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becomes a serious drawback in the context of bilevel problems, in
which the solution procedure involves repeated computation of per-
formance criteria. Nevertheless, many times a quick and effective
approximation of network performance measures may be acceptable
for practical reasons, especially when a timely decision is needed.

In this paper, an alternative approach is introduced that uses the
concept of associative memory (AM) to predict various network per-
formance measures simultaneously. This approximation approach
trades off a little of the accuracy of conventional methods for sig-
nificant savings in computational time, thus potentially leading to a
reduction in the decision-making time. AM techniques are inspired by
the human memory and have broad applications in science and engi-
neering, particularly in system identification and pattern recognition
(8). The research presented here demonstrates good potential for
application of AM techniques to transportation network problems.
First, the construction and evaluation of AM models that predict the
performance for a given network configuration are introduced. The
usefulness of AM models in solving bilevel problems will be explored
further in the context of the NRP, which seeks an optimal strategy for
repairing damaged network components following a disturbance to
the network.

ESTIMATION OF NETWORK PERFORMANCE
CRITERIA WITH AM MODELS

Introduction of AM Techniques

AM models belong to the class of neural computing techniques and
are basically mappings between ordered sets of input and output sig-
nals (Figure 1). The inspiration for constructing these models stems
from the associative nature of the human memory, which connects
items that are similar or contrary or if they occur simultaneously
or in close succession (8). There are two different categories of AM
models: autoassociative memories and heteroassociative memories.
Autoassociative memories are capable of recollection of the complete
version of a given incomplete or noisy pattern but cannot map a totally
different key pattern that was not memorized earlier. Heteroassocia-
tive memories, however, are mappings between two different sets
of patterns and thus are capable of producing an associated output
pattern for any of the new input patterns. Heteroassociative memories
are commonly used in situations involving parameter estimation.

The three main examples of such models are simple associative
memory (SAM), recurrent associative memory (RAM), and multi-
criteria associative memory (MAM). The model used for estimation
of network performance measures in this study is the SAM model.
In simpler terms, the whole of the AM model in this study may be
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Many important decision-making processes in transportation planning
and engineering involve repetitive computation of network performance
measured by total network delay, throughput, network efficiency, and
other measures. The computational complexity imposed by repetitive
evaluation of these measures, especially under user equilibrium condi-
tions, is a serious obstacle to timely decision making in network-related
problems. This study applies associative memory techniques, which are
conceptually and computationally simple, to quick estimation of these per-
formance measures. The results of the numerical experiments are encour-
aging, and the relative error on average was found to be less than 2%.
Furthermore, the applicability of this approximation method to bilevel
network problems, a class of important but complex problems, is explored
through a study of the network recovery problem, which seeks a quick
and effective repair strategy for disturbed networks following natural or
human-induced disasters.

Transportation engineering and planning studies usually require that
individual transportation facilities in a region be studied as a whole
system. Because of its spatial feature, a transportation system is often
modeled as a network consisting of nodes and various links connect-
ing these nodes. Standard network performance measures used in the
field of transportation include total travel time, network efficiency,
total throughput, and other measures. Almost every transportation
system study involves evaluation of network performance criteria. To
name a few, examples include cost-effectiveness analysis of various
network improvement policies, loss assessment of natural and human-
induced disasters (1), network resilience studies (2), and as part of the
solution to a large number of important bilevel problems such as the
network recovery problem (NRP) (3, 4).

However, resources required to compute these performance mea-
sures for networks of realistic size may be quite extensive, in spite of
significant developments in theory and computation (5–7), especially
if traffic is assumed to be in a user equilibrium (UE) condition. The
Franke-Wolfe algorithm, for instance, required about 150 s of CPU
time on a personal computer to solve one UE traffic assignment prob-
lem for highway network of the San Francisco Bay area in California,
with about 1,120 zones and 10,647 nodes. The computational burden
may not seem to matter if only a single computation is needed, but it
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thought of as a black box that transforms a given set of inputs into the
set of required outputs. The details of stimulus and response vectors
for this study are discussed later.

AM techniques have been applied in a number of situations in
which unknown system parameter estimation was involved, includ-
ing nonlinear system identification, passive ranging, remote sensing,
and image processing (9, 10). Kalaba et al. (9) further showed the
application of AM techniques even when the data available were
noisy. Neural computing techniques, such as neural networks, have
been used widely to solve highly complex and nonlinear transporta-
tion problems (11), particularly in areas regarding parameter estima-
tion, driver behavior, traffic pattern analysis, and others. However,
applications of the AM techniques to transportation are yet sparse in
number, even though, as pointed out by Ferris et al. (6), more com-
prehensive comparative studies that incorporate new paradigms in
neural computing techniques are needed.

The major advantage of AM models over the other neural comput-
ing methods is the resulting savings in time. The compact representa-
tion of AM models (e.g., polynomial) enables easier integration of
these models into bilevel problems. However, the AM approach being
a single-layered process, it can only at best be as good as the neural
network approach, which is multilayered in most situations. Potential
applications of SAM, RAM, and MAM to the problem of traffic
assignment were investigated by Kim (12) to determine highway
flows, and fairly good results were achieved. The major improvement
of the AM model in the current work is the capability of simultane-
ously capturing several optimization problems and approximating
multiple network performance measures at once.

Definitions of Network Performance Measures

Two network performance measures are chosen to demonstrate the
capability of AM models in simultaneously estimating multiple
performance measures: total travel time and global efficiency.

Total Travel Time

Total travel time is one of the most commonly used system perfor-
mance measures and constitutes the objective function of a number
of bilevel problems such as the network design–capacity expan-
sion problem and the optimal pricing problem. The expression for
computing this measure is

where Va is the volume on link a, and ta(Va) is the time needed to
traverse link a with volume Va.

The link volumes here are usually determined under a UE
assumption, given the physical representation of the network and the

total travel time TT= = × ( )∑ V t Va a aa
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origin–destination (O-D) demand matrix. Commonly adopted func-
tions describing the relationship between link travel times and flows
are usually nonlinear, convex, and monotone increasing. In spite of
considerable progress in developing solution algorithms for the UE
problem, the computational resources needed to arrive at the volumes
are not insignificant, especially for large transportation networks.

Global Efficiency

Global efficiency was introduced by Latora and Marchiori (13) for
assessing the efficiency of transporting information (or people) in
networks. The global efficiency of a network may be used as a mea-
sure for quantifying the ease with which people can move around in
the network. This measure is widely used in network vulnerability
and resilience studies (2). The expression for computing the global
efficiency given the physical configuration of the network is

where N is the total number of nodes in the network and tij is the
shortest path from node i to j.

Computation of global efficiency requires finding the shortest path
between every node pair in the network. However, the shortest paths
are based on the physical distances between the nodes. Thus this mea-
sure is a property of the network configuration alone and does not
account for congestion effects.

Construction of AM Models

An AM model, as described earlier, establishes a mapping between
a stimulus (input) vector and a response (output) vector. The AM
models in the context of this study are required to predict the network
performance measures for different realizations of network configu-
rations. The stimulus vector thus needs to represent the network con-
figuration in some manner, whereas the response vector would be
constituted by the various performance measures. Simple AM mod-
els operate on the given stimulus vector to generate the response
vector in the following manner:

where R is the response vector, S is the stimulus vector, and M is the
characteristic matrix associated with the AM model.

The crux of the AM approach thus lies in the construction of this
transformation matrix M. The construction of AM matrices primarily
involves two steps: training of the matrices and testing of the trained
matrices. Before the training of matrix M is discussed, the functional

R MS=

global efficiency =
−( ) ∑

1

1

1

N N tiji j

N

,

ASSOCIATIVE
MEMORY MODEL (M)

Stimulus
(S) 

Response
(R)

FIGURE 1 Representation of AM models.



form of the stimulus vector and the number of training cases to be used
must be determined.

A natural way of constructing the stimulus vector would be to stack
all the link capacities to form a column vector. This structure for the
stimulus vector is referred to as the linear stimulus vector and the
resultant mapping as linear associative mapping. However, the rela-
tionships between the stimulus and response vectors in most prob-
lems, especially in transportation, are highly nonlinear in nature.
Inspired by Kalaba et al. (9), the authors investigated the performance
of second-order polynomial (quadratic) AM models in which the
stimulus vectors are constructed as follows:

where Ci is the capacity of the ith link of the network.
This choice of stimulus vector has led to improved approximation.

The downside of using such a stimulus vector in transportation net-
work problems is the increased size of the stimulus vector. Thus, a
structure with only partial terms of the quadratic AM model was also
investigated as a part of this study, in which the stimulus vector is
constructed as follows:

This functional form will be referred to as a partial quadratic
structure.

Apart from the functional form of the stimulus, the number of
training cases to be used is another important parameter that needs to
be specified beforehand. There are no governing rules about the num-
ber of training cases that ought to be used in different problems.
Numerical experiments were thus conducted with different numbers
of training cases in the construction of matrix M. The results of these
experiments will be discussed in the next section.

Once the functional form and the number of training cases are
decided on, the AM models are constructed in the following manner.
For the sake of simplicity, the construction procedure for linear asso-
ciative memories is described first. At the initial step, different network
configurations with up to 10% of the total number of links damaged
were randomly selected. Damaged links are assumed to have only one-
third of their original capacity. The UE model was used to compute the
total travel time. Similarly, the lengths of damaged links were set to a
high value and the global efficiency associated with each of the net-
work configurations was computed. The two performance measures
thus computed were then used to form the following response vector:

where TT represents the total travel time and GE is the global 
efficiency.

For each of the training cases, a stimulus vector (column vector of
capacities) and a response vector were generated. The stimulus matrix
(Š) and the response matrix (Ř) were then constructed by aggregating
all the stimulus and response vectors, respectively, with each column
in Š and Ř corresponding to each chosen training case. The mapping
matrix M can be solved by

where Š+ is the Moore–Penrose generalized inverse of the stimulus
matrix Š.
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The procedure for constructing nonlinear AM models is similar
except that each individual stimulus vector is cast into the required
structure by means of appropriate operations. The matrices so built
were then tested with a different set of network configurations and
the approximated measures were compared with the true mea-
sures. Detailed results from model validation are reported in the
next section.

An implicit assumption when the total travel time is estimated by
using the AM approach is that the demand for the transportation
network is a constant across various networks. This static demand
assumption, as will be shown later, can be relaxed.

Numerical Experiments and Results

A highly aggregated version of the network in Sioux Falls, South
Dakota (24 nodes, 76 links), was used in this study to construct and
evaluate the AM models. It is assumed that incidents affecting the
Sioux Falls network can damage up to seven links of this network.
AM models with the three different stimulus structures were con-
structed to quickly estimate the network performance at various dam-
age levels. The training of the AM models was carried out by using
up to 6,000 randomly chosen network configurations. The testing,
however, was performed on a different set of 1,000 networks.

The following two error measures were used to evaluate the
performance of the AM models:

• Average relative error. This statistic quantifies the error between
a predicted and observed value for a single network performance
criterion in the following manner:

where

N = total number of predictions,
ract = actual value of network performance criterion, and
robs = predicted value of network performance criterion.

The foregoing statistic measures the goodness of the model with
respect to each individual network performance criterion.

• Root-mean-square error. The root mean square associated with
an AM model is defined in the following manner:

In addition, the standard deviations of the errors across all the test
networks were computed. The performance of the three AM models
is summarized in Table 1.

The testing of the AM matrices revealed that the errors in the pre-
dictions made by the AM models are reasonably low. The AM mod-
els seem to perform exceedingly well in the context of global
efficiency (ARE = 0.27%). The ARE corresponding to total travel
time was fairly low and was around 1.69%. The standard devia-
tions of the errors were also found to be low. The higher values for
errors in the total travel time might be due to the degree of varia-
tion in this measure across networks when compared with global
efficiency. The models constructed with the quadratic stimulus

RMSE
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was evaluated. As expected, a significant variation in performance of
the AM models was observed on varying the number of training cases.
It was observed that the AM models performed satisfactorily even
when relatively fewer training cases are used. For instance, the total
travel time ARE was found to be 4% to 6% for models that were
constructed with even fewer than 1,000 training cases. The testing
here was conducted by computing the average of the errors across
10 models with 1,000 cases for varying numbers of training cases.

Another interesting observation made across all testing cases is the
large spike in the error values as the stimulus matrix approaches a
square matrix. It is thought that this sudden extreme error is caused
by the limited capability of MATLAB in handling the inversion of
a nearly singular matrix when the matrix approaches a square and
becomes highly ill-conditioned. A more rigorous investigation of this
issue is still in progress. Once the stimulus matrix moves away from
the square structure, the average prediction error decreases and seems
to become stable after a certain number of training cases (about 4,000
cases in this study). It should be noted that even though training may
require a significant amount of computational resources, this compu-
tation is done offline. Once the AM model is trained, it can be used
in a real-time decision process to support quick computation.

The other performance measures that were approximated by using
the AM techniques include the average volume-to-capacity ratio
under UE conditions and the total throughput (maximal multi-
commodity flow). Fairly good results were obtained from numerical
experiments with these measures (ARE for mean V/C ratio ∼ 0.3%,
ARE for total throughput ∼ 8.5%).

To test for the nature of potential dependence of AM model
effectiveness on network structures, the following experiments
were carried out. Four different networks that were constituted by
25 nodes and varying numbers of links were considered for
attempts at extending the AM models. The four networks here pos-
sess a progressively increasing degree of redundancy for the links.
For instance, damage to even a single link in Network a (Figure 2)
will lead to disconnection in the network. However, every node pair
in Network d has several alternate paths, thus lessening the chances
of disconnection.

AM models that predicted global efficiency were constructed for
each of the four networks with up to 10% of the total number of links
damaged in each case. The results of the model evaluation for each of
these networks are summarized in Table 2. It can be observed that the
ARE is less than 1% for most of the cases. The results of these pre-
liminary tests suggested that the AM techniques for predicting global
efficiency are very much applicable to other networks, both trans-

TABLE 1 Evaluation of AM Models

Stimulus Structure

Partial
Linear Quadratic Quadratic

Total travel time

ARE 6.91% 2.86% 1.69%

Standard deviation of RE 5.45% 2.67% 1.53%

RMSE 8.37 4.32 2.32

Global efficiency

ARE 0.64% 0.54% 0.27%

Standard deviation of RE 0.68% 0.64% 0.33%

RMSE 0.004 0.0037 0.0019

(a) (b) (c) (d)

FIGURE 2 Four networks with different structures. (Courtesy of L. Dueñas-Osorio, Rice University.)

structure outperformed the other models in the prediction of both
performance measures.

The consistency of the foregoing predictions was then checked
by constructing 10 different AM matrices and subsequently test-
ing them with 1,000 test cases each. The average ARE and RMSE
across the 10 different models were about 1.71% and 2.66, sug-
gesting that the differences across matrices might be minor. There
might, however, be significant variation in the performance of mod-
els that are built with relatively fewer training cases since there is a
higher possibility of underrepresentation of certain types of networks.
This conjecture about variation in performance of AM matrices trained
with fewer cases has yet to be supported by rigorous numerical
experiments.

The results shown in Table 1 indicate that there is a marked
increase in the performance of the models on progressing from lin-
ear to quadratic structures. There is a decrease of almost 5.22 per-
centage points in the ARE (total travel time) corresponding to the
quadratic form when compared with the linear structure. A similar
trend observed in RMSEs suggests that the relationship between the
stimulus and response vectors is nonlinear. There is also a noticeable
improvement from partial quadratic to quadratic AM models. This
finding seems to indicate that the combination terms Ci.Cj have a sig-
nificant impact on the predictive power of the AM models. These
terms may capture the effect of interactions between different links
and thus contribute significantly to the performance of the models.

As mentioned in the previous section, the performance of various
models that were constructed with different numbers of training cases



portation networks and other types. Similar experiments for total
travel time based on the UE model could not be carried out because
of the lack of demand data for these networks.

Overall, the performance of the AM models coupled with the sim-
plistic nature of the models make this approach appealing. The entire
UE problem, as will be shown in the following section, can be
replaced with a simple matrix multiplication in a number of situa-
tions in which a repeated solution to the UE problem is involved. A
highly nonlinear problem can easily be transformed into a simple
linear or polynomial one. Another major advantage of the AM
approach is its ability to approximate a number of optimizations in
one shot, thus producing estimates in a single operation. In addition,
AM models when constructed by using data directly from the field
can be particularly useful since they can map the stimulus to the
response vectors without any prior knowledge of the relationship
between stimuli and responses. Moreover, AM models have also
been shown to be capable of handling noise in the input data by
training the system with noisy data.

APPLICATION OF AM TO NRP

A large number of the problems being faced by transportation plan-
ners and system engineers can be formulated as bilevel optimization
problems. The lower level of such problems typically involves an
optimization problem, such as a traffic assignment problem, for com-
puting the values of various network performance criteria. The higher
level, in contrast, involves the solution to another optimization prob-
lem that maximizes or minimizes certain systemwide parameters that
are of social importance. Bilevel problems have long been recog-
nized as one of the most difficult problems to solve in the field of
transportation (4). The general form of a bilevel program may be
represented as follows:

where y is the upper-level decision variable and x is the optimal solu-
tion of Minx f(x,z) such that g(x,z) ≤ b. (F, f, and g represent general
functions, z represents variables in the lower-level problem, and b is
a constant.)

A typical example of a bilevel problem is the NRP, wherein it is
necessary to determine an optimal repair strategy for a given damaged
network. Consider a damaged network following a large-scale di-
saster such as an earthquake. If the resources available for repairing the
network were unlimited, a straightforward decision would be to repair
all damaged links. However, in reality, resources are often scarce, thus
necessitating that repair jobs be ranked by priority. The challenge in
planning an optimal recovery plan would then be to identify the set of
damaged links that, when repaired, will yield the maximum societal
benefit under certain resource (budget) constraints. Assuming the total

min ,y F x y( )
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travel time to be an appropriate system performance measure, the
lower-level problem here would be to solve the UE problem for var-
ious network configurations resulting from feasible repair decisions.
The upper level, however, involves determining the optimal repair
decision such that the savings in total travel time (computed in the
lower level) are maximized (given the total repair budget).

A conventional formulation of the aforementioned NRP is as
follows:

maximize

such that

where

X = repair strategy (binary vector indicating links to be
repaired),

TT (X) = total travel time computed from UE model when
strategy X is implemented,

cost (X) = cost of implementing X = C0 × N,
C0 = cost of repairing one damaged link (it should be noted

that the cost of repairing different damaged links should
be different in reality, but it is assumed identical in this
study for the sake of data simplicity), and

Φ = null vector representing base scenario in which no repair
is done.

It is assumed that recovery of a link is a binary decision; that is,
partial recovery is not considered. Total time saving is set to be the
objective function as an illustration; the choice of other network
performance criteria or multiple objectives is permissive.

As mentioned earlier, repeated estimation of the UE flows at
every step in the lower level of the NRP problem makes such a prob-
lem computationally burdensome. Apart from this difficulty, the
nonconvex nature of the objective function in the upper level further
complicates search algorithms for global optima (4, 14). However,
the pervasive and critical nature of this class of problems, given the
current threat level of natural or human-induced disasters, demands
development of solution algorithms that can effectively produce
approximate solutions.

The complexity of the foregoing problem is vastly reduced by
incorporation of the AM models in this problem. The objective func-
tion here is transformed into a linear or quadratic function (depend-
ing on the stimulus structure), thus converting the problem into a
standard integer programming problem. The steps involved in the
solution algorithm of the NRP by the AM approach are outlined as
follows:

1. Following the procedure described in the section on numerical
experiments and results, a simple AM model was first constructed by
using 6,000 training cases to establish a relationship between the net-
work configuration and the total travel time under UE flow conditions.
A quadratic structure was adopted for the stimulus vector, which
was constituted by the link capacities of a network configuration.
The response vector (R), in contrast, is a singleton set—the total
travel time under UE flow conditions for the damaged network. The
constructed AM model was then validated by using a different set

cost budgetX( ) ≤

benefit TT TT= ( ) ( )Φ – X

TABLE 2 Evaluation of AM Model for Total Travel Time

Networks

(a) (b) (c) (d)

Number of links 48 58 80 140

Number of damaged links 5 6 8 14

Average relative error (RE) 0.013 0.009 0.005 0.001

Std deviation of RE 0.012 0.01 0.005 0.001



of 1,000 randomly generated testing cases. The approximation errors
expressed in terms of ARE and RMSE were 1.47% (Std = 1.37%) and
2.07, respectively.

2. Once the AM model was validated, it was used as a part of the
solution to the NRP by simply replacing the function TT with the
product of matrix M and vector S at every step.

On average, the proposed approximation method predicts the
exact repair solution for over 75% of the networks that were used for
testing. Table 3 shows the details of how the solutions with the AM
approach to the NRP compare with the exact solutions at various
network damage levels.

Table 3 was obtained by computing the solutions to the NRP under
different network configurations and budgetary constraints. Given
the number of damaged links n, 100 different configurations were
randomly chosen for each of the possible budget limits, ranging from
allowing repair of one to n − 1 damaged links (repair of all n links is
not considered because of its triviality). For instance, given that three
links are damaged, 100 NRPs with a budget limit of C0 and another
100 NRPs with a budget of 2C0 were solved by using the exact and
AM methods. Table 3 compares the extent to which the objective val-
ues of the NRP differ when the problem is solved by using the two
approaches. For instance, the AM approach in the networks where
three links are damaged predicts the exact solution over 91% of the
times, and for another 5.5% of the cases, the solution from the AM
approach is within 10% of the actual solution.

On the whole, the AM approach thus seems to perform reason-
ably well by predicting approximate solutions whose errors are less
than 10% for almost 90% of the situations irrespective of the num-
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ber of decisions involved. Another measure that can be used to com-
pare the AM method with the exact solution is the average Hamming
distance. The Hamming distance between two binary vectors is
defined as the number of positions in which the corresponding num-
bers are different (8). For instance, the Hamming distance between
00110 and 10010 is 2. The average Hamming distance between the
approximated repair strategy and the true optimal solution is 0.46.

Lack of a convenient computational tool deters wide use of NRP
models by practitioners (15). The usual rule of thumb adopted in
practice is to give links that carry more traffic higher priority (16).
Table 4 shows the extent to which this strategy differs from the true
optimal solution.

It can be seen from Table 4 that the performance of this rule dras-
tically degenerates with an increase in the number of decision vari-
ables involved. For instance, the link volume approach matches with
the true optimal solution 73% of times when only two links were
damaged. This percentage decreases to as low as 18.33% when 10%
(∼7 links) of the links in the network are damaged. The ineffective-
ness of this practice reinforces the need to adopt other methods such
as the AM method, which fares far better in terms of its nearness to
the optimal solution with reasonable amounts of computational
requirements.

As noted earlier, the construction of the aforementioned AM mod-
els is based on the assumption that the demand for the transportation
network at the end of the recovery period remains unchanged. How-
ever, in reality the demand may fluctuate for various reasons. Fluc-
tuations in demand may cause a significant variation in total travel
time. This variation could potentially lead to discrepancies in the cal-
culation of benefits that are accrued by adopting different repair

TABLE 3 Evaluation of AM Approach to NRP

Number of
Error in Objective Value

Damaged Links 0% 0%–10% 10%–20% 20%–30% 30%–40% 40%–50% >50%

2 links 96.00% 3.00% 0.00% 1.00% 0.00% 0.00% 0.00%

3 links 91.00% 5.50% 0.00% 1.00% 1.00% 0.00% 1.50%

4 links 87.00% 8.00% 3.33% 0.67% 0.67% 0.33% 0.00%

5 links 78.50% 15.75% 3.00% 1.75% 0.50% 0.25% 0.25%

6 links 75.00% 20.40% 2.40% 1.60% 0.20% 0.00% 0.40%

7 links 68.00% 26.50% 3.50% 1.67% 0.33% 0.00% 0.00%

All cases 77.90% 17.24% 2.62% 1.43% 0.43% 0.10% 0.29%
(2–7 links)

TABLE 4 Link Volume Approach to NRP

Number of
Error in Objective Value

Damaged Links 0% 0%–10% 10%–20% 20%–30% 30%–40% 40%–50% >50%

2 links 73.00% 2.00% 4.00% 1.00% 2.00% 2.00% 16.00%

3 links 51.50% 10.00% 7.50% 8.00% 4.00% 3.00% 16.00%

4 links 40.33% 17.67% 11.33% 7.00% 4.33% 5.33% 14.00%

5 links 33.50% 22.75% 14.75% 8.50% 6.75% 2.25% 11.50%

6 links 23.00% 27.20% 19.00% 9.80% 5.80% 3.40% 11.80%

7 links 18.33% 34.50% 19.33% 9.33% 3.83% 4.17% 10.50%

All cases 31.24% 24.24% 15.38% 8.43% 4.86% 3.57% 12.29%
(2–7 links)



strategies. The numerical experiment here showed that there can be
as much as a 10% increase in total travel time when a noise of 25%
is added to each of the demand matrix’s elements. Given the trends
in demand fluctuations, it would thus be preferable to construct mod-
els that can predict the network performance indicators under any of
the demand conditions that are likely to be encountered. This aspect
is especially critical in the context of planning a recovery following
an unforeseen incident, where the timing of the disturbance may not
be known beforehand. These perturbations in the demand matrix can
be accommodated in the AM approach through slight modification
of the model structure.

In the variable demand context, the AM models are required to
predict the network performance under varying network structures
as well as demand. The stimulus vector hence needs to contain terms
related to both of these variables. The response vector remains the
total travel time under UE conditions. The adopted functional form
of the stimulus vector is

where Ci is the capacity of the ith link, and Di.j is the demand from
node i to node j.

The training step here needs to be preceded by the determination of
the nature of the demand fluctuations. The assumption in this regard
was that the elements in the demand matrix can vary between a fixed
percentage of the base value. With the assumption that this fixed per-
centage is 25%, 6,000 training cases were generated by varying the
network configuration and by adding a noise ranging from −25% to
+25% for each element in the demand matrix. The mapping matrix M
was then constructed by inverting the stimulus matrix and taking its
product with the corresponding response matrix. The matrix thus built
was tested by using an additional 1,000 realizations. The stimulus ele-
ments were link capacities and OD demand, and the response vector
was total travel time. The evaluation of the AM model with demand
perturbations is summarized as follows:

ARE 3.9%
SD of relative error 3.2%
RMSE 5.44

A fair amount of consistency in the performance of AM models was
observed on construction of 10 such models.

The AM models built with the expanded stimulus vector in asso-
ciation with the demand forecasting models can then be used to solve
the NRP at any point in time when demand may differ from what was
predicted. The AM models can be built with the demand matrix ele-
ments in the stimulus vector when fluctuations in demand are antic-
ipated. Otherwise, if the demand matrix is expected to vary to a small
extent, link capacities alone need to be included in the stimulus
vector.

The approximate solution to the NRP with perturbed demand by
using an AM approach was compared with the true optimal solution.
No significant drop in the performance of the AM approach was
observed when it was compared with the performance of the AM
approach to the static demand NRP. The average Hamming distance
between the approximated and the true solutions in the perturbed
demand scenarios was 0.46. The gap between the objective values
caused by the true optimal solution and the approximated strategy
was still within 10% for almost 90% of the scenarios that were tested.
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Application of the AM models for solving the NRP, on the whole,
seems to be promising, with the benefit of a fairly competent perfor-
mance for low amounts of computational resources. In addition to the
computational advantage, the AM approach to the NRP is very flexi-
ble. For instance, it is a relatively simple task to solve the NRP with
varied objective functions that involve computation of multiple per-
formance criteria. Furthermore, this method can easily be extended to
any of the other bilevel problems that deal with improving network
performance. In view of these results, the approximate solution from
the AM models can be used as an excellent starting point in the search
for global optima, thus cutting down the time expended in reaching
the neighborhood of the optimal solution.

DISCUSSION OF RESULTS

The estimation of various network performance indicators can hardly
be overemphasized given the numerous decision-making processes in
which they are needed. The presented approximation approach based
on AM techniques was found to have reasonably low errors in predic-
tion. The authors’ experience in quickly solving NRP problems using
AM models motivates more future investigation incorporating AM
techniques into the general class of bilevel problems.

The choice of this method may be appropriate only in situations
where it would be worthwhile to compromise on accuracy in
exchange for computational time savings. For instance, in long-term
planning in which online decision time is not a critical issue, it may
be more beneficial to spend more effort seeking the true optimal strat-
egy. The approximate method, however, seems to perform far better
than the rules of thumb used in highway retrofit and recovery practice.
This approach can also be highly useful in real-time decision mak-
ing. Examples of such a situation include signal timing control and
dynamic congestion pricing, which are also typical bilevel problems.
Other suitable applications of the AM approach include sensitivity
analysis of network performance against some uncertain network
parameters such as demand.

However, the AM approach, because of its heuristic nature, has
some disadvantages too. Similar to other neural computing methods
(e.g., neural networks), this approach represents a sort of black box
and provides little understanding of the underlying principles. The
other potential disadvantage can be the high setup time associated
with preparation of the many training cases. Future work includes
identifying the functional form of the stimulus vector and finding a
good composition for training cases that would perform well for a
particular problem. This aspect of training is more likely to be depen-
dent on the nature of the problem itself. At this stage of the research,
it is not possible to provide any general rules for these choices.

Through the paper such terms as “true” optimal solution and the
“approximated” solution are often used. It should, however, be
emphasized that no matter what modeling or solution methods one
chooses to use, these are approximation of the reality. Similarly,
only the reality is the best test bed for judging the effectiveness of a
decision.
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