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A B S T R A C T

According to intuition and theories of diffusion, consumer

preferences develop along with technological change. However,

most economic models designed for policy simulation unrealisti-

cally assume static preferences. To improve the behavioral realism

of an energy–economy policy model, this study investigates the

‘‘neighbor effect,’’ where a new technology becomes more desirable

as its adoption becomes more widespread in the market. We

measure this effect as a change in aggregated willingness to pay

under different levels of technology penetration. Focusing on

hybrid-electric vehicles (HEVs), an online survey experiment

collected stated preference (SP) data from 535 Canadian and 408

Californian vehicle owners under different hypothetical market

conditions.

Revealed preference (RP) data was collected from the same

respondents by eliciting the year, make and model of recent

vehicle purchases from regions with different degrees of HEV

popularity: Canada with 0.17% new market share, and California

with 3.0% new market share. We compare choice models estimated

from RP data only with three joint SP–RP estimation techniques,

each assigning a different weight to the influence of SP and RP data

in coefficient estimates. Statistically, models allowing more RP

influence outperform SP influenced models. However, results

suggest that because the RP data in this study is afflicted by

multicollinearity, techniques that allow more SP influence in the

beta estimates while maintaining RP data for calibrating vehicle
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1. Introduction

The development and adoption of low and zero emissions technologies could curb emissions
growth without substantial changes in human activity. This process of induced technological change
is a lever that policymakers are increasingly looking to as a line of least resistance in reaching
greenhouse gas (GHG) targets (Azar and Dowlatabadi, 1999). In road transportation, which accounts
for 20% of Canada’s GHG emissions (Environment Canada, 2004), the widespread adoption of hybrid-
electric vehicles (HEVs) could reduce the GHG intensity of passenger vehicle travel (gCO2/km). One
key ingredient in the diffusion of such new technologies is the tendency for consumer preferences to
change as the technology becomes more prevalent in the market—we refer to this tendency as the
‘‘neighbor effect,’’ a term recently employed by Mau et al. (2008). This effect represents the tendency
for the social costs of switching to a new technology to decrease as the adoption rate increases due to
changes in social concerns, increased credibility, and learning from others with more experience
(Yang and Allenby, 2003), as well as education, marketing and shifts in cultural norms (Norton et al.,
1998).

One objective of this study is to estimate preference dynamics associated with the adoption of
HEVs to improve the behavioral realism of CIMS, an energy–economy model which has been
frequently applied to real-world policy research (e.g., Jaccard et al., 2003; Horne et al., 2005; Bataille
et al., 2006). In addition to financial attributes, such as purchase price and fuel costs, CIMS represents
the intangible costs associated with a new technology, such as consumer perceptions of quality,
reliability, availability, social desirability or popularity. The neighbor effect is simulated as a decrease
in intangible costs with increased market share. In this study, we seek to better represent the diffusion
of new technologies at an economy-wide level. Because CIMS is inherently aggregate, we do not seek
to individually identify the underlying components of preference change.

To investigate the preference dynamics for HEV adoption, discrete choice models are estimated
with revealed (RP) and stated preference (SP) data, collected from two samples with different HEV
market conditions (Canada and California). Discrete choice modeling has been frequently applied to
low-emissions vehicles (e.g., Bunch et al., 1993; Ewing and Sarigollu, 2000; Potoglou and Kanaroglou,
2007). Because SP and RP data can have complementary strengths, a growing body of literature
demonstrates the potential for ‘‘joint’’ modeling techniques (e.g., Swait et al., 1994; Brownstone
et al., 2000; Train, 2003; Hensher et al., 2005). While RP data can realistically account for income and
supply constraints, SP data can better represent hypothetical market conditions and eliminate
problems of multicollinearity. We investigate joint modeling techniques applying different weights
to SP and RP data. We are concerned not just with the statistical performance of such techniques, but
also with subsequent implications for behavioral parameter estimates and policy simulations in
CIMS.

The principle objectives of this study are to explore: (1) the role and value of the neighbor effect, (2)
the use of SP and RP choice research to improve the behavioral realism of an energy–economy model,
CIMS, (3) the value of integrating joint SP and RP modeling procedures to explain HEV vehicle choice
and the influential tradeoff coefficients related to capital, fuel and performance, and (4) the
implications of including such preference dynamics in policy simulations. Section 2 outlines CIMS and
the multinomial logit (MNL) choice models used in this study. Section 3 details our data collection via
a web-based survey, while Section 4 presents the results of SP, RP and joint choice model estimation.
Section 5 illustrates the translation of choice model coefficients into behavioral parameters for CIMS.
Section 6 demonstrates policy simulations with the behaviorally improved CIMS model, and Section 7
concludes.

class constraints produce more realistic estimates of willingness to

pay. Furthermore, SP influenced coefficient estimates also translate

to more realistic behavioral parameters for CIMS, allowing more

sensitivity to policy simulations.

� 2009 Elsevier B.V. All rights reserved.
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2. The models

2.1. The energy–economy model: CIMS

CIMS is an energy–economy model that simulates the costs and GHG effects of a given abatement
policy over a series of 5-year periods. CIMS is known as a ‘‘hybrid’’ model (Bohringer, 1998; Jaccard
et al., 2003) because it combines the technological detail of ‘‘bottom-up’’ models with the behavioral
realism and macro-economic equilibrium effects of ‘‘top-down’’ models (Jaffe and Stavins, 1994;
Grubb et al., 2002). CIMS is technologically explicit in that it details thousands of technologies that
compete for market share in a given node. The passenger vehicle node consists of technologies
powered by gasoline and alternative fuels—the present study focuses only on conventional and
hybrid-electric gasoline technologies. For a given period, market share is determined using a function
that considers both the financial costs and intangible costs of each technology, j. The lifecycle cost
(LCC) of j is:

LCC j ¼ ½ðCC j þ i jÞ � CRF þMC j þ EC j� (1)

where CCj is the initial capital cost, ij is the perceived intangible cost, MCj is the annual maintenance
costs, and ECj is the annual energy cost of j. The cost recovery factor, CRF, is used to annualize upfront
costs (CCj and ij), calculated as:

CRF ¼ r

1� ð1þ rÞ�n j
(2)

where r is the perceived discount rate of the decision maker, and nj is the lifespan of technology j. The
market share of technology j, MSj, relative to a technology set K is determined by comparing LCCs as
follows:

MS j ¼
LCC�v

jPK
k¼1fLCC�v

j g
(3)

The v parameter is a measure of market heterogeneity, representing how different consumers
experience or perceive different LCCs across the economy. A high v parameter indicates that
consumers have relatively uniform preferences; a technology with a lower LCC will capture almost the
entire market. In contrast, a low v indicates the market shares for a technology set will be distributed
relatively evenly, even if LCC values are substantially different. Thus, the v parameter also dictates the
sensitivity of the model to cost changes, where a higher v estimate indicates higher sensitivity. More
detailed discussions of the v parameter can be found in Rivers and Jaccard (2005).

The purpose of this study is to improve the behavioral realism of CIMS with three parameters: r, v,
and of primary interest, ij. CIMS has the capability to represent neighbor effects with the ij parameter,
following the declining intangible cost function.

i jðtÞ ¼ ifixed þ
iVarð0Þ

1þ A ek�MSt�1
(4)

where ij(t) is the intangible cost of technology j at time t, ifixed is the portion of initial intangible cost
that is static, iVar(0) is the variable portion of intangible cost in time period zero, MSt�1 is the market
share of the technology in the previous simulation period (t�1), and the A and k parameters represent
the curve and rate of change of the intangible cost in response to increases in technology market share.
We estimate this intangible cost curve and the v and r parameters using empirically derived discrete
choice models.

2.2. Choice models combining stated and revealed preference data

Discrete choice models quantify consumer trade-offs among product attributes (Train, 2003).
Previous research has demonstrated the use of multinomial logit (MNL) models to empirically
estimate behavioral parameters for CIMS (Rivers and Jaccard, 2005; Horne et al., 2005; Mau et al.,
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2008). The MNL is based on random utility theory, assuming that a portion of the utility derived by an
individual is unobservable. An individual’s utility is broken into two components:

U j ¼ V j þ e j (5)

where Uj, the utility of choice j, is the sum of Vj, observable or ‘‘representative’’ utility, and ej,
unobservable utility. ej is treated as a random parameter with a mean of zero, following a Weibull
distribution. This distribution simplifies the model, allowing estimation without simulation.
Observable utility, Vj, is represented as:

V j ¼ X jbþ a j (6)

where Xj is a vector of the attributes of choice j, b is a vector of coefficients weighting each of those
attributes, and aj is the alternative-specific constant, which represents the observable utility of each
choice not captured by attributes specified in the model.

Similar to the market share function in CIMS, MNL models can estimate the probability of option j

being chosen from choice set k, using Eq. (7). This probability can be equated with market share if the
representative utility function is estimated from a large enough sample size, depicted as follows:

MS j ¼
eV jPK

k¼1 eVk

(7)

where MSj is the estimated market share of choice j, which compares the observable utility of choice j

to the observable utilities across the choice set K.1

Choice models can be estimated from SP data, RP data, or a combination thereof. Brownstone et al.
(2000) combined SP and RP data to model vehicle preferences in California, concluding that the
resulting joint MNL model was more robust than either the SP or the RP models alone. However,
combining data sources is a complex process and requires judgment on the part of the researcher.
Louviere et al. (2000) identify two main techniques, ‘‘pooled’’ and ‘‘sequential’’ estimation, that differ
in how model coefficients are combined from the SP and RP data sources. Consider the two types of
coefficients that make up the utility function in Eq. (6): the attribute coefficients (b) represent trade-
offs among technology attributes; and the alternative specific constant terms (a) represent utility not
captured in the specified b vector, and are responsible for calibrating RP models to fit observed market
shares. The data ‘‘pooling’’ approach to joint estimation combines SP and RP data to estimate the b
vector from both sources (bJoint) – where RP and SP influence can be weighted differently – while the a
is estimated from the RP data only (aRP). In contrast, the ‘‘sequential’’ approach estimates separate SP
and RP models, then discards aSP and the bRP vector. The bSP vector and aRP are placed in a composite
utility function, where aRP is recalibrated to fit the real-life market shares represented in the RP data.
Both methods of joint estimation have been successfully applied in various studies. Deciding between
these methods depends on one’s confidence in the SP and RP data; the ‘‘sequential’’ technique may be
preferred if RP data is vulnerable to multicollinearity (Swait et al., 1994), while the ‘‘pooling’’
technique may be more appropriate if b vector estimates could benefit from both SP and RP influence.

In both techniques, researchers must account for different scale in observable utility (b and a
estimates) relative to unobservable utility (ej) when combining coefficients from different models.
Scale differences can arise because SP models hold constant all non-specified attributes while RP
models cannot, often resulting in a larger ej variance for RP models. Train (2003) describes how to
introduce a scale parameter, l, to the utility function of both models, where the RP scale factor, lRP, is
normalized to zero. Following the ‘‘sequential’’ technique, the bSP vector extracted from the SP model
would have to be adjusted by a scale factor, lSP. The resulting composite utility function would be:

V j ¼ X j
bSP

lSP

 !
þ aRP

j (8)

1 Eq. (7) typically estimates the probability of an individual choosing a particular technology. However, our interest is in

aggregate preferences, so Eq. (7) is set to represent the economy using averaged attribute levels, without demographic variables

(except income, which is also fixed to the sample average).
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With this specification, lSP reflects the variance of unobserved factors in SP situation relative to RP
situations. In the present study, scale parameters were estimated using an ‘‘artificial tree structure’’
nested logit technique, detailed in full by Louviere et al. (2000) and Hensher et al. (2005).

2.3. Translating choice model coefficients to an energy–economy model

Discrete choice model coefficients can be translated to the three behavioral parameters in CIMS: r, i,
and v. Train (1985) explains how an implicit discount rate, r, can be estimated according to the ratio
between b coefficients in a logit model:

bCC

bFC

¼ r

ð1� ð1þ rÞ�nÞ
(9)

where bCC is the capital cost coefficient, bFC is the coefficient for annual fuel costs, and n is the
technology lifespan.2 In short, this ratio represents the tradeoff between capital and operating costs—
an estimate of the time value of money. A product with infinite product life has a discount rate equal to
bCC/bFC.

The intangible costs of HEVs are estimated as the sum of ratios between each non-monetary
coefficient and constant (Alberini et al., 2007), and the capital cost coefficient:

i j ¼
XN

n¼1

bn j

bCC

� Xn j

 !
(10)

where N is number of non-monetary attributes, bnj is the coefficient for attribute n of technology j, Xn is
the value for the non-monetary attribute n of technology j, and bCC is the capital cost coefficient. In this
study, we estimate ij values using two non-monetary attributes: vehicle horsepower, bHP, and the HEV
constant, aHEV. The declining A and k parameters of the intangible cost function, Eq. (4), can be fitted to
i parameter estimates from several different HEV market share scenarios using the Solver algorithm in
the Excel spreadsheet software package.

The third behavioral parameter, v, cannot be estimated directly from choice model coefficients.
Instead, for several choice sets, Solver is used to select a v that consistently equates the market share
predictions of the CIMS algorithm, Eq. (3), and the choice model, Eq. (7), such that:

eViPJ
j¼1 eV j

¼
ðLCC jÞ�vPK

k¼1 ðLCCkÞ�v (11)

This procedure can only be performed after all the terms of the LCC have been estimated. While
there may be concern that the two sides of Eq. (11) are from substantively different models, this
procedure serves to approximate the policy sensitivity of the CIMS market share algorithm to that of
the empirically estimated choice model, and has been applied successfully in several previous studies
(Horne et al., 2005; Rivers and Jaccard, 2005; Mau et al., 2008).

3. The data

SP and RP data were collected with a web-based survey conducted in March 2006. Survey samples
were drawn from online panels constructed and maintained by market research companies in Canada
and California. Because HEVs accounted for 0.17% (Autonews, 2006) and 3.0% (R.L. Polk and Co., 2006)
of 2005 new vehicle market share in Canada and California, respectively, we expected to observe
different RP intangible cost estimates between these regions. In both samples, respondents were
screened to assure they (1) owned a new vehicle purchased in 2002 or later (when HEVs were
reasonably available in the North American market), (2) were age 19 or older, (3) drove three times or
more per week, and (4) resided in an urban centre. HEV owners were purposely overrepresented using

2 Train’s (1985) original formula specified operating costs instead of fuel costs. Hausman (1979) makes a similar inference

using a qualitative choice model describing the purchase of room air conditioners.
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a choice-based sampling strategy.3 In a panel-based survey, it is difficult to estimate a response rate
that is comparable to other survey modes.4 However, we can report the ratio of completed surveys to
invited respondents: 14% for the Canada sample and 2% for the California sample.5 The latter ratio is
smaller due to a less targeted sampling strategy, i.e., more invitations were sent to ineligible
individuals. The final breakdown of respondents was 535 Canadians and 408 Californians, including
51 and 50 HEV owners, respectively. Each respondent completed 18 SP choice sets, yielding 9630 SP
choice observations in the Canada sample and 7344 in the California sample.

The Internet was chosen as a survey medium due to its many benefits: flexibility of survey design,
control over response environment, automation of data entry, and low cost per respondent. However,
the Internet has three main drawbacks. First is the tendency for low response rates relative to mail and
phone survey methods (Couper, 2002). Secondly, and more importantly, is vulnerability to non-
response bias, where differences between respondents and non-respondents are correlated with
survey variables. However, there is not a clear relationship between response rate and non-response
bias (Groves, 2007; Champ and Welsh, 2007); in other words, a higher response rate does not
necessarily make a sample more representative of the target population. However, Couper et al. (2007)
note that web survey respondents tend to be disproportionately younger and of higher socioeconomic
status than non-respondents. A third limitation of web-based surveys is coverage error, where as of
2006, Internet penetration in Canada was 67.5% of the population (Internet World Stats, 2007).

To test for non-response and coverage bias in our samples, we assessed the representativeness of
demographic distributions. The Canada sample was satisfactorily consistent with the geographic,
gender, and age distributions of 2001 Canada Census data, as well as car/truck ownership split
reported by Environment Canada (2004) data. Respondent income and education were slightly higher
than census average, but both biases are consistent with findings that new car buying households tend
to have higher income and education than the general population (Axsen and Kurani, 2008). Also, the
demographic and attitudinal characteristics of the California sample were highly consistent with the
Canada sample, justifying the extrapolation of results from the California data to represent a future
version of the Canada market.

3.1. SP data collection

We designed an experiment to collect SP data under different market share conditions, randomly
dividing each sample into three treatment groups. We used a common market research technique to
create hypothetical scenarios using multimedia stimuli to forecast consumer responses to new
technologies (Urban et al., 1996, 1997; Hoeffler, 2003). All respondents received information about
HEVs, but details differed according to three penetration scenarios: (1) current HEV market share
(0.17% in Canada, 3.0% in California), (2) moderate market share (10%), and (3) high market share
(50%). We refer to these scenarios as MS1, MS2 and MS3, respectively.

To simulate consumer learning and word-of-mouth effects, each scenario included hypothetical
information (based on real-world language) from three different source categories: a newspaper
article, a manufacturer brochure, and personal testimonials (Table 1).6 Lower penetration scenarios
communicated more uncertainty about HEV technology from individuals with less direct HEV

3 Choice-based sampling is used for research on technologies with low incidence in the general population; had we not

oversampled HEV owners, our Canada sample would not have included a statistically significant number.
4 A large number of invitations are emailed out to a panel maintained by the hired company, and once the sample quota is

reached, further access to the web survey is blocked. Thus, we cannot truly estimate the percentage of contacted individuals

that would have completed the survey, so a response rate is not directly comparable with that of a mail or telephone survey.
5 Of the 3973 invitations that were sent out in the Canada sample, 1230 (31%) respondents logged into the survey, 538 of

which did not meet initial screening criteria, and 137 qualifying respondents did not finish. Of the (approximately) 22,000

invitations sent out in the California sample, 2676 (12%) respondents logged into the survey, 1706 of which did not meet initial

screening criteria, and 532 qualifying respondents did not finish.
6 In reality it would take time for peoples’ references or perceptions to change as learning and observations of actual market

shares occur. And while our SP approach cannot uncover the complete picture of the time path of this learning process, our

hypothetical scenarios allow us to gain important insight on these effects. Indeed, as described later, through these scenarios we

do pick up statistically the significance of the effects of increased HEV penetration and of correspondingly more reliable

information.
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experience. We assumed that advertising would tailor to different stages of product diffusion
(following Rogers, 2003), following the innovator, early adopter and early/late majority stages
summarized in Table 1. We also manipulated the availability of HEV models (or variety) because
short-term limitations could be an important explanatory factor in HEV popularity.

Following the experimental treatment, respondents completed a series of binary choices, each
presenting an HEV and conventional vehicle with varying attributes. Table 2 depicts the experimental
design and Table 3 illustrates one hypothetical choice set. We specified 7 attributes with three levels,
yielding a 37 factorial design that was simplified into a ‘‘main-effects only’’ orthogonal fractional
factorial design of 18 choice sets.7 The 7 attributes subject to the factorial design were: capital cost of
the conventional vehicle, capital cost of the hybrid vehicle, subsidy provided for the hybrid vehicle,
horsepower of the hybrid vehicle, conventional vehicle fuel efficiency, hybrid vehicle fuel efficiency,
and gasoline price. While capital cost, subsidy and performance attributes were presented directly in

Table 1
Descriptions of HEV information packages.

Information ‘‘Current’’ HEV share (MS1) ‘‘Moderate’’ HEV share (MS2) ‘‘High’’ HEV share (MS3)

HEV market share 0.17% (Canada), 3.0% (California) 10% (both regions) 50% (both regions)

Newspaper article HEV sales, costs and benefits Same as MS1

(adjusted to reflect HEV sales)

Same as MS1

(adjusted to reflect HEV sales)

Advertising brochures Target: innovators Emphasis:

cutting edge technology

Target: early adopters Emphasis:

fuel savings and environmental

benefits

Target: early majority

Emphasis: financial savings

Testimonials Sources: 1 friend, 1 stranger

Little direct HEV experience

High uncertainty

Sources: 2 friends, 1 stranger

More HEV experience

Less uncertainty

Sources: 2 friends, 1 family

member More HEV experience

Least uncertainty

Model availability

for SP choice set

Limited: small car small SUV Limited: all cars small SUV

minivan small pickup

Unlimited

Table 2
Attribute levels in SP experiment (37 factorial design).

Gasoline vehicle (GAS) Hybrid-electric vehicle (HEV)

Capital cost (CC) (CAN $) (1) 100% user a CC,

(2) 90% user CC

and (3) 75% user CC

(1) 110% user CC, (2) 120% user CC and (3) 150% user CC

Subsidy (SUB)b (CAN $) None (1) None, (2) 5% of HEV CC and (3) 10% of HEV CC

Performance (HP)c

(Horsepower)

User HP (1) 70% user HP, (2) 85% user HP and (3) 115% user HP

Fuel efficiency (FE)d

(L/100 km)

(1) 80% (2) 100% (3) 120% (1) 50%, (2) 75% and (3) 90%

Fuel price (FP)d

(CAN $ per liter)

(1) 50% (2) 100% (3) 150%

Fuel cost (FC)e

(CAN $ per week)

(User FC) � (GAS FE) � FP (User FC) � (HEV FE) � FP

a ‘‘User’’ indicates either the self-reported value entered by the respondent or the value automatically drawn from the vehicle database

(based on the respondent’s vehicle model).
b Described as a tax rebate received within 6 months of purchase.
c Not all respondents understand measurements of horsepower; we presented this attribute in terms of percentage change in

performance (e.g., ‘‘15% better performance than your current vehicle’’), as well as a corresponding horsepower quantity.
d Attribute not shown to respondent; only used to calculate weekly fuel cost and to estimate ‘‘pollution’’ level (see Table 3).
e The product of the users weekly fuel cost, the relative fuel efficiency of the vehicle, and the relative fuel price. For example, if the

respondent normally spends $20 per week on fuel, and the presented vehicle has 80% fuel efficiency at a 150% fuel price, the presented

attribute would be $20� 0.80� 1.50 = $24 per week.

7 An orthogonal factorial design has zero or negligible correlation among attributes, thus avoiding collinearity problems in

the specification of choice models. We did not require the ability to model interactions, where resulting coefficients could not be

easily translated to CIMS.

J. Axsen et al. / Resource and Energy Economics 31 (2009) 221–238 227



the respondent choice sets, fuel efficiency and fuel price were aggregated into a single attribute (as
well as a single coefficient): weekly fuel cost. The purpose of this aggregation was to allow for variation
in fuel cost derived from technological advancements (for one vehicle) or fuel price (across vehicles),
yielding a ‘‘cognitively sensible’’ range of fuel costs across choice sets (Hensher et al., 2005; Hensher,
2007).8 All 18 choice sets were presented to each respondent—previous studies (e.g., Mau et al., 2008;
Hensher, 2007), as well as careful pre-testing and retrospective analysis, indicated that this number of
choices did not present an unreasonable respondent burden.9

Four key attributes were included in respondent choice sets: capital cost, fuel cost, performance
and subsidy.10 The first two attributes are essential to calculate discount rate in Eq. (9), while vehicle
power (as a proxy for general performance) has been highlighted as an influential intangible attribute
(Canadian Auto Agency, 2003; Horne et al., 2005). Although the HEV subsidy was explained as a
reduction in upfront capital cost, we model it as a separate coefficient due to previous findings
suggesting that a dollar of subsidy may be valued differently than a dollar of capital cost (Mau et al.,
2008).11 Together, all four attributes represented the key differences between HEVs and conventional
gasoline vehicles in 2005, when available HEVs were generally more expensive (by 15–30%), more fuel
efficient (by 20–40%), less powerful (by 15–25%) and more eligible for subsidies ($500–3000) than
comparable conventional vehicles. In the choice sets, attribute levels were customized for each
respondent, specified as percentage values that ‘‘pivoted’’ around the attribute of the respondent’s
current vehicle. This technique is common in SP literature (e.g., Mau et al., 2008; Hensher, 2007;
Hensher et al., 2005) and helps to frame the choice scenario according to the respondent’s actual
experience.

3.2. RP data collection

RP data was elicited by asking respondents to provide details about their primary vehicle.12

Rather than rely purely on respondent recall, we constructed a comprehensive database of vehicle
make and models for each target year, allowing respondents to choose the year, make and model of

Table 3
Example SP choice set.

Medium SUV gasoline vehicle Small SUV hybrid-electric vehicle

Purchase price $27,500 $35,000

Fuel cost per week $35 $26

Pollutiona Same as current vehicle 25% less than current vehicle

Subsidy on purchase price No subsidy $3,500

Car performance Same as current vehicle (150 HP) 15% better than current vehicle (172 HP)

a ‘‘Pollution’’ was not included as an independent attribute in the experimental design; a percentage increase or reduction was portrayed

relative to their current vehicle, proportional to the FE attribute in Table 2.

8 Although this aggregation of attributes did slightly compromise the orthogonality of the original design, any observed

correlation is small (<0.05) and we maintain that the 18 choice sets perform well in terms of attribute balancing, as discussed by

Johnson et al. (2007).
9 However, considerations of respondent burden and overall efficiency should be tested on a case by case basis (DeShazo and

Fermo, 2002; Arentze et al., 2003; Scarpa and Rose, 2008). Prior to the implementation of this study, we conducted careful pre-

tests to assure our design did not present an inappropriate burden to respondents. Also, the online survey instrument recorded

respondent completion times—retrospectively confirming that the choice exercise was not overly burdensome.
10 Fuel efficiency was also represented as a proportionally equal attribute called ‘‘pollution’’—the intention was not to estimate

a pollution coefficient, but instead to merely present to the respondent the portion of weekly fuel cost that corresponded with

negative emissions (rather than fuel prices).
11 While some may argue that consumers should be indifferent to the format of a price reduction, there is a growing literature

(e.g., Eckel and Grossman, 2003; Davis et al., 2005; Davis and Millner, 2005) suggesting that various but differing forms of price

reduction, including subsidies are valued differently. By incorporating the subsidy separately, rather than subtracting it from

income, we are letting the data speak for themselves regarding whether the subsidy is perceived differently than just being

subtracted form capital costs and income.
12 The ‘‘primary’’ vehicle is the car or truck that the respondent used most routinely, which was purchased new in 2002 or

later.
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their recently purchased vehicle with drop-down menus (manual entry was permitted for unlisted
models).13 We were thus able to collect RP data for three of the same attributes as the SP design:
capital cost, weekly fuel cost and vehicle power. The database was also used to select the non-chosen
alternatives that are required to model RP choice sets for each respondent. We followed a technique
similar to that used by Brownstone et al. (2000) to randomly select a subset of available vehicles (because
it is computationally prohibitive to include all possible vehicles), one from each of the 11 vehicle class
categories not chosen by the respondent. Table 4 illustrates a hypothetical example for a respondent
owning a Volkswagon Beetle (classified as a gasoline subcompact car). To complete the choice set, 11
other vehicles were selected from our database: 10 other gasoline vehicles, and 1 HEV. This method
ensured that each choice set contained a significant degree of attribute variation, approximating the
actual breadth of vehicle choices available to each respondent at the time of purchase.

4. Choice model results

4.1. Stated preference models

A multinomial logit (MNL) model estimated from all three Canada market share scenarios is
presented under the heading ‘‘SP Canada’’ in Table 5. SP data from the 51 HEV owners were
downweighted to reduce their influence according to actual market share (0.17%). All coefficient
estimates were significant at a 99% confidence level, and of the expected sign.14 The capital cost
variable contributed the best fit of the SP data when divided by the log of household income (as in
Brownstone et al., 2000; Brownstone and Train, 1999) to account for income effects.15 This
specification represents income as a deflator, where capital cost is less important for higher
income households.16 The bottom five rows of Table 5 portray the monetized value of several
coefficient estimates, representing the value of an attribute unit in terms of purchase price,
holding household income at the sample average of $78,000. For example, the average respondent

Table 4
Example RP choice set (reportedly owned vehicle and 11 randomly selected non-chosen alternatives, 2005 model year).

Class Constant Make and model Price Horsepower Liters/100 km Weekly fuel costb

Subcompact cara Small car Volkswagon Beetle $23,210 115 8.9 $30.00

Compact car Small car Ford Focus $17,376 110 8.3 $27.98

Midsize car Large car Nissan Altima $29,098 240 10.4 $35.06

Large car Large car Lexus LS 430 $82,800 290 11.7 $39.44

Small SUV SUV Toyota RAV 4 $25,933 148 10.0 $33.71

Midsize SUV SUV GMC Envoy $40,619 270 14.1 $47.53

Large SUV SUV Cadillac Escalade $66,047 345 16.3 $54.94

Minivan Van Dodge Caravan $31,072 215 10.9 $36.74

Large van Van Ford E150 $34,043 225 15.4 $51.91

Small pickup Truck Mazda B2300 $17,478 140 9.3 $31.35

Large pickup Truck Chevrolet Avalanche $40,991 285 16.6 $55.96

HEV HEV Toyota Prius $27,140 110 4.8 $16.18

a For this example, the hypothetical respondent is assumed to own this vehicle.
b Weekly fuel cost for each non-chosen alternative = (user fuel cost)� (alternative fuel economy)/(user fuel economy).

13 We updated a 2003 Natural Resources Canada fuel efficiency database provided to include newer models. Retail price, fuel

efficiency and horsepower were detailed for nearly 1500 vehicle (300 per model year). Vehicle class followed the 11-class

system used by Greene et al. (2005).
14 This model assumes a linear relationship between the attribute levels and perceived utility (except the alternative specific

constants). We performed a test of linearity, and although the model appears to work well with these assumptions, we found

that fuel cost was better specified as a quadratic variable. However, such a specification could not be translated to CIMS, and was

thus not incorporated in this study.
15 Commonly, MNL choice models will specify several demographic variables, in addition to choice attributes. However, it is

difficult to translate demographic coefficients into CIMS behavioral parameters, which represent an entire economy. The only

demographic variable we include is household income, which is set to the sample average of $78,000 for the purpose of

translation to CIMS.
16 Moreover, including income in this non-linear fashion is consistent with the non-homotheticiy of demand for consumer

purchases (e.g., Banks et al., 1997; Denton et al., 2006).
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in this model would pay an extra $79.68 in vehicle purchase price for one extra unit of
horsepower.

Unique HEV constants were estimated for each market share experimental group by adding two
dummy a interaction terms for MS2 and MS3 scenarios. In all three market share scenarios,
respondents assigned a positive value to HEVs independent of the other specified variables. Both
market share interaction terms are positive, indicating that the value of an HEV increased from $2042
to $3202 (aHEV + aHEV �MS2) and to $3533 (aHEV + aHEV �MS3) in the 10% and 50% market share
scenarios, respectively. Thus, the experimental treatment induced a statistically significant change in
HEV preferences among scenario groups in the expected direction; that is, HEVs become more
favorable with increased market penetration. However, we cannot conclusively infer the underlying
drivers of this effect—that is, whether technological uncertainty, consumer influence, model
availability or other factors were individually or collectively important.

The monetized coefficients in Table 5 are comparable to previous SP studies of alternative fuel
vehicles. Valuation of fuel cost is close to Mau et al.’s (2008) estimates, and valuation of vehicle power
is similar to that found by Ewing and Sarigollu (2000). The positive valuation of the HEV ranges
between $2000 and $3500 among market share scenarios, which is within the $2000–5000 range of
willingness to pay found by Potoglou and Kanaroglou (2007). However, like many SP choice models,
when the attributes of real HEVs and comparable conventional vehicles are entered into Eq. (7), the
resulting market share predictions of low-emissions technology (>30%) are unrealistically optimistic
relative to the actual Canadian HEV market in 2005 (0.17%)—likely a result of hypothetical or social
desirability bias. Our SP model may also have excluded other important factors, such as supply
constraints indicated by the long waiting lists experienced by some HEV consumers (often 6 months
or longer).17

Table 5
SP and RP choice model estimates.

Variable SP Canada RP Canada RP California

Coeff. t-Stat Coeff. t-Stat Coeff. t-Stat

SP CC/log(income) �0.00717 �30.7 �0.000205 �7.2 �0.000735 �15.1

Fuel cost �0.0342 �20.6 �0.0364 �4.1 �0.0337 �3.9

Horsepower 0.0117 15.2 0.000165 0.1 0.0218 12.2

SP subsidy 0.000103 6.7

SP HEV constant 0.296 5.6

SP HEV �MS2 0.174 3.0

SP HEV �MS3 0.222 3.8

RP large car constant �1.240 �7.3 �1.118 �6.2

RP SUV constant �1.133 �8.5 �0.919 �5.9

RP van constant �0.683 �3.5 �2.681 �8.9

RP truck constant �2.178 �9.2 �2.566 �11.2

RP HEV constant �6.429 �5.6 �1.805 �4.7

Observationsa 9630 542 408

Max log-likelihood �5191.6 �887.1 �600.5

LL ratiob 0.147 0.329 0.408

Fuel cost valuec �$233.01 �$867.54 �$224.08

Horsepower valuec $79.68 $3.94 $145.12

HEV value MS1c $2,041.69 �$153,204.68 �$12,008.60

HEV value MS2c,d $3,201.84

HEV value MS3c,e $3,534.60

a Some completed surveys removed due to missing income data and/or poor data.
b Ratio of log-likelihood of full model to log-likelihood of model with no coefficients.
c Ratio of variable to capital cost coefficient, assuming income = $78,000.
d Value of SP HEV constant + MS2 interaction.
e Value of SP HEV constant + MS3 interaction.

17 We also specified an MNL model using California SP data following the same methodology. Results were nearly identical to

the Canada SP model, particularly for the monetized coefficients.
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4.2. Revealed preference models

Table 5 also portrays MNL models estimated from Canada and California RP data.18 Again, data in
both samples were weighted to offset the intentional overrepresentation of HEV owners (choice-
based sampling).19 As anticipated, the RP vehicle attributes in this study were highly correlated, with
correlation coefficients ranging from 0.32 (between capital cost and fuel efficiency) to 0.72 (between
fuel efficiency and horsepower). Such multicollinearity can result in insignificant and/or counter-
intuitive coefficient estimates. Despite this vulnerability, both RP models have significant Chi-square
values, and most coefficient estimates are significant at a 99% confidence level. However, the Canada
horsepower coefficient has a relatively low t-value and low value, likely resulting from observed
correlations. Multicollinearity also appears to have affected the scale of coefficients; the monetized RP
attribute values in Table 5 are alarmingly different from SP estimates. For example, the Canada
monetized fuel cost coefficient of $867.54 is almost 4 times the magnitude of the corresponding SP
estimates.

Five vehicle class constants were specified relative to the base class, ‘‘small car’’ (set to zero): large
car, SUV, van, truck and HEV. The HEV constant is interpreted relative to small cars, where the HEV is
the least desirable class in the Canada sample, indicating that on average, consumers would require a
payment of $153,204.68 to equate an HEV with a conventional vehicle. Although this value may seem
unrealistically large, the value is an economy-wide average representing a technology with very little
market exposure. A large segment of the population may not have had any awareness of HEV
technology, or lacked access to an HEV dealer; such a segment would have nearly infinite ‘‘intangible’’
costs. In contrast, the monetized California HEV constant was more comparable to other vehicle class
constants, consistent with the higher rate of HEV penetration (3.0%). Overall, we have low confidence
in these RP models. The observed drawbacks of the RP data illustrate the potential value of a jointly
estimated choice model that could eliminate multicollinearity issues while including a more realistic
vehicle class specification.

4.3. Joint models

We compare three alternative techniques to jointly estimate choice models from SP and RP data.
Each model is fit to the Canada sample data and depicted in Table 6. Models were specified as follows:

Joint model 1: A ‘‘pooling’’ technique assigning equal weighting to the SP and RP data, estimating
joint b coefficients for capital cost, fuel cost and horsepower, and unique a constants for the RP data
(large car, SUV, van, truck and HEV). Each respondent yielded 1 RP observation and 18 SP
observations; the SP data was weighted by 0.056 to limit influence to be equivalent with the RP
data.
Joint model 2: A ‘‘pooling’’ technique similar to model 1, but without ‘‘corrective’’ weights—
allowing the SP data to have 18 times more influence in jointly estimated b coefficients than the RP
data.
Joint model 3: A ‘‘sequential’’ technique, directly extracting b coefficients from the SP model
(Table 5) and calibrating the a constants to fit the RP data.

For each estimated joint model, we followed the ‘‘artificial tree structure’’ technique noted at the
end of Section 2.2 and found no significant difference between RP and SP scale parameters (i.e.,
lSP = lRP = 1); Hensher et al. (2005) suggest this finding is common when RP and SP data is collected

18 Another possibility would be to use a nested MNL procedure for the RP data, representing hierarchical decision making (e.g.

choice among classes, then choice within class). We acknowledge the value of this possibility. However, we opted for the MNL

procedure in this study for simplicity, and also to avoid assuming a particular nesting structure. For instance, Heffner et al.

(2007) find the HEV buyers often compare vehicles from vastly different classes.
19 All survey respondents purchased new vehicles between 2002 and 2006, so it was not entirely accurate to apply the 2005

HEV weighting to all respondents. However, the weighting procedure used in this study only allows weighting by choice, not

vehicle year. Thus, we chose 2005 as a base year because the best market data was available for this year, and this year also

coincides with the first simulation period in CIMS.
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from the same sample. Thus, we exclude further discussion of scale parameters in this study, but note
the importance of exploring this issue in each application. Model results in Table 6 (and subsequent
tables) are arranged according to degree of RP influence over b coefficients (left to right corresponds
with highest RP influence to lowest). Each model’s coefficient estimates are highly significant.
Vehicle class constants vary among models, but rank order remains the same. Monetized attribute
values generally correspond with the degree of RP influence; joint models allowing more RP data
influence yield estimates closer to the RP-only model, while joint models allowing more SP data
influence yield estimates closer to the SP-only model. The same joint estimation techniques were

Table 7
Comparing models fitted to RP data.

Indicator Region RP-only Joint model 1:

‘‘Pooled’’ weighted

Joint model 2:

‘‘Pooled’’

Joint model 3:

‘‘Sequential’’

Log-likelihood Canada �887.1 �890.9 �950.7 �1003.2

California �600.5 �600.9 �611.6 �631.6

Chi-squarea Canada 420.0 412.4 292.6 187.7

California 641.4 640.4 619.0 579.1

Correct predictionsb Canada 44.7% 44.3% 41.8% 41.5%

California 48.0% 47.3% 46.3% 44.6%

Submodel predictionsc Canada 47.6% 46.6% 42.9% 42.5%

California 50.7% 49.5% 49.5% 47.1%

a Compared to base model with constants only. All Chi-square values significant at 99% confidence level.
b Within RP data only.
c Average accuracy over 10 iterations of submodel re-estimations; in each iteration the model was estimated with 90% of sample

(randomly selected) and used to predict choices of the remaining 10%.

Table 6
Joint choice model estimates (Canada).

Variable Joint model 1: ‘‘Pooled’’

weighted

Joint model 2: ‘‘Pooled’’ Joint model 3: ‘‘Sequen-

tial’’

Coeff. t-Stat Coeff. t-Stat Coeff. t-Stat

SP CC/log(income) �0.00072 n/aa

SP fuel cost �0.0341 n/aa

SP horsepower 0.0117 n/aa

Joint CC/log(inc.) �0.00028 �10.1 �0.00057 �28.1

Joint fuel cost �0.0341 �5.6 �0.0322 �16.2

Joint horsepower 0.0033 2.5 0.0105 16.9

RP large car constant �1.330 �7.8 �1.449 �8.0 �1.379 �7.2

RP sport utility constant �1.205 �9.2 �1.282 �8.9 �1.224 �7.7

RP van constant �0.873 �4.9 �1.166 �7.6 �1.043 �7.2

RP truck constant �2.371 �10.2 �2.791 �12.3 �2.833 �12.1

RP HEV constant �6.124 �5.6 �5.531 �5.2 �5.437 �5.1

Observationsb 10,162 10,162 532

Max log-likelihood �1223.5 �6689.9 �1003.2

LL ratioc 0.497 0.555 0.241

Fuel cost valued �$594.98 �$278.65 �$233.01

Horsepower valued $57.60 $90.77 $79.68

HEV valued �$106,974.51 $47,885.94 $37,115.77

California values

Fuel cost valued �$225.21 �$232.40 �$228.11

Horsepower valued �$139.15 �$108.36 �$86.07

HEV valued �$12,399.06 �$13,122.33 �$11,663.87

a t-Stat not applicable because variables fixed (from SP model).
b Some completed surveys removed due to missing income data and/or poor data.
c Ratio of log-likelihood of full model to log-likelihood of model with no coefficients.
d Ratio of variable to capital cost, assuming income = $78,000.
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applied to the California data, and the monetized attribute values are depicted in the bottom three
rows of Table 6.

Table 7 compares the statistical performance of the three joint models and the RP-only model, all
fitted to the Canada and California RP data. Models allowing more influence from RP data are
statistically superior on all four indicators. The maximum log-likelihood and Chi-square values
improve with greater RP influence (from right to left). We also present the percentage of correct choice
predictions within the model, as well as the accuracy of models re-estimated with 90% of the data in
predicting the remaining 10% of choices that were randomly removed (averaged over 10 iterations). In
both cases, results are consistent; models with more RP influence perform more accurately. However,
as found by Swait et al. (1994), differences are not substantial. Table 8 compares the market share
predictions of these four models using attribute levels from the six vehicles specified in Table 9
(median values for each vehicle class in the Canada RP data). Resulting predictions are compared with
actual percentages observed in the Canada RP data. Predictions are fairly consistent across the models,
which generally correspond with actual market shares aside from some noticeable differences (e.g.,
underestimating SUV and truck market share). HEV market share predictions in all models are fairly
consistent and appropriately low.

In summary, we find that models with greater RP influence perform slightly better according to
statistical measures, but monetized coefficients estimated with greater SP influence are more realistic
and consistent with empirical research. Interestingly, the market share predictions of the four models
do not vary substantially. Overall, we favor the more realistic coefficient estimates of models 2 and 3;
these estimates are of primary concern for the main objective of this study: translating coefficients
into dynamic behavioral parameters for CIMS.

5. Adding behavioral realism to an energy–economy model

Using the joint models and RP-only model specified above, we estimated the three main behavioral
parameters of CIMS depicted in Table 10. First, Eq. (9) was used to estimate the private discount rate, r,
using capital cost and fuel cost coefficients estimated from each joint choice models.20 The
‘‘sequential’’ model estimate of 21.3% is most consistent with previous SP choice studies (Horne et al.,
2005; Mau et al., 2008), and approximates the middle of the range of automotive discount rates
reviewed by Train (1985). With added RP influence, r estimates decline to unrealistically low values
due to increasingly large fuel cost coefficient estimates.

The intangible costs of HEVs were estimated from the non-monetary coefficients of the joint choice
models, using Eq. (10).21 For example, the initial iHEV in joint model 3 (MSt�1 = 0) is
ifixed + ivar = $38,469, which is the sum of reduced HEV horsepower relative to the average small
car in Table 9 (127 � 110) � $79.68 = $1355, plus the HEV constant value ($37,115). Fig. 1 plots this
estimate according to HEV market share (Canada = 0.17%) along with the iHEV estimate from the
California ‘‘sequential’’ model ($13,127) to represent the 3.0% HEV market share scenario. The 10% and

Table 8
Comparing joint model market share predictions (Canada, income = $78,000).

Type Actuala RP-only Joint model 1: ‘‘Pooled’’ weighted Joint model 2: ‘‘Pooled’’ Joint model 3: ‘‘Sequential’’

Small car 55.48% 61.12% 60.94% 62.56% 64.15%

Large car 8.50% 10.82% 11.49% 12.64% 12.42%

SUV 16.00% 9.16% 9.54% 9.26% 8.13%

Van 15.39% 17.10% 16.31% 14.48% 14.60%

Truck 4.45% 1.71% 1.62% 0.96% 0.62%

HEV 0.17%b 0.10% 0.10% 0.09% 0.08%

a Calculated from Canada RP sample (n = 542).
b HEV market share was weighted to correct for oversample of HEV owners, and match 2005 HEV sales in Canada.

20 The technological lifespan, n, was assumed to be 16 years, as is specified for all new vehicles in CIMS.
21 Because intangible cost is a relative value, it must be calculated relative to a competing technology. We used the ‘‘small car’’

class as a reference to compare constant and horsepower estimates.
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50% points in Fig. 1 are estimated from the Canada SP-only models (Table 5) from the MS2 and MS3
scenarios, respectively. Notice that in these SP scenarios, the HEV is assumed to have an overall
intangible ‘‘benefit’’ relative to a conventional small car. In each model, the A and k parameters were
estimated to fit the four i points, yielding the parameter estimates in Table 10. This same procedure
was completed for all four models, where only the first two points (Canada and California) varied. Each
intangible cost curve followed a similar pattern as seen in Fig. 1; consumers perceive HEV intangible
costs to be very high when HEVs first enter the market, but costs decline substantially as they diffuse
and stabilize once HEVs reach 10% market share.

The last behavioral parameter, v, was estimated using Eq. (11) to represent market heterogeneity in
the CIMS model. Using the vehicle attribute levels in Table 9, we used the Solver function in Excel to
find a v value that minimized the differences between vehicle market share predictions in the choice
model, Eq. (7), and the CIMS function, Eq. (3). The optimal v values ranged from 3.9 to 6.1 among
models. Previous vehicle choice studies estimated similarly low v parameters for the vehicle choice
node, ranging from 2.4 to 5.2 (Horne et al., 2005; Mau et al., 2008).

Fig. 2 depicts HEV market share forecasts in CIMS using parameter estimates form each modeling
approach in Table 10.22 We use the technology parameter values in Table 11 to compete three
technologies in the passenger car node. All curves start realistically low in 2005, and follow the s-
curve penetration pattern typical of new technologies. Parameters estimated from choice models
with more RP influence penetrate faster; joint model 3, the ‘‘sequential’’ model, follows the slowest
penetration forecast. Although it is difficult to comment on the ‘‘accuracy’’ of market share forecasts,
we can draw an important observation: the RP-only model and joint model 1 predict highly
optimistic penetration scenarios, whereas parameters translated from joint models 2 and 3 yield
lower, and likely more realistic, penetration scenarios. We next explore the sensitivity of these
models to policy intervention.

Table 10
Behavioral parameter estimates for CIMS model.

Type RP-only Joint model 1:

‘‘Pooled’’ weighted

Joint model 2:

‘‘Pooled’’

Joint model 3:

‘‘Sequential’’

r parameter �0.5% 4.2% 17.2% 21.3%

Small car ifixed parametera $0 $0 $0 $0

Large car ifixed parametera $29,284 $19,031 $5,918 $3,595

HEV ifixed parameter �$2,180 �$2,180 �$2,180 �$2,180

HEV ivar parameter $155,552 $110,134 $51,609 $40,649

HEV A parameter 1.487 0.951 0.313 0.237

HEV k parameter 57.484 58.486 61.990 61.819

v parameter 3.9 4.1 5.3 6.1

a Only static intangible cost parameters (ifixed) used for ‘‘small car’’ and ‘‘large car’’ technologies.

Table 9
Attributes levels for choice models (median values from Canada RP survey data).

Vehicle type Purchase price Horsepower L/100 km Weekly fuel costa

Small car $22,000 127 8.1 $25.45

Large car $28,000 200 10.3 $32.37

SUV $31,000 200 11.6 $36.45

Van $28,750 200 10.9 $34.25

Truck $38,500 238 14.5 $45.41

HEV $32,000 110 4.7 $14.77

a Weekly average assumes $0.86 per liter of gasoline, driving 19,000 km per year.

22 All simulations assumed base gasoline price predictions used by CIMS as of 2006 (decreasing from $0.87 L�1 in 2005 to

$0.67 L�1 in 2020).
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6. Selected policy simulations

As the final stage of this study, we used the behavioral parameters in Table 10 and technological
parameters in Table 11 to simulate three climate change policies in the transportation sector of
Canada: (1) a $3000 subsidy to HEV capital cost, (2) a feebate scheme simultaneously subsidizing
lower emissions vehicles and taxing higher emissions vehicles at a rate of $1000 per liter per 100 km
relative to average efficiency, and (3) a $100 per tonne carbon tax corresponding to an increase in
gasoline price of about $0.24 per liter. These simulations are intended to illustrate the capabilities of
the CIMS model with empirically based, dynamic behavioral parameters—not as a formal policy
analysis.

We limit our analysis to the car competition node, excluding potential higher level effects (e.g.,
switching from truck to cars and from vehicles to transit). Table 12 summarizes HEV new market share
forecasts, fleet average GHG intensity (grams of CO2 per km), and reductions in GHG intensity relative
to 2005 and relative to business as usual (BAU) in the same forecast year. Again, the RP-only parameter
estimates produce more optimistic HEV new market share predictions than the SP-informed models,

Fig. 1. Intangible cost and function estimates (‘‘sequential’’ estimates shown for illustration).

Fig. 2. New HEV market share forecasts for Canada (business as usual).

Table 11
Technology parameter estimates for CIMS model.

Vehicle type CC2005 CC2020 n MC EC2005
b EC2020

c

Small car $22,000 $22,000 16 $1751 $1336 $1026

Large car $28,000 $28,000 16 $1751 $1699 $1305

HEV $32,000 $29,500a 16 $1751 $775 $596

a HEV production costs set to exogenously reduce by 9% per year from 2005 to 2015.
b Canada energy outlook estimate of $25.05/GJ of gasoline for 2005 (NRCAN, 2006).
c Canada energy outlook estimate of $19.24/GJ of gasoline for 2020 (NRCAN, 2006).
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around 50% by 2030 in all policy simulations, as well as BAU—indicating low sensitivity to pricing
mechanisms and policy simulation. In contrast, joint model 3 shows much higher sensitivity, where
policy is predicted to reduce 2030 GHG intensity by 16.6–22.8% relative to BAU. Based on these
simulations, joint models 2 and 3 again appear to yield more realistic behavioral patterns. We suspect
RP parameter problems result from the observed distortions induced by multicollinearity.

7. Conclusion

This study investigated the use of SP and RP choice research to provide a sounder empirical basis for
the behavioral realism of CIMS, an energy–economy model. We highlight four main conclusions from
this exercise. First, the estimation of joint choice models has proven to be a useful technique for
modeling vehicle choice. SP models provided realistic and empirically consistent tradeoff coefficients
(b), such as capital cost, fuel cost and performance, but yielded overly optimistic HEV market share
predictions. RP models were better calibrated to actual vehicle market shares, but b coefficients
appeared to be unreliable due to multicollinearity. Joint modeling techniques were found to generally
improve upon models using only SP or RP data.

Second, we found that the joint models allowing more influence from SP data (e.g., the ‘‘sequential’’
technique) performed best of the joint methods explored. Joint models allowing more RP influence
over the b coefficients appeared to distort estimates towards the RP-only model estimates. In contrast,
the sequential technique allowed for a more intelligent specialization of tasks; SP data was used solely
for its strength, b coefficient estimates, while RP data was used for its strength, calibration to real-
world market share with constants. Like Swait et al. (1994), we find that although RP-influenced
coefficients perform better from a purely statistical perspective, we prefer the sequential technique
due to other performance metrics: more realistic and empirically consistent b coefficient estimates
and more realistic CIMS behavioral parameter estimates (e.g., discount rate), as well as the resulting
translation into CIMS parameters that maintain sensitivity to policy. We also note that the unweighted

Table 12
Policy simulations for CIMS model: Canada.

Simulation run 2005 GHG intensity (gCO2/km) RP-only

(195.1)

Joint model 1

(195.5)

Joint model 2

(196.1)

Joint model 3

(196.0)

Simulation year 2015 2030 2015 2030 2015 2030 2015 2030

(1) BAU

HEV new market share % 49.1 48.8 43.5 45.2 4.1 35.5 1.8 7.8

New fleet average GHG intensity (gCO2/km) 153.2 153.5 158.3 156.9 193.1 165.6 194.9 189.7

% intensity reduction from 2005 21.4 21.3 19.0 19.7 1.5 15.6 0.6 3.2

(2) $3000 subsidya

HEV new market share % 53.6 53.3 50.1 50.9 6.9 45.4 3.0 43.8

New fleet average GHG intensity (gCO2/km) 149.3 149.6 152.6 151.8 190.6 156.9 193.8 158.2

% intensity reduction from 2005 23.4 23.3 21.9 22.3 2.8 20.0 1.1 19.3

% intensity reduction from BAU 2.5 2.5 3.6 3.2 1.3 5.2 0.5 16.6

(3) $1000 feebateb

HEV new market share % 57.9 57.6 56.6 56.6 17.8 55.8 7.2 56.6

New fleet average GHG intensity (gCO2/km) 145.4 145.7 146.7 146.6 179.9 147.2 188.5 146.4

% intensity reduction from 2005 25.4 25.3 25.0 25.0 8.3 24.9 3.8 25.3

% intensity reduction from BAU 5.1 5.1 7.4 6.5 6.8 11.1 3.3 22.8

(4) $100/tonne carbon taxc

HEV new market share % 52.1 51.8 47.6 48.1 6.1 38.3 2.5 34.9

New fleet average GHG intensity (gCO2/km) 150.8 151.1 154.9 154.5 191.4 163.2 194.3 166.1

% intensity reduction from 2005 22.7 22.5 20.7 21.0 2.4 16.8 0.9 15.3

% intensity reduction from BAU 1.6 1.6 2.1 1.5 0.9 1.4 0.3 12.4

a Subsidy implemented as $3000 reduction in HEV capital cost, beginning in 2010.
b Feebate implemented as $1000 per L/100 km, using the ‘‘small car’’ fuel use as a pivot point (8.1 L/km). The ‘‘large car’’ was assigned a

capital cost increase of $2200, while the HEV capital cost was reduced by $5600, beginning in 2010.
c Carbon tax implemented as increase of per liter gasoline price by $0.23, beginning in 2010.

J. Axsen et al. / Resource and Energy Economics 31 (2009) 221–238236



pooled technique, which allowed SP data to have 18 times more influence than RP data in b coefficient
estimates, performed as well as the sequential method. Future research may explore the optimal level
of blending the influence of SP and RP data.

Third, this study demonstrated the existence and potential importance of neighbor effects in
simulating technical change. HEV willingness to pay estimates derived from the SP, RP and joint choice
models were consistent with expectations; scenarios with higher HEV penetration yielded higher
valuation of HEVs. Although we are fairly confident in intangible cost estimates from the joint models,
the 10% and 50% market share were drawn only from SP data—which may be vulnerable to hypothetical
bias. Despite this drawback, we feel that the overall shape of the intangible cost curve is useful,
demonstrated by the empirically consistent s-curve market forecasts when propagated into CIMS.

Lastly, policy simulations illustrate that parameters translated from choice models allowing more
SP influence resulted in HEV penetration scenarios that were more realistic and sensitive to policy
simulation than RP dominated models. For our particular objectives, the sequential joint model or the
pooled joint model allowing for a high influence of SP data yield parameter estimates that allow for
more useful technology competitions in a hybrid energy–economy model. However, this
recommendation may vary across data sets and applications.

Overall, this study reveals the vast complexity and uncertainty inherent in the investigation of
preference dynamics. Current preferences are difficult to disaggregate, and future preference
scenarios are highly speculative. However, preference dynamics are an important component of
technological change, and further research efforts are required to ensure the design of effective and
feasible climate policies that intend to induce technological change.
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