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There have been numerous studies of the morning commute problem in a network with a
single route or parallel routes with a single bottleneck on each route. Most congested net-
works, however, often contain more than one congestion spot along each route. In such
networks, it is usually difficult to derive analytically their system-optimal traffic patterns
and the tolls that realize them. In this paper, we study the morning commute problem
in such a network with certain special topological features – a freeway with multiple
entry/exit ramps and a surface street grid with large capacities. For this type of networks,
we investigated the basic characteristics of their optimal dynamic traffic patterns and the
corresponding tolling scheme, for which a graphical solution procedure was also devel-
oped. In this network, we found that at system-optimum: (1) the aggregate traffic flow
on the freeway has a staircase temporal profile, and piecewise linear dynamic tolls can
be imposed on a subset of ramps to achieve it; (2) among all the off-ramps in use, the ones
closer to the destination are being tolled longer with higher maximum toll charges than the
ones farther away from the destination; and (3) among all the on-ramps in use, the ones
with larger cumulative volume-to-capacity ratios are being tolled longer with higher max-
imum toll charges. Some practical implications of these findings to corridor traffic manage-
ment were also discussed.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

It is well-known that the existence of congestion externality often leads to inefficient use of public roads and this can be
remedied by marginal cost pricing. By internalizing the congestion externality, i.e., charging each traveler a toll equal to the
additional congestion cost she imposed on all other travelers, the system-optimal traffic flow pattern is realized as a Wardrop-
pian user equilibrium state in terms of the internalized travel cost (Beckmann, 1965).

The congestion pricing problem has been extensively studied in the context of static transportation networks (i.e., net-
works with time invariant traffic flow conditions) (e.g., Dafermos and Sparrow, 1971; Netter, 1971; Yang and Huang,
1998). The pricing scheme that realizes a system-optimal state under user-optimal (or selfish) routing decisions can be de-
rived based on a link traffic model capturing the average congestion effect. Unfortunately, such a static analysis is often inap-
propriate and inadequate when applied to networks with fluctuating traffic demand over time. First, using the average
congestion effect to calculate externality is somewhat questionable. As shown by Carey and Srinivasan (1993), congestion
. All rights reserved.
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externality depends not only on the intensity of congestion, but also on the direction of its change. In networks with fluc-
tuating traffic flow, the externality derived with a static method, averaging out the effect of queue formation and dissipation,
can substantially deviate from the true externality. Furthermore, the inefficient temporal distribution of traffic is often much
more critical than the inefficient spatial distribution of traffic in these networks with a limited number of alternative routes
(Arnott et al., 1990). A static pricing scheme, without distinguishing the difference of congestion externality in different time
periods, cannot influence travelers’ departure time choice.

The aforementioned limitations of static congestion pricing schemes call for a time-dependent modeling framework.
Unfortunately, deriving the optimal dynamic tolls in a general network is much more challenging than obtaining tolls in
the corresponding static network. This is mainly because its underlying problem, the system-optimal dynamic traffic assign-
ment (SO-DTA) problem, is difficult to solve due to the complexities in modeling dynamic traffic flow in a road network. One
of the pioneer studies to address the dynamic congestion pricing problem in general networks is due to Carey and Srinivasan
(1993). In that work, the SO-DTA problem with given time-dependent travel demands was formulated as a link-based con-
vex mathematical program based on a relaxed1 exit flow function from the works of Merchant and Nemhauser (1978a,b).
The relationship between the externalities and the dual variables of the constraints was identified by analyzing the optimal-
ity conditions of the mathematical program. Wie and Tobin (1998) later carried out a similar study with a new traffic flow
model in which traffic on each link first travels to the end of the link at free-flow speed, then queues up at the end of the link
and discharges according to rates given by the exit flow function, thereby alleviating the instantaneous flow transition2 prob-
lem in the initial formulation of Merchant and Nemhauser (1978a,b). Chang et al. (1988) and Yang and Meng (1998) trans-
formed the SO-DTA problem into a static system-optimal traffic assignment problem, using a space–time expansion network
(STEN) to endogenously represent the bottleneck model of Vickrey (1969). However, this type of STEN gives rise to some new
problems, one of which is the high computational overhead associated with network expansions. Ziliaskopoulos (2000) for-
mulated an SO-DTA model as a link-based linear program based on the relaxed cell transmission model (Daganzo, 1994,
1995) to consider link interactions. The connections between the system marginal cost and the dual variables of the con-
straints were also explored in that paper. A critical issue concerning all these link-based formulations of the SO-DTA problem
is that to derive the optimal traffic pattern and the realizing tolls, they require to solve a large-scale mathematical program
or optimal control problem which can easily involve millions of variables and constraints in real-sized applications. To over-
come this drawback, some scholars (e.g., Ghali and Smith, 1995; Peeta and Mahmassani, 1995) suggested to use a path-based
formulation, which allows the usage of a traffic simulator to: (1) construct the mapping between path flow and path travel
cost and (2) evaluate marginal cost approximately. However, as shown by Shen et al. (2007), due to the non-additivity prop-
erty of and the discontinuity in path marginal cost, deriving a link-based tolling scheme from a path-based formulation is
tricky.

As our review indicates, existing SO-DTA formulations and their congestion pricing analyses have a number of deficien-
cies when applied to general networks. This, however, does not mean that it is not possible to obtain in a precise and efficient
manner the optimal dynamic traffic pattern and its corresponding tolling scheme for some specific networks. In practice,
many corridor networks, where a freeway and a few alternative arterial routes provide the infrastructure for commuting
from suburbs to downtown, share certain common topological characteristics that can be exploited to overcome the diffi-
culties faced in the study of general road networks. This type of network-specific analysis can be traced back to the seminal
work of Vickrey (1969) and Hendrickson and Kocur (1981), in which the morning commute problem with departure time
choice was studied in a single route with one bottleneck. Among this class of work, Newell (1987) considered heterogeneous
travelers in the same network setting; Arnott et al. (1990) generalized the analysis to networks with parallel routes; and
recently, Munoz and Laval (2006) proposed a graphical solution method to obtain the optimal route diversion strategies
for a corridor network consisting of a freeway and a surface street grid for given time-dependent demand. All of these net-
work-specific analyses provide valuable insights to the design of time-dependent congestion pricing schemes in practice, but
are all limited to the case where only one bottleneck is present on each route. This restriction makes their results not applicable
to corridor networks commonly found in practice where travelers experience more than one congestion spot on their way to
the destination.

In this paper, we study the morning commute problem in a corridor network with multiple bottlenecks along the routes by
characterizing its system-optimal traffic pattern and the tolling scheme that realizes it. Our analysis considers both depar-
ture time and route choices with a similar network used in Munoz and Laval (2006), with the following key differences:

� Unlike in Munoz and Laval (2006), our study considers capacity constraints on both on- and off-ramps. This is more real-
istic since queues often form at ramps due to metering at on-ramps or traffic signals at the downstream end of off-ramps.

� Unlike in Munoz and Laval (2006), our study considers both departure time and route choices. Consequently, the tolling
scheme derived in this study is particularly useful for spreading the peak during the morning commute time period to
avoid over-concentration of travel demand in any particular time period.
1 Relaxed in the sense that the equality defining the relationship between the flow that will actually exit a link and the flow that can exit a the link is replaced
by an inequality. This relaxation makes the model convex, but may also cause flows to be artificially held at links.

2 This refers to the anomaly that vehicles entering the link tail can instantaneously affect the outflow at the link head.



Fig. 1. The study network.
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To the best of our knowledge, our study provides the first analytical results on the dynamic system-optimal traffic flow
pattern and the corresponding tolling scheme in a network with multiple bottlenecks along each route. Although Kuwahara
(1990) and Arnott et al. (1993) performed a network-specific equilibrium queuing analysis considering tandem bottlenecks,
their studies focused on dynamic user equilibrium traffic flow patterns with no congestion pricing, and employed substan-
tially different techniques from ours. Moreover, our analysis reveals that the system-optimal traffic flow pattern in the stud-
ied corridor network exhibits some interesting topological characteristics that lead to a graphical solution procedure. With
this procedure, we can design a tolling scheme that charges time-dependent tolls on a subset of on- and off-ramps to realize
the system-optimal dynamic traffic flow pattern.

The rest of the paper is organized as follows: the next section lays out the problem and describes the notations used
throughout the paper. Section 3 constructs the optimality conditions, based on which the basic features of the optimal traffic
and toll patterns are identified. These features lead to the development of a graphical solution procedure for obtaining the
optimal traffic and toll patterns in Section 4. Finally, Section 5 concludes the paper with a summary of key findings and their
implications to congestion pricing in practice.

2. The morning commute problem in a corridor with multiple bottlenecks

We consider a corridor network consisting of a freeway with n on-ramps, m off-ramps, a single destination at the end of
the freeway, and a surface street grid directly connecting each on-ramp (here we assume trips originated from the tail node
of an on-ramp link) and each off-ramp to the destination (CBD) (Fig. 1). For the purpose of exposition, both on-ramps and off-
ramps are arranged in an ascending order starting from the one closest to the destination, and the freeway link incident to
the destination is regarded as a special off-ramp, and indexed as 1. A bottleneck with capacity c1 is located on the freeway
just before reaching the destination. The capacity of other off-ramps j ¼ 2; . . . ;m are assumed to be cj, respectively. The
capacity of on-ramps i ¼ 1; . . . ;n are assumed to be si, respectively. It is also assumed the surface streets have sufficient
capacity so that traffic experiences no congestion on them. Without loss of generality, the sum of the capacities of any subset
of the on-ramps is assumed to not equal the sum of capacities of any subset of the off-ramps. Evidently, in practice ramp
capacities can always be perturbed slightly to meet this requirement. The travel time from on-ramp i taking the surface
street to the destination is denoted as Di, and the travel time from off-ramp j taking the surface street to the destination
is denoted as Tj. In accord with the network topology, the travel time on a surface street connecting a ramp closer to the
destination is assumed to be shorter than the travel time on a surface street connecting a ramp farther away from the des-
tination. Compared to the travel times spent on surface streets, the travel times spent on the freeway mainline is assumed to
be negligible.3

As mentioned earlier, each origin is connected by a single on-ramp where travelers start their trips. During the morning
peak period, the total number of travelers from origin i is Ni; i ¼ 1; . . . ;n. All the travelers are assumed to have the same de-
sired arrival time at the destination, which is taken as t ¼ 0. Travel costs consist of two parts: travel time cost and schedule
delay cost: arriving at the destination earlier or later than desired. For simplicity, the same assumption used in Arnott et al.
(1993) – that late arrival is not permitted – is adopted in this study. For any arrival time t 6 0 at the destination, the schedule
delay cost (converted into travel time units) is assumed to be linearly decreasing in the rate of a < 1. Namely, a traveler’s
total cost is
3 It is noted that zero free-flow freeway travel times do not affect the solution in terms of flow distribution.



270 W. Shen, H.M. Zhang / Transportation Research Part B 43 (2009) 267–284
Total travel cost ¼
travel timeþ a½0� arrival time tick� if arrival time tick 6 0
1 otherwise

�

It is noted that no late arrival makes it easy to present the analytical results, but do not change the fundamental nature of
the problem. A similar analysis incorporating both early and late arrivals can easily be carried out following the steps out-
lined in this paper. Throughout the paper, the following definition is used to facilitate the discussion.

Definition 1. The subnetwork made up of: (1) all the on-ramps, (2) the freeway mainline, (3) all the off-ramps, and (4) the
surface streets connecting the off-ramps with the destination is defined as the freeway system (Fig. 1).

A traveler can choose the surface street or freeway system to reach her destination, but once she enters a surface street, we
assume that she does not go back to travel on the freeway.

By this definition, each traveler’s decision process can be split into two stages:

� First, at the origin, she decides whether to take the surface street directly leading to the destination or to enter the freeway
system.

� Second, if the freeway system is taken, she chooses the departure time and determine which off-ramp to exit. Note that
since surface streets are assumed to be always free of congestion, travelers choosing a surface street at the first stage
always choose a departure time which can guarantee punctual arrival at the destination.

Moreover, we introduce the following notations to be used in the rest of this paper:
I
 The index of the first on-ramp that has flows during the morning peak

J0
 The index of the last off-ramp that has flows during the morning peak

J
 The index of the last off-ramp downstream of on-ramp I

vijðtÞ
 Number of travelers departing at time t and taking on-ramp i and off-ramp jP

vi�ðtÞ
 Number of travelers departing at time t and taking on-ramp i, vi�ðtÞ ¼ m

j¼1vijðtÞP

v�jðtÞ
 Number of travelers departing at time t and desiring to take off-ramp j, v�jðtÞ ¼ n

i¼1vijðtÞP P

v�ðtÞ
 Total number of travelers departing at time t, v�ðtÞ ¼ n

i¼1
m
j¼1vijðtÞR
Vij
 Number of travelers taking on-ramp i and off-ramp j, Vij ¼
0
�1 vijðtÞdtP
Vi�
 Number of travelers taking on-ramp i, Vi� ¼ m
j¼1VijP
V�j
 Number of travelers taking off-ramp j, V�j ¼ n
i¼1Vij P P
V�
 Total number of travelers using the freeway system, V� ¼ n
i¼1

m
j¼1Vij
Note: the number of travelers is always measured at the entrance of the on-ramps.

With these definitions and notations, we can then set up a mathematical program to model the morning commute prob-
lem as in (e.g., Vickrey, 1969; Hendrickson and Kocur, 1981; Newell, 1987; Arnott et al., 1990), and derive: (1) the optimal
departure time and route choice patterns and (2) the optimal road tolls to realize the optimal traffic flow pattern. These are
the topics of the next section.
3. The essential features of the optimal traffic and toll patterns

Corresponding to each traveler’s two stage travel decision process, we carry out our analysis in two steps:

(1) At the first step, we decide for each origin i the total number of travelers Vi� using the freeway system.
(2) At the second step, for given fVi�g we decide the optimal traffic flow distribution on the freeway system.

Since the optimal tolling scheme primarily depends on the optimal traffic flow distribution on the freeway system, the
remainder of this section focuses on the analysis of the freeway system, assuming fVi�g as given. How to determine the de-
mand split between the surface street and the freeway system for each origin will be explained in Section 4.

3.1. Preliminaries

This section presents a series of propositions describing certain important properties of the optimal traffic flow pattern of
the freeway system, which will serve as the building blocks in deriving the analytical representation of this pattern.

Proposition 1. At dynamic system-optimum with departure time choice, there is no queue within the freeway system.

Proof. It can be easily shown that if a traffic flow pattern involves queues within the freeway system, we can always have
travelers adjust their departure to later times to eliminate the queues without increasing both schedule delay and travel time
costs. h



Fig. 2. An illustration of flow swapping.
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Proposition 2. At dynamic system-optimum with departure time choice, swapping the path flows over any two on-ramps at any
time t does not change the system cost, i.e., if vi1 j1 ðtÞ > 0; vi2 j2 ðtÞ > 0 and off-ramp j1 and off-ramp j2 are both downstream of on-
ramp i1 and on-ramp i2, then the system cost does not change by a flow swapping of (see Fig. 2)
vi1 j1 ðtÞ ¼ vi1j1 ðtÞ � �
vi2 j2 ðtÞ ¼ vi2j2 ðtÞ � �

�
and

vi1 j2 ðtÞ ¼ vi1j2 ðtÞ þ �
vi2 j1 ðtÞ ¼ vi2j1 ðtÞ þ �

�
; � 6 minfvi1 j1 ðtÞ; vi2j2 ðtÞg
Proof. The path flow swapping does not change the link flow pattern and thus will not change the system cost. h

The possibility of flow swapping tells us that the optimal path flow pattern in the freeway system is not unique. Conse-
quently, we shall use link flows rather than path flows to characterize the optimal traffic flow pattern in the freeway system.

Proposition 3. At dynamic system-optimum with departure time choice, if some off-ramp j0 has positive flow at time t, all the off-
ramps downstream of off-ramp j0 have flows equal to their bottleneck capacities, i.e., v�j0 ðtÞ > 0) 8j < j0; v�jðtÞ ¼ sj. Furthermore,
if v�j0 ðt1Þ > 0 and v�j0 ðt2Þ ¼ 0, then v�ðt1Þ > v�ðt2Þ.

Proof. For a traffic flow pattern without queues in the freeway system, the total cost for a traveler departing at time t and
taking off-ramp j0 is c ¼ Tj0 þ a½0� ðt þ Tj0 Þ� ¼ �at þ ð1� aÞTj0 . If there is an off-ramp j < j0 with v�jðtÞ < sj, she can instead
takes off-ramp j and reduce the cost to c0 ¼ �at þ ð1� aÞTj < c because 1� a > 0 and Tj < Tj0 . Given that v�jðtÞ < sj, no other
travelers’ costs will be affected by such a flow shifting. Therefore, the original traffic flow pattern cannot be optimal because
the system cost can be further reduced by such a flow shifting. This is equivalent to say that at dynamic system-optimum, if
off-ramp j0 is being used at time t, all the off-ramps downstream of it must be fully utilized, i.e., v�j0 ðtÞ > 0) 8j < j0; v�jðtÞ ¼ sj.

Because of this property, given two time ticks t1 and t2, v�j0 ðt1Þ > 0) v�ðt1Þ >
P

j<j0sj and v�j0 ðt2Þ ¼ 0) v�ðt2Þ 6
P

j<j0sj.
Hence, v�ðt1Þ > v�ðt2Þ. h

This proposition illustrates how off-ramps are utilized in the optimal state: upstream off-ramps are used later and waned
off traffic earlier than downstream off-ramps. In other words, upstream off-ramps start to attract traffic later and have short-
er duration of usage than downstream off-ramps.

Proposition 4. At dynamicsystem-optimum with departure time choice, the off-ramps in use are all at the downstream side of the
utilized on-ramps (Fig. 3a).

Proof. Suppose off-ramp j0 is upstream of on-ramp i0 (Fig. 3b). It suffices to show that V�j0 > 0) Vi0� ¼ 0. Denote the sets of
time intervals when v�j0 ðtÞ > 0 and when v�j0 ðtÞ ¼ 0 as P1 and P2, respectively.

Obviously, for any time t 2 P1, vi0�ðtÞ ¼ 0 because otherwise the system cost can be reduced by shifting a small amount of
flow in vi0�ðtÞ to use the surface street while letting the same amount of flow originally on off-ramp j0 at the same time take
the residual capacity on a downstream off-ramp left by the shifting of flow in vi0�ðtÞ to a surface street (Fig. 4).

For any time t 2 P2, v�jðtÞ ¼ 0 8t 2 P2 and v�jðt0Þ > 0 8t0 2 P1 imply that
Pj0

j¼1v�jðtÞ <
Pj0

j¼1v�jðt0Þ (Proposition 3). In
addition, we just know that at time t0, all the on-ramps downstream of j0 have zero flows, i.e., flows

Pj0

j¼1v�jðt0Þ are all from
Fig. 3. Location of ramps in use at system-optimum.



Fig. 4. A flow shifting strategy that reduces the system cost.

Fig. 5. A flow shifting strategy that reduces the system cost.
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on-ramps upstream of j0. Therefore, there must exist at least one on-ramp i upstream of off-ramp j0 such thatPj0

j¼1vijðtÞ <
Pj0

j¼1vijðt0Þ 6 si. Without loss of generality, we can assume that vij0 ðt0Þ > 0. (This can always be attained by
swapping path flows according to Proposition 2.) Therefore, if vi0 jðtÞ > 0 where j is an off-ramp downstream of on-ramp i0, the
system cost can be reduced by letting a small amount of flow comprising vi0 jðtÞ use the surface street at time t and the same
amount of flow from vij0 ðt0Þ originally departing at time t0 and taking off-ramp j0 take up the capacity slack created at time t
(Fig. 5).

Therefore, vi0�ðtÞ ¼ 0 8t, i.e., Vi0� ¼ 0. h
3.2. The formulation of the morning commute problem as a SO-DTA

The propositions previously derived make it possible to formulate the problem of deriving the system-optimal traffic pat-
tern of the freeway system in the morning commute problem as a mathematical program.

Given fVi�g, Proposition 4 offers a way to simplify the topology of the freeway system subnetwork when searching for the
system-optimal traffic flow distribution. That is, since all the utilized off-ramps are downstream of all the utilized on-ramps,
it suffices to derive the optimal traffic flow pattern in an abstract network made up of n� I þ 1 upstream merging branches
and J downstream parallel routes (Fig. 6), where the ramp indices I and J can be easily determined for given fVi�g:
I ¼ argmaxfijVi� > 0g and J is the index of the last off-ramp downstream of on-ramp I.
s
I

D

c1

T
1

V
i

s
I+1

s n

c2
T

2

cJ

T
J

Fig. 6. The abstract network of the freeway system after simplification.
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Thanks to the no queueing property of Proposition 1, it suffices to search the system-optimal traffic flow pattern among
only those without any freeway queues, which, can be further described by the following relationships:
XJ

j¼1

Z �Tj

�1
vijðtÞdt ¼ Vi� i ¼ I; . . . ;n ðP:1Þ

0 6
XJ

j¼1

vijðtÞ 6 si i ¼ I; . . . ; n; t 2 ð�1;0Þ ðP:2Þ

0 6
Xn

i¼I

vijðtÞ 6 cj j ¼ 1; . . . ; J; t 2 ð�1; 0Þ ðP:3Þ
where the first equation defines demand conservation and the other two ensure that the traffic flow at any time does not
exceed ramp capacities.

For traffic flow patterns defined by(P.1)–(P.3), the total system cost does not contain queueing delay and thus can be rep-
resented as the sum of free-flow travel time and schedule delay. Namely
Xn

i¼I

XJ

j¼1

Z �Tj

�1
½Tj � aðt þ TjÞ�vijðtÞdt ðP:0Þ
where Tj � aðt þ TjÞ is the travel cost (i.e., free-flow travel time+schedule delay) experienced by any traveler departing at
time t and taking off-ramp j to reach the destination. Hence,

Pn
i¼I

PJ
j¼1

R�Tj
�1 ½Tj � aðt þ TjÞ�vijðtÞdt represents the total travel

cost experienced by all the travelers taking the freeway system.
In summary, the SO-DTA problem for morning commute can be formulated as the following mathematical program:
FCðVÞ ¼min
Xn

i¼I

XJ

j¼1

Z �Tj

�1
½Tj � aðt þ TjÞ�vijðtÞdt ðP:0Þ

s:t: ðkiÞ
XJ

j¼1

Z �Tj

�1
vijðtÞdt ¼ Vi� i ¼ I; . . . ;n ðP:1Þ

ðxiðtÞÞ 0 6
XJ

j¼1

vijðtÞ 6 si i ¼ I; . . . ; n; t 2 ð�1;0Þ ðP:2Þ

ðljðtÞÞ 0 6
Xn

i¼I

vijðtÞ 6 cj j ¼ 1; . . . ; J; t 2 ð�1;0Þ ðP:3Þ
To analyze the fundamental features of the dynamic system-optimal traffic flow pattern, we introduce the respective
multipliers ki, xiðtÞ, ljðtÞ associated with(P.1)–(P.3), interpreted as the marginal cost of having one more traveler at on-ramp
i, the marginal benefit of expanding the capacity of on-ramp i at time t, and the marginal benefit of expanding the capacity of
off-ramp j at time t. The optimality conditions for (P) can thus be written as the feasibility constraints (P.1)–(P.3), together
with
xiðtÞP 0; si �
XJ

j¼1

vijðtÞP 0 i ¼ I; . . . ;n; t 2 ð�1;0Þ ð1Þ

ljðtÞP 0; cj �
Xn

i¼I

vijðtÞP 0 j ¼ 1; . . . ; J; t 2 ð�1; 0Þ ð2Þ

vijðtÞP 0; �at þ ð1� aÞTj þxiðtÞ þ ljðtÞ � ki P 0 i ¼ I; . . . ;n; j ¼ 1; . . . ; J; t 2 ð�1;�TjÞ ð3Þ
and the complementary slackness conditions between the pairs of inequalities in (1)–(3).
The optimality conditions (1)–(3) illustrate the relationship between travelers’ experienced costs, externality costs, and

their marginal costs, and thus provide a way to design the optimal tolling scheme. More specifically, in the inequality pairs of
(3),�at þ ð1� aÞTj þxiðtÞ þ ljðtÞ can be interpreted as the marginal cost for users departing at time t from on-ramp i to take
the off-ramp j, and ki is the marginal system cost of adding one traveler using on-ramp i. The complementary slackness con-
dition of (3) therefore describes the equilibrium condition in terms of marginal travel costs. Namely,

Lemma 1. At dynamic system-optimum with departure time choice, for each on-ramp i, the marginal cost of all the paths and all
the departure times with positive flows are the same and equal to marginal system cost ki, while other paths and departure times
have marginal costs no less than that.

According to Lemma 1, the optimal tolling scheme should be designed in a way such that each traveler departing at time t
using on-ramp i and off-ramp j bears the path marginal cost �at þ ð1� aÞTj þxiðtÞ þ ljðtÞ. Since a traveler’s path marginal
cost �at þ ð1� aÞTj þxiðtÞ þ ljðtÞ is made up of the travel cost �at þ ð1� aÞTj, the externality costs xiðtÞ and ljðtÞ that the
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traveler imposes on other travelers at on-ramp i and off-ramp j, respectively, a link-based tolling scheme that brings the sys-
tem to its optimal state is simply to charge travelers a time-dependent toll xiðtÞ at the on-ramp i and a time-dependent toll
ljðtÞ at the off-ramp j.

In addition, the optimality conditions (1) and (2) illustrate a distinct feature of the externality for the bottleneck model. As
shown, xiðtÞ ¼ 0 if

PJ
j¼1vijðtÞ < si and ljðtÞ ¼ 0 if

Pn
i¼IvijðtÞ < cj, meaning that externality would not arise if the bottlenecks

are not saturated (i.e., flow on it reaches its capacity) at the time when the additional traveler traverses it. This is because in
the bottleneck model, congestion is localized.

3.3. Some essential properties of the system-optimal flow and toll patterns

We first introduce the following critical time points to aid our discussion of the salient properties of the optimal flow and
toll patterns:
tj0
 The earliest time when the discharging flow on off-ramp j becomes positive

Let tj0 ¼ �Tj if the discharging flow is always zero
tjs
 The earliest time when off-ramp j is saturated (i.e., discharging flow equals its capacity)

Let tjs ¼ �Tj if it is always unsaturated
sis
 The earliest time when the discharging flow on on-ramp i is positive and the last off-ramp in use is unsaturated

Let sis ¼ �TJ0 if all the off-ramps in use are saturated whenever the discharging flow on on-ramp i is positive
sðiÞ
 The index of the unsaturated off-ramp corresponding to sis
Let sðiÞ ¼ ; if sis ¼ �TJ0
(By this definition, sis 2 ½tsðiÞ0; tsðiÞsÞ if sðiÞ–;)

si0
 The latest time before sis when the last off-ramp in use is unsaturated
Let si0 ¼ t10 if all the off-ramps in use are saturated when there are flows on them

(By this definition, si0 < sis if sis ¼ tsðiÞ0 and si0 ¼ sis if sis 2 ðtsðiÞ0; tsðiÞsÞ)
oðiÞ
 The index of the unsaturated off-ramp corresponding to si0
Let oðiÞ ¼ ; if si0 ¼ t10
(By this definition, oðiÞ < sðiÞ if sis ¼ tsðiÞ0 and oðiÞ ¼ sðiÞ if sis 2 ðtsðiÞ0; tsðiÞsÞ)
Given any feasible traffic flow pattern in the freeway system, all the above critical time points can be identified accord-
ingly. For example, suppose a freeway system with three on-ramps and two off-ramps has a temporal traffic flow profile as
shown in Fig. 7. Both the disaggregate ramp flow (Fig. 7a–e) and aggregate flow (Fig. 7f) are depicted. ta; tb; . . . ; tf are the time
Fig. 7. A traffic flow pattern example in a freeway system with three on-ramps and two off-ramps.
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points when the aggregate traffic flow rate changes. According to our definitions, for off-ramp 1, t10 ¼ ta, t1s ¼ tc; for off-ramp
2, t20 ¼ td, t2s ¼ �T2 (because the flow on it is always below c2); for on-ramp 1, s1s ¼ ta, sð1Þ ¼ 1, s10 ¼ ta, oð1Þ ¼ 1; for on-
ramp 2, s2s ¼ tb, sð2Þ ¼ 1, s20 ¼ tb; oð2Þ ¼ 1 (because s2s 2 ðt10; t1s); for on-ramp 3, s3s ¼ td, sð3Þ ¼ 2, s30 ¼ tc; oð3Þ ¼ 2 (be-
cause s3s ¼ t20).

Based on the propositions and optimality conditions previously derived, we can identify the following important proper-
ties of the optimal traffic flow pattern.

Theorem 1

(1) For any off-ramp j used at system-optimum:

(1.1) the flow on it becomes positive exactly 1�a

a ðTj � Tj�1Þ time units after its downstream adjacent off-ramp’s flow
becomes equal to its capacity, i.e.,

tj0 ¼ tðj�1Þs þ
1� a

a
ðTj � Tj�1Þ 8j ¼ 2; . . . ; J0
In particular, for off-ramp J0 which is the last off-ramp in use, if J0 < J, then
�TJ0 � tJ0s 6
1� a

a
ðTJ0þ1 � TJ0 Þ

(1.2) the flow on it always ends at time �Tj 8j ¼ 1; . . . ; J0,
(1.3) the flow on it always equals its capacity from time tjs to time �Tj, i.e.,

v�jðtÞ ¼ cj 8t 2 ðtjs;�TjÞ; j ¼ 1; . . . ; J0
(2) For any on-ramp i used at system-optimum:

(2.1) the flow on it always equals its capacity from time sis to time �TsðiÞ, i.e.,

vi�ðtÞ ¼ si 8t 2 ðsis;�TsðiÞÞ

(2.2) the flow on it is zero before time si0 and after time �ToðiÞ, i.e.,

vi�ðtÞ ¼ 0 8t 2 ð�1; si0Þ [ ð�ToðiÞ;0Þ
Proof. Theorem 1 can be proven by showing that any traffic flow pattern violating any of the properties in Theorem 1 can be
adjusted to further reduce the system cost. For the purpose of exposition, the detailed proof is shown in Appendix. h

A typical dynamic traffic flow pattern fv�ðtÞg, obtained by aggregating flows over all the on-ramps, that has
all the properties described in Theorem 1 is depicted in Fig. 8. As shown, the aggregate flow rate v�ðtÞ has a
staircase shape over time, and is monotonically increasing before time �TJ0 and monotonically decreasing after
time �TJ0 .
Fig. 8. A typical optimal aggregate dynamic traffic flow pattern in the freeway system.
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The entire morning peak can thus be divided into two types of time periods:

Type I: ðtjs; tðjþ1Þ0Þ [ ð�Tjþ1;�TjÞ, j ¼ 1; . . . ; J0 � 1 and ðtJ0s;�TJ0 Þ.

During the jth Type I period, the first j off-ramps are in use, and all of them are saturated. In particular, except for
the J0th period ðtJ0s;�TJ0 Þwhich lasts no longer than 1�a

a ðTJ0þ1 � TJ0 Þ, the width of any other jth period (j ¼ 1; . . . ; J0 � 1)

is known and equal to 1�a
a ðTjþ1 � TjÞ þ ðTjþ1 � TjÞ ¼

Tjþ1�Tj

a .
Type II: ðtj0; tjsÞ, j ¼ 1; . . . ; J0 (highlighted by the gray area in Fig. 8).

During the jth Type II period, the first j0 off-ramps are in use, and all but off-ramp j are saturated. The width of each
time interval does not have an analytical form and may be as small as zero.

Fig. 9 shows the typical disaggregate optimal dynamic traffic flow patterns at both on- and off-ramps. As shown, each on-
ramp i ¼ I; . . . ;n only has positive flows within time period ðsi0;�ToðiÞÞ. In particular, during time t 2 ðsis;�TsðiÞÞ# ðsi0;�ToðiÞÞ,
the flow is exactly equal to its capacity si; similarly, each off-ramp j ¼ 1; . . . ; J0 only has flows within time period t 2 ðtj0;�TjÞ,
and during t 2 ðtjs;�TjÞ# ðtj0;�TjÞ, the flow is exactly equal to its capacity cj.

To further explain the basic properties of the optimal dynamic traffic flow pattern, Fig. 10 depicts the typical shapes of the
optimal aggregate traffic flow patterns for two special networks. Corresponding to Fig. 10a is a simple merge network rep-
resenting a freeway system with multiple on-ramps and one off-ramp (i.e. the freeway link incident to the destination), and
corresponding to Fig. 10b is a simple diverge network with parallel routes at the downstream side representing a freeway
system with multiple off-ramps and one on-ramp.

In Fig. 10a, the entire optimal aggregate traffic flow pattern is made up of a staircase segment before time t1s when on-
ramps with sis < t1s discharge flows at their capacities and a constant flow segment from time t1s to time 0 when the aggre-
gate flow equals the off-ramp capacity c1. Depending on the total flow discharged from each on-ramp, the duration time of
either of these two segments may be zero.

In Fig. 10b, tj0 ¼ tjs 8j ¼ 1; . . . ; J0 � 1, meaning that all the off-ramps j ¼ 1; . . . ; J0 � 1 always operate at their capacities
whenever there are travelers traversing them. s1s ¼ tJ00, meaning that the on-ramp operates at its capacity from time s1s

to time �TJ0 . Since this duration time may be zero, it is possible that the on-ramp capacity is never saturated during the en-
tire morning peak.

If we denote Vi� ¼ V I
i� þ V II

i� where V I
i� and V II

i� are the total flow discharged from on-ramp i during all the Type I time peri-
ods and during all the Type II periods, respectively. Theorem 1 also leads to the following corollary regarding the usage of on-
ramps.

Corollary 1. Given two on-ramps i0 and i00
V II
i0�=si0 P V II

i00�=si00 () si0s 6 si00s () si00 6 si000
Proof. We first show that V II
i0�=si0 P V II

i00�=si00 ) si0s 6 si00s ) si00 6 si000. Property 2 in Theorem 1 implies that any on-ramp i is
always saturated during any Type II time period whenever it has positive flows. Therefore, according to the definition of sis,
V II

i0�=si0 P V II
i00�=si00 ) si0s 6 si00s. The definition of si0 further implies that si0s 6 si00s ) si00 6 si000. The proof for the opposite direc-

tion, i.e., V II
i0�=si0 P V II

i00�=si00 ( si0s 6 si00s ( si00 6 si000, is similar since it is equivalent to V II
i0�=si0 < V II

i00�=si00 )
si0s > si00s ) si00 > si000. h

The properties described in Theorem 1 are also sufficient for a feasible traffic flow pattern to be optimal. Moreover, they
lead a way to construct the time-dependent toll that realizes the dynamic system-optimal traffic flow pattern.

Theorem 2. Any feasible traffic assignment pattern having the properties given in Theorem 1 is an optimal flow pattern in the
freeway system. Corresponding to the critical time points fsi0g; fsisg; ftj0g; ftjsg that characterize the traffic flow pattern, the
marginal system cost for travelers from each origin i ¼ I; . . . ; n is
ki ¼ �asi0 þ ð1� aÞToðiÞ ð4Þ
and the dynamic tolls to be charged at the ramps to achieve this optimal traffic flow pattern are as follows (Fig. 11):
τ τ

Fig. 9. Typical optimal disaggregate traffic flow patterns on the ramps.
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xiðtÞ ¼

aðt � sisÞ � ð1� aÞðTj0 � TsðiÞÞ t 2 ðtj00; tj0sÞ; j0 ¼ sðiÞ; . . . ; J0

aðt � sisÞ � ð1� aÞðTj0 � TsðiÞÞ � aðt � tj0sÞ t 2 ðtj0s; tðj0þ1Þ0Þ; j0 ¼ sðiÞ; . . . ; J0 � 1

aðtj00 � sisÞ � ð1� aÞðTj0 � TsðiÞÞ t 2 ð�Tj0 ;�Tj0�1Þ; j0 ¼ J0; . . . ; sðiÞ þ 1

8>>><
>>>:

ð5Þ

ljðtÞ ¼

ð1� aÞðTj0 � TjÞ t 2 ðtj00; tj0sÞ; j0 ¼ j; . . . ; J0

ð1� aÞðTj0 � TjÞ þ aðt � tj0sÞ t 2 ðtj0s; tðj0þ1Þ0Þ; j0 ¼ j; . . . ; J0 � 1

ð1� aÞðTj0 � TjÞ þ aðt � tj00Þ t 2 ð�Tj0 ;�Tj0�1Þ; j0 ¼ J0; . . . ; jþ 1

8>>><
>>>:

ð6Þ
Proof. It suffices to show that the multipliers defined by (4)–(6) satisfy the optimality conditions (1)–(3). It is easy to see
from Fig. 11 that during the time when both on-ramp i and off-ramp j have positive flows, the sum of the externalities
on them, xiðtÞ þ ljðtÞ, increases at the rate of a over time, which is exactly the decreasing rate of the schedule delay at
the destination. The reader is referred to Appendix for the complete proof of this theorem. h

As shown in Fig. 11, the dynamic tolling patterns on both on- and off-ramps are piecewise linear, and have two distinct
segments divided by time�TJ0 . Interestingly, when both an on-ramp and off-ramp have positive tolls, they take turns to have
an increase in the toll at rate a. In other words, whenever the toll on the on-ramp (off-ramp) increases at the rate of a, the toll
on the off-ramp (on-ramp) remains constant.

For each on-ramp i ¼ I; . . . ;n, the toll starts from time sis and ends at time �TsðiÞ. During time t 2 ðsis;�TJ0 Þ, xiðtÞ increases
at the rate of a when t 2 ðtj00; tj0sÞ; j

0 ¼ sðiÞ; . . . ; J0 and remains constant when t 2 ðtj0s; tðj0þ1Þ0Þ; j
0 ¼ sðiÞ; . . . ; J0. During time

t 2 ð�TJ0 ;�TsðiÞÞ, xiðtÞ drops aðtj0s � tj00Þ when t passes time �Tj0 ; j
0 ¼ J0; . . . ; sðiÞ and remain constant otherwise.

For each off-ramp j ¼ 1; . . . ; J0, the toll starts from time tjs and ends at time �Tj. During time t 2 ðsis;�TJ0 Þ, ljðtÞ increases at
the rate of a when t 2 ðtj0s; tðj0þ1Þ0Þ; j

0 ¼ j; . . . ; J0 and remains constant when t 2 ðtj00; tj0sÞ; j
0 ¼ j; . . . ; J0. During time t 2 ð�TJ0 ;�TjÞ,

ljðtÞ jumps aðtj0s � tj00Þ when t passes time �Tj0 ; j
0 ¼ J0; . . . ; jþ 1 and increases at the rate of a otherwise.

Fig. 12 depicts, for the two special networks shown previously in Fig. 10, the optimal dynamic toll profiles, from which it
can be easily seen that the total toll that a traveler pays at both the on- and off-ramps she accesses increases at the rate of a
over time.

Finally, although the analytical formulae for the optimal time-dependent toll, (5) and (6), are derived based on the
assumption that the freeway mainline has negligible free-flow travel time, they can be easily modified to take into account
the non-zero free-flow travel time on the freeway mainline. More specifically, suppose the free-flow travel time from any
ramp i (either on-ramp or off-ramp) to the destination is fci. It suffices to shift the toll profile on any ramp i to the left by
fci units.
Fig. 12. The optimal dynamic toll profiles for two special networks.
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Theorem 2 also leads to the following corollary regarding the marginal cost of each on-ramp i in use at system-optimum:

Corollary 2. Given any two on-ramps i0 and i00 in use at dynamic system optimum
ki0 P ki00 () si00 6 si000 () Vi0�=si0 P Vi00�=si00
Proof. We first prove for ki00 P ki0 ) si000 6 si00 ) Vi00�=si00 P Vi0�=si0 :

(1) ki00 P ki0 ) si000 6 si00:According to Theorem 2, for any on-ramp i in use at system-optimum, ki ¼ �asi0 þ ð1� aÞToðiÞ. If
ki00 P ki0 , we have the following three possibilities:

(i) oði0Þ > oði00Þ: obviously, si000 < si00;
(ii) oði0Þ ¼ oði00Þ: si000 6 si00, since ð1� aÞToði00 Þ ¼ ð1� aÞToði0 Þ;
(iii) oði0Þ < oði00Þ: this situation is impossible because otherwise based on the definitions of si0 and oðiÞ, we have

si00 � si000 <
1�a
a ðToði0 Þ � Toði00 ÞÞ, i.e., ki0 > ki00 , contradicting with the assumption of ki00 6 ki0 .
(2) si000 6 si00 ) Vi00�=si00 P Vi0�=si0 :

The definitions of fsisg and fsi0g imply that si000 6 si00 will lead to ðsi00s;�Tsði00 ÞÞ � ðsi00;�Toði0ÞÞ. This means that whenever
the flow on on-ramp i0 is positive, the flow on on-ramp i00 is equal to its capacity si00 . Hence, Vi00 �

si0
P Vi0 �

si0
. The proof for the other

direction, i.e., ki00 P ki0 ( si000 6 si00 ( Vi00�=si00 P Vi0�=si0 , is similar and thus omitted here. h
4. A graphical procedure to obtain the optimal traffic flow and toll profiles

According to Theorems 1 and 2, the dynamic system-optimal traffic flow pattern can be found by obtaining a feasible traf-
fic flow profile satisfying all the properties of Theorem 1. We shall show in this section that such a traffic flow profile can be
constructed through a graphical solution procedure.
α

α

(a) (b) (c)

(e) (f)

Fig. 13. A graphical illustration of the algorithm to derive the optimal traffic pattern.
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For the ease of presentation, the on-ramp indices are relabelled in the descending order of the cumulative volume-
to-capacity ratio fVi�=sigi¼I;...;n. An auxiliary function f ðtÞ is then constructed by drawing horizontal bars with length
Vi�=si and height si for each on-ramp i ¼ 1; . . . ;n� I þ 1 and stacking them sequentially from the bottom with the same
ending point t ¼ 0 (Fig. 13a). The whole area below f ðtÞ thus represents the total travel demand to be distributed in the
freeway system, and the area under f ðtÞ between y ¼

Pi�1
i0¼1si0 and y ¼

Pi
i0¼1si0 represents the travel demand discharged

into the freeway system from a specific on-ramp i. With this auxiliary function f ðtÞ, the process of determining the
total and ramp-specific travel demand discharged during a given time period can be represented as subtracting a certain
area from that below f ðtÞ. After each subtraction operation, the remaining demand fVi�g is updated and f ðtÞ is re-
constructed.

According to Theorem 1, the entire morning peak at dynamic system-optimum can be divided into two types of time peri-
ods: Type I periods j ¼ 1; . . . ; J0 and Type II periods j ¼ 1; . . . ; J0. For every Type I period, the flow distribution at each off-ramp
and the duration time (except for the last Type I period ðtJ0s;�TJ0 Þ) are known, while how flows are discharged from each on-
ramp is to be determined; for every Type II period, the flow distribution at each off-ramp is known, while both the duration
time and the flow distribution at each on-ramp are to be determined. Corresponding to such a time period partition, our
solution procedure is also presented in two steps:

Step 1: Determine both the total and the ramp-specific travel demand discharged during every Type I period j ¼ 1; . . . ; J0.
Step 2: Determine both the total and the ramp-specific travel demand discharged during every Type II period j ¼ 1; . . . ; J0.

For narrative convenience, Step 2 is described ahead of Step 1.

4.1. Flow distribution during Type II periods (Step 2)

Suppose the area corresponding to the travel demand discharged during all the Type I periods have been subtracted from
that below f ðtÞ. The remaining f ðtÞ is thus constructed based on travel demand fV II

i�g (Fig. 13f). According to Corollaries 1 and
2, the sequence of fV II

i�=sig is in the same order of the sequence of fVi�=sig, indicating that this remaining f ðtÞ constructed
based on fV II

i�g shares a similar shape of a climbing staircase as the original f ðtÞ.
To determine the flow distribution during every Type II period, we can first draw a series of horizontal lines

y ¼ c1; . . . ; y ¼
Pj

j0¼1cj0 ; . . . ; y ¼
PJ

j0¼1cj0 on the plot of the remaining f ðtÞ and denote the x-coordinate of the crossing point be-
tween f ðtÞ and any horizontal line y ¼

Pj
j0¼1cj0 as xj. According to Property 2 in Theorem 1, each on-ramp i becomes saturated

during all the Type II periods once its flows become positive. This implies that the travel demand corresponding to the area
below the remaining f ðtÞ between line y ¼

Pj�1
j0¼1cj0 and line y ¼

Pj
j0¼1cj0 is discharged during the jth Type II period ðtj0; tjsÞ (Fig.

13f), and jxj�1 � xjj represents the duration time jtjs � tj0j of the jth Type II period. By this means, the total area below the
remaining f ðtÞ is partitioned into every Type II period j ¼ 1; . . . ; J0.
4.2. Determine the flow distribution during Type I periods (Step 1)

The demand discharged during every Type I period j ¼ 1; . . . ; J0 can be determined in an iterative way. Namely, during the
jth iteration, the flow distribution for the jth Type I period is determined by subtracting the corresponding area from that
below f ðtÞ.

The following three properties can be utilized to design such an area subtraction operation:

(1) The total demand discharged during the jth Type I period is equal to Tjþ1�Tj

a

Pj
j0¼1cj0 (Properties 1.2 and 1.3, Theorem 1).

(2) Since the remaining f ðtÞ for Step 2 has a similar shape as the original f ðtÞ, it is desirable for the re-constructed f ðtÞ after
the jth iteration to maintain a similar shape.

(3) After the jth iteration, if for a certain on-ramp i we have
P

i0 :Vi0 �>0;i06isi0 <
Pj

j0¼1cj0 (i.e., there is remaining demand poten-
tially to be used during a j0 < jth Type II time period), this on-ramp i should always be saturated during the jth Type I
period (Property 2.1, Theorem 1).

The area subtraction approach satisfying all the above three properties is as follows. Suppose we want to determine the
flow distribution during the jth time period ðtjs; tðjþ1Þ0Þ [ ð�Tjþ1;�TjÞ. On the plot of f ðtÞ constructed based on the remaining
demand fVi�g from a previous iteration, we draw a horizontal line y ¼

Pj
j0¼1cj0 and move a vertical band characterized by

t1 ¼ t� and t2 ¼ t� þ Tjþ1�Tj

a around until area I = area II (Fig. 13b). The area below f ðtÞ between y ¼ t1 and y ¼ t2 is the area
corresponding to the travel demand to be discharged during this jth Type I time period. By this means, the subtracted area
is equal to

Pj
j0¼1cj0 �

Tjþ1�Tj

a ; the shape of the re-constructed f ðtÞ based on the remaining demand (Fig. 13c) still has the climb-
ing staircase shape; any on-ramp i with positive remaining demand and satisfying

P
i0 :Vi0 �>0;i06isi0 <

Pj
j0¼1cj0 is always saturated

during the jth Type I period.
The above area subtraction operation can be performed iteratively starting from j ¼ 1 till one of the following conditions

are satisfied: (1) the line of y ¼
Pj

j0¼1cj0 is above f ðtÞ (Fig. 13d.1); (2) there is no such t� 6 0 which can make area I = area II
(Fig. 13d.2); (3) j ¼ J (Fig. 13d.3). Then, let J0 ¼ j and the flow distribution of the J0th Type I period ðtJ0s;�TJ0 Þ is determined. If
termination condition (1) applies, tJ0s ¼ �TJ0 since the maximum flow rate that can be discharged from the remaining flow is
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below
PJ0

j¼1cj; if termination conditions (2) and (3) applies, the duration time j � TJ0 � tJ0sj and the flow distribution is deter-
mined by moving the line t ¼ t� such that area I = area II (Fig. 13e) and tJ0s ¼ �TJ0 þ t�.

It is easy to verify that the traffic flow pattern constructed by this procedure (Steps 1 and 2) satisfies all the properties in
Theorem 1 and hence is an optimal traffic flow pattern. Once the optimal traffic flow pattern is obtained, the time-dependent
optimal toll profile can be constructed, according to Theorem 2, from all the characteristic time points ftj0g; ftjsg; fsi0g; fsisg.

The above algorithm assumes that the demand Vi� for each origin i to use the freeway system is known. In fact, the opti-
mal fVi�gwhich leads to the minimal total cost in the corridor network is a solution to the mathematical program optimizing
the total cost in the entire corridor network as follows:
min
Xn

i¼1

ðNi � Vi�ÞDi þ FCðVÞjVi P 0 8i ¼ 1; . . . ; n

( )
where FCðVÞ represents the minimal cost in the freeway system for given fVi�g. The optimality condition of this program
reads
Vi P 0; Di �
oFCðVÞ

oVi
P 0; Vi Di �

oFCðVÞ
oVi

� �
¼ 0; i ¼ 1; . . . ; n
Note that oFCðVÞ
oVi

is equivalent to the multiplier ki of the program ðPÞ.
According to this optimality condition, the split between the freeway system and the alternative surface street route for

each origin can be determined iteratively in practice. More specifically, starting from the initial scenario in which all the de-
mand from all the origins will use the freeway system, we can perform the graphical procedure to obtain the optimal dy-
namic traffic flow pattern for this case. Then we check sequentially from the first on-ramp with flows on the freeway
system if ki 6 Di. If this condition is violated, reduce Vi� by a predetermined amount and perform the graphical procedure
again. This iterative process terminates when ki 6 Di 8i ¼ 1; . . . ;n holds.

5. Concluding remarks

The morning commute problem, considered under the simple setting of a single route with a single bottleneck, brings out
the essential elements of traffic congestion and has been extensively studied. Extending this problem to a general network is
challenging because of the underlying complexity of modeling traffic flow. Under certain modeling assumptions such an
analysis can still be achieved with the help of numerical approximations, which adds realism but tends to lose much of
the elegance and clarity found under the simple network setting. For some special networks, such as a corridor network con-
sisting of a freeway and several parallel arterial routes commonly found in cities with a hub and spoke type of road network
(i.e., several sparsely connected freeways connecting suburbs to a single downtown), the basic features of the solution to the
morning commute problem can still be characterized. These features often provide great insights to the nature of the prob-
lem and lead itself to effective remedies for congestion relief. In this paper, we carried out such an analysis on a corridor
network with multiple bottlenecks on each route, a problem considered difficult and not addressed in the literature. We first
identified the basic properties of the optimal traffic flow pattern in this network under both time-varying demand and route
choice, then gave the formulae for a time-dependent toll to realize the optimal traffic flow pattern in the network under
user-optimal choice behavior, and finally provided a graphical procedure to obtain both the optimal dynamic traffic flow pat-
tern and the corresponding toll profile.

Our analysis has revealed that at system-optimum:

� The freeway has no queue throughout the entire morning peak. Although there may exist different optimal path/link flow
distributions, the total flow in the freeway system is unique and is characterized by Theorem 1. The profile of the total
flow has a staircase form and contains a monotonically increasing time period followed by a monotonically decreasing
time period.

� All on-ramps have no queues, and the on-ramps in use are all upstream of the off-ramps in use. Moreover, on-ramps with
larger cumulative volume-to-capacity ratios (i.e., Vi�=si) are used longer than on-ramps with smaller volume-to-capacity
ratios, and on-ramps in use may have a saturated period, preceded and followed by under saturated periods.

� All off-ramps have no queues, and downstream off-ramps are more heavily utilized than upstream off-ramps, i.e., down-
stream off-ramps get used earlier and longer than upstream off-ramps. Moreover, once an off-ramp becomes saturated, it
remains saturated till no traffic accesses this ramp.

To realize the system-optimal traffic flow pattern, it suffices to impose a piecewise linear toll on a subset of on-ramps and
off-ramps. Our analysis found that:

� The tolling scheme on both the on-ramps and off-ramps have two distinct time periods divided by the time when the flow
on the last off-ramp in use runs out. During the first period, the tolls charged at on-ramps and off-ramps take turns to
increase for a certain duration, and the rate of increase is always equal to a. During the second period, only the tolls
charged at the off-ramps continue to increase. At time �Tj0 ; j

0 ¼ J0; . . . ;1, there is a jump in the on-ramp tolls and a drop
with the same net value in the off-ramp tolls.
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� A downstream off-ramp has a longer tolling period and a higher maximum toll than an upstream off-ramp. The maximum
toll at an off-ramp is charged at the time when the flow on it runs out.

� The on-ramp with a larger cumulative volume-to-capacity ratio has a longer tolling period and a higher maximum toll
than an on-ramp with a smaller ratio. The maximum toll at an on-ramp is charged at the time when the flow on the last
off-ramp in use runs out.

Although our analysis is conducted based on some ideal assumptions (vertical queue, infinite capacity on the city
streets and no late arrival), the effects of relaxing some of the assumptions are not difficult to capture. Since we have
identified that there will be no queue in the freeway at optimum, the optimal solution derived in this analysis actually
applies to the situation where queue spill-back is taken into account. Considering late arrival requires minor change of
the analysis framework, and is expected to result in a similar staircase optimal traffic flow pattern with different start-
ing/ending time and single-mode piecewise linear ramp toll profiles with a monotonically increasing segment followed
by a monotonically decreasing segment. Assuming finite capacity of city streets could impose difficulties for a rigorous
analysis, but it can be expected that additional congestion on the city streets is likely to lead to a higher usage of the
freeway system.

Although the piecewise linear time-dependent toll may be difficult to implement in practical applications, it does provide
a benchmark toll solution to achieve the best system performance. In practice, a piecewise constant time-dependent toll
approximating the optimal toll can be used to achieve a ‘‘second-best” system performance. How close the system perfor-
mance given by this second-best toll is to that given by the first-best toll provided in this paper is interesting and worthy of
further investigation.
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Appendix.

Proof of Theorem 1.

(1.1) Suppose 9j0 6 J0, tj00–tðj0�1Þs þ 1�a
a ðTj0 � Tj0�1Þ. There are two possibilities: tj00 > tðj0�1Þs þ 1�a

a ðTj0 � Tj0�1Þ and
tj00 < tðj0�1Þs þ 1�a

a ðTj0 � Tj0�1Þ.
(a) If tj00 > tðj0�1Þs þ 1�a

a ðTj0 � Tj0�1Þ.
By Proposition 3, 8t� 2 ðtðj0�1Þs þ 1�a

a ðTj0 � Tj0�1Þ; tj00Þ; v�ðt�Þ ¼ v�ðtðj0�1ÞsÞ ¼
Pj0

j¼1cj. Since the sum of the capacities of any
subset of the on-ramps is not equal to the sum of capacities of any subset of the off-ramps, v�ðt�Þ ¼ v�ðtðj0�1ÞsÞ implies
that 9i0; vi0�ðtðj0�1ÞsÞ > 0 and vi0�ðt�Þ < si0 .
Since v�ðj0�1Þðtðj0�1ÞsÞ > 0 and vi0�ðtðj0�1ÞsÞ > 0, according to Proposition 2, one can always swap the off-ramp flows such
that vi0 ðj0�1Þðtðj0�1ÞsÞ > 0.
Now shift a small amount of flow � originated at on-ramp i0 from using off-ramp j0 � 1 at time tðj0�1Þs to using off-ramp j0

at time t�. This manipulation can reduce the total system cost by �½aðt� � tðj0�1ÞsÞ � ð1� aÞðTj0 � Tj0�1Þ� > 0, contradict-
ing with the optimum assumption.

(b) If tj00 < tðj0�1Þs þ 1�a
a ðTj0 � Tj0�1Þ, i.e., tj00 � 1�a

a ðTj0 � Tj0�1Þ < tðj0�1Þs, by definition of tðj0�1Þs 8t� 2 ðtj00 � 1�a
a ðTj0 � Tj0�1Þ; tðj0�1ÞsÞ,

v�ðj0�1Þðt�Þ < cj0�1.
According to Proposition 3, v�ðtj00Þ > v�ðt�Þ. Hence, there exists one on-ramp i0 such that vi0�ðtj00Þ > vi0�ðt�Þ.
Since v�j0 ðtj00Þ > 0 and vi0�ðtj00Þ > 0, one can always make vi0 j0 ðtj00Þ > 0 by swapping flows.
Now shift a small amount of flow � originated at on-ramp i0 from using off-ramp j0 at time tj00 to using off-ramp j0 � 1 at
time t�. This manipulation can reduce the total system cost by �½ðTj0 � Tj0�1Þ � a½ðtj00 þ Tj0 Þ � ðt� þ Tj0�1Þ� > 0, also con-
tradicting with the optimum assumption.
In summary, tj00 ¼ tðj0�1Þs þ 1�a

a ðTj0 � Tj0�1Þ 8j0 6 J0.
For the same reason, for the last off-ramp J0, if �TJ0 � tJ0s >

1�a
a ðTJ0þ1 � TJ0 Þ and J0 < J, then the flow on off -ramp J0 þ 1

will become positive at time tJ0s þ 1�a
a ðTJ0þ1 � TJ0 Þ, contradicting with the fact that J0 is the last off-ramp in use.Hence,

�TJ0 � tJ0s 6
1�a
a ðTJ0þ1 � TJ0 Þ.

(1.2) Evidently, the flow on any off-ramp j0 6 J0 cannot end after time Tj0 . Now suppose 9j0 6 J whose last time interval with
positive flow is t� < �Tj0 .
By Proposition 3, v�ðt�Þ > v�ð�Tj0 Þ. Hence, there exists one on-ramp i0 such that vi0�ðt�Þ > vi0�ð�Tj0 Þ.
Since vi0�ðt�Þ > 0 and v�j0 ðt�Þ > 0, one can always swap flows such that vi0 j0 ðt�Þ > 0.
Now shift a small amount of flow � originated at on-ramp i0 using off-ramp j0 from time t� to time �Tj0 . This manip-
ulation can reduce the total system cost by �að�Tj0 � t�Þ > 0, contradicting with the optimum assumption.
In summary, 8j0 6 J0, the flow on it ends at time �Tj0 .
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(1.3) Suppose 9j0 6 J0; t� 2 ðtj0s;�Tj0 Þ such that v�j0 ðt�Þ < sj0 .
By Proposition 3, v�ðt�Þ < v�ðtj0sÞ hence, there exists one on-ramp i0 such that vi0�ðt�Þ < vi0�ðtj0sÞ.
Since vi0�ðt�Þ < vi0�ðtj0sÞ and v�j0 ðt�Þ < v�j0 ðtj0sÞ, one can always swap flows such that vi0 j0 ðt�Þ < vi0 j0 ðtj0sÞ.
Now shift a small amount of flow � originated at on-ramp i0 using off-ramp j0 from time tj0s to time t�. This manipu-
lation can reduce the total system cost by �aðt� � tj0sÞ > 0, contradicting with the optimum assumption.
In summary, v�jðtÞ ¼ sj 8t 2 ðtjs;�TjÞ; j ¼ 1; . . . ; J0.

(2.1) According to (1) ðsi0s;�Tsði0 ÞÞ can be divided into two subintervals: ðsi0s; tsði0 ÞsÞ; ½tsði0 Þs;�Tsði0 ÞÞ.
(a) For t 2 ðsi0s; tsði0 ÞsÞ, suppose 9t� 2 ðsi0s; tsði0 ÞsÞ; vi0�ðt�Þ < si0 .Since vi0�ðsi0sÞ > 0 and v�sði0 Þðsi0sÞ > 0, one can always swap flows

such that vi0sði0 Þðsi0sÞ > 0.
Now shift a small amount of flow � originated at on-ramp i0 using off-ramp sði0Þ from time si0s to time t�. This manip-
ulation can reduce the total system cost by �aðt� � si0sÞ, contradicting with the optimality assumption.

(b) For t 2 ½tsði0 Þs;�Tsði0 ÞÞ, suppose 9t� 2 ½tsði0 Þs;�Tsði0 ÞÞ, vi0�ðt�Þ < si0 .
According to (a) one can always swap flows such that vi0sði0 Þðsi0sÞ > 0.
By Proposition 3, 8t0 2 ðsi0s; tsði0 ÞsÞ, v�ðt0Þ < v�ðt�Þ. Hence, there exists one on-ramp i00 such that vi00�ðt0Þ < vi00�ðt�Þ.
Since vi00�ðt�Þ > 0 and v�sði0 Þðt�Þ > 0, one can always swap flows such that vi00sði0 Þðt�Þ > 0.Now shift a small amount of flow
� originated at on-ramp i00 using off-ramp sði0Þ from time t� to time t0 and the same amount of flow originated at on-
ramp i0 using off-ramp sðiÞ from time si0s to time t�. This manipulation can reduce the total system cost by �aðt � sisÞ,
contradicting with the optimality assumption.
In summary, 8t 2 ðsis;�TsðiÞÞ; vi�ðtÞ ¼ si.

(2.2) For any on-ramp i0 ¼ I; . . . ;n, the interval ð�1; si00Þ [ ðToðiÞ;0Þ can be divided into the following two categories: (1)
t 2 ðtoði0 Þ; si00Þ[j0<oði0 Þðtj00; tj0sÞ and (2) t 2 [j0<oði0 Þ½ðtj0s; tðj0þ1Þ0Þ [ ð�Tj0 ;�Tj0þ1Þ�.

(a) Evidently, vi0�ðtÞ ¼ 0 8t 2 ðtoði0 Þ; si00Þ[j0<oði0 Þðtj00; tj0sÞ.
(b) Suppose 9t� 2 ðtj0s; tðj0þ1Þ0Þ [ ð�Tj0 ;�Tj0þ1Þ; j

0
< oði0Þ such that vi0�ðt�Þ > 0.Since vi0�ðt�Þ > 0 and v�j0 ðt�Þ > 0, one can always

swap flow such that vi0 j0 ðt�Þ > 0.
By Proposition 3 8t0 2 ðtoði0 Þ0; si0Þ; v�ðt�Þ < v�ðt0Þ. Hence, there exists one on-ramp i00 such that vi00�ðt�Þ < vi00�ðt0Þ.
Since vi00�ðt0Þ > 0 and v�oði0 Þðt0Þ > 0, one can always swap flows such that vi00oði0 Þðt0Þ > 0. Now shift a small amount of flow
� originated at on-ramp i0 from using off-ramp j0 at time t� to using off-ramp oði0Þ at time si00 and at the same time shift
the same amount of flow originated at on-ramp i00 from using off-ramp oði0Þ at time t0 to using off-ramp j0 at time t�.
This manipulation can reduce the total system cost by �aðsi0 � t0Þ > 0, contradicting with the optimality assumption.
In summary, vi�ðtÞ ¼ 0 8t 2 ð�1; si0Þ [ ð�ToðiÞ;þ1Þ. h

Proof of Theorem 2. To prove Theorem 2, it suffices to show that the multipliers defined by (4)–(6) satisfy the optimality
conditions (1)–(3).

As xiðtÞ > 0 when t 2 ðsis;�TsðiÞÞ and xiðtÞ ¼ 0 when t 2 ð�1; sisÞ [ ð�TsðiÞ;þ1Þ, (1) is satisfied.
Similarly, ljðtÞ > 0 when t 2 ðtjs;�TjÞ and ljðtÞ ¼ 0 when t 2 ð�1; tjsÞ [ ð�Tj;þ1Þ, (2) is also satisfied.
Suppose off-ramp j is the last off-ramp in use at time t. Notice that lj0 ðtÞ þ ð1� aÞTj0 ¼ ljðtÞ þ ð1� aÞTj 8j0 6 j and

lj0 ðtÞ þ ð1� aÞTj0 > ljðtÞ þ ð1� aÞTj 8j0 > j. Hence, to show the satisfaction of (3), it suffices to show that if vijðtÞ > 0 where j
is the last off-ramp in use at time t, �at þ ð1� aÞTj þxiðtÞ þ ljðtÞ ¼ ki ¼ �asi0 þ ð1� aÞToðiÞ.

If vijðtÞ > 0, there are five possibilities:

(1) t 2 ðtj0s; tðj0þ1Þ0Þ; oðiÞ 6 j0 < sðiÞ,
(2) t 2 ðtj00; tj0sÞ; sðiÞ 6 j0 6 J0,
(3) t 2 ðtj0s; tðj0þ1Þ0Þ; sðiÞ 6 j0 6 J0,
(4) t 2 ð�Tj0þ1;�Tj0 Þ; sðiÞ 6 j0 < J0,
(5) t 2 ð�Tj0þ1;�Tj0 Þ; oðiÞ 6 j0 < sðiÞ.

(1) t 2 ðtj0s; tðj0þ1Þ0Þ; oðiÞ 6 j0 < sðiÞ
In this case, xiðtÞ ¼ 0. Hence
�at þ ð1� aÞTj þxiðtÞ þ ljðtÞ ¼ �at þ ð1� aÞTj þ aðt � tjsÞ ¼ �atjs þ ð1� aÞTj
(2) t 2 ðtj00; tj0sÞ; sðiÞ 6 j0 6 J0

In this case, it is easy to check that xiðtÞ þ ljðtÞ ¼ aðt � sisÞ � ð1� aÞðTj � TsðiÞÞ. Hence
�at þ ð1� aÞTj þxiðtÞ þ ljðtÞ ¼ �asis þ ð1� aÞTsðiÞ
(3) t 2 ðtj0s; tðj0þ1Þ0Þ; sðiÞ 6 j0 6 J0

In this case, again it is easy to check that xiðtÞ þ ljðtÞ ¼ aðt � sisÞ � ð1� aÞðTj � TsðiÞÞ. Hence, �at þ ð1� aÞTj þxiðtÞ
þljðtÞ ¼ �asis þ ð1� aÞTsðiÞ.

(4) t 2 ð�Tj0þ1;�Tj0 Þ; sðiÞ 6 j0 < J0

In this case, it is easy to check that �at þ ð1� aÞTj þxiðtÞ þ ljðtÞ ¼ �asis þ ð1� aÞTsðiÞ.
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(5) t 2 ð�Tj0þ1;�Tj0 Þ; oðiÞ 6 j0 < sðiÞ
In this case, xiðtÞ ¼ 0. Hence
�at þ ð1� aÞTj þxiðtÞ þ ljðtÞ ¼ �at þ ð1� aÞTj þ ð1� aÞðTjþ1 � TjÞ þ aðt � tðjþ1Þ0Þ ¼ �atðjþ1Þ0 þ ð1� aÞTjþ1

¼ �atjs þ ð1� aÞTj
Finally, ki ¼ �asi0 þ ð1� aÞToðiÞ. If oðiÞ ¼ sðiÞ, evidently si0 ¼ sis. Hence, ki ¼ �atis þ ð1� aÞTsðiÞ. If oðiÞ < sðiÞ, then si0 ¼ toðiÞs
and tj00 ¼ tj0s 8oðiÞ < j0 < sðiÞ. Hence, ki ¼ �atj0s þ ð1� aÞTj0 8oðiÞ 6 j0 < sðiÞ.

Hence, in all the five cases shown above, �at þ ð1� aÞTj þxiðtÞ þ ljðtÞ ¼ ki.
In summary, any traffic flow pattern satisfying the properties given in Theorem 1 is an optimal traffic flow pattern on the

freeway system. h
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