
timely because the facilities designed and operated today under lim-
ited budgets will influence the perception of bicycling as a viable
form of transportation tomorrow. Limited funding should not be
wasted on overbuilt bicycle facilities or on projects that provide
such a poor LOS that users are unnecessarily inconvenienced or
endangered.

This study contrasts vehicular flow on highways with bicycle traf-
fic flow on shared-use paths through a review of the literature on bicy-
cle flow theory as it relates to the determination of facility LOS and
the design width of bike paths. The review finds that available data
and data collection methods present two key problems for bicycle
traffic research:

1. It is difficult to observe potentially important bicycle traffic
parameters (such as the amount of passing and delayed passing) and

2. The absence of paths that receive a high volume of bike traffic
limits the opportunities to observe the full range of possible traffic
conditions.

A cellular automaton (CA) model is designed to simulate these
difficult or impossible-to-observe aspects of bicycle facility opera-
tion. The modeled data are compared with bicycle traffic data col-
lected from the University of California, Davis (UC Davis), campus,
with results showing good agreement between the data. The CA model
could be used to simulate future scenarios, such as different bicycle
designs, cyclist capabilities (speed and acceleration), and cyclist expe-
rience. With some modification the model could also be used to study
dynamic traffic behavior caused by topography, stop signs, and traffic
signals or the influence of different path widths.

LITERATURE REVIEW

Many studies on bicycle operation and path design have been con-
ducted over the past 40 years. Most of the early studies were con-
ducted in Europe, where bicycling as a form of transportation (as
opposed to recreation) makes up a larger mode share than in the
United States (6). These early studies sought to determine the opti-
mal bike path or lane width, the impact of bicycles on vehicular traf-
fic flow, and the capacity of intersections or performed safety
assessments (4). The focus of this study is the operation and design
of dedicated bicycle (shared-use) facilities; therefore the review of
the literature only includes studies that observed or modeled cyclists
to determine an estimate of facility capacity or investigated LOS
considerations for bicycle or shared-use facilities.

An early study of bicycle operation for the city of Davis, Califor-
nia, and the University of California (7) was conducted to determine
the adequacy of then-current bicycle facilities and to plan for future
bicycle facilities. The study determined that a cyclist requires a
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Current concerns surrounding regional air pollution, climate change,
rising gasoline prices, and urban congestion could presage a substantial
increase in the bicycle mode share. However, state-of-the-art methods
for the safe and efficient design of bicycle facilities are based on difficult-
to-collect data and potentially dubious assumptions regarding cyclist
behavior. Simulation models offer a way forward, but existing bicycling
models in the academic literature have not been validated with actual
data. These shortcomings are addressed by obtaining real-world bicy-
cle data and implementing a multilane, inhomogeneous cellular automa-
ton simulation model that can reproduce observations. The existing
literature is reviewed to inform the data collection and model develop-
ment. It is found that the model emulates field conditions while possibly
underpredicting bike path capacity. Since the simulation model can
“observe” individual cyclists, it is ideally suited to determine level of ser-
vice based on difficult-to-observe cycling events such as passing. Future
work on data collection and model development is suggested.

Bicycle traffic theory lags far behind its highway traffic counterpart
and has received comparatively little attention in the literature (1).
Traffic engineers typically concern themselves with the design of
safe roadways that provide a sufficient level of service (LOS) to users.
For highways, LOS is ranked from A to F (best to worst) according to
its volume-to-capacity (v/c) ratio as defined in the 2000 Highway
Capacity Manual (2). The capacity of a highway is the point at which
a marginal increase in vehicle density results in decreasing traffic
flow rates. This condition corresponds to LOS E. The relationships
among highway traffic flow, density, and speed are well understood
through observations, models, and simulations (3). However, Taylor
and Davis (4) note that “significant research is required in almost
all areas” of bicycle traffic including traffic flow, intersection con-
trol, capacity and LOS, modeling, and geometric design of cycling
facilities.

In the near to medium term, with mode share dominated by motor
vehicles, the focus of most construction and transportation fund-
ing is likely to remain on highways and related infrastructure. But
poor regional air quality, climate change, rising gasoline prices, and
urban congestion have renewed interest in the role of nonmotorized
transportation—including bicycles. However, the quality and quan-
tity of bicycle infrastructure must be increased before cycling can
contribute significantly as a competitive form of transportation (5).
Researching the optimal design and operation of bicycle facilities is
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minimum 4-ft (1.2-m) travel lane because a bicycle cannot travel in
a perfectly straight line and that a bicycle path should be at least
twice this width to allow for passing. This finding was based largely
on German design standards, which were widely utilized at the time
the study was completed. Smith (7 ) also reviewed other early Euro-
pean studies and found that bicycle path capacities were variable but
approximately equal to 235 (bikes � h)/ft [770 (bikes � h)/m]. These
findings were the main pieces of information used to design many
of the bike paths and lanes that exist in Davis today.

Building on Smith’s (7) work, Miller and Ramey (8) sought to val-
idate the applicability of the European design standards to the United
States and develop a method to determine the LOS of bicycle facil-
ities based on the approach used for highways and outlined in the
1965 Highway Capacity Manual (HCM) (9), assigning Grades A to
F (best to worst) on the basis of volume-to-capacity (v/c) ratios. The
HCM assumes that a user’s perception of the quality of service pro-
vided by a highway facility depends on highway conditions includ-
ing travel time, speed, safety, and freedom to maneuver, which are
correlated with v/c ratios. To apply this method to bicycle traffic,
Miller and Ramey determined the fundamental diagram of bicycle
traffic, assigning LOS A to the area representing free-flow speeds
and using v/c ratios from the HCM for the remaining service levels.
The fundamental diagram was estimated by measuring bicycle flows
on a selection of bicycle paths around Davis and on the American
River path in Sacramento, speed was recorded with a radar gun, and
density was calculated by using the well-known relationship between
the three traffic parameters and the path width:

where

q = flow (bicycles/h),
u = average speed (mph or km/h),
k = density (bikes/ft2 or bikes/m2),
w = path width (ft or m), and
c = constant equal to 5,280 when u is in miles per hour or 1,000

when u is in kilometers per hour.

Their results, summarized by Homburger (10), indicate a bicycle
path capacity of 792 (bikes � h)/ft [2,600 (bikes � h)/m], much higher
than capacities found in the earlier European studies reported by
Smith (7 ). At no time did demand exceed capacity. Instead, a curve
was fitted to the observed flow–density relationship to determine the
maximum flow.

As an alternative to field observations, Navin (11) conducted a
controlled experiment observing 11- to 14-year-old children riding
on a 2.5-m wide oval track following a lead cyclist whose speed was
varied. A capacity of 1,220 (bikes � h)/ft [4,000 (bikes � h)/m] was esti-
mated from the experiment. The orderly flow of cyclists behind the
lead rider may offer an explanation for the higher-capacity estimate.

Navin (11) validated his results with data from Botma and
Papendrecht (12), who observed bicycles on a mixed-use (bicycles
and mopeds) path under real-world conditions with a specially
designed mat containing detectors capable of measuring moments
of passage and lateral positions of bicycles. A quadratic function
was fitted to the data, which indicated a capacity of 732 (bikes � h)/ft
[2,400 (bikes � h)/m]. The authors noted that “this value is only an
indication of the order of magnitude of bicycle path capacity” since
it was not clear that the data followed a quadratic relationship, and
capacity was not actually observed.

k
q
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=
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158 Transportation Research Record 2140

Finding that bicycle facility capacity was rarely, if ever, exceeded,
Botma and Papendrecht (12) suggested that capacity could be esti-
mated by observing cyclist headways at flows below capacity by
using a method that was developed for highway traffic (13). This
method defines capacity as the flow rate at which all vehicles are
“nonfree,” or constrained to follow the vehicle in front of them. The
reciprocal of the mean headway of traffic is equal to the traffic flow
rate; therefore, the reciprocal of the mean headway of constrained
traffic is equal to capacity. It is assumed that the headway of con-
strained vehicles is the same whether or not the facility is actually
at capacity, providing a convenient method to estimate capacity from
observations of uncongested traffic. With this method Botma and
Papendrecht (12) estimated that capacity varied between 1,170
and 1,400 (bikes � h)/ft [3,800 and 4,600 (bikes � h)/m], agreeing with
Navin’s (11) results. However, it has been noted that this method
tends to overestimate capacity (13).

The lack of agreement between estimates of capacity is not 
surprising—capacity has never been observed on an actual bicycle
facility and would likely be variable. Unlike highway vehicles, which
tend to travel around the posted speed limit, the speed of cyclists is
determined by trip purpose, experience, physical ability, topography,
and climate. The mix of users and uses on a bicycle facility can result
in a diverse range of speeds and other travel behavior affecting
capacity. This diversity also presents challenges for defining LOS.

Navin (11) defined LOS to “reflect riding comfort and freedom to
move laterally,” proposing an LOS measure based on the free area
surrounding a bicycle. The free area was divided into three zones
representing shrinking distances to the reference cyclist. In LOS A,
no zones overlap, whereas in LOS F, collisions are imminent; v/c
ratios were calculated for each LOS.

These LOS approaches never caught on, and most paths were
constructed on the basis of guidelines provided by AASHTO’s
Guide for the Development of Bicycle Facilities, the latest edition of
which was published in 1999 (14). Earlier editions formed the basis
of the 1985 HCM’s bicycle recommendations (15). The AASHTO
guide recommended a 10-ft-wide bike path increasing to 14 ft under
expectations of high usage. These guidelines appear to be based on
the earlier research cited by Smith (7) indicating that a cyclist requires
a minimum of 4 ft (1.2 m) per lane, so that a two-lane bicycle path
(two-direction path) should be at least 8 ft (2.4 m) wide. An extra 2 ft
(0.6 m) is added to accommodate service vehicles and allow some
extra room for passing.

Nearly two decades after the first LOS approach was proposed,
Botma (1) and Allen et al. (16) proposed a new LOS approach based
on the idea of hindrance. Botma (1) suggested that the quality of a
bicycle path trip should be based on how constrained, or hindered,
a cyclist’s movements are, echoing Navin’s (11) “free area” mea-
sure of LOS. Quantifying hindrance involves counting the number
of passing and meeting (meeting a cyclist traveling in the opposite
direction) events. Passing and meeting events may better reflect the
quality of a bicycle facility since slow cyclists often impede faster
cyclists, delaying the faster cyclist until an opportunity to pass arises.
The passing cyclist also experiences increasing fatigue caused by the
acceleration required to pass slower cyclists, adding to delay. Most
bicycle paths are often in reality mixed-use paths that also serve
pedestrians and other nonmotorized vehicles, which further impede
cyclists, causing additional passing and meeting events.

Both studies (1, 16) provided similar methods for estimating the
number of passing and meeting events based on assumptions about
bicycle operation and the path: slow cyclists do not impede faster
cyclists; two-lane path meeting events provide half the hindrance of



passing events; and cyclist speed is normally distributed. These
assumptions limit the generalizations that can be drawn from their
work and produce questionable results. Slower cyclists certainly
impede faster cyclists (as discussed earlier), cyclists do not neces-
sarily travel in “lanes” and more than two may be desired, and the
assumption about the relative hindrance of passing and meeting is
based solely on the opinion of the researchers. Notwithstanding
these reservations, at least one study (17 ) found that the proposed
methods did a good job of predicting meeting and passing events.

As in previous cases, LOS was assigned a grade from A to F rep-
resenting increasing numbers of passing and meeting events. The
2000 HCM (2) adopted this methodology as its recommendation for
determining the LOS of a bicycle path. The formulas presented to
determine passing and meeting events include the additional assump-
tion that the mean speed of bicycle traffic is 11.2 mph (18 km/h) with
a standard deviation of 1.9 mph (3 km/h). No guidance is provided
on how to incorporate knowledge of different average speeds.

Hummer et al. (18) suggested a new method to determine LOS and
bike path width. Motivated by the limitations of previous studies,
they sought to produce an objective measure of bicycle facility LOS
based on data that would be available at any location. They extended
the methods of Botma (1) and Allen et al. (16) to account for passive
passing events, delayed passing events, and variable path width. Pas-
sive passing events occur from the point of view of the cyclist being
passed. Delayed passing events are those that a faster cyclist wishes
to make but must wait for a suitable opportunity. An objective LOS
measure is determined by surveying cyclists about their opinions of
the quality of service provided by bike paths of different designs and
under different traffic conditions.

The method presented by Hummer et al. (18) would require an
engineer or planner to observe the number of active, passive, and
delayed passing events to determine the LOS of an existing facility.
However, these metrics are extremely difficult to measure in the
field. Hummer et al. used a floating bicycle fitted with onboard video,
speed, and audio recording devices to record these events; however,
passive and delayed passing events were rare and not counted. Given
these difficulties and to facilitate planning of new facilities, a method
to estimate the required variables is required for practical implemen-
tation of this method by planners and engineers. Hummer et al. devel-
oped a model to estimate the required variables given the path width,
the presence or absence of a center line, flow rate, and mode split
(ratio of cyclists to pedestrians). Model results are validated by com-
parison with the field data and reasonably predict the number of pass-
ing and meeting events in most cases. Over all, these methods expand
and improve on the earlier hindrance methods. However, hindrance
events, particularly delayed and passive passing events, remain dif-
ficult to observe and model validation is limited to existing, relatively
low-volume traffic conditions.

SIMULATION MODELS

Although simulation models cannot tell the analyst about a user’s per-
ception of bicycle facility quality, they can provide insight into how
various parameters, including cyclist behavior, can affect facility
operation. Potentially important variables such as passing and delayed
passing can be difficult to observe in the field. In addition, field obser-
vations are limited to preexisting conditions. For example, congested
bicycle facilities are rarely observed and studies are limited to bike
paths that are no more than 20 ft (6 m) wide. Simulation models can
help fill in knowledge gaps and explore alternative designs.
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A particularly attractive modeling paradigm is the cellular automa-
ton (CA), widely used across many disciplines to explore interactions
between agents that possess a finite set of changeable characteris-
tics. CA models are discrete since the interactions occur on a grid
of finite size and number of locations (cells). These models have
recently seen increasing academic attention particularly in physics,
mathematics, and computer science. The application of a CA
approach to vehicular traffic flow was first proposed by Nagel and
Schreckenberg (19), who modeled a single lane under free-flow and
congested conditions.

In a CA model for traffic flow in a single lane, each cell represents
a discrete section of the roadway of a specified distance. In any
given time step, that cell may be either occupied or unoccupied. An
iteration of the model begins by updating all speeds (cells per unit
time) in the network according to the following algorithm:

1. If the speed of a vehicle is less than some limit and the distance
to the next vehicle is greater than the current speed plus 1, the speed
is incremented;

2. If the space between the current vehicle and the next is less
than the current vehicle’s speed, it decelerates to the distance
between vehicles minus 1; and

3. If a certain (usually) small probability threshold is exceeded,
the current vehicle reduces its speed by 1.

The third property keeps the system from quickly entering a
deterministic state (19). Finally, the positions of all vehicles are
updated on the basis of their speeds, and the model is iterated until
the desired number of time periods has been modeled. Traffic pa-
rameters (flow, speed, and density) can be calculated from the model
outputs, which include the position and speed of each vehicle along
the roadway for each time step.

METHODS

Simulation Modeling

Several parameters must be specified for CA model implementation.
For traffic flow these include length of roadway, cell length (equal
to vehicle length), speed limit (in miles per hour or cells per update
time), and the time increment under study.

Because of the simplicity of the CA model, research on its imple-
mentation under various conditions has been extensive. Recent
attempts include models purported to represent bicycle flow (20,
21). These models are not CAs in the strictest sense—they are multi-
value CA models because each cell may be occupied by more than
one vehicle. Neither model was empirically validated with actual
bicycle data, which makes their relevance to bicycle planning appli-
cations questionable. In addition, the utility gained by switching to
a multivalue CA model may be outweighed by added complexity.
The approach taken here maintains simplicity and shows that a strict
CA model with two lanes (multilane) and two types of cyclists
(inhomogeneous) is able to provide rich behavioral data for com-
parison with field results. It is expected that this tool could be used
to determine LOS measures for new bike path construction. The
simulation model can provide a simpler way to observe hindrance
events, and thus determine the LOS, for various facility designs with
different uses and users. Pedestrians were not considered in this ini-
tial study; however, future work should be able to accommodate a
mix of users.



The lane-changing algorithm used here is based on the work of
Rickert et al. (22) and involves much of the same logic as the single-
lane case with several exceptions. Before the acceleration step, both
lanes are examined to evaluate lane-changing opportunities. The
following four conditions are checked from the point of view of
each vehicle and must be true for it to change lanes. The rules are
checked simultaneously before the update:

1. In the vehicle’s current lane, the distance to the next vehicle is
less than or equal to the current vehicle’s speed plus 1. This condi-
tion ensures that no slowdown will be necessary at the next update.

2. In the vehicle’s adjacent lane, the distance to the next vehicle
is greater than or equal to the current vehicle’s speed plus 1. This
condition ensures that a benefit is derived from changing lanes.

3. Looking backward, the closest vehicle is sufficiently far away.
4. A random number between 0 and 1 is less than the probability

of a lane change.

The final condition prevents the formation of steady-state patterns
during model initialization (22). For example, if lane changes occur
with certainty and all vehicles begin the model run in the right lane
in adjacent cells, they will change lanes immediately. This behavior
will repeat in the next iteration with all vehicles changing from the
left to the right lane. Probabilistic lane changing resolves this prob-
lem. In addition, all vehicles were randomly distributed across the
two lanes with speed equal to zero for model initialization.

This lane-changing rule gives no preference to occupying either
lane. This condition is known as symmetry but is not how cyclists
behave. Instead, cyclists attempt to overtake slower vehicles and
then shift back to a position in front of the vehicle just passed. To
implement asymmetric lane changing in the model, the first lane-
changing rule is omitted when it is determined whether to switch
from the left to the right, causing vehicles on the left to move right
at the first opportunity.

Model Calibration

The value of undertaking this modeling exercise lies in the calibration
of the model results to the observed data. Several parameters were
held constant across model runs because they reflect relatively con-
stant physical values as observed in the literature, and others were var-
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ied across model runs. Above a certain value, the length of roadway
considered and time periods studied should not affect model results
as long as there is sufficient distance and time for steady-state forma-
tion. Preliminary testing revealed that 1 mi (1.6 km) and 600 time
steps of 1 s were appropriate. Using 7 ft (2.1 m) as the cell length is
justified in combination with the maximum speeds used for slow and
fast vehicles. Average cycling speeds reported in the literature, as dis-
cussed earlier, all fall around 12 mph (approximately 2.5 cells/s). Sim-
ilarly, faster bicycles seldom travel faster than 15 mph (approximately
3 cells/s), though higher downhill maxima may occur. Speeds of
2 cells/s (9.5 mph or 15.3 km/h) and 3 cells/s (15 mph or 24.1 km/h)
were chosen for slow and fast cyclists, respectively. Different top
speeds imply different lane-changing behavior: slower cyclists will
find it necessary to pass less often, since their travel is less likely to be
hindered, and vice versa. The probability of a random slowdown was
fixed at 10%, based on field observation of relatively constant bicycle
speed, the occasional cellular-phone-using bicyclist notwithstanding.
Number of cyclists was increased from 50 to 1,500 in increments of
25 every 600 time steps for each run.

Varying model parameters included look-back distance, proba-
bility of lane change, and proportion of slow vehicles (see Table 1).
Look-back distance was altered between low values since the con-
sequences of obstructing another cyclist are low compared with
obstruction of an automobile; probability of lane change varied
between high values since passing was common; and the proportion
of slow vehicles was varied between low and high values since
speed distributions were not measured in the field.

Field Data Collection

The popularity of cycling in Davis due to a strong bicycle culture,
extensive and well-maintained facilities, ideal climate, and lack of
hills provides a unique opportunity to observe heavily used, near-
capacity bicycle facilities. However, Davis cannot be considered
representative of conditions elsewhere. The average Davis cyclist
likely has a greater level of experience than would be expected in
other locations, and Davis’s college town demographics are not nec-
essarily consistent with other cycling populations. However, the
goal was not to produce a representative sample but to challenge the
simulation model to capture the full range of traffic conditions for a
particular facility.

TABLE 1 Data Collection Site Details: Three UC Davis Bike Paths

Russell Bio (Day 1) Bio (Day 2) ARC

Date 12/5/2007 11/30/2007 12/3/2007 11/30/2007

Time 8:45 a.m. 11:45 a.m. 8:40 a.m. 8:45 a.m.

Duration (min) 16 14 24 12

Path width (ft) 17.35a 12 12 20

Sampled traffic direction East North South East

Sampled area length (ft) 30 19.5 19.5 20

Center line Yes Yes Yes Yes

Surface Asphalt Asphalt Asphalt Concrete

Topography Flat and straight Flat and straight Flat and straight Flat and straight

Pedestrian mode share 2% 16%b 10%b 0%

aUneven lane widths: 9.6 ft (east) and 7.75 ft (west).
bIncludes observations of pedestrians on adjacent dirt path (not an official path).



Bicycle traffic data were collected in late 2007 at three locations
on the UC Davis campus during peak traffic conditions (see Table 1).
The sites were chosen to exhibit high flows and minimal cross traf-
fic from pedestrians, motorists, or other bicycles. The sites were also
free of sharp curves, hills, stop signs, and traffic signals. Bicycle
traffic data were collected with a high-definition digital video cam-
era (Sony HDR-SR1) mounted on a tripod along the side of each
path, providing a perpendicular view of same. At each site, the cam-
era was moved as far back from the path as possible to maximize the
observation area, which was clearly marked with highly visible tape.
Only bicycles were counted since the simulation model currently
considers only bicycles. Pedestrians generally made up only a small
portion of the traffic, as shown in Table 1. Those pedestrians who
were present kept to the margins of the paths and in the case of the
Bio site, walked on an adjacent dirt path.

Average bicycle flow rate [(bikes � h)/unit lane width] and density
(bikes/unit sample area) were calculated separately for traffic flow-
ing in each direction. Average directional flow rates were calculated
by counting the number of bicycles entering the sample area during
30-s intervals and dividing by the lane width, assumed to be the dis-
tance from the center line to the edge. This assumption was based
on observations that bicycles traveling in each direction generally
observed the center line, keeping to its right side. The corresponding
density was recorded in 1-s time steps by counting the number of
bicycles within the sample area at a point in time and then dividing
by the sample area. Similar to the flow calculation, the area for direc-
tional density was assumed to be the distance from the center line to
the edge multiplied by the sample area length. The average density
over 30 s was estimated by averaging 30 density observations. Speed
data were not collected but could be estimated by using Equation 1.

RESULTS AND DISCUSSION

Field Observations

Field data collected at all three sites are described in Figure 1. The
data are from the bike path direction that experienced the highest
volume of traffic, since traffic was overwhelmingly unidirectional
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during the peak travel times that were observed. The three data col-
lection sites were labeled ARC, Russell, and Bio. Traffic at Bio was
observed over a period of 2 days. Figure 1a tracks the cumulative
count of bicycles per unit time, indicating that the ARC site was the
most heavily traveled of the three (approximately 30 bicycles/min),
and Russell experienced the least amount of bicycle traffic (approx-
imately 15 bicycles/min). Figure 1b shows the relationship between
density and flow. A positive linear relationship is evident, indicat-
ing that all bike paths were operating below capacity and that aver-
age speed did not vary with increasing density. Figure 1b also
indicates that the flow–density relationship across the three bike
paths, and thus travel speed, was similar since there is little variation
in slope.

Simulation Results

Seven simulation model runs were completed to test the sensitivity
of various parameters and determine which values best describe the
field observations. Parameters for each run as well as key results are
shown in Table 2. Flow–density (the fundamental diagram of traf-
fic flow) and speed–density plots were also created to analyze the
results. Example plots of this type are shown in Figure 2.

Table 2 indicates that the simulation model was sensitive to the
parameter variation. Increasing the proportion of slow bikes decreased
the capacity (maximum flow rates) while increasing the critical den-
sity. These results agree with expectations: slower speeds reduce the
flow rate but allow bikes to travel closer together before capacity is
reached. Decreasing the probability of lane changing increased capac-
ity but did not have a systematic effect on critical density. Clearly,
reduced lane changing achieves a more orderly flow, allowing for a
higher capacity. Plots of the fundamental diagram and speed–density
relationships (Figure 2) also showed the expected relationships typ-
ical of vehicle traffic flow. Each dot represents one observation from
the model; darker areas represent overlapping observations.

Because the results of Run 6 indicate that lane changing reduces
capacity, more courteous lane-changing behavior was modeled in
Run 7. A one-bike-length (equal to one cell) look-back distance was
incorporated, allowing the cyclists to look back before changing
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FIGURE 1 Field data collected from three bike paths at UC Davis (ARC, Russell, and Bio): 
(a) cumulative observation of number of bikes and (b) flow–density relationship, fundamental
diagram of bicycle traffic (1 ft � 0.305 m, 1 ft2 � 0.0929 m2).



lanes so as not to cut another cyclist off. The result of the look back
was that a higher capacity was achieved over all other runs while
still allowing lane changes. Figure 3 compares the amount of lane
changing that occurred in Runs 2 and 7, which are equivalent except
for the incorporation of the look back. Overall, much less lane chang-
ing occurred in Run 7 than in Run 2. Also, passing in Run 7 generally
occurred at lower densities compared with the case when cyclists
did not look back.

Comparison with Field Data

Comparison of the simulation data with field observations resulted
in a close match. The field data were reproduced most closely by
model Run 7 (Figure 4), where cyclists had a high probability of
changing lanes if they were being slowed down by other cyclists and
could look back before changing lanes so as not to cut another
cyclist off. Run 7 also corresponds to the scenario that subjectively
seems to best describe actual cyclist behavior; fast cyclists do not
wait behind slower ones if they have a reasonable opportunity to pass.

The simulation results and field data shown here provide evidence
that simple CA models can be used to model cyclist behavior, pro-
viding bike facility capacity estimates under various speed distri-
butions and simple behavioral rules (looking back before changing
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lanes). However, the field data were limited to existing traffic con-
ditions in the study location. Traffic volumes on UC Davis bike
paths are very high but never exceeded capacity, limiting the ability
to fully validate the simulation results by observing the critical den-
sity and the downward-sloping portion of the fundamental diagram.
The capacity estimate produced by the simulation model was at the
low end of estimates noted in the literature (8, 11, 12).

CONCLUSIONS

A simple CA simulation model was shown to produce results corre-
sponding to expected cyclist behavior and field data. The model per-
formed well under a fairly limited set of conditions: college students
with extensive cycling experience traveling on flat, well-maintained
bicycle facilities free from pedestrian interference during ideal
weather. Future work is required to validate the model over a wider
range of users and conditions.

The model could be a valuable tool that would allow city and
regional planners to experiment with various bicycle facility designs,
expected traffic volumes, and user profiles. These experiments would
help planners and engineers optimize bicycle facility design by explor-
ing the trade-offs between alternatives, LOS, and other objectives
without the collection of field data. Today planners and engineers

TABLE 2 Model Runs and Results

Probability of Proportion of Look Back Max. Flow Critical Density
Lane Change Slow Bikes (cells) [(bikes � h)/ft] (bikes/ft2)

Run 1 0.9 0.25 0 389.4 0.0107

Run 2 0.9 0.5 0 379.1 0.0113

Run 3 0.9 0.75 0 374.5 0.0149

Run 4 1 0.5 0 371.0 0.0125

Run 5 0.7 0.5 0 397.9 0.0137

Run 6 0 0.5 0 452.9 0.0113

Run 7 0.9 0.5 1 461.7 0.0119

NOTE: 1 ft = 0.305 m, 1 ft2 = 0.0929 m2.
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FIGURE 2 Example of bicycle traffic plots generated from simulation data (Run 2): (a) flow versus density and 
(b) speed versus density (1 ft � 0.305 m, 1 ft2 � 0.0929 m2, 1 mph � 1.61 km/h).



are limited to extrapolating from existing field data or applying rigid
(nonoptimal) design guidelines. LOS could be determined by observ-
ing the number of lane changes and speed profiles of individual agents
in the model, fewer lane changes and more constant speeds being
associated with higher LOS. More optimal design will allow smarter
investment of the limited funding available for bicycle facilities.

The model described here is basic, but with further development
it could incorporate richer cyclist behavior and a greater range of
facility designs. A potential improvement includes friction factors,
which account for slower speeds in narrow lanes where passing
requires more caution. The CA model can also be used to model traf-
fic dynamics caused by topography, changes in lane widths, con-
gestion, and traffic signals by adjusting the speed of cyclists over
particular ranges of cells (sections of bicycle path). For example, the
impact of a hill on traffic flow may be modeled by lowering the max-
imum speed limit for cyclists over a range of cells. Dynamic simula-
tions can show how congestion propagates downstream though traffic
and how long it takes for queues to clear. Results from dynamic sim-
ulations can help planners and engineers optimize signals and inter-
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sections for bicycles and study the effect of grades and curves on
bicycle traffic.
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