To cope with the uncertainty involved in some of the
model parameters such as traffic network performance, formulations
based on variousrisk preferences are proposed. The concept of regret is
applied to evaluatetherobustnessof proposed resour ceallocation strate-
gies. The applicability of the proposed methodologies to high-density
metropolitan areasisdemonstrated through a case study that usesdata
from current practicein Singapore.

Critical transportation infrastructure (CTI) facilities, such as bus ter-
minals and interchanges, mass rapid transit stations, tunnels, airports,
and seaports, are vital in maintaining normal societal functionality,
especially in metropolitan areas. Such facilities are vulnerable to
natural and man-made disasters because of the density of people
and traffic at these locations and their high costs of repair and
maintenance. Therefore, developing an effective protection mech-
anism for CTI is important in disaster mitigation and the protection
of large urban areas.

One way to protect CTI is to improve emergency response readi-
ness. This requires emergency service resources sufficient to serve
CTI within an acceptable time. In this paper, the focus is on optimal
allocation of fire engines, fire trucks, and ambulances to protect CTI,
but the methods presented are applicable to other emergency ser-
vice resources as well (for example, to the location of emergency
medical service vehicles). The ideal would be to deploy unlimited
resources to protect the CTI. However, in practice service resources
are often limited. Thus the question becomes how to allocate limited
resources to a set of possible stations in order to serve as much CTI
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as possible (i.e., to maximize the service coverage of the CTI). A
CTI node is considered to be covered only if all three types of vehi-
cle can simultaneously reach the node within the required time win-
dow (service standard) and are available at a specified reliability level
(service reliability). Detailed definitions of service standard and
reliability are given in the next section.

The problem being addressed in this paper belongs to the general
category of facility location, whose formulations and solution algo-
rithms have been studied extensively in operations research over
several decades. A thorough review of strategic facility location
problems is provided by Schilling et al. (1) and Owen and Daskin (2).
Static and deterministic facility location problems can be further
classified into three basic types in terms of their different objectives
and constraints and are summarized in Table 1 (3). A comprehensive
review and implementations of the three types of problems are given
by Jia et al. (21).

The covering model (the first type of model in Table 1) is adopted
in this study to locate emergency service vehicles (fire engines, fire
trucks, and ambulances). The reasons are as follows. In practice,
acceptable service standards in terms of travel time for fire engines,
fire trucks, and ambulances are usually predetermined by emergency
management agencies and naturally become the constraints in the
model; this study is targeted to maximize coverage of CTI nodes
(a CTI node is said to be covered if it can be served within a speci-
fied time) with limited resources. Earlier models as summarized in
Table 1 do not consider the possibility of a server being unavailable
when it is busy serving other demand. Later, additional constraints
are imposed to guarantee that the probability of at least one vehicle
being available to serve each demand node must be greater than
or equal to a predefined constant a. Daskin (22) proposed the
“systemwide busy fraction” concept in his model to maximize the
expected coverage within a time standard, given p facilities (stations)
to be located in the network. Bianchi and Church (23) proposed
a hybrid model incorporating the concepts of MEXCLP (22) and
FLEET (5) to site stations and allocate ambulances. This model
has been applied to locate emergency medical service vehicles in
Fayetteville, North Carolina (24). ReVelle and Marianov (25) then
applied the busy fraction of servers concept to the problem of allo-
cating multiple types of emergency resources. ReVelle and Hogan
(20, 26) examined different aspects of a similar problem, where the
objective is to minimize the total number of utilized servers subject to
server availability constraints.

Obviously, allocating emergency service resources is a planning
problem involving prediction of model parameters such as incident
rate at demand sites and transportation network performance. In
practice, these parameters are often random. How to treat uncertainty
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TABLE 1 Examples of Facility Location Problems Using Different Modeling Methods

Type Objective

Constraints

Examples

Covering Maximize coverage of demands (4—6)

problem
Set covering: minimize the cost of facility
location (13,14)

P-median Minimize the total travel distance/time
problem between demands and facilities (17)
P-center Minimize the maximum distance between

problem any demand and its nearest facility

Given acceptable service distance/time
Limited resources

Specified level of coverage obtained
Given acceptable service distance/time

Full coverage obtained
Limited resources

Full coverage obtained
Limited resources

Locate EMS vehicles (7-9)

Locate rural health care workers (10)

Place a fixed number of engine and truck
companies (11,12)

Identify EMS vehicle locations (15,16)

Ambulance position for campus emergency
service (18)

Locate fire stations for emergency services
in Barcelona (19)

Locate EMS vehicles with reliability
requirement (20)

Note: EMS = emergency medical services.

in the location problem has recently become a matter of interest.
A comprehensive review of facility location problems under uncer-
tainty is provided by Snyder (27). In the field of stochastic system
optimization, various decision criteria have been introduced to cope
with uncertainty, including expectation, reliability, and robustness, and
chance constraints and penalty functions are used. The most com-
monly used criterion is the average performance (expectation). In
general, expectation-based strategies are risk-neutral and tend to
perform well in the long run in a repetitive environment. However,
sometimes random events do not repeat themselves often. A good
example of such one-time decision making is planning against the
occurrence of a large-scale disaster involving infrastructure. Hence,
robust approaches are introduced to handle decision making under
environments of extreme uncertainty. The concept of regret is used
in robust optimization to measure the difference between the best
possible result if everything could be predicted and the actual result
(28). Since robust optimization focuses on the worst-case scenario,
it is usually more conservative than techniques focusing on expec-
tation. Location problems studied in the robust optimization frame-
work can be found in work by Serra and Marianov (19) and Jia et al.
(21). In general, the choice of decision criteria usually reflects and
depends on decision makers’ risk preferences. Later in this paper the
performance of different risk models in various uncertain environ-
ments will be analyzed and the effect of different risk preferences on
the usefulness of emergency service resource allocation decisions
will be explored.

This study is built on the foundation of a previous deterministic
model (29). The previous model has been revised from a binary inte-
ger linear programming formulation to a mixed integer linear program.
This change speeds model computation and facilitates extensive sen-
sitivity analysis. More important, a thorough sensitivity and robustness
analysis of the model is provided in order to explore the applicability
of the model in practice, especially in large metropolitan areas. Sen-
sitivity analysis allows determination of how changes in some pre-
defined model parameters, such as the amount of emergency service
resources, affect maximum coverage. This type of cost—benefit analy-
sis is critical to decision makers, since all requests for federal or state
funding need to be justified. Robust analysis places more emphasis
on parameters describing the uncertain environment (for example,
roadway travel time and demand frequency). The key goals of robust
analysis are to provide broader decision support under environments
of different uncertainty levels and to inform decision makers of the
effect of different risk preferences.

MATHEMATICAL MODELS

Given predicted demand for emergency services at CTI nodes, the
goal is to find an optimal strategy for allocating the limited number
of fire engines, fire trucks, and ambulances to a set of predefined can-
didate stations so as to maximize coverage of the CTI. A CTI node
is covered if it is served within the required time by at least one fire
engine, one fire truck, and one ambulance. In addition, the service
reliability, defined as the probability of at least one vehicle of each
type being available at any time, is required to be no less than o. This
is a maximum expected covering problem. Models considering service
reliability are categorized as probabilistic models in the review by
Owen and Daskin (2). However, in this analysis, the difference
between standard stochastic models and the proposed model will be
realized. Standard stochastic models usually involve an explicit prob-
ability distribution of random parameters or possible scenarios, while
the proposed maximum expected covering model preprocesses input
parameters on the basis of the reliability requirement and historical
demand quantity and then inputs all parameters into the core model as
known deterministic values.

Base Model Formulation

First, the formulation of the base scenario is considered. The following
assumptions are made:

1. The total number of available emergency vehicles of each type
is given.

2. A set of candidate stations is predefined, and their locations
are known.

3. A restriction on capacity is imposed at each station.

4. Incident occurrence rates at demand nodes are estimated on
the basis of historical data.

5. Emergency service vehicles are assumed to travel at their free-
flow speeds. Note that the free-flow speeds of emergency service
vehicles are higher than those of normal vehicles.

The main purpose of introducing the base model is to explain the
concept and computation of service reliability.

Denote as | the set of demand nodes (CTI nodes in this paper)
and as J the set of possible stations. First consider the availability of
each type of emergency service vehicle at station j (j € J) when
there is a request for emergency services at demand node i (i € |).
Theoretically, the probability of a server being busy should depend
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on the features of the server and its competing neighboring demand
nodes. Thus it is more realistic to “make use of server-specific busy
fractions” (30). However, because of the computational burden
involved in the use of server-specific busy fractions, an intermedi-
ate approach was introduced by ReVelle and Hogan (20): the “use
of demand-area-specific busy fractions.” The busy fraction in the
service region around demand node i for a particular type of emer-
gency service vehicle (e.g., fire engines) is defined as the required
service time in the region divided by the available service time in
the region (30). Thus,
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where
gF = local busy fractions for fire engines, centered at demand

node i;
TE = average service time of fire engines on site (hours per call);
fi = frequency of requests for service at demand node i (calls
per day);
XjE = number of fire engines located at fire station j;
S = service standards in terms of travel time for fire engines;
ME; = (Vi tj < &}, the set of demand nodes competing for ser-
vices by fire engines located within § of demand node i;
NE; = {Vj |tji < &}, the set of fire stations located within S of
demand node i;
tj = travel time between station j and demand node i; and
pE = utilization ratio of fire engines at demand node i, as
defined by ReVelle and Snyder (31).

The local estimate of busy fraction for fire trucks and ambulances
can be similarly expressed by using their associated service standards.

In accordance with the work by ReVelle and Hogan (20), it is
assumed that the requests for services from different nodes are inde-
pendent and that all demand nodes within § have the same gF value.
The probability of one or more servers being busy thus follows a
binomial distribution. The probability of having at least one fire
engine available is therefore

1 — P(all engines within SFof node i are busy)
. bE;
XIE £ jeNE;
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To meet the server availability requirement—that the probability
of having at least one fire engine available within S of node i when
node i is requesting service must be larger than or equal to o—the
following must hold:
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This probabilistic constraint does not have an analytical linear equiv-
alent. However, a numerical linear equivalent can be found by defining
the parameters € as the smallest integers satisfying the following:
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Similar expressions can be written for trucks and ambulances
by substituting T and A, respectively, for E. Correspondingly, new
parameters t; and & are defined as the minimum number of fire
trucks and ambulances that must be located within " and $* of node
i to ensure that node i is covered at reliability level c.

The complete mixed integer model formulation for the maximum
coverage problem is as follows:
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where

yi = 1 if demand node i is covered by e fire

engines within S\, t; fire trucks within §, and
a ambulances within S otherwise, Y; = 0;
XjE = number of fire engines located at station j;
x* = number of ambulances located at station j;
ler = number of fire trucks located at station j;
NE;, NT,, and NA; = sets of stations located within &, ST, and &
of demand node i, respectively (e.g., NE =
{Vj Ity <&}

B = maximum number of vehicles of each type
that can be accommodated by each station (it
is assumed that every candidate station has
the same capacity to house B fire engines,
B fire trucks, and B ambulances); and

PE, PT, and P* = total number of available fire engines, fire
trucks, and ambulances, respectively.



The objective presented in Expression 5 maximizes the total num-
ber of covered CTI facilities. Constraint 6 states that at each node i,
the number of fire engines located at fire stations within & of node i
must be greater than or equal to the number of fire engines needed
within & of node i to meet the reliability requirement. Constraints 7
and 8 can be similarly explained for fire trucks and ambulances,
respectively. Constraints 9 through 11 restrict the total number of
fire engines, fire trucks, and ambulances to be assigned. Inequalities
12 through 14 impose the capacity constraints at each fire station.

A detailed procedure for parameter preparation in the base model
is provided as follows:

1. Use geographic information system software (e.g., ArcGIS 8.0
in this study) to locate CTI nodes and to integrate these nodes in the
transportation network.

2. Generate travel time matrices containing travel times between
each pair of CTI nodes and between each CTI node and candidate
fire station location. For the purpose of this study, a script to carry
out this task was written in ArcView 3.1.

3. Generate node sets NE;, NT;, and NA, for each CTI node by
using travel time information given in the matrices obtained from
Step 2. These sets of nodes indicate the set of candidate fire stations
within the service range of CTI node i.

4. Generate node sets ME;, MT,, and MA; for each CTI node by
using travel time information given in the matrices obtained from
Step 2. The sets of nodes indicate the set of CTI nodes competing
for emergency service with CTI node i.

5. Compute the local server busy fraction for each CTI node
according to Equation 1. Once the busy fraction is computed, the
minimum number of emergency service vehicles can be computed
according to Inequality 4.

Robust Optimization Model

The parameters in the base model are all assumed known. However,
some of the parameters, such as travel time over the traffic network
and the incident rate at demand nodes, may be uncertain in practice.
An optimal policy can be computed from a mathematical model by
using forecast most likely parameters. However, the future realized
values of the parameters are often different from the forecast values,
while the effectiveness of a decision is often evaluated in the after-
math of a realized scenario as if all the parameters were known in
advance. Significant data uncertainty of the decision environment
and the strong desire of decision makers to avoid extremely bad con-
sequences naturally lead to the consideration of robust approaches,
which emphasize the worst-case scenario.

If the model parameters such as travel time over the traffic net-
work were known in advance, their values could be input into the
base model, and the best possible coverage could be achieved. The
difference between the best possible objective value and the realized
objective value from a chosen strategy is called the “regret” of the
strategy in that realization (27). Some robust optimization approaches
deal directly with the objective values across all possible realizations.
In this case, the criterion is to find a strategy that maximizes the
worst benefit across all possible realizations, also called the absolute
robustness criterion. Some robust approaches use the robust devia-
tion criterion, which is to minimize the largest regret (28). In this
section, the facility location problem is modeled on the basis of the
absolute robustness criterion (i.e., an allocation strategy is produced
0 as to maximize the minimum coverage for CTI nodes across all
possible realizations).
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Several parameters in the base model can be uncertain. Here, only
uncertain travel times over the network will be considered as an
illustration. The mathematical formulation is as follows:

maximize M (16)

subject to Constraints 9 through 15 of the base model formulation and

Y xizey Viel  VkeK an
jeNEf
Y x =ty¢ Viel  VkeK (18)
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iel

where

tﬁ = travel time between i and | in realization K;
NEX NT¥X and NAX= sets of stations located within &, S, and $*

of demand node i in realization k, respec-
tively (e.g., NEf= (V] |t,~'? <SF));

yik: 1 if demand node i is covered by g fire
engines within S\, t; fire trucks within S,
and @, ambulances within S* under realiza-
tion k; otherwise, y; = 0;

M = smallest total coverage achieved in any real-
ization; and

K = set of possible realizations.

All other variables have the same meanings as in the base model
formulation. The left side of Constraint 17 represents the supply of
fire engines around demand node i in scenario K. The right side of
Constraint 17 is the demand for fire engines at demand node i, which
is assumed to be deterministic. Constraints 17 through 19 guarantee
that the computed V; is the worst coverage of demand node i across all
possible scenarios. The objective of the model is still to maximize the
total coverage of CTI nodes, but because of the changing meaning of
Y, the objective becomes to find an allocation strategy that maximizes
the minimum total coverage achieved across all scenarios.

CASE STUDY
Background

Singapore is used as an example of the application of the proposed
model to a high-density metropolitan area. Singapore has 15 fire sta-
tions and 151 CTI facilities (see Figure 1). The CTI facilities include
mass rapid transit stations, transit or bus interchanges, bus termi-
nals, expressway tunnels and interchanges, and seaport and airport
terminals.

The Singapore Civil Defense Force (SCDF) is the government
agency responsible for providing emergency response services. SCDF
operates fire engines and trucks and a fleet of 30 ambulances. The
three types of vehicles are based at fire stations. Current published
service standards of SCDF are 8 min for fire engines and fire
trucks and 11 min for ambulances to reach the incident site (32).
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FIGURE 1

The average service times for fire engines, fire trucks, and ambu-
lances are set to be 2, 2, and 1.5 h, respectively, which are adopted
from ReVelle and Marianov (25). A total of 3,912 fire cases during
the period from January 2003 to December 2003 (33) are used as
historical data to estimate f;, the incident frequency at each demand
node. The service reliability required by SCDF is 90%.

Base Scenario

The base scenario is based on the existing practice of SCDF, in
which no more than 15 fire engines, 15 fire trucks, and 30 ambu-
lances (i.e., p¥= 15, p" = 15, and p* = 30) are allocated among the
15 candidate fire stations to maximize the coverage of the 151 CTI
nodes. An optimal solution to the base scenario is given in the table
below, where, for example, 12 means that two fire engines should be
allocated at Fire Station 1.

Fire Engines Fire Trucks Ambulances
(total = 15) (total = 15) (total = 21)
12,22,3%,6%,7,9,  12,2%,3%,4,6%,7, 1%,3%4,5%,6%7,
11,12,13% 14 9,11,12,13,14 84 11,12,13

The existing emergency service vehicles can cover at most 126
CTInodes if resources are allocated optimally. Several observations
are made on the basis of these results. First, the existing setting of
service resources and candidate stations in Singapore is not sufficient
to cover all CTI nodes under the SCDF requirements for service
standard and service reliability. Second, all fire engines and trucks
are fully utilized in the optimal solution, but there is some redundancy
with regard to the number of available ambulances. This indicates a
need for redistributing the share of the three types of vehicles to
achieve better system coverage. Finally, the results indicate multiple
optimal allocation strategies that lead to the same maximum coverage.
Note that all the constraints and unit benefits for fire engines and
trucks are the same. Thus identical allocation strategies are expected
for these two types of vehicles. However, there is a slight difference
between the second and third columns of the table for Stations 4 and
13. The two allocation strategies were later switched for the two types
of vehicles, and the same maximum coverage of 126 was obtained.

*  Fire stations

Map of Singapore with candidate fire stations.

Multiple optimal solutions usually provide alternatives and thus more
flexibility in the actual allocation of service resources.

Sensitivity Analysis in Resource Budget

As observed in the base scenario, on the one hand, the total existing
service resources are not sufficient to cover all CTI nodes. On the
other hand, some existing resources are not fully utilized. In this sec-
tion, the effects of the total resource budget on maximum coverage
are studied on the basis of a sensitivity analysis. In addition, chang-
ing the budget constraints to allow redistribution of the three types
of resources is examined. Usually, different types of service vehicle
resources are planned by different agencies or divisions. It is demon-
strated that, through a more efficient budget allocation among the
agencies or divisions, a higher coverage can be achieved.

Constraints on multiple types of service vehicles (Constraints 9
through 11) are combined into the following single monetary resource
constraint:

CEx Y XT+CTE Y X +chx Y X<

jed jed jed
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where | is total investment and CF, €T, and ¢* are unit purchasing prices
of fire engines, fire trucks, and ambulances, respectively. According
to SCDF, these parameters take the value of $325,000, $700,000, and
$200,000 (U.S.), respectively.

In the base scenario, the optimal strategy requires a total of 15 fire
engines, 15 fire trucks, and 21 ambulances. The corresponding cost
is $19.6 million (U.S.), and the corresponding coverage is 126. When
redistribution of resources is allowed, only $16.9 million is needed
to achieve the same coverage. Furthermore, the coverage can be
improved to 127 with $18.7 million. The ability to cover more demand
with less money shows the benefit of allowing redistribution of the
three types of resources.

Policy makers are often more interested in what funding level
they should request than in detailed allocation strategies. Justification
of a certain funding level requires a cost—benefit study that can be used
to measure the marginal change of coverage as the total funding



changes. The range of total investments from $2.5 million to
$19 million in increments of $0.3 million is examined. The rela-
tionship between the total investment and the maximum coverage
is illustrated in Figure 2.

In Figure 2, every data point denotes the coverage corresponding
to an investment. As the total investment increases, the optimal cov-
erage reaches a maximum of 127 and does not increase beyond that
no matter how much investment is made. An investigation of the
spatial relationship between the potential station sites and demand
sites suggests that some demand nodes are beyond the service areas
(in terms of service standard and reliability) of the existing stations.
Simply purchasing more vehicles does not improve the coverage of
those demand nodes. New stations must be planned to cover those
remote areas. Another observation from Figure 2 is that the marginal
benefit of increasing one unit of investment varies across the invest-
ment levels. Therefore, in making investment decisions, a balance
between safety and efficiency must be sought.

Robust Analysis

The sensitivity analysis given above is conducted in a deterministic
environment in which travel times of emergency vehicles are assumed
to be known and equal to their free-flow speeds. In this section, the
travel times between CTI nodes and fire stations are allowed to fluctu-
ate. The fluctuation may be caused by congestion or the unavailabil-
ity of some road segments after natural or human-induced disasters.
In general, noise can be positive or negative. However, since the
travel times used in the base scenario are already based on free-flow
speed, only positive noise with a uniform distribution over [0, 1] is
considered—that is, travel time between [t, t(1 + n)], where t is the
free-flow travel time and n is the noise level expressed in percent.
Three levels of noise (20%, 50%, and 100%) are considered. A higher
noise level implies a more congested traffic network.

For each noise level, 100 realizations with random travel times
are simulated. Assume that the actual travel times in each realiza-
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tion are known in advance. The best resource allocation strategy
and the corresponding maximum coverage from the base model are
computed. The maximum coverage in each realization is plotted in
Figure 3, and the statistics are given in the second through fourth
columns of Table 2.

Two different strategies are then presented: expected strategy and
robust strategy with their associated regrets. For each given noise
level, 100 independent sets of travel time matrices were simulated.
The average travel times of the 100 realizations were entered into the
maximum expectation model to find the optimal expected strategy.
The same sets of realized travel times were also used to compute the
robust strategy. The regrets of the two strategies and their statistics
are given in Table 2.

The effects of the uncertain environment on the quality of deci-
sion strategies are now considered. Whether a model is sensitive to
achange of its parameters can be examined by observing the change
in objective value caused by the change in model parameters. In this
regard, the proposed base model is not sensitive to the fluctuation in
traffic network performance in the sense that the average coverage
only drops by 5.9% [(121.38 — 114.24)/121.38] as the noise level of
travel time increases from 20% to 50%. However, it is consistently
observed that the performance of both strategies degrades as the
level of uncertainty of the environment increases. Furthermore, as
the uncertainty level becomes higher (the noise level reaches 50%
or 100%), the overall performance of the robust strategy is better
than that of the expected strategy.

Conceptually, regret can be considered as a measure of the value
of perfect information (i.e., the benefit of having perfect information
of uncertain model parameters). A decision maker who prefers the
base model for its conceptual simplicity should be willing to pay
more for data forecasting and calibration, since the benefit from better
data quality is significant.

However, these observations are based on a relatively small sam-
ple. Much more computer simulation must be conducted to draw
a more representative conclusion with regard to the uncertain
environment.
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DISCUSSION OF RESULTS

In this paper, the facility location and resource allocation problem
has been considered in the context of emergency management.
According to practitioners in the field of emergency management,
the role of location problem models is often underplayed in practice
because it is considered unrealistic to relocate existing emergency
service stations except in cases of new areas under development.
The case study indicates that a location model with a resource allo-
cation feature can be used to identify not only the best location for
potential stations but also the distribution of service resources among
the stations. Therefore, even for developed areas already equipped
with service stations, reexamining whether the limited resources are
distributed most efficiently may still be valuable. The sensitivity
analysis of resource constraint also provides a quantitative method
for justifying the investment level for equipping emergency stations
in a given region. The regret analysis in computer simulations provides
the value of improving prediction of uncertain model parameters
and helps justify the need for improving data quality.

From a modeling viewpoint, the focus has been on handling
resource availability and uncertainty of the environment. A base model

using expected values of the model parameters and a robust model
focusing on the worst-case scenario are studied in parallel. Both mod-
els are approximations of reality and thus involve simplification
and assumptions. The base model is simpler, both conceptually and
computationally. However, when significant uncertainty is involved
in model parameters, following the robust approach tends to be the
safer choice.

In this work, the focus has been on allocation of three types of
emergency resources among fire stations. However, the methods are
suitable for other types of emergency services and management cen-
ters, such as planning for shelters following large-scale urban disasters
and allocating inspection or medical treatment resources and per-
sonnel. Despite the intense data processing and modeling efforts
involved in this work, several important issues have not been
addressed. First, even though the concept of service reliability is one
way to handle uncertainty in demand, the minimum service resource
requirements at demand nodes are computed on the basis of historical
data. The fluctuation of future demand due to population, unknown
risk, or spatial features of the study area should be considered explic-
itly in the model. Robust analysis of the proposed model against
demand fluctuation is necessary. Second, the current work only

TABLE 2 Statistics of Regrets of Maximum Expected Strategy and Robust Strategy

Maximum Coverage in
Simulated Realizations
for Noise Level

Regret of Expected
Strategy for Noise Level

Regret of Robust Strategy
for Noise Level

20% 50% 100% 20% 50% 100% 20% 50% 100%
Average 121.38 114.24 100.22 0.42 3.15 3.83 0.43 2.03 2.38
Min 119 110 94 0 0 1 0 0 0
Max 124 119 107 3 8 7 1 5 6
SD 1.12 1.77 2.67 0.68 1.74 1.54 0.50 1.31 1.17
Range 5 9 13 3 8 6 1 5 6




provides single-layer coverage. However, for highly critical infra-
structure, single-layer coverage may not be sufficient in an extreme
environment. The introduction of backup coverage for such infra-
structure with implementation of robust optimization approaches
would be an interesting extension of this work.

REFERENCES

10.
11.

12.

14.

15.

16.

. Schilling, D. A., J. Vaidyanathan, and R. Barkhi. A Review of Covering

Problems in Facility Location. Location Science, Vol. 1, 1993, pp. 25-55.

. Owen, S. H., and M. S. Daskin. Strategic Facility Location: A Review.

European Journal of Operational Research, Vol. 111, No. 3, 1998,
pp. 423-447.

. Daskin, M. S. Network and Discrete Location: Models, Algorithms, and

Applications. Wiley, New York, 1995.

. Church, R. L., and C. ReVelle. The Maximal Covering Location Problem.

Papers of the Regional Science Association, Vol. 32, 1974, pp. 101-118.

. Schilling, D., D. Elzinga, J. Cohon, R. Church, and C. ReVelle. The

TEAM/FLEET Models for Simultaneous Facility and Equipment Siting.
Transportation Science, Vol. 13, No. 2, 1979, pp. 163-175.

. White, J., and K. Case. On Covering Problems and the Central Facility

Location Problem. Geographical Analysis, Vol. 6, 1974, pp. 281-293.

. Eaton, D. J., et al. Location Techniques for Emergency Medical Service

Vehicles. Policy Research Report 34. Lyndon B. Johnson School of
Public Affairs, University of Texas, Austin, 1979.

. Eaton, D.J,, et al. Analysis of Emergency Medical Service in Austin,

Texas. Policy Research Report 41. Lyndon B. Johnson School of Pub-
lic Affairs, University of Texas, Austin, 1980.

. Eaton, D. J., M. S. Daskin, B. Bulloch, and G. Jansma. Determining Emer-

gency Medical Service Vehicle Deployment in Austin, Texas. Interfaces,
Vol. 15, 1985, pp. 96-108.

Bennett, V. L., D. J. Eaton, and R. L. Church. Selecting Sites for Rural
Health Workers. Social Sciencesand Medicine, Vol. 16, 1982, pp. 63-72.
Marianov, V., and C. ReVelle. The Standard Response Fire Protection
Siting Problem. INFOR Journal, Vol. 29, No. 2, 1991, pp. 116-129.
Marianov, V., and C. ReVelle. The Capacitated Standard Response Fire
Protection Siting Problem: Deterministic and Probabilistic Models.
Annals of Operations Research, Vol. 40, 1992, pp. 302-322.

. Toregas, C., and C. ReVelle. Binary Logic Solutions to a Class of Loca-

tion Problems. Geographical Analysis, 1973, pp. 145-155.

Toregas, C., R. Swain, C. ReVelle, and L. Bergman. The Location of
Emergency Service Facilities. Operations Research, Vol. 19, No. 6,
1971, pp. 1363-1373.

Berlin, G. N., and J. C. Liebman. Mathematical Analysis of Emergency
Ambulance Location. Socio-Economic Planning Science, Vol. 8, 1971,
pp. 323-328.

Jarvis, J. P., K. A. Stevenson, and T. R. Willemain. A Smple Procedure
for the Allocation of Ambulancesin Semi-Rural Areas. Technical report.
Operation Research Center, Massachusetts Institute of Technology,
Cambridge, 1975.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Transportation Research Record 2022

Hakimi, S.R. Optimum Locations of Switching Centers and the
Absolute Centers and Medians of a Graph. Operations Research, Vol. 12,
1964, pp. 450-459.

Carson, Y., and R. Batta. Locating an Ambulance on the Amherst Campus
of the State University of New York at Buffalo. Interfaces, Vol. 20, 1990,
pp. 43-49.

Serra, D., and V. Marianov. The P-Median Problem in a Changing Net-
work: The Case of Barcelona. Location Science, Vol. 6, 1998, pp. 384-394.
ReVelle, C., and K. Hogan. The Maximal Covering Location Problem
and a-Reliable P-Center Problem: Derivatives of the Probabilistic Loca-
tion Set Covering Problem. Annalsof Operations Research, Vol. 18, 1989,
pp. 155-174.

Jia, H., F. Ordonez, and M. Dessouky. A Modeling Framework for
Facility Location of Medical Services for Large-Scale Emergencies.
Working paper. Daniel J. Epstein Department of Industrial and Systems
Engineering, University of South California, 2005.

Daskin, M. S. A Maximum Expected Covering Location Model: For-
mulation, Properties and Heuristic Solution. Transportation Science,
Vol. 17, No. 1, 1983, pp. 48-70.

Bianchi, G., and R. Church. A Hybrid FLEET Model for Emergency
Medical Service System Design. Social Sciencesin Medicine, Vol. 26,
1988, pp. 163-171.

Tavakoli, A., and C. Lightner. Implementing a Mathematical Model for
Locating EMS Vehicles in Fayetteville, NC. Computer and Operations
Research, Vol. 31, 2004, pp. 1549-1563.

ReVelle, C., and V. Marianov. A Probabilistic FLEET Model with Indi-
vidual Vehicle Reliability Requirements. European Journal of Opera-
tional Research, Vol. 53, No. 1, 1991, pp. 93-105.

ReVelle, C., and K. Hogan. A Reliability Constrained Siting Model with
Local Estimates of Busy Fractions. Environment and Planning B: Plan-
ning and Design, Vol. 15, 1988, pp. 143-152.

Snyder, L. V. Facility Location Under Uncertainty: A Review. IIE
Transactions, Vol. 38, No. 7, 2006, pp. 547-564.

Kouvelis, P., and G. Yu. Robust Discrete Optimization and Its Applica-
tions. Kluwer Academic Publishers, Netherlands, 1997.

Cheu, R. L., Y. Huang, and B. Huang. Allocating Emergency Service
Vehicles to Serve Critical Transportation Infrastructures. Journal of
Intelligent Transportation Systems (in press).

Marianov, V., and C. ReVelle. Siting Emergency Services. In Facility
Location: A Survey of Applications and Methods (Z. Drezner, ed.),
Springer, New York, 1995, pp. 199-223.

ReVelle, C., and S. Snyder. Integrated Fire and Ambulance Siting: A
Deterministic Model. Socio-Economic Planning Science, Vol. 29, No. 4,
1995, pp. 261-271.

Quality Service Handbook. Singapore Civil Defense Force, Singapore,
2003.

Singapore Civil Defense Force Homepage. www.scdf.gov.sg. Accessed
July 16, 2006.

The Critical Transportation Infrastructure Protection Committee sponsored
publication of this paper.



