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ABSTRACT 

The Fix I-5 project was an engineering project that rehabilitated drainage and pavement 

on Interstate 5 in downtown Sacramento, from May 30, 2008 to July 28, 2008. In order to 

alleviate congestion, media outreach alerted commuters about projected traffic conditions 

as well as advised alternative modes or routes of travel. The construction schedule 

included complete closures of north or southbound portions of Interstate 5. This study 

analyzed the impact of the Fix I-5 project closures on peak period bus transit ridership of 

five transit agencies serving the downtown Sacramento core.  

The results indicated that gasoline prices and unemployment rates were statistically 

significant predictors of transit ridership, with increased gasoline prices and 

unemployment related to increased bus transit ridership. All agencies had overall 

increases in mean ridership during the study period, but there were also seasonal 

variations in mean ridership. Removal of trend and seasonal components in the bus transit 

ridership data sets was accomplished using multiple regression and sinusoidal 

decomposition. Time series intervention analysis then estimated that the Fix I-5 project 

had little impact on mean number of bus riders for all five transit agencies. Bus transit 

agencies with main service areas closest to the Fix I-5 project were most affected, with 

ridership increases of about three percent or less attributable to Fix I-5. This study did not 

analyze the impact of Fix I-5 on other modes of transportation, which may have been 

more affected than bus transit ridership. 
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CHAPTER 1 INTRODUCTION 

Interstate 5 (I-5) is a major interstate that runs north-south, connecting Mexico to Canada 

through California, and was started in 1947 by the Federal Highway Administration. The 

downtown Sacramento portion of I-5 was completed in the 1960’s and is nicknamed the 

“Boat Section” because it was constructed below the water level of the Sacramento River, 

which runs adjacent to the freeway (Caltrans, 2008). In order to construct the boat section 

of the freeway, Caltrans had to initially drain this section, and engineer a drainage system 

of pipes and pumps. The boat section was manually monitored during each winter season 

to ensure pumps were working properly. 

After over 40 years and without major renovation, pavement cracking and sediment 

accumulation required the boat section to undergo repair, and an opportunity was 

provided for drainage system upgrades. The California Department of Transportation 

(Caltrans) Engineers’ Estimate projected that the rehabilitation of drainage and pavement 

of Interstate 5 in downtown Sacramento, dubbed “Fix I-5,” would take 305 working days 

at a cost of more than $44 million (C.C. Myers, Inc., 2009). On February 2, 2008, a 

Rancho Cordova-based engineering firm, C.C. Myers, Inc., won the Fix I-5 project bid 

with a proposed 85 working days and 29 night and weekend schedule at a substantially 

lower cost of $36.5 million, with financial incentives for earlier completion (Caltrans, 

2009). Aggressive and compressed construction schedules are not novel for C.C. Myers. 

Their resume includes more than 17 emergency projects for the State of California, 

including emergency work on the San Francisco Bay Area’s 2007 MacArthur Maze 

meltdown (C.C. Myers, Inc., 2009). Although not emergency work, the Fix I-5 project 

specifically included a reconstructed six-inch pavement slab, an upgraded drainage 



 

 

system, new de-watering wells, and installation

(Solak, 2008). The project was completed in a shorter period than predicted, from May 
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Schwarzenegger, 2008). 

 



3 
 

 
 

1.1 Purpose 

The main objective of this analysis is to examine the effect that the Fix I-5 project had on 

commuters' mode choices, more specifically bus transit ridership (supplementary studies 

are examining the impact of Fix I-5 on other modes of travel). This objective includes the 

determination of whether the Fix I-5 project caused changes in mean bus transit ridership 

levels, whether this effect on ridership was permanent or temporary, and the magnitude 

of the effect. This research includes not only those statistics, but also provides 

information for service changes for bus transit agencies that need to prepare for future 

planned construction work, which includes freeway closures such as Fix I-5, and also for 

unplanned events which force closures.  

1.2 Analysis Scope  

The primary focus of media outreach was to suggest alternate transportation for those 

who commute on I-5. State governments and other employers with a large number of 

employees in the downtown Sacramento core urged employees to use alternate 

transportation during the Fix I-5 period. Consequently, this study analyzed bus transit 

agencies’ data from the morning (AM) and evening (PM) peak periods. The boundaries 

of the downtown core were defined as follows: the south boundary defined by the 50/80 

freeway, the north boundary defined by Richards Blvd, the west boundary defined by the 

Sacramento River and the east boundary defined by the Business 80/99 freeway. Bus 

stops directly below freeway boundaries were considered part of the downtown core. 

This corresponds to other transit agencies’ definitions of downtown Sacramento. Since 

this analysis focused on commute behavior, only inbound ridership was considered for 

the AM peak period, while outbound ridership was considered for the PM peak period. 
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Inbound trips are defined as those trips with a final destination within the downtown core, 

while outbound trips originate within the downtown core but have a final destination 

outside it. The AM peak period is the primary morning commute period, but specific 

hours varied by transit agency. The PM peak period is the primary afternoon commute 

period and also varied by transit agency. In general, the peak periods occurred between 

the hours of 5:00AM to 9:00AM, and 3:00PM to 7:30PM. In order to accurately assess 

bus transit ridership in the downtown Sacramento area, this analysis employed bus transit 

ridership counts for five transit agencies which provide commute service to the 

Sacramento downtown core, including: Yuba-Sutter Transit, Yolobus, Roseville Transit, 

North Natomas Transportation Management Association (TMA) and Sacramento 

Regional Transit.  

As state workers comprise 75,000 commuters in Sacramento, and many state agencies 

have headquarters in the downtown core, the commute choices made by that group likely 

had a sizable impact on this study’s data sets.  

1.3 Gap in Knowledge 

In general, many studies have examined transportation-related data using time series 

methods, although not many have examined bus transit ridership.  Few time series studies 

have analyzed bus transit ridership affected by an outside event (an intervention) using 

intervention analysis. To date, there are no known studies that examine the intervention 

of construction work on bus transit ridership. 
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1.4 Response to the Event 

Many public and private agencies united to publicize, prepare and provide for public 

safety for the Fix I-5 project.  These measures included public outreach, intercity and 

interagency partnerships including the City of Sacramento, City of West Sacramento, 

Sacramento Area Council of Governments, Downtown Sacramento Partnership, and the 

Old Sacramento’s Merchant’s Association. Other efforts included announcements via 

changeable message signs and highway advisory radio, and California Highway Patrol 

enforcement in the construction area. Much media outreach was done to warn commuters 

about traffic conditions and suggest alternative modes of travel. Additionally, various 

media sources made information about up-to-date information regarding the Fix I-5 

project’s progress easily available to the general public. The Governor’s Executive Order 

(S-04-08) cited Assembly Bill 32, the California Global Warming Solutions Act of 2006, 

and advised alternatives to widely used single-occupant vehicle commuting including 

telecommuting and public transit. Some of the private entities that provided information 

included News 10, the Sacramento Bee, Sacramento Region 511, and Capital Public 

Radio, as well as some private business websites. Transit agencies responded to the Fix I-

5 project by media outreach that advertised the convenience and availability of transit. 

1.4.1 City of Sacramento Traffic Operations Center  

An operational tactic for traffic management is the use of traffic operations centers 

(TOC). The City of Sacramento’s single jurisdiction, single agency TOC is operated by 

the City of Sacramento Traffic Engineering Services Department and funded by Measure 

A, the gas tax. The goal of their TOC is twofold; first, they must make Sacramento City’s 
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transportation network efficient for all transportation modes, and second, they must make 

the system reliable. Many steps were taken by the TOC in order to ensure their 

responsibilities were fulfilled during the Fix I-5 project. Planning steps included (City of 

Sacramento, 2008):   

• Identification of potential problem corridors 

• Signal maintenance 

• Construction of Synchro (transportation modeling software) Model  

• Modified signal timing plan  

• Coning & striping plan 

The TOC makes use of many tools for 

network monitoring and operation, 

especially useful during the Fix I-5 project, 

including (City of Sacramento, 2008): 

• Closed-circuit television (CCTV) 

• Advance signal control systems 

• Sacramento Police Department Helicopter 

• Sacramento Police Officers 

• Signal and signage crews 

• Traffic cameras (8 Cameras in 2 streams) 

• Multi-agency Construction Advisory Team (CAT) 

• Traffic Alerts 

• Media Contacts  

Figure 1.2: City of Sacramento T.O.C. 
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A more detailed summary of the City of Sacramento TOC, based on a field visit on 

August 21, 2008, is provided in Appendix A.  

1.4.2 Government Media Outreach 

Although all of the sources provided useful 

information, the official Fix I-5 website, supported by 

Caltrans, was the most comprehensive and accessible 

(although no longer active circa August 2008). This 

website included daily updates ranging from 

construction updates to detours. It included sections 

on current work and a history of the portion of I-5 to 

be repaired (the Boat Section). It also included useful links such as 511 Travel Info, Live 

Traffic Cameras, and Commute Alternatives. It also provided links to many downtown 

area businesses, some offering specials to entice people to stay downtown and avoid peak 

period travel. 

Caltrans also hosted three public meetings regarding Fix I-5 in Downtown Sacramento, 

Natomas and South Sacramento. They gave numerous presentations to audiences 

including state and local government agencies, residential organizations, private 

businesses and public officials, and reached an estimated 10,000 people.   

In addition to the Fix I-5 website and public meetings Caltrans provided public 

informational documents. They sent out an email to all Sacramento Personnel 

Departments which included recommended alternatives to normal work days, including 

Figure 1.3: The Fix I-5 Website 
Encouraged Transit 
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revised work schedules, telecommuting and public transportation. Caltrans provided 

paycheck stuffers to Sacramento Area employers through Public Outreach Contractors. 

This document advised departments to reschedule or postpone meetings and events that 

draw people to downtown. It also informs about a Cal EPA hotline set-up for state 

workers who needed commute assistance during the Fix I-5 project. Caltrans outreach 

contractors made information cards available to Sacramento businesses located in the 

downtown area. These cards provided basic facts about the Fix I-5 project, as well as 

provided the Fix I-5 website address.  

 

Figure 1.4: Informational Documents Regarding Fix I-5 Closures 

Additionally, Assembly member Dave Jones' office sent out a letter to his constituents 

warning them about the Fix I-5 project, and traffic delays they might encounter. He also 

encouraged alternate forms of transportation during construction, as well as encouraging 

shopping or dining with downtown merchants during peak hours.  

Although not as comprehensive as the official Fix I-5 website, the City of Sacramento 

website provided information about the Fix I-5 project. The City of Sacramento also 

provided parking promotions for six of their parking garages for most of the duration of 

the Fix I-5 project.  
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1.4.3 Private Media Outreach 

Many private agencies also provided information regarding Fix I-5. In general, these 

postings included general and up-to-date information about the Fix I-5 Project, but some 

businesses provided unique information. The News 10 website allowed people to 

“comment, blog and share photos;” an option not available on the Fix I-5 website. This 

feature allowed users to share alternate routes through blogs. It also provided Sacramento 

travel times, as well as easy-to-read color-coded maps that showed lane closure 

information. The Sacramento Bee provided coverage regarding the Fix I-5 project, 

through their newspaper publication and website, which provided mobile alerts, a blog 

jam, and a complete listing of the Fix I-5 stories which were published in the Sacramento 

Bee newspaper. The Sacramento Region 511 website permanently provides information 

about traffic, transit, ridesharing and bicycling. They provided minimal coverage 

regarding the Fix I-5 project, but links to information on transit providers, finding 

carpools and vanpools, and a guide to bicycle commuting may have been particularly 

useful to downtown commuters. Capital Public Radio’s website provided information 

about Fix I-5, including a clever ‘Jam Factor’ scale on their website showing congestion 

levels on Sacramento area freeways including both north and south bound I-5. Additional 

Sacramento area businesses posted information about the Fix I-5 project including the 

NBA Sacramento Monarch’s Basketball team, Natomas Racquet Club, California State 

University Sacramento, Talk Radio 1530 KFBK, and YouTube.  
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1.4.4 Transit Agency Outreach and Preparation 

To prepare riders for the Fix I-5 construction, Regional Transit (RT) posted a press 

release on their website encouraging people to take transit during the construction period. 

With additional funding from Caltrans, RT was able to provide supplemental bus and 

light rail services that increased both capacity and reliability during their peak commuting 

hours. RT kept ten buses on standby during the construction period and advised 

passengers to take earlier buses when possible. RT also reminded the public of the 18 

park-and-ride lots available throughout Sacramento. 

To prepare for the I-5 construction, Yolobus provided an I-5 Construction Options guide 

in their newsletter. The guide warned passengers of delays and advised them to take 

earlier morning buses to avoid these delays. Yolobus also took several measures to 

alleviate overcrowding and delays during the construction period. They had up to two 

supplemental buses on standby in case other buses were running behind. Yolobus added 

two morning and two afternoon express trips to both route 45 (service between 

Sacramento and Woodland) and to route 43 (service between Sacramento and Davis). In 

addition, Yolobus sold discounted Capitol Corridor train tickets in order to encourage 

drivers to take transit during the construction period.  

To accommodate for the Fix I-5 construction, Roseville Transit posted information on 

their website regarding the Governor’s Executive Order urging government employees to 

take transit during the construction. Roseville Transit encouraged new commuter 

passengers and listed on their website the AM and PM commuter routes with available 

seating. 
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In preparation for the Fix I-5 construction, North Natomas T.M.A. posted information in 

a specific Fix I-5 email newsletter about service changes for the construction period, 

including loop and route changes that went into effect on June 2, 2008. Additionally, 

supplemental shuttles and drivers were provided to ease the impact of the anticipated 

higher ridership during the construction period. The T.M.A. was able to provide 

additional shuttles with extra funds provided by Caltrans for the construction period, but 

were required to provide daily counts of AM and PM shuttle riders for each loop. North 

Natomas T.M.A. also created a special shuttle hotline for passengers to call for up-to-date 

information about route changes and delays during this period. 

In addition to the supplemental schedules, Yuba-Sutter took several other measures to 

accommodate for the I-5 construction. Route or schedule changes were not made with the 

exception of minor detours during northbound I-5 closures. Second, Yuba-Sutter had 

additional buses on call in the event that any early morning buses became overcrowded. 

Third, Yuba-Sutter used all buses during the construction period, whereas they normally 

keep three buses non-operational. And finally, Yuba-Sutter closely monitored traffic 

conditions, which was made possible by improved connections with Caltrans, the City of 

Sacramento, and Regional Transit.    

1.5 Organization of Analysis 

The organization of the analysis is as follows. Chapter 2 provides an overview of 

important concepts in time series which is used in this analysis. It also describes past 

studies analyzing bus transit ridership, and more specifically those few that used 

intervention analysis to analyze the impact of an intervention on a time series data set. 
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Chapter 3 describes the transit agency data, including details of each agency’s samples 

and collection methods, as well as data quality considerations. It also includes 

information about data cleaning, which was needed to adjust for holidays and limited 

service days. Finally, data exploration is presented in two sections: measures of centrality 

and measures of spread for the transit agencies’ data sets. Both sections begin by briefly 

defining the statistics included in that section. Chapter 4 describes the methodology for 

eliminating trends and cyclic components, and the intervention analysis which examined 

the impact of the Fix I-5 construction on bus transit ridership. Chapter 5 presents the 

results of the intervention analysis for each agency, in addition to implications for bus 

transit agencies for future freeway closures.  To conclude, Chapter 6 summarizes the 

analysis methods and results, and gives recommendations for future work.  
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CHAPTER 2 LITERATURE REVIEW  

Many studies have been conducted analyzing variables that impact transit ridership, 

primarily using two statistical methods of analysis; time series, and multiple regression. 

Some, categorized as econometric studies, use those two statistical methods with a focus 

on economic theory.  

Time series is used to analyze a series of data points, to understand the underlying order 

or context of the data. A review of the literature (Cryer, 1986; Shumway and Stoffer, 

2006; Brockwell and Davis, 2002; Anderson, 1976; Kendall, 1973; Kyte et al., 1988) 

identified a host of different methods used to model time series data, including but not 

limited to univariate and multiple time series models and transfer function models.  

Simple regression is used to analyze the change in a dependent variable as an 

independent variable changes or is manipulated, while multiple regression uses multiple 

independent variables (Mann, 2004). However, all regression models assume that the 

error terms, and therefore response variable observations, are uncorrelated (Kutner et al., 

2005). In contrast, time series data often contains observations which are serially 

dependent (Box and Tiao, 1975). Additional regression methods have been developed 

that are used for autocorrelated time series data. They employ typical regression 

techniques, but model the error term using time series models (Tsay, 1984).  

Econometrics uses statistical methods to study economic principles (Tinbergen, 1951). 

The primary focus is the evaluation of economic theory using statistical methods. 

Discussions of strict and weak stationarity, autoregressive models, and lag structures are 

found in both econometric time series literature and statistics time series literature. 
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However, a standard tool in econometrics is to use the structural econometric time series 

approach (SEMTSA), which uses Box-Jenkins methods but imposes a priori restrictions 

on the equations based on economic theories (Christ, 1983). Further, this approach is 

commonly simplified to vector autoregression models (VAR) which omit the moving 

average polynomial of the ARIMA model (Zellner and Franz, 2004).  

Time series was the primary method of analysis used in this study, as autocorrelation was 

likely to be present in the transit ridership data. Time series analysis encompasses a wide 

range of models which can handle multiple scenarios within data sets. Time series 

intervention analysis was used, which provided a methodology to determine the effects of 

one event on a series. This study used the ARIMA class of time series models, which 

specify only causality and invertibility as restrictions on the parameters, a feature that 

was an advantage over models which place additional assumptions on the parameters. 

Regression was also used to analyze the relationship between multiple independent 

variables and transit ridership, and for eliminating trends related to independent variables 

in the transit ridership data sets.   

2.1 Time Series 

Because time series is a method less commonly used in the field of transportation 

engineering, a brief overview is given in the following sections. 

2.1.1 Background 

A time series (xt) is a sequence of observations collected over time for one variable. Time 

series can be either continuous or discrete depending on how the observations have been 

collected. A time series is continuous if observations are taken continuously over time 
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whereas the series is said to be discrete if observations are taken at specific times 

(Chatfield, 1975). Time series is concerned with chronologically ordered observations of 

time. Data that is observed over time, both discrete and continuous, is common across 

many disciplines. In the field of engineering, some examples include series observed over 

time such as traffic counts and water quality measures. There are many examples in 

economics, including profits, interest rates, as well as overall economic indicators such as 

gross domestic product and unemployment rates. In meteorology, a common observation 

that constitutes a time series is temperature.   

Because future observations could be hard to predict, a time series (xt) is more technically 

a realization (sample function) of a stochastic process (Xt), which is a family of random 

variables (Brockwell and Davis, 1987). Time series analysis focuses on studying a time 

series realization (xt of Xt) in order to gain insight into the stochastic process (Xt) (Aue, 

2009). In practical time series analyses, much of the work is devoted to transforming a 

nonstationary time series into a stationary process (Fuller, 1976). Conceptually, 

stationarity is similar to equilibrium within a system.  A time series is strictly stationary if 

its probability structure is not affected by time (Anderson, 1971). In other words, the joint 

probability distribution of xt…xt+n, is equivalent to the joint probability distribution of 

xt+h…xt+h+n for all t,..., t + n � T and h such that t + h,… , t+h+n � T. (Montgomery et al., 

2008).  

A typically less strict definition of stationarity (for cases where the variance is finite) is 

called weak stationarity, and is often used because distribution functions are commonly 

unknown. In order for a time series to be weakly stationary there are two conditions 

(Shumway and Stoffer, 2006; Brockwell and Davis, 2002): 
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1. The first moment of xt is independent of time, t, and is constant. 

2. The autocovariance function, defined as ���� � �	
��, ����, which 

depends only on lag h, and is independent of t.  

One important example of a stationary process is called white noise. White noise is 

commonly denoted ���~���0, ���, where Zt is a sequence of uncorrelated random 

variables with zero mean and finite variance, σ2 (Shumway and Stoffer, 2006). White 

noise is an important building block in time series analysis, as it is the foundation for 

many more complex processes (Cryer, 1986). It is interesting to note that term white 

noise is derived from white light which is composed of a continuous distribution of 

wavelengths with the implication that white noise is composed equally of oscillations at 

all frequencies (Shumway and Stoffer, 2006). Furthermore, if the series of shocks 

generated are not just uncorrelated (a white noise process), but are independent and 

identically distributed, the sequence is called i.i.d., denoted ���~����0, ��� (Anderson, 

1976). Further, if the series is normally distributed, it is both white noise and i.i.d.. Often, 

a time series (Xt) can be well-explained by a trend component (mt), a seasonal component 

(st), and a zero mean, random error component (Yt) (Chatfield, 1975). The process can be 

represented in the form 

� � � � � � �. 

The following provides a short description of each component, although it should be 

noted that a time series model may exhibit any combination of these components: 

The trend component (mt): Encompasses long run changes in mean. Trends can 

have many underlying causes including, but not limited to, changes in economic 
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conditions, technological changes and changes in social custom (Farnum and LaVerne, 

1989).  

The seasonal component (st): Encompasses cycles at any recurrent period. This 

component can include obvious seasonal or annual cycles, or less apparent cycles 

occurring at any fixed period such as a daily, weekly, or quarterly basis. 

The noise component (Yt): A zero mean, random error component. 

There are multiple methodological approaches to the analysis of time series data, more 

specifically to the removal of trend and seasonal components, including the use of both 

the time and frequency domains. Analysis in the time domain bases inference on the 

autocorrelation function, while analysis in the frequency domain pertains to inference 

based on the spectral density function. Both domains can be used to eliminate seasonal 

components, while trend components can only be eliminated in the time domain. In this 

study a decomposition method was used which identified and separately removed the 

trend and seasonal components from the series. The removal of trend components used 

methods associated with the time domain, and the removal of seasonal components used 

methods associated with the frequency domain.  

2.1.2 Trend Components 

Analysis in the time domain includes methods for removal of both the trend and seasonal 

components including least squares estimation, smoothing with moving averages, 

differencing, small trend methods, and moving average estimation (Aue, 2009). 

Additionally, trend components can be removed using regression techniques (Yaffee, 

2000). Aue (2009) provides a detailed description of each method.  This study used 
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multiple regression to remove trend components. The multiple regression method is 

discussed below, in addition to differencing which is referred to in later sections: 

Multiple Regression: When there are four predictor variables,� , ��, �!, �" as in 

this analysis, the model is formulated as 

� � #$ � # �  � #��� � #!�! � #"�" � %. 

In this study, the combination of the predictor variables (# �  � #��� � #!�! � #"�") 

constitutes the trend component, while the regression error term (%) constitutes both the 

seasonal and error terms (st + Yt). As discussed previously, standard linear regression 

models assume that the error terms,%, and therefore, response variable observations, �, 

are uncorrelated (Kutner et al., 2005). Time series data, on the other hand, often contains 

observations which are serially dependent (Box and Tiao, 1975). Therefore, 

modifications to standard linear regression would be necessary, including modeling the 

error terms as time-series autoregressive moving average models (Tsay, 1984; Ostrom, 

1978).  

Differencing: Applies the difference operator to the original series in order to 

create a new, stationary series. The lag & difference operator (') is defined as (Shumway 

and Stoffer, 2006): 

'(x* � + , +-.. 

In practice, it is common to denote the use of the difference operator by using the 

backshift operator, B. In this case, 

'(x* � + , +-. � �1 , 0�.+ 
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2.1.3 Seasonal Components 

This study’s decomposition method removed the trend components using multiple 

regression, and removed seasonal components from the series using a frequency domain 

approach. The frequency domain, also referred to as the spectral domain, pertains to 

inference based on the spectral density function. A time series can be decomposed into 

periodic components, each of which contains variation at that period’s frequency, whose 

variations combine together to cause the overall variation in the time series. Therefore, a 

time series can be well represented as the sum of significant periodic components 

(Chatfield, 1980): 

+ � 1 A3 cos72πω3t: �;

<= 
B3 sin72πω3t: � � 

where Aj and Bj are uncorrelated random variables with mean zero and variances both 

equal to σ2 and A �  
B, where d is the period of the cycle. For example, if there is an 

annual cycle and the data set contains monthly data points, one period, d, could be 12. 

Exploratory analysis using the periodogram can help to determine genuine periodic 

(seasonal) components within the time series, Xt. The definition of the periodogram for 

{X1,…,Xn} is given below (Brockwell and Davis, 2002): 

��A� � 12CD E1 X*eH*ω
I

= 
E

�
 

where ω is the frequency. The periodogram is the graph of A and ��A� and is an 

estimation of the power spectral density function. Although the periodogram is not a 

consistent estimator of the spectral density because the variance of ��A� does not 
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decrease as the sample size, n, increases, it will be used in this analysis to determine 

periodicities, which is a common practice (Chatfield, 1975). If the periodogram is 

constructed for ,π P ω P π  the area under the periodogram represents the variance of 

the time series (Brocklebank, 2003). Therefore, peaks in the periodogram generally 

indicate frequencies that can explain a significant part of the total variance. For example, 

a periodogram that displays a large peak at frequency A � 0.25, indicates a period, 

S � 4, which for quarterly data indicates an annual cycle. If a periodogram does not 

display any obvious peaks, all frequencies are contributing to the series’ variance, and the 

series may even be a white noise process. The variance by cycles can be decomposed as 

follows (Aue, 2009), 

�7A<: � SU7A<: � SV7A<:2  

where SU7A<: �  
√I ∑ � cos�2CA<Y�I=  and SV7A<: �  

√I ∑ � sin� 2CA<Y�I= . As 

discussed, the periodogram can help to determine seasonalities and peaks in the 

periodogram can signify a genuine periodic component which explains a large portion of 

the variance in the time series. However, it is possible that peaks may occur because of 

random fluctuations in the sample (Priestley, 1981).  

This study used spectral analysis of variance to determine whether peaks in the 

periodogram explain a larger portion of the variance than is expected with sequences 

such as white noise and ARMA processes. 
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2.2 Goodness-of-fit Tests 

Ideally, after trend and seasonality are removed, the remaining series will be a white 

noise process. There are many goodness-of-fit tests to determine whether the residuals 

are white. For an extensive review of diagnostic checks, refer to Li (2004). For the 

purposes of this study, four goodness-of-fit tests will be utilized, including the sample 

autocorrelation function (ACF), the portmanteau test (Ljung-Box modification), the rank 

test, and a test of normality including the squared correlation (R2) based on a qq plot. An 

explanation of the four goodness-of-fit tests is described below: 

1. The sample autocorrelation function (ACF): The autocorrelation function 

and sample autocorrelation functions at lag h are defined as (Anderson, 1976): 

ρZ � ���$                             ρ[Z � �[��[$ 

For a series, Y1,…,Yn, with a large sample size, n, the sample autocorrelations are i.i.d. 

with zero mean and variance 
 
I (Brockwell and Davis, 2002). Therefore, in order to test 

for randomness, a plot of the sample autocorrelation function for any amount of lags h 

should show should that 95% of those lags fall within the bounds \  .]^
√I  if the process is 

i.i.d. (Aue, 2009). 

2. The portmanteau test (Ljung-Box modification): In order to test for 

randomness, originally, Box and Pierce (1970) suggested the portmanteau test, and 

developed the statistic, Q, as  

Q(_̂� � D ∑ _̂��a��<=  
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where _̂  is defined as the autocorrelation function. Ljung and Box (1978, p. 298) suggest 

that the Box-Pierce methodology produces “suspiciously low values of Q(_̂�…” and 

propose a modified version as 

Q(_̂� � D�D � 2� ∑  
I-< _̂��a��<=  

where Q can be approximated as a chi-squared distribution with h degrees of freedom. 

The hypothesis that the residuals are i.i.d can be rejected at the level α, if b c d -e� ��� 

(Brockwell and Davis, 2002).  

3. The rank correlation test: The rank test is a test of randomness, to 

establish whether there remains any systematization in the residuals. For a time series, a 

trend can be determined by the correlations between the rank order of the time series 

observations and their time values (Kendall, 1955). In total, there are � � b �
 
� n�n , 1� pairs, where P designates the number of positive correlations, and Q 

designates the number of negative correlations. P is represented by Kendall’s τ, called the 

coefficient of rank correlation: 

τ� f�ghiI�I- � 

The coefficient of rank correlation ranges between 1 (perfect positive correlation) and -1 

(perfect negative correlation), with τ� 0 representing an independent, white noise 

process. Refer to Kendall (1955) for further explanation.   

4. R2  based on a qq plot: In order to assess the normality of the residuals, the 

squared correlation (R2) value can be calculated based on a quantile-quantile plot (qq 

plot). A qq plot is a graph that compares the quantiles of two distributions. For this study, 

the first data set is the ordered residuals from the fitted model assuming a mean zero, 



23 
 

 
 

variance one process denoted as Yj. The second data set is ordered statistics from a 

random normal sample with mean µ, variance σ2 denoted as nj. If the model residuals are 

normally distributed, the pairs (nj , Yj) should have a linear relationship (Shumway and 

Stoffer, 2000). Hence, perfect normally distributed residuals would display an R2 value 

equal to one. If the R2 value is too small (based on the level α), then the assumption of 

normality must be rejected. More specifically, the R2 value can be computed as follows, 

noting that Φ3 represents the normal distribution: 

R� � k∑ �D < , l<�Φ3I<= m�
∑ �D < , l<�I<= � ∑ Φ3I<= � 

Refer to (Shapiro and Francia, 1972) for the critical values of R2.  

For residual testing in this study, lag h = 20 was used which is commonly used in time 

series residual testing (Shumway and Stoffer, 2000). 

2.3 Multicollinearity 

Multicollinearity occurs when independent variables are highly correlated in a multiple 

regression model (Kutner et al., 2005). This means that the two correlated variables are 

not providing independent information which helps to predict the dependent variable. 

Severe cases of multicollinearity must be corrected, because the result can be unstable 

regression coefficient estimates. Further, multicollinearity is often indicated by very large 

standard errors, even though the coefficients are still the best linear unbiased estimators 

(BLUE) (Washington et al., 2003). If two independent variables are highly correlated, it 

is difficult to determine which variable is explaining more variation in the dependent 

variable (both variables’ standard errors will become large). Another test for the presence 
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of multicollinearity is the comparison of correlation coefficients to regression 

coefficients. If their signs are different (+/-) then multicollinearity should be further 

investigated (Kutner et al., 2005). Two methods for detecting multicollinearity are the 

variance inflation factor and the condition index.  

1. The variance inflation factor (VIF) is defined as �n�o�p � qi�rst�
�qt�i  where  

#pt are the estimated standardized regression coefficients and ��t�� is the variance of the 

error term1for the correlation transformed model (also called the standardized regression 

model). The multiple regression model discussed previously was � � #$ � # �  �
#��� � #!�! � #"�" � %, while the standardized regression model is �t � # t� t �
#�t��t � #!t�!t � #"t�"t � %t. If the mean of the VIF values is greater than 1, serious 

multicollinearity may exist (Kutner et al., 2005).  

2. The condition number (κ) is defined as the largest condition index (CI). It 

is defined as u � vwxyzwx{|  where λmax is the largest eigenvalue, and λmin is the smallest 

eigenvalue of the �}� matrix. Condition numbers between 5 and 10 indicate some 

dependence, while CI values of 30 and above signify strong dependencies (Belsley et al., 

1980).  

2.4 Lagged Variables 

In time series regression models, it is often the case that time lags need to be included 

(Ostrom, 1978). For example, there is a time lag associated with exposure to carcinogenic 

substances and the development of cancer.  If there are time lags between a change in the 

                                                 
1 In this study, the error term (when testing for multicollinearity) includes a seasonal and noise term (st + 
Yt). 
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independent variable and the effect on the dependent variable, a lag term should be 

included in the regression model. In this study, the explanatory variables were unleaded 

regular gas prices, unemployment rates, gross domestic product and transit fare prices, 

each of which could have a time lag with transit ridership. However, a time series study 

of Portland, Oregon transit ridership between 1971 and 1982 focusing on factors that 

affect ridership show that neither gas price (aggregation level unspecified) nor county 

employment rates show a time lag for bus transit ridership (Kyte et al., 1988). However, 

Kyte et al. found a time lag between transit fare prices and ridership. The authors stated 

that the largest response in ridership to the fare increase occurred almost immediately, 

and then decayed at a measurable rate for three months. Prior studies have not determined 

a set of  independent variables that consistently predict bus transit ridership. The effects 

of GDP on ridership have not been studied.  

2.5 Box-Jenkins (ARMA) Models 

In the time domain, linear filters are often used to transform one time series into another, 

under the assumption of linearity, and can be defined as: 

Y* � 1 Ψ3
∞

<=-∞
X*-3 

where Ψ3′s are weights for each X*, and X* and  Y* are the input and output time series, 

respectively (Chatfield, 1975; Montgomery et al., 2008). There are many types of linear 

filters which can be applied to white noise to obtain a more complex linear time series. In 

general, there are three major classes of linear filters, including autoregressive, moving 

average and autoregressive-moving average filters. They are described below:  
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1. Autoregressive Process, AR(p): An autoregressive process can be 

represented as: 

� � � �- � � � ���-� � �. 

The equation’s conceptual interpretation is that the current time series observation is a 

linear weighted combination of the p most recent past values of the same time series, plus 

an error term (Montgomery et al., 2008). The autoregressive polynomial is defined as   

���� � 1 , � � , ���� , � , ����. 
The roots of the polynomial � � ��0�� must lie outside of the unit circle to ensure that 

an AR(p) process is stationary; a condition commonly referred to in time series literature 

as causality (Box et al., 2008).  

2. Moving Average, MA(q): An moving average process can be represented 

as: 

� � � , � �- , � , ���-�. 

Observably, a moving average model assumes the current value is a linear weighted 

combination of q lagged white noise terms. Further, a condition called invertibility is 

imposed on the weights, θ3, to ensure a unique MA process for an autocorrelation 

function (Chatfield, 1980). The moving average polynomial is defined as   

���� � 1 � � � � ���� � � � ���� . 
 An MA(q) process is invertible if the roots of � � ��0�� are outside the unit circle 

(Box et al., 2008). Invertibility and stationary are two separate conditions; an MA(q) 

process will always be stationary.  

3. Autoregressive-Moving Average, ARMA(p,q): An autoregressive-moving 

average (ARMA) model assumes that the current observation is a linear weighted 
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combination of the p most recent past observations from the same time series (the AR(p) 

portion), as well as q lagged white noise terms (the MA(q) portion).  An autoregressive-

moving average process ARMA(p,q) can be represented as 

� � � �- � � � ���-� � � , � �- , � , ���-�. 

An ARMA (p,q) process is causal if the roots of the polynomial � � ��0��  lie outside 

of the unit circle, and is only invertible if the roots of � � ��0�� are outside the unit 

circle (Box et al, 2008). The coefficients for causality are computed from the 

expression Ψ��� � ����
����, while the coefficients for invertibility computed from the 

expression Ψ��� � ����
����. 

2.6 Intervention Analysis 

Gene Glass (1972, p.463) coined the term intervention and described it as follows: 

“Observation of a variable Z at several equally spaced points in time yields the 

observations � , ��, … , �� . Suppose that an intervention (T) is made at some point in time 

before time N into the process presumed to be controlling Z. The time-series is said to be 

interrupted at a point in time, say D  less than �: � , … , �Ih , �, �Ih� , … , �� .” Box and 

Tiao (1975) used the term intervention and constructed an analysis method to determine 

the effect of an intervention, occurring at a known time in a time series. Their 

intervention model is based on the basic transfer function model, 

�,� � 1 �<
∞

<=$
�-<, � � 

where Xt,1 represents the input series, while Xt,2 represents the output series, which 

constitutes common notation in transfer function modeling. In intervention analysis, it is 
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more common to replace Xt,1 with Xt, and also to replace Xt,2 with Yt. The basic 

intervention model can be described: 

� � 1 �<
∞

<=$
�-< � � 

where Xt and Yt are the input (pulse/step) and output (ridership, after removal of trend 

and seasonal components) series of the model respectively, �< is a linear filter and Nt 

represents a noise sequence. �< is defined as  

�< � ����a���/�� 

where ���is the cross-correlation between Xt and Yt, and σ2 is the variance of each series. 

In the case of intervention “��0� � ∑ �<∞<=$ 0< is simplified with a rational operator of 

the form T(B)� ������
���� " where b is the delay parameter, and W and V help to provide 

coefficients to represent more complicated indicator series built upon a step or pulse 

function (Brockwell and Davis, 2002, pp. 340-341). The intervention term is 

then ��0��. For a series that might be best represented as an intervention causing a 

temporary change in the response variable, a pulse indicator variable would be most 

appropriate: 

� � �1 �� Y � �0 �� Y � �� 

where t is time, and T is the period of the intervention. For a series that might be best 

represented as an intervention causing a permanent change in the response variable, a 

step indicator variable would be most appropriate: 
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� � �1 �� Y � �0 �� Y � ��. 

In general, the Box and Tiao intervention analysis methodology follows a five-step 

process (Box and Tiao, 1975): 

1. Eliminate trend and seasonal components from the original time series 

(Xt). This study eliminated trend components from the series through a multiple 

regression, and eliminated seasonal components using sinusoidal decomposition with 

cycles determined by the periodogram and cycle significance based on spectral ANOVA.  

2. Use ordinary least squares (OLS) regression to obtain a initial estimate of 

�<, which represents the transfer model.  

3. Model the residuals from the OLS regression as an ARMA(p,q) process, 

which will represent the noise model. For model diagnostics, analyze the residuals using 

goodness-of-fit tests. 

4. Minimize the sum of squares, ∑ ��� �¡�
�� �¡�¢� �W, V, ¥¦, θ¦�I=¨t � , where 

m*=max (p2 + p, b + p2 + q), in order to obtain final parameter estimates of both the noise 

and transfer models. 

5. Analyze the final model residuals using goodness-of-fit tests. This study 

used the Sample ACF, qq plot, Ljung-Box test and rank test. 

2.7 Review of Relevant Past Studies 

Previous studies involving multiple regression and time series analysis are discussed. 

Many studies have examined transportation-related time series data and used time series 

methods to analyze the data. Kyte et al. (1988) reviews previous work in transportation 
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related time series, other than bus transit ridership. For example, Atkins (1979) analyzes 

the effect of speed limit changes on traffic accidents in British Columbia in the 1970’s 

using intervention analysis. Additionally, studies that use vehicle miles travelled (VMT) 

forecasting models show that VMT can be predicted by independent variables that are 

similar to those used to predict transit ridership. Common predictors include, but are not 

limited to, gasoline price (Schimek, 1996 (1521 and 1558); Goodwin et al., 2004; Gately, 

1990) and income (Schimek, 1996 (1521 and 1558); Goodwin et al., 2004; Gately 1990). 

Dahl (1986) summaries previous research on gasoline consumption demand, VMT and 

miles per gallon (not just VMT), finding negative elasticities for price, and positive 

elasticities for income. Elasticities measure the responsiveness of one variable to change 

in another variable. Mokhtarian et al. (2002) analyzed induced demand with respect to 

highway capacity expansion, and listed predictors of induced vehicle travel as changes in 

population, demographics, the economy, mode and land use, but not highway capacity 

expansion. Rose (1982, 1986) examines rail transit ridership using time series and 

multiple regression techniques. Rose (1986) studies Chicago Transit Authority rail 

ridership, more specifically, 11 years of monthly average weekday data. He used fares, 

weekday service miles, cost of car trips (including gas prices), and weather changes and 

found that gas prices and service levels were significant predictors of rail ridership. But, 

there are few studies that analyze bus transit ridership with time series models, a fact that 

was confirmed by librarians at the Physical Science and Engineering Library at UC 

Davis, and the Institute of Transportation Studies Library at UC Berkeley. Those 

pertaining to transit ridership (defined as both bus and rail, or just bus) are discussed 

below. 
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2.7.1 Predicting Transit Ridership Using Multiple Regression 

A number of studies use multiple regression techniques to determine factors that affect 

bus transit ridership. Those studies take into account autocorrelation in the residuals to 

ensure valid model results. The following presents studies which use multiple regression 

as the primary analysis method. Agrawal (1981) analyzed Southeastern Pennsylvania 

Transportation Authority’s City Transit Division’s annual full-fare adult ridership 

between 1964 and 1974. Using multiple regression, he found that three factors were 

statistically significant in affecting ridership and produced a multiple correlation 

coefficient of 0.9985. The three significant predictors included average fare (adult riders), 

jobs in Philadelphia, and bus miles of service, while number of vehicles owned was not a 

significant predictor. Lane (2009) applied regression techniques to monthly bus and rail 

transit ridership data from nine US cities between January 2002 and April 2008, and 

found that gasoline prices were a statistically significant predictor of changes in transit 

ridership, while service characteristics and seasonality were not significant predictors. 

Wang and Skinner (1984) analyzed fares, gas prices and monthly ridership data from 

seven transit authorities across the United States, and using regression techniques, found 

that as real gasoline prices increased, transit ridership increased, although by a small 

amount. Also, they found that as real fares increased, ridership decreased. Taylor et al. 

(2009) analyzed transit ridership from 265 urban areas using 22 independent variables to 

and show that the majority of transit ridership variation can be explained by variables 

within the categories of regional geography, metropolitan economy, population 

characteristics and auto/highway system characteristics. They found a positive correlation 

between ridership and gas prices, and a negative correlation between ridership and 
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unemployment levels. Gomez-Ibanez (1996) reported an increase in Massachusetts Bay 

Transportation Authority (MBTA) bus transit ridership in Boston, in part due to service 

improvements such as phased station modernization and bus replacement, and transit 

fares which increased less than the inflation rate. Their study also included income, 

Boston employment, fares, and vehicle miles. Kitamura (1989) showed a causal 

relationship between car ownership and transit use, more specifically that an increase in 

car ownership leads to a decrease in transit use, using Dutch National Mobility Panel 

weekly travel diary data. Cervero (1990) provides a broad overview, and summarizes 

multiple empirical studies which show that there are many factors affecting transit trips, 

including characteristics of the traveler such as age, income, auto access, trip purpose, 

trip length, and also characteristics of the operating environments, such as land use and 

location settings. Although each study used a different set of independent variables to 

predict transit ridership, most of the studies that used multiple regression included gas 

prices, fares, and economic indicators such as unemployment rates.   

2.7.2 Transit Ridership and Intervention Analysis 

In terms of transit ridership and intervention analysis, there is a scarcity of previous 

studies. Kyte et al. (1988) use Tri-County Metropolitan Transportation District of Oregon 

bus transit ridership on various aggregation levels (system, sector and route levels) 

between 1971 and 1982 to show that service level, transit fares, gasoline price, and 

employment are statistically significant predictors of bus transit ridership. They also note 

that to fully explain ridership demand, many more independent variables should be 

considered. Kyte et al. (1988) used intervention analysis to model changes in bus transit 
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ridership resulting from eleven separate cases of changes in their predictor variables 

including increased fares, system-wide service changes, and route-level changes, and 

they observed that the occurrence of  multiple events at one time makes it difficult to 

isolate the impact of any single event on ridership. Their results showed that for the four 

cases of fare increases, the result in terms of ridership is varied. The separate 

interventions of system-wide service changes and gasoline supply shortages combine to 

produce an intervention output of an additional 8,400 bus transit riders. Kyte et al. use 

elasticities greater than one to determine significance of intervention results. Narayan and 

Considine (1989) use intervention analysis to analyze two cases of fare increases, in April 

1980 and April 1984, and their effects on monthly upstate New York transit ridership, 

assuming that ridership could be decomposed into a trend, seasonal, intervention and 

noise term. They assume that the intervention term is best represented as a step function; 

an “abrupt and permanent change” in ridership (Narayan and Considine, 1989, p. 248). 

Their methodology differs from the original Box and Tiao intervention analysis 

methodology, as their model isn’t based on the transfer function model, but on regression 

with correlated error terms, and eleven indicator variables for seasonality, indicator 

variables for the two fare price increases, and an error term which they claim “correct[s] 

for autocorrelated errors” (Narayan and Considine, 1989, p. 249).  However they didn’t 

use ARMA models for the noise, and it is unclear how they corrected for correlation, 

because they used t tests which require the removal of serial dependence, nonstationarity 

and seasonality. Both fare interventions produced significant ridership decreases. 

Considine and Narayan (1988) use data from Chattanooga, Tennessee and intervention 

analysis to examine the affect of market changes on total ridership, total operating 
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revenues, the ratio of total operating revenues to total revenue miles, and the ratio of total 

passenger trips to total revenue miles. They slightly modify the Box-Tiao methodology 

by first using the entire sample to model the noise term, then separately estimating the 

intervention term, and then minimizing all parameters. They use t statistics to test for 

significance. They show that marketing does significantly affect transit ridership.  

2.8 Summary of Literature Review  

An extensive literature review identified a number of past studies using transportation-

related data. Fewer studies used both multiple regression (taking into account 

autocorrelation) and time-series methods for the analysis of predictors for transit 

ridership. There were still fewer time series studies that analyzed transit ridership 

affected by an intervention, using intervention analysis. To date, there are no known 

studies that examine the impact of the intervention of construction work on bus transit 

ridership.  
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CHAPTER 3 DATA DESCRIPTION  

This chapter describes the data used in this analysis. A brief description of methods of 

ridership data collection is given. Each bus transit agency is described, with their 

ridership data, and the methods they use to collect ridership data.  Data filtering that was 

required to construct a data set for this analysis is described, with information regarding 

data imputation for missing data. An analysis was performed on each of the ridership data 

sets to determine if any independent factors played a significant role in ridership changes 

during the period of analysis. Data quality with relation to methods of data collection is 

discussed.    

 3.1 Methods of Data Collection 

Four methods of ridership data collection were used among the five transit agencies that 

provided service to the downtown core. Those methods included automatic passenger 

counters (APC), electronic fareboxes, manual counts by route checkers, and manual 

counts by bus drivers. A description of each method is provided below: 

1. Automatic Passenger Counters (APC): APC devices are often door-

mounted and use infrared beam technology to automatically count boarding and alighting 

riders. Many use GPS technology to associate collected data with a time and location.  

2. Electronic Fareboxes: Electronic fareboxes are devices that collect 

ridership information. Typically, a bus driver enters a number corresponding to rider type 

into a key pad on the electronic farebox which stores the data until it is uploaded to a 

network. Usually, electronic fareboxes do not provide location information. 
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3. Manual Counts by Route Checkers: Route Checkers take manual counts of 

passengers boarding and alighting at each stop, and the arrival and departure times of 

these stops.   

4. Manual Counts by Bus Drivers: Bus Drivers take manual counts of 

passengers boarding and alighting at each stop, and the arrival and departure times of 

these stops. 

3.2 Data Sample 

This section describes the data samples provided by each of the five bus transit agencies. 

The section is divided into five sub-sections, one for each agency. Each sub-section 

includes a brief background of each bus transit agency, ridership data collection methods 

employed by each agency, and the data provided by each agency. Unless otherwise 

stated, all information regarding each transit agency was obtained through personal 

correspondence as listed in Table 3.1: 

Table 3.1: Data Collection Details 

Transit Agency Contact 
Contact's Official 
Position Title  

Type of Personal 
Correspondence 

Regional Transit  James Drake  Assistant Planner e-mail, phone, mail, in-person 

Yolobus Erik Reitz Transit Planner e-mail, phone, mail, in-person 

Roseville Transit 

Teri Sheets 
Alternative 
Transportation 
Analyst 

e-mail 

Elizabeth Haydu 
Administrative 
Technician  

e-mail, phone, in-person 

North Natomas 
TMA 

Sarah Janus 
Program 
Coordinator 

e-mail 

Yuba-Sutter 
Transit 

Dawna Dutra Analyst e-mail, phone 
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3.2.1 Regional Transit 

The Sacramento Regional Transit District (RT) operates bus and light rail transit serving 

418 square miles of the greater Sacramento metropolitan area (Regional Transit, 2009). 

They are the largest provider of public transportation within the City of Sacramento, 

operating 256 buses servicing 97 bus routes with more than 3,600 bus stops which 

operate from 5 A.M. to 11:30 PM, 365 days per year (Regional Transit, 2009). 

RT uses all four data collection methods described in Section 3.1. Regional Transit is the 

only transit agency within our study that collects ridership data using APC devices, which 

have been installed in half of the RT bus fleet. Electronic farebox devices are installed on 

all RT buses, and is the method that RT uses for annual reporting. But because electronic 

fareboxes don’t keep track of location or alighting passengers, this data was not suitable 

for this study. The ridership data for RT consisted of APC data even though it is not used 

for official reporting. It records boarding and alighting riders, as well as  time and 

location stamps for each record, which was necessary for filtering purposes. APC devices 

are still in testing stages. The FTA’s National Transit Database requires that two random 

bus trips must be sampled per day by route checkers, which is why RT also employs this 

ridership collection method (Drake, 2007). Finally, RT makes use of manual counts by 

driver for its specialized Community Bus Service (now called Neighborhood Ride) which 

offers intraneighborhood service within certain communities while also servicing seniors 

and the disabled.  

Because of the expansiveness of RT, total ridership counts are nearly impossible to 

obtain. On a normal weekday, the RT bus system makes 3,000 trips. As mentioned, 
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approximately half of its bus fleet is equipped with APC devices, which results in the 

collection of data for 1,500 trips per day. The data is wirelessly uploaded to the RT 

network, where it undergoes filtering which uses by a relaxed set of rules to remove 

faulty data. The core set of rules that determine the filtering include: 

• The difference between total riders on and total riders off for a bus must be 10% or 

less, 

• The difference between total riders on and total riders off for a block must be 10% or 

less (a block is a schedule for one physical bus each day), 

• The difference between total riders on and total riders off for a trip must be 10% or 

less, 

• The number of stops counted must be “pretty close” to the actual number of stops on 

the route, 

• Records showing obvious technology malfunctions.  

As filtering occurs, records are deleted from the database. After the filtering process is 

complete, about 400 records per day remain. The original raw data only remains as the 

output from the APC device in the form of a text file. It is difficult to accurately assess 

RT’s total bus ridership because the data is not a random sample, which is a result of the 

filtering process and the fact that bus lines are not randomly chosen. Because total 

ridership data by route is not easily obtained with filtered APC data, the raw APC data 

was also provided but was not used due to data quality concerns. In addition, data from 

General Farebox Inc. (counts from the fareboxes on the buses), Parking Lot, Cash, and 

fare vending machine count data was provided. That additional data was not useful as it 
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provided system-wide information, and was not specific to only those bus lines serving 

the downtown area.  

The APC daily data, including weekdays and weekends, spans from January 7, 2008 to 

December 30, 2008. Initially, the APC data was a count of boarding and alighting riders 

of a randomly chosen number of stops within the entire RT service area, allowing for the 

filtering of bus lines serving the downtown area. The data also contained the time and 

date of the observation as well as the bus stop identifier and route schedule identifier. RT 

defined the AM peak period to be 6:30-9:00AM, and the PM peak period to be 3:00-

6:00PM. Although the RT sample only contains 49 weekly ridership counts, Cherwony 

and Polin (1977) used daily bus transit ridership data from Albany, New York to show 

that only 30 days of transit ridership data is needed to develop a valid travel-forecasting 

model. 

3.2.2 Yolobus 

Yolobus is operated by the Yolo County Transportation District and serves Yolo County 

and surrounding areas including Davis, Sacramento, Winters, and Woodland among 

others. Unlike RT, Yolobus also provides service to the Sacramento International Airport. 

Yolobus uses electronic farebox devices as well as manual counts by bus driver to collect 

ridership information. Yolobus separates its services into three types: regular, commute, 

and express. Regular services run every day of the week whereas commute and express 

services only run Monday through Friday. The agency operates 365 days of the year.  

Since Yolobus offers different types of services to the downtown core, the operating 

times of those services vary. Regular bus routes (40, 41, 42A/B, 240) collectively run all 
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day from 4:37 AM to 11:48 PM during the week. The commute and express services, 

which only run Monday through Friday, only run during peak commuting periods. The 

commuter routes (39, 241) collectively run from 5:35 AM to 8:30 AM and 3:35 PM to 

6:34 PM. Similarly, the express routes (43, 44, 45, 230, 231, 232) collectively run from 

5:55 AM to 8:32 AM and from 4:03 PM to 7:17 PM. Yolobus restricts passenger travel in 

downtown Sacramento by not allowing passengers to both board and alight in downtown 

Sacramento. Instead, passengers are requested to utilize Sacramento RT for local services 

within downtown Sacramento.  

The Yolobus ridership data set contains the total daily ridership counts that span the 

three-year period from January 2006 to December 2008. The data set is missing two days, 

July 30, 2006 and July 31, 2006.  

3.2.3 Roseville Transit 

Roseville Transit is operated by the City of Roseville and mainly serves the City of 

Roseville, but additionally serves Sacramento commuters. Roseville Transit runs specific 

commuter routes that serve the Sacramento downtown core, including AM Routes 1-8 

and PM Routes 1-8. The commuter routes only run Monday through Friday between the 

morning peak commute hours of 5 – 9 AM and the afternoon peak commute hours of 

3:30 – 7:30 PM. Roseville Transit uses manual counts by bus driver to collect ridership 

information. Its daily, peak-period, ridership data was provided for the entirety of 2006, 

2007, and 2008, including separation by commuter route.  
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3.2.4 North Natomas TMA  

The North Natomas “Flyer” is operated by the North Natomas TMA, serving Natomas as 

well as downtown Sacramento commuters. The Flyer runs between 20 and 28 passenger 

buses through several North Natomas neighborhoods, and although there are no timed 

stops, time points are listed on the schedule (the bus will stop wherever there are 

passengers waiting). In downtown Sacramento, there are timed stops at set locations. The 

Flyer includes three routes that serve the downtown core: the Eastside Route, the 

Westside Route, and the Central Route. In September of 2008, North Natomas TMA 

began running a Square Route; however, those ridership counts were excluded from the 

daily totals because that route was added after the construction period had ended and 

there was no pre-construction or construction data to use for comparison. The Flyer 

operates Monday through Friday except on certain holidays. North Natomas TMA runs 

peak period scheduled routes between Natomas and downtown Sacramento. The Eastside 

Route has three morning and three afternoon loops that run from 5:54 AM – 9:04 AM 

and from 3:35 PM – 6:54 PM, respectively. The Westside Route has two morning and 

two afternoon loops that run from 6:00 AM to 7:44 AM and from 4:30 PM to 6:30 PM, 

respectively. The Central Route also has three morning and three afternoon loops that run 

from 6:03 AM – 9:04 AM and from 4:07 PM – 7:06 PM, respectively. 

 North Natomas TMA uses manual counts by driver as well as farebox counts to collect 

ridership information. Manual counts were also provided by volunteer riders during the 

duration of the Fix I-5 project. Their daily peak-period ridership data, collected using 

both manual and automated collection methods, spans the complete 2008 year and is 

separated by route. 
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3.2.5 Yuba-Sutter Transit 

Yuba-Sutter Transit is operated by Sutter and Yuba Counties and the Cities of Marysville 

and Yuba City and provides service to Yuba City, Marysville, Linda, Olivehurst, East 

Nicolaus and Sacramento. Only the Sacramento Commuter Express provides Sacramento 

downtown commuter service (via Highways 70 and 99). The commuter service runs on 

weekdays, but not on certain holidays. Yuba-Sutter currently provides nine commuter 

schedules for each of the peak periods that operate from 5:20 AM to 8:00 AM and from 

3:45 PM to 6:50 PM.  

Yuba-Sutter Transit uses manual counts by the drivers to collect all ridership information. 

Their daily, peak-period ridership data is for the Sacramento Commuter Service for the 

years 2005, 2006, 2007, and 2008. This data was broken down by day and further 

separated by route. 2008 data was provided in the same format but in an electronic 

version. 

3.3 Data Filtering 

In order to modify ridership data provided by each transit agency a four-step procedure 

was followed for each agency. 

3.3.1 General Procedure 

Step 1: Filter data to include ridership only for lines which provide service to the 

Sacramento downtown core, as previously defined by cordon. Table 3.2 provides a list of 

each transit agency and their bus transit lines that provide service to the downtown: 
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Table 3.2: Transit Lines Servicing the Downtown Core 

Transit Agency Downtown-Servicing Lines 

Regional Transit 2,3,6,7,11,15,29,30,31,33,34,36,38,50E,51,62,63,67,68,86,88,89,109 

Yolobus 39,40,41,42A,42B,43,44,45,230,231,232,240,241 

North Natomas Eastside Route, Westside Route, and Central Route 

Roseville Transit AM Routes 1-8, PM Routes 1-8 

Yuba-Sutter Transit Sacramento Commuter Express 
 

Step 2: Filter data according to Table 3.3 to include inbound ridership for the AM peak 

period, as defined by agency. 

Table 3.3 AM Peak Period Definitions of Each Data Set 

Transit Agency AM Peak Period Definition 

Regional Transit 6:30-9:00 

Yolobus Daily Data 
North Natomas Route: Eastside: 5:54-9:04, Westside: 6:00-7:44, Central: 6:03-9:04  

Roseville Transit 5:00-9:00 

Yuba-Sutter Transit 5:20-8:00 
 

Step 3: Filter data according to Table 3.4 to include outbound ridership for the PM peak 

period, as defined by agency. 

Table 3.4: PM Peak Period Definitions of Each Data Set 

Transit Agency PM Peak Period Definition 

Regional Transit 3:00-6:00 

Yolobus Daily Data 

North Natomas Route: Eastside: 3:35-6:54, Westside: 4:30-6:30, Central: 4:07-7:06 

Roseville Transit 3:30-7:30 

Yuba-Sutter Transit 3:45-6:50 
 
Step 4: Filter data to include only Tuesday, Wednesday and Thursday ridership. Because 

modified work schedules are widely used, Monday and Friday are not representative of 

typical ridership. 
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The final model ridership is a combination of ridership across bus lines for a given 

agency, so that a single data point represents total ridership on all lines serving the 

downtown core. The sample size for the final data sets for this analysis is described in 

Table 3.5: 

Table 3.5: Sample Size of Each Data Set 

Transit Agency Time Period Aggregation Sample Size  

Regional Transit 2008 Weekly, Peak Period 49 
Yolobus 2006-2008 Daily 441 
North Natomas 2008 Daily, Peak Period 147 
Roseville Transit 2006-2008 Daily, Peak Period 441 
Yuba-Sutter Transit 2006-2008 Daily, Peak Period 441 

3.3.2 Special Modifications to General Procedure for Regional Transit 

RT data required more manipulation in order to perform the necessary filtering. The 

details are described. The main objective was to use the APC data to obtain the total 

weekly demand within the downtown core for all 52 weeks in 2008. More specifically, 

the goal was to obtain this weekly demand data for buses entering the downtown during 

the AM peak (6:30 AM – 9:00 AM) and for buses leaving the downtown during the PM 

peak (3:00 PM – 6:00 PM). Because RT ridership data is not collected for every 

passenger or trip, more complex methods were needed for RT. All of the bus stops within 

the downtown core were identified using RT generated identifying numbers. RT uses 325 

bus stops in the downtown. Then the number of boarding and alighting riders associated 

with those bus stops during each peak period was obtained. Although the daily APC data 

is incomplete, it covers almost half of the stops within the downtown area every day. We 

can assume that the total data collection for one week (Monday through Friday) covers all 
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of the stops within the downtown area and that the sample size for each bus stop is 

sufficient (Drake, 2007).  

Next, using the APC data, the daily average of alighting riders during the AM peak 

period and the daily average of boarding riders during the PM peak period was 

calculated. Using the RT bus schedule, the frequency of stops at each bus stop during the 

peak hours was determined. This frequency is a fixed number every day for a certain 

schedule. RT had four different schedules throughout 2008; however, comparison 

between schedules shows that the frequency of the downtown bus stops did not change 

for the downtown core for 2008. Therefore, this study used the frequencies from the first 

schedule, Schedule 20, valid between January 6, 2008 through April 5, 2008, for both the 

AM and PM peak periods. The following equations were used to calculate total ridership: 
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3.4 Independent Variables 

A multiple regression analysis was performed on each of the nine ridership data sets to 

determine if any independent factors played a significant role in ridership changes during 

the period of analysis. The regression was performed for all agencies (and all peak 

periods) using four independent variables: GDP, unemployment rates, gas prices, and fare 

prices. The smallest period of data aggregation available was used for each independent 

variable. Table 3.6 describes the final independent variable data: 
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Table 3.6: Independent Variable Details 

Independent 
Variable 

Source Aggregation Location Contact 
Contact's 
Official 
Position Title  

Gross 
Domestic 
Product 

Bureau of 
Economic 
Analysis  

Quarterly  National 
Lisa 
Mataloni 

Economist 

Gasoline 
Prices 

AAA Monthly Sacramento City 
Michael 
Geeser 

Media and 
Government 
Relations 
Representative 

Unemployment 
Rates 

Bureau of 
Labor 
Statistics  

Monthly 
Sacramento/Arden-
Arcade/Roseville 

Website   

Fares 

Yuba-
Sutter 
Transit 

Daily Agency 

Dawna 
Dutra 

Analyst 

Roseville 
Transit 

Elizabeth 
Haydu 

 
Administrative 
Technician  

 

In terms of GDP data, seasonally unadjusted data was used because the adjustment of 

GDP data is outsourced, and the Bureau of Economic Analysis doesn’t provide or have 

access to unadjusted GDP data. Additionally, state and metropolitan area GDP is only 

available on an annual basis and the lowest level of aggregation is national GDP provided 

on a quarterly basis. GDP was included as a measure of overall economic health. Hoel 

(1971), in his discussion of linear regression, gave the example of a 0.98 correlation 

coefficient between teacher’s salaries and liquor consumption, noting that in general the 

economy was doing well and upward trends were common. He warned about spurious 

correlations which must be considered in correlational studies.  

Gas price data was the unleaded gasoline price per gallon averaged for the city of 

Sacramento between 2006 and 2008. Finally, fares were used for two transit agencies 

who were affected by changes in basic fare rates namely Yuba-Sutter Transit and 
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Roseville Transit, with one increase for the three year period (2006-2008) for both 

agencies. Table 3.7 describes the fare pricing for each agency: 

Table 3.7: Fare Pricing Details 

Transit Agency Single Ride, Adult Fare  

Regional Transit $2.00  

Yolobus $1.50  

North Natomas $1.00  

Roseville Transit 11/1/2003 – 6/30/2007:  $2.75, 7/1/2007 –12/31/2008:  $3.25 

Yuba-Sutter Transit 8/1/2002 – 6/30/2007:  $3.00, 7/1/2007 – 12/31/2008:  $3.50 

 

For data aggregated on levels other than daily, the monthly or quarterly average value of 

the independent variable was repeated for all Tuesdays through Thursdays that existed for 

that month or quarter (based on the information from the data manipulation section). 

Consequently, there is a single value for every day of ridership data that represents that 

month’s average of the independent variable. For weeks that straddled two months, the 

two monthly averages were averaged. For example, Week 17 of 2008 includes April 29, 

April 30 and May 1, and the unemployment rate for April 2008 is 5.9% while May’s 

unemployment rate is 6.3%. The unemployment rate for this week is calculated as 

[(2*5.9) + 6.3] / 3 = 6.03333%.  

3.5 Data Quality2 

This section describes data quality considerations, including sub-sections describing 

quality concerns related to the four ridership data collection methods employed by the 

five transit agencies, as well as additional data quality concerns. The four collection 

methods consist of automatic passenger counting (APC) devices, electronic registering 

                                                 
2 Sections 3.5.1, 3.5.2, 3.5.3, and 3.5.4 use information from a report prepared by Jessica Seifert, under the 
author’s direction.  
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fareboxes (ERFs), manual counts by route checkers, and manual counts by bus drivers. 

Each section will briefly discuss the collection method, concerns related to data quality 

and which agencies use that method. All agencies ridership data sets were shortened to 

Tuesday, Wednesday, and Thursday data sets which did not contain any missing data. 

The two missing values for Yolobus, discussed previously, July 30, 2006 and July 31, 

2006, fell on Sunday and Monday.   

3.5.1 Automatic Passenger Counting Devices 

APC devices automate ridership data collection by tracking boarding and alighting riders, 

in addition to including a time and location stamp for each count. RT is the only transit 

agency within the study that utilizes APC devices, supplied by Clever Devices, Inc. 

(Drake, 2009). This technology uses an infrared beam to count boarding and alighting 

riders, and is mounted above the bus doors (Poggioli, 2009). The Clever Devices APC 

correlates the ridership data to GPS coordinates and scheduled routes so that the data may 

be viewed on a per-bus, per-door level (Clever Devices, 2009). 

Clever Devices, Inc. claims that their APC system demonstrates over 95% accuracy, 

though they do not provide information on their website that would account for the 5% 

error (Clever Devices, 2009). Boyle (1998), referring to all APC systems, stated that 

typically the most common problems are related to software, as transit agencies often 

have to upgrade their analytical programs, and secondarily hardware problems (device 

failure and durability). But for the Clever Devices APC system, in large part, the 5% 

error can be attributed to mechanical malfunctions as well as door bunching, carrying a 

child, carrying large bags, drivers getting on and off the bus, non-riders making inquiries 
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to bus drivers, and misalignment of sensors (Poggioli, 2009). In addition to technical 

problems, Boyle (2008, p. 18) defines a “debugging” period in which employees must 

familiarize themselves with the new technology. From the survey Boyle conducted in 

1998, the average debugging period for APC devices was 17 months (Boyle, 2008). The 

accuracy of APC systems can be evaluated by comparing its ridership data to manual 

counts, although manual counts may also have data quality problems (see Sections 3.5.3 

and 3.5.4) (Boyle, 2008). 

As mentioned, RT is the only agency that uses APC devices to collect ridership 

information. RT was unable to provide APC ridership data for all of the buses that serve 

the downtown Sacramento region, because APC devices were not installed on the entire 

bus fleet and because the data was heavily filtered to remove data with obvious errors 

(see Section 3.2.1 for filtering rules). Also, RT’s APC system is still in testing phases 

which could indicate that the devices are also within the debugging period (Drake, 2009).  

3.5.2 Electronic Registering Fareboxes  

Electronic registering fareboxes (ERFs) are devices in which bus drivers enter a number 

corresponding to rider type into a key pad that connects to an electronic farebox (Boyle, 

1998). The drivers are also required to enter a value to indicate the route and run number 

at the beginning of each trip (Boyle, 1998). ERFs do not collect location information, so 

ridership data is only available at the trip level (Drake, 2009). As is done with APC 

devices, the data collected from electronic registering fareboxes can be “validated” by a 

comparison with manual counts or by comparison with the revenue collected from fares 

(Boyle, 1998).  
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There are four problems that may be encountered when using electronic registering 

fareboxes: mechanical problems, operator compliance, software problems, and accuracy 

of data (Boyle, 1998). The bus operators must enter the correct codes at the beginning of 

each route and trip and the correct code for the type of passenger (Boyle, 1998). Boyle’s 

survey (1998) indicates that some transit agencies experienced difficulties when adding 

these additional responsibilities to the bus drivers’ duties, although the most successful 

agencies were the ones that provided continuous ERF training to their drivers. Ultimately, 

the quality of the data collected from ERFs is affected both by human and software 

errors. 

The transit agencies within this study that used ERF are RT, Yolobus, and North 

Natomas TMA. RT has electronic fareboxes installed on all of their buses except for the 

community buses.  

3.5.3 Manual Counts by Route Checkers  

Most transit agencies utilize manual counts either as their primary method of data 

collection, or for comparison against electronic methods (Boyle, 1998). Route checkers 

ride the transit vehicle and take manual counts of passengers boarding and alighting at 

each stop (Boyle, 1998). They typically have preprinted forms or handheld units that 

contain all of the stops on that route, with the sole responsibility to count passenger and 

record bus stop arrival and departure times (Boyle, 1998). Manual counts are the most 

well-established method of ridership data collection (Boyle, 1998).  

The following problems are associated with manual counting by route checkers: accuracy 

of data, consistency of data, labor intensiveness, reliability of route checkers, and cost of 
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manual counting (Boyle, 1998). Problems with accuracy and consistency of the data are a 

result of the training and reliability of the route checker, as well as transcription of the 

handwritten record to an electronic version (Boyle, 1998).  

RT and Natomas TMA were the only transit agencies within the study that used manual 

counts by route checkers to collect ridership data. It should be noted that Natomas TMA 

used untrained volunteer riders to provide manual counts. 

3.5.4 Manual Counts by Bus Drivers 

Manual counts by bus drivers are another method of ridership collection. Manual 

counting by bus drivers is concerned with many of the same problems as manual 

counting by route checker, including the labor intensiveness and reliability of the counter. 

But because bus drivers also have many other responsibilities such as driving the bus, 

monitoring passengers and collecting fares, they may be less focused on counting 

passengers than route checkers.  

All five of the transit agencies within the study use manual counts by bus drivers as either 

their primary method of data collection or in combination with another technique. 

Roseville Transit and Yuba-Sutter Transit exclusively use manual counts by bus drivers 

to collect ridership information, while North Natomas TMA and Yolobus use manual 

counts by bus driver in addition to electronic registering fareboxes. RT uses manual 

counts by bus driver in addition to the other three techniques.  
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3.5.5 Additional Data Quality Considerations 

As discussed above, the RT data was heavily filtered and manipulated prior to being 

obtained by this study. Although quantification of data quality is not possible, RT data is 

probably the least reliable of the five agencies analyzed. RT ridership data was only a 

sample of total ridership (unlike all other agencies), and further the collected data was not 

a random sample. Additionally the system was still in a testing phase. Furthermore, this 

analysis did not separate riders who board and alight within the downtown core. 

According to RT, ridership that fell within these categories was less than 5% of total 

ridership for commute periods, but other ridership data was not available to verify this.  

Although the Yolobus data was probably more reliable than RT, their daily ridership 

totals included regular bus routes (40, 41, 42A/B, 240) which operated all day during 

weekdays, in addition to commute and express services which only run Monday through 

Friday during peak commuting periods. The Yolobus ridership sample therefore included 

some non-commute data.  

Since the data from RT and Yolobus was received in an electronic format, there is a 

possibility of transcription errors on the part of the transit agency. The data from Yuba-

Sutter Transit, Roseville Transit, and North Natomas T.M.A. was received in a hardcopy 

format. There was also a possibility of transcription errors in entering that hardcopy data 

into data sets used by this study, although all data entry was verified for accuracy by a 

second person.  
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3.6 Data Cleaning 

The data sets provided by each of the five agencies contained only two cases of actual 

missing data, both for Yolobus (July 30, 2006 and July 31, 2006). Although cases of 

missing data were rare, plots of the data that was provided by each agency indicated that 

some data manipulation would be necessary to account for holidays and limited service 

days. As an example, Figure 3.1 below displays the original data for Roseville Transit:  

 

 
Figure 3.1: Plots of Original Roseville Peak-Period Ridership Data 
 

Plots of each agency’s original data set and imputed data set including Tuesday, 

Wednesday and Thursday ridership can be found in Appendix B. The drops in the plots 

represent transit holidays and limited service days as well as state holidays. Although not 

technically missing data, because agencies had provided data for all observations, the 

buses and the riders (assumed to be workers in downtown Sacramento) were “missing” 
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and therefore ridership was zero (or very low) for transit and state holidays, and 

unusually low for limited service days. Those occurrences were treated as missing data.  

For some missing observations, the missing data could be considered missing completely 

at random (MCAR). MCAR occurs if missing observations are distributed randomly over 

all observations, including that variable and any others, and can therefore be considered a 

simple, random subsample (Allison, 2002). The missing data in this analysis are MCAR, 

although not ignorable. As discussed in the Literature Review, discrete time series data 

assumes that the time series is observed at equal intervals. More complex methods are 

necessary if the observations are not equally spaced, and therefore the missing data in this 

analysis had to be imputed. There are multiple methods to deal with missing data. Some 

conventional methods, excluding listwise and pairwise deletion, include dummy variable 

adjustment, and imputation. A basic dummy variable regression was first used, but an ad 

hoc imputation method was ultimately used because of the detailed information about the 

missing value cases and their likely “true” values. 

Prior to any data imputation, it was necessary to identify days with no transit service, 

limited transit service days, and full transit service days that coincide with state holidays 

for each of the five transit agencies for 2006, 2007 and 2008. Those dates are considered 

missing observations, and are identified in Appendix D.  

From Yolobus data exploration, in general, there was low variation from the mean for 

Tuesday, Wednesday and Thursday ridership for any given week. However, it also 

appeared that there was low variation from the mean for the same weekday ridership for 
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three consecutive weeks. For example, the second Tuesday in a month showed similar 

ridership to the first and third Tuesdays in that month. Therefore, two methods for 

imputing data for “missing” observations were compared. The methods were tested using 

Tuesday, Wednesday, and Thursday Yolobus ridership data. The same set of holidays 

was used to test both methods. The two methods are described below, and the detailed 

calculations are given in Appendix E: 

o Method 1 used the same week that the holiday falls in but different days. 

T1 is defined as the ridership of the first non-holiday day in the holiday week, and T2 is 

defined as the ridership of the second non-holiday day in the holiday week. For example, 

if the holiday fell on a Wednesday, T1 was the ridership on Tuesday and T2 was the 

ridership on Thursday, whereas if it fell on Tuesday, then T1 applied to Wednesday and 

T2 to Thursday of the same week. Then the absolute value of the difference, |T1-T2|, was 

calculated. The differences for all of the holidays were summed and divided by the total 

number of holidays, giving the average difference. This difference was found to be equal 

to 152.33.  

o Method 2 uses the weeks prior to and after the holiday week but the same 

day. T1’ was defined as the ridership on the same day of the week before the holiday, and 

T2’ was defined as the ridership on the same day of the week after the holiday. For 

example, if the holiday fell on a Tuesday, T1’ was the ridership of the previous Tuesday 

and T2’ was the ridership of the following Tuesday. Then the absolute value of the 

difference, |T1’-T2’|, was calculated. The differences for all of the holidays were summed 

and divided by the total number of holidays, giving the average difference. This 

difference was found to be equal to 154.17. 
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Since the average difference of Method 1 was smaller than the average difference of 

Method 2, Method 1 was used for this study. More specifically, the average of T1 and T2, 

which lie in the same week as the day with the holiday, was used to impute the missing 

day’s ridership. In addition, there were no problems with Method 1 when holidays 

occurred in consecutive weeks, for example, Christmas Day and New Year’s Eve. Data 

imputation was done using Method 1 for the days that each transit agency ran limited or 

no services as well as state holidays when they ran full services. Finally, Thanksgiving, 

Christmas, and New Year’s Eve weeks were eliminated from the data as those entire 

weeks showed extremely low ridership.  

 The formula used for percent data imputed is % Imputed = (Number of Days 

Imputed/Total Number of Days) x 100. There were no differences between holidays, or 

limited service days, so the percent of data imputed for agencies with separate AM and 

PM peak data sets was constant. Table 3.8 shows that the amount of imputed data for any 

given agency is at most 2%, and usually much less. This is considered an acceptable level 

of imputation.  

Table 3.8: Percent Imputed Data 

Transit Agency Percent 

Roseville Transit 0.91% 
Yuba-Sutter Transit 0.91% 
Yolobus 0.68% 
North Natomas T.M.A. 1.36% 
Regional Transit  2.04% 
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3.7 Descriptive Statistics for Transit Ridership3 

The statistical methods discussed in the literature review are considered parametric 

statistical methods. Parametric methods make assumptions about the population 

parameters, more specifically probability distributions are usually assumed to be normal 

(Mann, 2004). The statistical tests used in this study, including the regression and time 

series analyses presented later, use parametric methods. The following discussion 

provides a general statistical overview of each transit agency’s ridership data, based on 

the cleaned data sets, prior to in-depth time series analysis. Both measures of center 

tendency and measures of dispersion will help to describe the data and its distribution. 

This section will present statistics, but leaves the interpretation of the statistics to Chapter 

5.  

3.7.1 Measures of Central Tendency 

Measures of center value describe the center of the distribution of a variable. The mean is 

an arithmetic average which is commonly used to describe distributions. However, the 

mean statistic is sensitive to extreme values, also known as outliers (Ross, 2005). The 

median is also a measure of center value, and describes the middle value of the data 

without being as affected by outliers (Ross, 2005). In order to describe the center values 

of each data set, Table 3.9 lists the mean and median ridership for each transit agency’s 

data sets.  

 

 

 

                                                 
3 Section 3.7 makes use of calculations and tables created by Jessica Seifert. 
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Table 3.9: Measures of Central Tendency: Mean and Median 
Transit Agency Data Aggregation Mean Ridership Median Ridership 

Roseville 
Transit 

AM 213.9 208.0 
PM 200.4 198.0 

Yuba-Sutter 
Transit 

AM 239.2 226.0 
PM 237.5 222.0 

Yolobus Daily 3499.5 3383.0 
North Natomas 

TMA 
AM 116.8 127.0 
PM 96.36 96.0 

RT 
AM 15498.4 15314.0 
PM 13639.6 13641.0 

A comparison of the median and the mean provides insight into the shape of the data sets 

distributions. If the median and mean have similar values, then the distribution is 

probably symmetric; otherwise, the data may be to some degree skewed (Ross, 2005). 

The data for this analysis shows that the medians for each agency are similar to their 

means. This indicates that the distributions of the ridership data are fairly symmetric. 

More specifically, the medians for Roseville Transit, Yuba-Sutter Transit, Yolobus, and 

Regional Transit are slightly less than their means, indicating that the distributions may 

be skewed to the right. Part of the skew in the histograms of Roseville Transit (AM peak 

period), Yuba-Sutter Transit, and Yolobus can be attributed to slightly higher ridership on 

Tuesdays compared to Wednesdays and Thursdays. The Roseville and Yuba-Sutter 

histograms are shown in Figure 3.2, confirming that expectation. The histograms of all 

data sets are given in Appendix F. 
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Figure 3.2: Roseville and Yuba-Sutter Transit Histograms 

Roseville Transit, Yuba-Sutter Transit, and Yolobus that have data sets spanning the 

period of 2006 to 2008. All three agencies experienced increased ridership in both 2007 

and 2008. In particular, Yuba-Sutter Transit experienced high ridership increases; from 

2006 to 2007, average AM ridership increased by 15.2% and from 2007 to 2008, it 

increased by 31.5%. Similar changes were seen in Yuba-Sutter Transit’s PM ridership 

during those years. The medians in Table 3.10 are much closer to their means. In fact, all 

agencies display this tendency, indicating that the yearly distributions are much more 

symmetric than the distributions of the entire data sets.  

Table 3.10: Yearly Means and Medians for Transit Agencies with Data Spanning 
2006-2008 
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Transit 
Agency 

Data 
Aggregation 

Mean Median 
2006 2007 2008 2006 2007 2008 

Roseville 
Transit 

AM 194.9 205.6 241.2 196.0 203.0 240.0 
PM 189.1 192.5 219.6 190.0 194.0 217.0 

Yuba-Sutter 
Transit 

AM 195.6 225.4 296.5 195.0 226.0 300.0 
PM 189.9 223.0 299.5 189.0 222.0 302.0 

Yolobus Daily 3175.1 3346.1 3977.2 3188.0 3360.0 3932.0 
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3.7.1.1 Ridership Means by Period 

Since not all data sets span multiple years, the means of the data were also calculated 

seasonally for the year 2008. The calculations were made based on the following seasons: 

• 1st quarter: January – March 

• 2nd quarter: April – June 

• 3rd quarter: July – September 

• 4th quarter: October – December 

RT was excluded as its data is observed weekly. All of the agencies experienced 

increased ridership between the first and second quarters of 2008. North Natomas TMA 

ridership increased the most during this period, with a 41.6% increase in AM ridership 

and a 24.9% increase in PM ridership. Similarly, all agencies saw an increase in ridership 

between the second and third quarters of 2008, with North Natomas TMA again showing 

the largest increase. However, opposite changes occurred between the third and fourth 

quarters of 2008. Almost all of the agencies experienced a decrease in ridership during 

this period; Yolobus was the only agency that saw an increase in ridership (1.7%). The 

means for each quarter of 2006, 2007 and 2008 are displayed in Table 3.11. In general, it 

appears that transit ridership decreased in the first and fourth quarters. 
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Table 3.11: Means by Season for 2006, 2007 and 2008 

Transit Agency 
Roseville 
Transit 

Yuba-Sutter 
Transit Yolobus 

North 
Natomas 
TMA 

Data 
Aggregation AM PM AM PM Daily AM PM 

2006 
Mean 

Ridership 

1st 190.3 182.4 189.7 182.9 3270.0     

2nd 203.2 190.7 190.7 184.9 3185.0     

3rd 197.2 196.2 201.9 196.2 3090.6     

4th 187.3 186.0 200.6 196.0 3161.8     

2007 
Mean 

Ridership 

1st 195.1 191.4 213.4 206.8 3333.8     

2nd 200.3 192.6 219.9 214.1 3269.8     

3rd 201.0 188.6 229.0 225.0 3385.3     

4th 228.6 198.1 240.8 248.8 3403.5     

2008 
Mean 

Ridership 

1st 226.3 199.6 253.9 257.2 3423.9 77.9 74.8 

2nd 235.1 213.3 288.8 292.3 3782.8 110.3 93.4 

3rd 266.0 234.6 333.8 335.7 4326.6 146.8 114.7 

4th 234.5 231.3 307.2 310.8 4399.9 130.8 101.3 

 

Means and medians were also calculated based on the Fix I-5 construction period. The 

three periods in Table 3.12 represent the time before the construction (January 1, 2008 – 

May 30, 2008), the time during the construction (May 31, 2008 – July 27, 2008), and the 

time after the construction (July 28, 2008 – December 31, 2008). All of the agencies 

experienced increases in mean ridership between the pre-construction and construction 

periods, but the changes in the ridership from the construction to post-construction 

periods varied by agency and by peak period within agencies. However, these differences 

are confounded with seasonal differences, as the previous table had shown.  
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Table 3.12: Means by Construction Period for 2008 

* RT AM and PM peak period ridership represents weekly ridership counts. 

 
3.7.2 Measures of Dispersion 

But measures of central tendency do not give a complete picture of the data’s 

distribution; measures of dispersion are also included as descriptive statistics and include 

the standard deviation. The sample variance, s2, is the average of the squared deviations 

from the sample mean, �¹, while the sample standard deviation, s, is the square root of the 

variance (Ross, 2004). The relative size of the standard deviation can provide information 

about how tightly clustered the data are about the mean. Smaller standard deviations 

indicate that the data are tightly clustered whereas larger standard deviations indicate that 

the data are relatively more dispersed (Mann, 2004). The standard deviation, together 

with the mean, can be used to calculate a range in which a certain percentage of the data 

can be expected to lie: the confidence interval (Ross, 2005). This range provides values in 

terms of the original data’s units that indicate how much of the data are “normally” 

contained in that range. Standard deviations (s) by construction period are given in Table 

3.13. 

Transit 
Agency 

Data 
Aggre-
gation 

Mean Ridership Median Ridership 

Pre During Post Pre During Post 

Roseville 
Transit 

AM 228.2 253.8 249.8 229.0 250.5 246.0 
PM 204.3 226.0 233.2 204.0 230.5 230.0 

Yuba-Sutter 
Transit 

AM 265.8 314.0 321.8 262.0 311.5 316.5 
PM 268.8 317.2 324.8 268.0 318.5 320.5 

Yolobus Daily 3563.1 4023.5 4393.5 3589.0 3973.0 4447 
North 

Natomas TMA 
AM 85.2 146.2 138.1 82.0 148.5 138.5 
PM 76.6 124.3 106.0 75.0 127.0 104.5 

RT 
AM* 14785.9 15525.8 16235.7 14990.4 15132.5 16423.0 
PM* 13361.6 13907.5 13824.4 13221.9 14188.6 13966.6 
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Table 3.13: Variance and Standard Deviation for Each Transit Agency 

Transit 
Agency 

Data 
Aggregation 

Standard Deviation (s) 

º» ± s º» ± 2s º» ± 3s Pre During Post 

Roseville 
Transit 

AM 20.54 24.91 24.46 
(186.0, 
241.8) 

(158.1, 
269.7) 

(130.2, 
297.6) 

PM 15.49 20.17 23.49 
(177.7, 
223.1) 

(155.0, 
245.8) 

(132.3, 
268.5) 

Yuba-Sutter 
Transit 

AM 29.14 16.33 21.38 
(191.4, 
287.0) 

(143.6, 
334.8) 

(95.8, 
382.6) 

PM 33 19.7 23.02 
(185.7, 
289.3) 

(133.9, 
341.1) 

(82.1, 
392.9) 

Yolobus Daily 240.38 209.77 229.1 
(3043.5, 
3955.5) 

(2587.5, 
4411.5) 

(2131.5, 
4867.5) 

North 
Natomas 

TMA 

AM 12.14 11.65 12.48 
(86.7, 
146.9) 

(56.6, 
177.0) 

(26.5, 
207.1) 

PM 8.75 12.37 12.42 
(75.2, 
117.6) 

(54.0, 
138.8) 

(32.8, 
160.0) 

RT 

AM 992.62 1265.84 1119.38 
(14238, 
16759) 

(12977, 
18019) 

(11717, 
19280) 

PM 687.33 1043.77 793.33 
(12824, 
14455) 

(12009, 
15270) 

(11193, 
16086) 

 

According to the empirical rule, the following percentages of approximately normal data 

lie in these respective ranges: 68% in the range �¹ ± s, 95% in the range �¹ ± 2s, and 

99.7% in the range �¹ ± 3s (Ross, 2005). These ranges were calculated for the data sets 

and are displayed in Table 3.13. The �¹ ± 3s range covers 100% of the data in all but two 

cases (with Roseville Transit AM and PM data sets containing points that lie outside of 

the �¹ ± 3s, 99.7% range), indicating that the data sets are approximately normal.  

3.7.3 Discussion 

All agencies had overall increases in mean ridership during the study period, but there 

were also seasonal variations in mean ridership. An informal analysis of data dispersion 

indicated that the data sets were approximately normal, with minor skews. Although this 

study’s data failed usual tests of normality, slight departures from normality do not cause 

serious issues (Kutner et al., 2005) With the possible exception of RT, this study’s data 
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sets are random samples with a sufficiently large number of observations. Their 

populations were considered approximately normally distributed, and parametric methods 

were justified. 

The next Chapter, which uses multiple regression and time series analyses, studies the 

transit agency data sets to identify independent variables that correlate with increased 

ridership and which can be used in predictive models to explain the change in ridership 

means during the Fix I-5 project.  
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CHAPTER 4 MODEL BUILDING 

This chapter describes the methodology that was used to create the time series 

intervention models for each agency’s transit ridership data. The first two sections 

present the steps taken to transform each of the nine data sets into stationary processes, 

including detrending using multiple regression analysis, and eliminating seasonal 

components using sinusoidal decomposition. The last section explains the intervention 

analysis methodology.  

4.1 Multiple Regression 

The nine time series plots shown in Appendix B show an overall increasing trend in 

ridership.  As discussed in the Literature Review Section, there are multiple methods of 

removing trend components in the time domain including least squares estimation, 

smoothing with moving averages and differencing, as well as regression techniques (Aue, 

2009; Yaffee, 2000). Regression techniques allow the modeler to eliminate trends using 

independent variables. As discussed earlier, each previous study used a different set of 

independent variables to predict transit ridership, but most of the studies that used 

multiple regression included gas prices, fares, and economic indicators such as 

unemployment rates.  The following sections describe the relationships between bus 

transit ridership and each independent variable used in this multiple regression. Plots of 

each independent variable can be found in Appendix C. 
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4.1.1 Bus Transit Ridership and Gas Prices 

Many studies have shown that gas prices significantly affect ridership, and that the 

ridership-gas price correlation is positive. Lane (2009) showed that gasoline prices are a 

statistically significant predictor of positive changes in transit ridership, with positive 

ridership-gas correlations. Wang and Skinner (1984) used data from seven transit 

authorities in the U.S. and showed that as real gasoline prices increase, transit ridership 

increases significantly. In a cross-sectional study, Taylor et al. (2009) analyze transit 

ridership from 265 urban areas using regional fuel prices provided by the Bureau of 

Labor Statistics as an explanatory variable and hypothesized a positive correlation. They 

found that fuel prices were a significant external factor positively influencing aggregate 

transit ridership. Kyte et al. (1988) shows that gasoline price is a statistically significant 

predictor of bus transit ridership, explaining that increasing the cost of automobile travel 

(i.e. gas prices) would motivate a mode change to transit. They find that gasoline prices 

show a negligible lag in their influence on ridership. For the previous work presented 

above, those studies that used gas prices in their analysis found them to be significant 

independent variables.  

This study’s data found strongly significant and positive Pearson’s correlations between 

bus transit ridership and gas prices ranging between 0.18 and 0.6 for eight of the data 

sets. The Pearson’s correlation coefficient, r, is defined for pairs (xi, yi) as (Ross, 2005): 

r � ∑ �¼½-¼¹¾½¿h ��À½-À�¹¹¹
�Á- �ÂÃÂÄ . 

The data sets with the highest correlations (Roseville Transit, Yuba-Sutter Transit and 

Yolobus) are those having the longest time series, suggesting that perhaps the impact of 



67 
 

 
 

higher gas prices was beginning to level off by 2008 (i.e. those who were susceptible to 

the effect of higher prices had already changed earlier than 2008), or possibly that the 

intervention of the Fix I-5 project and other anomalies of 2008 (economic conditions, 

serious regional fires during the summer) disrupted the previously regular relationship 

between gas prices and ridership. Also, the highest correlations between ridership and gas 

price were for bus transit agencies farthest from the Sacramento downtown core (Yuba-

Sutter Transit, Roseville Transit and Yolobus) indicating that commuters with longer 

commute distances may have been more sensitive to rising gas prices, and therefore, 

more inclined to use bus transit. The RT AM peak has a counterintuitive negative 

ridership-gas correlation of -0.2. The ridership-gas Pearson’s correlations are shown in 

Table 4.1. 

Table 4.1: Ridership-Gas Price Correlation Coefficients 

Transit Agency Peak Period 
Pearson's Ridership-Gas Price 
Correlation Coefficient 

Regional Transit AM -0.20*** 

Regional Transit PM 0.18*** 

Yolobus Daily 0.39*** 

North Natomas AM 0.25*** 

North Natomas PM 0.28*** 

Roseville Transit AM 0.60*** 

Roseville Transit PM 0.43*** 

Yuba-Sutter Transit AM 0.59*** 

Yuba-Sutter Transit PM 0.59*** 
***: p < 0.001 

4.1.2 Bus Transit Ridership and Unemployment Rates  

A small number of previous studies have examined the effects of labor statistics, 

specifically employment, on transit ridership. Agrawal (1981) showed that jobs in 
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Philadelphia were highly significant positive predictors of transit ridership. Surprisingly, 

he showed that 250 transit trips per year were created for every nonagricultural job in 

Philadelphia- about one trip per job per workday! He showed a positive correlation 

between jobs and transit trips. Kyte et al. (1988) used county employment rates but found 

it was not a statistically significant predictor of bus transit ridership. They theorized that a 

cause was the high percentage of his sample that was student riders. Employment showed 

a negligible lag in terms of its impact on ridership. Interestingly, Agrawal (1981) noted 

that he initially used both the number of jobs in Philadelphia as well as the 

unemployment rate, but found that they had the same effect, and therefore dropped the 

unemployment rate variable as it was only available for a larger area. None of the other 

studies discussed in the Literature Review included labor statistics in their analysis.  

This study’s data found positive Pearson’s correlations between bus transit ridership and 

unemployment, with rates ranging between 0.51 and 0.88 across eight of the data sets. 

The ninth data set, the RT PM peak period, has a 0.19 ridership-unemployment 

correlation coefficient possibly indicating that the unemployed tend to not use transit 

during the PM peak period as much as the AM peak period. The ridership-unemployment 

Pearson’s correlations are shown in Table 4.2. 
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Table 4.2: Ridership-Unemployment Correlation Coefficients 

Transit Agency Peak Period 
Pearson's Ridership-Unemployment 
Correlation Coefficient 

Regional Transit AM 0.51*** 

Regional Transit PM 0.19*** 

Yolobus Daily 0.85*** 

North Natomas AM 0.64*** 

North Natomas PM 0.52*** 

Roseville Transit AM 0.69*** 

Roseville Transit PM 0.64*** 

Yuba-Sutter Transit AM 0.88*** 

Yuba-Sutter Transit PM 0.88*** 
***: p < 0.001 

4.1.3 Bus Transit Ridership and Gross Domestic Product  

Although no known studies concerned with transit ridership used GDP in their analysis, 

GDP is a common variable for predicting VMT, so there is ample precedent for using it 

as a predictor of travel demand (Schafer, 1998; Schafer and Victor, 2000).  GDP is an 

overall indicator of the economic well-being of the USA. It could be expected that as 

GDP followed an upward trend, and general purchasing power increased, transit ridership 

may also increase. But conversely, a substitution phenomenon may result. As GDP 

decreases, transit ridership may still increase. Commuters may decide to abandon their 

single-occupant vehicles for a less expensive mode to commute, by substituting transit as 

their main commute choice. Plausible explanations exist for both positive and negative 

correlations between ridership and GDP, and there are no previous studies that clarify 

that relationship. Because there isn’t a comprehensive list of independent variables which 
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have been identified that predict bus transit ridership, GDP was included as a potential 

independent variable. 

4.1.4 Bus Transit Ridership and Transit Fares 

Many studies have examined the effects of fare pricing on transit ridership, with many 

studies born in Economics and based on fare elasticities. As Cervero (1990) states, the 

primary focus of transit pricing research has been fare elasticity estimations. Transit 

planners commonly use the Simpson &  Curtin rule which states there is a fare elasticity 

of -0.33, or in other words for a 10% increase in fares, transit ridership will decrease by 

3.33% (Curtin, 1968). Agrawal (1981) analyzed full-fare adult ridership and found that 

average fare (adult riders) was statistically significant in affecting ridership. He found 

that for every 1% increase in fares, ridership decreased by 0.385%, very similar to the 

Simpson & Curtin rule. Wang and Skinner (1984) used data from seven U.S. transit 

authorities and found that as real fare increased, ridership decreased significantly. He 

noted that a more accurate measure of fare would be to create an index that includes 

different fare types and includes passes; however, he used adult cash fares. Taylor et al. 

(2009) analyze transit ridership from 265 urban areas and found a significant negative 

relationship between ridership and fares.  Kyte et al. (1988) show that transit fares are 

statistically significant negative predictors of bus transit ridership, noting that there is a 

lag structure of three months.  Gomez-Ibanez (1996) describes bus transit ridership as a 

function of transit fares.  Narayan and Considine (1989) used a modified intervention 

analysis approach to model the effects of two cases of fare increases on an upstate New 
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York transit system and found that both fare increases were significant factors in the 

decrease of transit ridership.   

With respect to this study’s data, only Roseville Transit and Yuba-Sutter Transit had fare 

changes during the study period, and those series exhibited positive Pearson’s 

correlations between bus transit ridership and fares. These results are not consistent with 

the literature which found negative correlations, and could be the result of a spurious 

correlation of the fare increase with the rising gas prices that were occurring during the 

same period (and leading to increased ridership). Fare increases for both agencies 

occurred at the end of 2007. The correlation between Roseville Transit fares and gas 

prices is 0.46, while the correlation between Yuba-Sutter Transit fares and gas prices is 

also 0.46, which are both significant at beyond the Å=0.01 level. The ridership-fare 

Pearson’s correlations are shown in Table 4.3. 

Table 4.3: Ridership-Fare Correlation Coefficients 

Transit Agency Peak Period 
Pearson's Ridership-Fare 
Correlation Coefficient 

Roseville Transit AM 0.65*** 

Roseville Transit PM 0.45*** 

Yuba-Sutter Transit AM 0.76*** 

Yuba-Sutter Transit PM 0.79*** 
***: p < 0.001 

Given the availability of data and hypothesis regarding affects, this study conducted 

multiple regression analysis using these four independent variables: monthly Sacramento 

unleaded regular gas price averages, national current dollar adjusted GDP data, monthly 

unemployment rates for the Sacramento-Arden-Arcade-Roseville, CA metropolitan area, 
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and basic one-rider fare rates for those agencies whose fare pricing changed during the 

analysis period (Yuba-Sutter Transit and Roseville Transit).  During exploratory model 

building, for each agency, those predictor variables significant at the α=0.1 level were 

included in this analysis, but all final coefficients are significant at the α=0.01 level, as 

shown in Appendix G. 

4.2 Sinusoidal Decomposition 

As previously discussed, Box and Tiao (1975) constructed an analysis method called 

intervention analysis to determine the effect on a time series of an external event 

occurring at a known time. The first step in their methodology is to transform the time 

series into a stationary process. To remove autocorrelation in the data, this study used a 

sinusoidal decomposition as opposed to the commonly used differencing techniques. 

Applying the lag & difference operator to the original series yields a loss of & observations 

in the sample. Sinusoidal decomposition, on the other hand, decomposes a time series 

into the sine and cosine functions based on the periodic components of the series. The 

periodogram was examined to identify the periodic components, and next those possibly 

genuine cycles were tested for significance using spectral ANOVA. For each data set, 

those cyclic components significant at the α=0.1 level were included in this analysis.  

4.3 Intervention  

Once the data sets were detrended and seasonal components were eliminated, the first 

step of the intervention analysis was complete. The basic intervention model can be 

described as: 

� � 1 �<
∞

<=$
¶-< � � 
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where Mt  and Yt are the input (pulse/step) and output (ridership, after removal of trend 

and seasonal components)) series of the model respectively, �< is a linear filter and Nt 

represents a noise sequence.  For this analysis, a simplified rational operator was used 

which assumed no delay parameter and allowed only a step or pulse indicator series.  The 

intervention model becomes: 

� � A¶ � � 

where  A represents the change in mean ridership due to the intervention and Mt 

represents the indicator (0-1) variable. The type of indicator variable was based on data 

exploration, however after stationarity was achieved, no agency’s plot displayed a visual 

change in mean near the construction period. To be flexible about the nature of the 

possible impact of the intervention, all series were modeled with both an intervention 

causing a temporary change in the response variable (a pulse indicator variable), and 

separately an intervention causing a permanent change in the response variable (a step 

indicator variable):  

¶ � �1 �� Y � �0 �� Y � ��           ¶ � �1 �� Y � �0 �� Y � �� 

where t is time, and T is the period of the intervention. The pulse indicator variable 

consisted of one pulse for the duration of the Fix I-5 construction period. The remaining 

four steps of the Box and Tiao intervention analysis methodology were followed for each 

data set. After the series was stationary, OLS regression was used to obtain a initial 

estimate of A, which represents the transfer model. The initial estimate of A provides a 

beginning point for the minimization discussed in Section 2.6. Next, the residuals from 
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the OLS regression were modeled as an ARMA(p,q) process, which represents the noise 

model. For model diagnostics, the residuals were analyzed using goodness-of-fit tests. 

For all goodness-of-fit testing this study used the Sample ACF, qq plot, Ljung-Box test 

and rank test. Next, the sum of squares, ∑ ��� �¡�
�� �¡�¢� �W, V, ¥¦, θ¦�I=¨t � , was 

minimized in order to obtain final parameter estimates of both the noise and transfer 

model which were then combined into one intervention model. Then, the final model 

residuals were analyzed using goodness-of-fit tests. The measure of the change in 

ridership due to the intervention is A.  
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CHAPTER 5 RESULTS 

The main objective of this analysis was to determine the impact that the Fix I-5 project 

had on Sacramento-area bus transit ridership. Interventional analysis was used in order to 

assess the magnitude of the effect and the projected ridership change of the Fix I-5 

project. First, the trend and seasonal components were eliminated using multiple 

regression and sinusoidal decomposition. Next, intervention techniques were used to 

determine the impact that the Fix I-5 project had on Sacramento-area transit ridership. 

The results of this analysis are discussed in the following sections.  

5.1 Eliminating Trends: Details of Multiple Regression 

Multiple regression was used to detrend each of the nine data sets. Using this technique, 

systematic trend components were eliminated using independent variables. Those 

independent variables were identified by examining past models of transit ridership, and 

identifying other significantly correlated variables. Multiple studies have shown that a 

variety of independent variables affect transit ridership. This analysis used monthly 

Sacramento unleaded regular gas price averages, national current dollar adjusted GDP 

data, monthly unemployment rates for the Sacramento— Arden-Arcade—Roseville, CA 

metropolitan area, and basic one-ride adult fare prices for Yuba-Sutter Transit and 

Roseville Transit whose fare pricing changed during the period of analysis.  Initially, all 

models used the first three independent variables, with the exception of Yuba-Sutter 

Transit and Roseville Transit which also used the fourth (the fare pricing) independent 

variable. During exploratory model building, for each agency, those predictor variables 

significant at the α=0.1 level were included in this analysis, but all final coefficients are 
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significant at the α=0.01 level. Nine detrended models were created through the four-step 

iterative process expressed below:  

1. Conduct multiple regression using all independent variables, 

2. Remove independent variables that were significant at less than the α=0.1 level, 

3. Test for collinearity using variance inflation factors and condition index, 

4. Remove independent variables that displayed variance inflation factors and 

condition indexes over 10 and 30 respectively.  

As a result of the iterative process described above, GDP was removed as an independent 

variable. The reasons were as follows: 

1. Multicollinearity can be formally detected using two separate statistical 

tests including the variance inflation factor (VIF) and the condition index. When testing 

for multicollinearity, the VIF for the GDP independent variable for all data sets was 

much higher than the VIF for all other independent variables, and often the reason for 

mean VIF values above 1 which can be an indication of multicollinearity. The GDP 

condition index for all data sets was above 30. The high values of both the variance 

inflation factors and condition indices suggest serious multicollinearity (Kutner et al., 

2004). 

2.  "Informally, it has been observed that multicollinearity is sometimes 

manifested by having coefficients that are large in magnitude but opposite in sign, with 

correspondingly large standard errors, indicating that the impacts of two correlated 

variables on the dependent variable are largely counteracting each other" (Mokhtarian, 

2009). In this analysis, the GDP independent variable frequently had regression 



77 
 

 
 

coefficients and pairwise correlation coefficients that exhibited opposite signs and large 

standard errors. Pearson correlations were compared to the regression coefficients for 

each of the independent variables for each data set. The signs between the regression and 

correlation coefficients for 4 of the 9 possible data sets were opposite for the GDP 

independent variable.4 Furthermore, opposite coefficient signs were present for only 3 of 

22 possible cases for the remaining independent variables (9 cases for gas prices, 9 cases 

for unemployment rates, 4 cases for fare prices).5 

3. The adjusted R2 value for the regression fit changed very little when 

including the GDP independent variable, indicating that it added little to the explanatory 

power of the model beyond the other variables included. In fact, for the Roseville Transit 

AM peak, the North Natomas AM peak and the Regional Transit AM peak, the 

elimination of GDP as an independent variable increased the adjusted R2 value, 

indicating that the increase in variance explained with the inclusion of GDP was so small 

that it did not compensate for the penalty incurred due to the reduction in parsimony of 

the model. The results for the adjusted R2 value are compared in Table 5.1. From Table 

5.1, the RT adjusted R2 values for both peak periods are smaller than the adjusted R2 

values for all other agencies, possibly due to data quality issues. 

  

                                                 
4 These data sets were North Natomas AM peak, North Natomas PM peak, Roseville Transit PM peak, and 
Yolobus (daily ridership total). 
5 The three cases were fare for the Roseville Transit PM peak, gas price for the Regional Transit AM peak, 
and unemployment for the Regional Transit PM peak. 
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Table 5.1: Adjusted R2 With and Without the GDP Independent Variable 

Transit Agency  
Data 
Aggregation 

Adjusted 
R2 (including GDP 
variable) 

Final Adjusted 
R2 (without GDP 
variable) 

Yuba-Sutter Transit AM 0.8805 0.8762 

Yuba-Sutter Transit PM 0.8788 0.8705 

Yolobus Daily 0.7510 0.7387 

Roseville Transit AM 0.6286 0.6287 

Roseville Transit PM 0.4769 0.4585 

North Natomas TMA AM 0.8583 0.8586 

North Natomas TMA PM 0.6880 0.6728 

Regional Transit AM 0.2294 0.2328 

Regional Transit PM 0.2108 0.1086 

 
4. GDP is an overall indicator of the economic well-being of the USA. 

National GDP data is a broad measure of the country’s economic activity and might be 

very different than the economic conditions in the area served by any transit district. No 

other transit studies reported results using GDP as an independent variable which may be 

due to the imprecision of GDP for a selected locality. As mentioned earlier, it is common 

to use it as an explanatory variable for models of VMT, but those models tend to be at the 

nation or state level, with annual observations, which is more closely matched to the 

spatial and temporal granularity at which GDP is available. As discussed previously, it 

could be expected that as GDP followed an upward trend, and as general purchasing 

power increased, transit ridership may also increase. But conversely, a substitution 

phenomenon may result. As GDP decreases, transit ridership may still increase. 

Commuters may decide to abandon their single-occupant vehicles for a less expensive 

mode to commute, by substituting transit as their main commute choice. Plausible 
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explanations exist for both positive and negative correlations between transit ridership 

and GDP, and there are no previous studies that clarify that relationship. 

Once GDP was removed as an independent variable, problems with multicollinearity and 

opposite coefficient signs disappeared. Appendix G displays multiple regression model 

selection details for all agencies. Gasoline prices and unemployment rates were 

significant predictors of transit ridership for all agencies except Regional Transit. The 

significance of gasoline price and unemployment rate is consistent with the literature (e.g. 

Lane, 2009; Wang and Skinner, 1984; Taylor et al., 2009; Kyte et al., 1988; Agrawal, 

1981). Rosevile Transit and Yuba-Sutter Transit fare increases were not statistically 

significant predictors of transit ridership, which was inconsistent with the literature (e.g. 

Agrawal, 1981; Wang and Skinner, 1984; Taylor et al., 2009; Kyte et al., 1988; Narayan 

and Considine, 1989). Table 5.2 summarizes the final regression models. The magnitudes 

of the parameter estimates of change in ridership for both the gasoline price and 

unemployment rate independent variables have a large range, as does the “average” 

ridership across the five agencies. For example, every $1 increase in gasoline price 

results in a 9.482 increase in riders for Roseville Transit PM peak period, whereas the 

same $1 increase in gasoline price results in a 30.108 increase in riders for Yuba-Sutter 

Transit PM peak period. This can be partly be explained because Roseville Transit’s 

mean ridership is 200.4, while Yuba-Sutter’s mean ridership is 237.5 (see Section 3.7.1).  
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Table 5.2: Statistically Significant Predictors of Bus Transit Ridership 

Transit Agency Peak Period Final Model  Variables 
Parameter Estimate                   
(t statistic) 

Regional Transit AM none No independent variables  

Regional Transit PM none  No independent variables  

Yolobus Daily 

Gasoline Price 
97.37                                      
(4.796) 

Unemployment Rate 
335.99                                       
(31.436) 

North Natomas AM 

Gasoline Price 
39.191                                       
(28.73) 

Unemployment Rate 
33.021                                       
(21.63) 

North Natomas PM 

Gasoline Price 
22.100                                                
(13.48) 

Unemployment Rate 
23.967                                                   
(16.36) 

Roseville Transit AM 

Gasoline Price 
20.296                                     
(13.71) 

Unemployment Rate 
13.869                                      
(17.80) 

Roseville Transit PM 

Gasoline Price 
9.482                                       
(6.526) 

Unemployment Rate 
11.512                                       
(15.050) 

Yuba-Sutter Transit AM 

Gasoline Price 
27.611                                        
(18.836) 

Unemployment Rate 
33.486                                       
(43.390) 

Yuba-Sutter Transit PM 

Gasoline Price 
30.108                                       
(18.55) 

Unemployment Rate 
36.038                                       
(42.17) 

Table 5.3 summarizes the means and medians of each transit agency after trend 

components were eliminated. As compared to Table 3.12, the means and medians of the 

periods before, during and after construction contain reduced trend components. 
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Table 5.3: Means by Construction Period for 2008 After Detrending Data 

Transit 
Agency 

Data 
Aggregation 

Mean Ridership Median Ridership 

Pre During Post Pre During Post 

Roseville 
Transit 

AM 230.84 259.04 245.25 230.72 259.04 247.10 

PM 211.21 228.26 225.83 209.84 228.26 226.70 

Yuba-
Sutter 
Transit 

AM 270.58 320.20 313.11 266.60 320.20 315.64 

PM 271.44 325.18 317.07 267.03 325.18 319.83 

Yolobus Daily 3734.56 4077.30 4226.25 3757.55 4077.30 4234.43 

North 
Natomas 

TMA 

AM 86.98 144.00 136.50 82.08 139.80 139.53 

PM 78.15 114.64 107.75 75.10 112.22 109.77 

RT 

AM 14785.90 15525.80 16235.70 14990.40 15132.50 16423.00 

PM 13361.60 13907.50 13824.40 13221.90 14188.60 13966.60 

 

5.2 Eliminating Seasonal Components in the Data: Details of Sinusoidal 

Decomposition 

Sinusoidal decomposition was used to eliminate seasonal components in each of the nine 

data sets, based on the residuals of the multiple regression analyses. A seasonal 

component encompasses cycles at any recurrent period. As previously discussed, a time 

series can be represented as the sum of periodic components: 

+ � 1 A3 cos72πω3t: �;

<= 
B3 sin72πω3t: � � 

where + is the residual of the multiple regression described in Section 5.1, Aj and Bj are 

uncorrelated random variables with mean zero and variances equal to σ2 and A �  
B, 

where d is the period of the cycle. The periodogram displayspeaks at the frequency where 

cyclic behavior occurs. An example of the Yuba-Sutter Transit AM peak period 
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periodogram is displayed in Figure 5.1. The dashed lines are not typically included as 

part of the periodogram, but are shown here to indicate possible periodic components.   

 

Figure 5.1: Yuba-Sutter Transit AM Peak Periodogram 

Given that A �  
B, the potentially significant periods of the cycles in the Yuba-Sutter 

Transit AM peak period are 147, 74 and 3 days. Since the data set includes only Tuesday, 

Wednesday and Thursday data, the 3 day cycle is a surrogate for the weekly cycle. The 

74 day cycle is a six month cycle, and the 147 day cycle is a yearly cycle. From the 

height of each peak, it is clear that the yearly cycle explains the most variance, followed 

by the half-yearly, then the weekly cycles. However, spectral analysis of variance 

(ANOVA) was used in order to test each cycle period for statistical significance. The 

percent of variance explained by each cycle can also be calculated from the results of the 

spectral ANOVA: 

�7A<: � SU�7A<: � SV�7A<: 
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where 

SU7A<: �  
√I ∑ + cos�2CA<Y�I=    

SV7A<: � 1
√D 1 + sin� 2CA<Y�

I

= 
 

where �7A<: is the definition of the periodogram, SU7A<: � Æl�S7A<:�, and SV7A<: �
���S7A<:�. For example, the Yuba-Sutter AM peak period, the results of the spectral 

ANOVA show that at least one of the components of each cycle, the sine or the cosine 

component, is significant at the α=0.001 level. The F statistic, which describes the 

explained variance over the unexplained variance, was used to assess the strength of each 

cycle. Table 5.4 shows the significant cycles within each data set as well as the variance 

explained due to each frequency. 

Table 5.4: Statistically Significant Periodic Components for Each Agency 

Transit Agency  
Data 
Aggregation 

Significant Cycles                                                                                                
(percent variance explained) 

Yuba-Sutter Transit AM (daily) 3(6.2%) 74(11.0%) 147(21.33%)   

Yuba-Sutter Transit PM (daily) 3(4.32%) 73(15.04%) 147(23.88%)   

Yolobus Daily 28(4.33%) 38(3.48%) 74(16.83%) 220(7.98%) 

Roseville Transit AM (daily) 3 (12.75%) 58(3.05%) 147(7.29%)   

Roseville Transit PM (daily) 3(6.85%) 42(2.82%) 147(5.43%)   

North Natomas TMA AM (daily) 3(3.76%) 15(4.10%) 19(6.63%) 30(13.39%) 

North Natomas TMA PM (daily) 3(6.98%) 8(4.10%) 25(12.86%) 74(16.99%) 

Regional Transit AM (weekly) 4.5(7.18%) 7.1(8.79%)     

Regional Transit PM (weekly) 3.6(8.81%) 4.2(6.78%)     
 

The results show that all agencies with daily peak period data show significant weekly 

cycles, indicated as a three-day cycle. It is expected that a weekly cycle would be present 
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in the bus transit data sets, because within each week there are recurring commute 

patterns. Although the data sets only include Tuesday, Wednesday, Thursday ridership, in 

general, Wednesday ridership tends to be higher than Tuesday and Thursday ridership. 

Pre-cleansed data showed strong weekly cycles with lower ridership on Monday and 

Friday and higher ridership on Tuesday, Wednesday and Thursday, possibly attributable 

to 9/80 work schedules (in which an employee works 80 hours in nine days instead of 

ten) or 4/40 work schedules (in which an employee works 40 hours in four days instead 

of five). Yuba-Sutter Transit’s AM and PM peak periods show almost identical cycles, 

including weekly, half-yearly and annual cycles, which is an expected result. Because of 

additional riders in the mid-day period (between peak periods) for Yolobus ridership 

data, perhaps weekly commuting patterns are hidden. However, there are significant 9-

week, three-month, half-yearly, and one-and-a-half year cycles. It should be noted that 

harmonics, which are multiples of the fundamental frequency, A (such as 2A, 3A, 

4A etc.) were considered, but the one-and-a-half year cycle is not a harmonic of the 

yearly cycle, nor is the yearly cycle a harmonic of the half yearly cycle. Both of Roseville 

Transit’s peak periods show weekly and yearly cycles. The AM peak period displays a 5-

month cycle, while the PM peak shows a 3.5-month cycle. The results also show that 

North Natomas T.M.A.’s peak periods display very different cycles, with the exception of 

a weekly cycle displayed by both peak periods.  The AM peak period shows a 5, 6, and 

10 week cycle while the PM peak shows a 2, 8 week, and half-yearly cycle. Finally the 

results indicate both of the RT data sets show approximately monthly cycles, while the 

AM peak also shows a 7-week cycle. The periodogram of each data set is given in 

Appendix H.  
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5.3 Intervention Analysis: Details of the Fix I-5 Impact 

Intervention analysis is a statistical method to determine the change in the mean level 

associated with the intervention event, assuming that the intervention event occurs at a 

known time. In this analysis, the intervention event is the Fix I-5 construction project. 

This analysis will determine if a temporary or permanent change in ridership better 

explains each data set, and the magnitude of the mean change in ridership.  

Intervention analysis requires a stationary input time series process. In order to achieve 

stationarity, trend and seasonal components were removed as described above. Then a 

time series package, Interactive Time series Modeling (ITSM), was used for the 

intervention analysis. Intervention analysis takes the form: 

� � A¶ � � 

where A is the change in mean ridership (transfer model), ¶ is the indicator function, 

and � is the noise (noise model). The analysis is initialized by assuming the noise is 

white noise. OLS regression provided a preliminary estimate of the change in mean 

ridership, A. Next, the noise model, consisting of the OLS regression residuals, was 

modeled using a ARMA(p,q) model. Given a maximum and minimum p and q value, 

ITSM will process all possible combinations and provide the initial noise model with the 

lowest AICC value for the ARMA(p,q) model, represented as  

 

� � � �- � � � ���-� � � , � �- , � , ���-� 

The AICC criterion chooses p,q, ��, and ��while minimizing the AICC statistic (not the 

maximum likelihood estimators), and does not necessarily identify the best model fit, but 



86 
 

 
 

suggests an initial model. Four goodness-of-fit tests, including the Sample ACF, the 

Ljung-Box modification of the portmanteau test, the rank test, and the qq plot, were used 

to assess the initial model fit, for example including residual whiteness. In the nine data 

sets, the AICC criterion produced models that passed the four goodness-of-fit tests at the 

α = 0.05 level.  An advantage of using ITSM is that it automatically places causality 

restrictions on model parameters (see discussion in Chapter 2).  Another advantage of 

ITSM is that it is computationally efficient. The last step of the intervention analysis is a 

re-estimation, through minimization, of the parameters of the noise and transfer models. 

The final output, A, is a number which explains the change in mean of the ridership time 

series. Both temporary and permanent changes were hypothesized, with goodness-of-fit 

tests determining which indicator better explained the change in ridership. The results of 

the intervention analysis for each data set are provided in Appendix I. The results of the 

comparison of goodness-of-fit tests for the final models, including both permanent and 

temporary indicator models, for each data set are provided in Appendix J. The three steps 

below summarize the methodology for the complete analysis of the Yuba-Sutter AM 

peak period. The steps are consistent for all agencies, but the specific equations will vary 

based on the specifics of each agency’s data set.    

1. Eliminate Trend Components: 

� � #$ � # ¯©� � #�±Dl�ª&	³�lDY � % 

2. Eliminate Seasonal Components: 

% � A cos Ç2CY3 É � B sin Ç2CY3 É � A�cos Ç2CY74 É � B�sin Ç2CY74 É � A!cos Ç2CY147É � B!sin Ç2CY147É � �  

3. Intervention Analysis: 

� � A¶ � � 
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where � is the cleaned ridership series, and ¶ is the indicator function. Table 5.5 

displays the final values for the change in mean ridership of each agency based on the 

results of the intervention analysis. 

Table 5.5: Intervention Analysis Final Model Results 

Transit Agency  
Data 
Aggregation 

Indicator 
Function 

Final Model Estimate                    Ë (mean change in 
riders) 

Distance to 
Sacramento 
Downtown (miles)* 

Yuba-Sutter Transit AM Pulse -7.4 

49.8 Yuba-Sutter Transit PM Pulse -6.25 

Yolobus Daily Pulse -13.65 18.7 

Roseville Transit AM Pulse -1.15 

19.1 Roseville Transit PM Pulse -3.75 

North Natomas TMA AM Step 1.2 

6.7 North Natomas TMA PM Pulse 2.6 

Regional Transit AM Step 552.6 

3.7 Regional Transit PM Step 351.1 
* Distances were calculated from 9th and H Streets in Sacramento to downtown Sutter, the Yolobus offices 
in Woodland, Roseville downtown, and the North Natomas TMA office. The RT distance was calculated as 
an average of distances from McKinley Park, William Land Park and CSU Sacramento. 

 

5.4 Significance of Results 

Table 5.6 shows the intermediate adjusted R2 values for the models of detrending, 

eliminating seasonal components (deseasoned), and intervention analysis, including both 

cumulative and incremental adjusted R2 values. The value of R2 increased with each step 

of the analysis, indicating that increasing amounts of variance in the original ridership 

data set were cumulatively explained at each step.  
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Table 5.6: Final Model Significance 

Transit 
Agency 

Data 
Aggregation 

Cumulative 
Detrended 
Adjusted R2 

Cumulative 
Deseasoned 
Adjusted R2 
(Incremental 
Addition) 

Cumulative 
Intervention 
Analysis 
Adjusted R2 
(Incremental 
Addition) 

Final Model 
Adjusted R2 
and  
Significance 

Yuba-Sutter 
Transit 

AM 0.8762 
0.9228 
(0.0466) 

0.9997 
(0.0769) 

0.9997*** 

Yuba-Sutter 
Transit 

PM 0.8705 
0.9255 
(0.055) 

0.9987 
(0.0732) 

0.9987*** 

Yolobus Daily 0.7387 
0.8206 
(0.0819) 

0.9951 
(0.1745) 

0.9951*** 

Roseville 
Transit 

AM 0.6287 
0.7105 
(0.0818) 

0.996 
(0.2855) 

0.996*** 

Roseville 
Transit 

PM 0.4585 
0.5339 
(0.0754) 

0.9635 
(0.4296) 

0.9635*** 

North 
Natomas 
TMA 

AM 0.8586 
0.8921 
(0.0335) 

0.999 
(0.1069) 

0.999*** 

North 
Natomas 
TMA 

PM 0.6728 
0.7955 
(0.1227) 

0.9961 
(0.2006) 

0.9961*** 

Regional 
Transit 

AM No Trend 
0.0834 
(0.0834) 

0.991 
(0.9076) 

0.991*** 

Regional 
Transit 

PM No Trend 
0.0792 
(0.0792) 

0.985 
(0.9058) 

0.985*** 

***: p < 0.001 

 

 

The final adjusted R2 value describes the amount of total variance that is explained by the 

intervention model (including the intermediate steps of eliminating trend and seasonal 

components). Based on percentage points for the distribution of R2 (Shapiro and Francia, 

1972), the results of all agency’s models are statistically significant at the α=0.001 level. 

The highly significant final R2 values from the final model indicate that almost all of the 

variance in ridership has been explained by eliminating trend components, eliminating 

seasonal components and the effects of the intervention. In Section 3.7, descriptive 

statistics were given and the conclusions were drawn that that all agencies saw major 
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increases in ridership for the majority of the data’s time span. The results of the 

incremental change in the adjusted R2 values at each step show that the increases in 

ridership can be mostly attributed to increasing gas prices and unemployment rates, and 

to a much smaller degree, the Fix I-5 project. The exception is RT, where the Fix I-5 

project accounts for most of the explained variance in ridership. This leads to the 

conclusion that the RT AM peak ridership is very well explained by the combination of 

an ARMA(3,3) model and a step function, while the RT PM peak ridership is very well 

explained by the combination of an ARMA(0,5) model and a step function. 

Table 5.7 presents the model estimate of change in number of riders. Intervention 

analysis does not provide a formal test of statistical significance for the projected increase 

or decrease in number of riders. The projected change in number of riders (ω) is difficult 

to interpret in the absence of a benchmark indicating typical ridership levels for a given 

agency. Table 5.7 explains the effects of the Fix I-5 project on bus transit ridership taking 

total ridership into account. The column “ω/(ω+CFR)” describes the change in the mean 

number of riders divided by the observed ridership, where the observed ridership is 

viewed as the sum of the ridership due to the Fix I-5 project (ω) and the ridership that 

would have occurred without the Fix I-5 project (CFR, for “counterfactual ridership” 

which describes mean ridership levels in the absence of the Fix I-5 project, but during the 

same period). This percentage represents the proportion of total riders who were added or 

lost due to the Fix I-5 project. The last column “ω/CFR” represents the increased or 

decreased proportion of riders as compared to the situation if the Fix I-5 project did not 

happen. In all cases, the mean change in ridership is less than 4%, signifying a small 

change. 
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Table 5.7: Interpretation of Model Significance 

Transit 
Agency 

Data 
Aggregation 

Indicator 
Function 

Final Model 
Estimate                    Ë (mean change 
in riders) 

Observed 
Mean 
Ridership 
during Fix I-5 
Project  
(Ë +CFR) 

Ë/(Ë+CFR)  
x 100% 

Ë/CFR  
x 100% 

Yuba-
Sutter 
Transit 

AM Pulse -7.4 314 -2.36% -2.30% 

Yuba-
Sutter 
Transit 

PM Pulse -6.25 317.2 -1.97% -1.93% 

Yolobus Daily Pulse -13.65 4023.5 -0.34% -0.34% 

Roseville 
Transit 

AM Pulse -1.15 253.8 -0.45% -0.45% 

Roseville 
Transit 

PM Pulse -3.75 226 -1.66% -1.63% 

North 
Natomas 
TMA 

AM Step 1.2 146.2 0.82% 0.83% 

North 
Natomas 
TMA 

PM Pulse 2.6 124.3 2.09% 2.14% 

Regional 
Transit 

AM Step 552.6 15525.8 3.56% 3.69% 

Regional 
Transit 

PM Step 351.1 13907.5 2.52% 2.59% 

5.5 Discussion 

In the multiple regression analyses, gasoline prices and unemployment rates were 

significant predictors of transit ridership for all agencies except Regional Transit. Both 

gasoline price and unemployment rate had statistically significant correlations with bus 

transit ridership. As gasoline prices increased, ridership increased as people switched to 

bus transit from other modes of transit. As unemployment rates rose, ridership also 

increased. Possibly other economic hardships related to unemployment, including pay 

cuts and reduced work hours, resulted in increased bus transit ridership. The relationship 

between gasoline price and transit ridership is consistent with the literature (Lane, 2009; 
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Wang and Skinner, 1984; Taylor et al., 2009; Kyte et al., 1988). The relationship between 

unemployment rates and transit ridership is consistent with Agrawal (1981), as he states 

that jobs in Philadelphia and the unemployment rate had the same effect on ridership. 

The results of the sinsusoidal decomposition show that all but two transit agencies had 

weekly cycles. Yolobus’s data set is daily ridership, but shows no weekly cycle, possibly 

because of the presence of more non-commuters within the Yolobus dataset. Also, RT 

doesn’t show a weekly cycle, because the RT data observation unit is one week. Possibly 

bus transit riders had various weekly work schedules that caused weekly cycles. Multiple 

agencies also had yearly cyclic behavior. Within each year there are understandable 

recurring patterns. For example, each year there are weather differences which could lead 

to low ridership in winter months with higher ridership in the warmer months. That might 

be especially apparent in ridership data, as riders are required to wait in the weather for 

the bus. Differences in cyclic behavior between the AM and PM peak periods in agencies 

beside Yuba-Sutter go mostly unexplained; it seems reasonable that commuters who take 

buses to work would, for the most part, also ride buses home. Possibly the peak periods, 

as defined by each transit agency, do not capture both commute periods accurately, or 

many bus transit riders work late or stay downtown to shop and dine after work.  

The results of the intervention analysis show that the three agencies farthest from the Fix 

I-5 construction, namely Yuba-Sutter Transit (49.8 miles away), Roseville Transit (19.1 

miles away), and Yolobus (18.7 miles away) saw small decreases in mean transit 

ridership attributable to the Fix I-5 project (indicated by the (-) sign in Table 5.7). 

However, the estimated change in number of riders from the intervention analysis model, 

taken as a proportion of total ridership, was under 3%. One possible hypothesis for the 
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decrease in ridership is a mode shift from transit to driving to avoid the confinement of 

transit. Specifically, driving allows for more freedom in terms of route change and 

departure time. An alternative hypothesis is that commuters disproportionally worked at 

home, compressed their work schedules, or took vacations. The two transit agencies 

closest to the Fix I-5 project were North Natomas TMA (6.7 miles away) and Sacramento 

RT (3.7 miles away), and both had slight increases in mean ridership attributable to the 

Fix I-5 project. Regional Transit, whose service area is centered on the downtown core, 

had the largest estimated change in number of riders, taken as a proportion of total 

ridership. However, all results showed very minor impacts on bus transit from the Fix I-5 

project. 

 A possible explanation for the smaller proportionate changes in mean transit ridership 

for the three more distant transit agencies is that those with longer commutes are more 

committed to their commute mode. It may be more likely they have monthly bus passes, 

and there are fewer commute options for those with longer commutes. Commuters served 

by RT have more commute options, including driving, taking RT, walking, bike riding or 

ride sharing to downtown Sacramento. However, walking and bike riding may be too 

strenuous for many, and ride sharing requires organization and commitment. For many in 

the RT service area, finding a bus may have been relatively easy when faced with the 

inconvenience of the Fix I-5 closure. 

Additionally, those agencies that saw decreased ridership (Yuba-Sutter Transits, Yolobus, 

and Roseville Transit) were best modeled with a pulse indicator function. This signifies 

that the decreased ridership was a temporary change. Whereas, for those agencies that 

saw increased ridership (North Natomas TMA and RT) three of the four peak periods 
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(North Natomas TMA AM peak, and RT AM and PM peaks) were best modeled as a step 

indicator function. Although small, a 2%-4% permanent increase in transit ridership may 

be seen as a victory for most transit agencies. It should be noted that this study used only 

the simple pulse and step indicator functions, while some peak period ridership may be 

better represented as more complex linear or exponential indicator functions. 

5.6 Implications for Transit Agencies for Future Road Closure Work 

The results from this analysis show that the mean change in ridership attributable to Fix 

I-5 was small. As shown in Chapter 1, transit agencies made great attempts to increase 

ridership during the Fix I-5 project through media outreach as well as providing increased 

service. However, only North Natomas TMA and RT, the transit agencies closest to the 

Fix I-5 project, had increased ridership. Although for RT the increase numbered hundreds 

of riders, they comprised only a small proportion of RT’s total ridership on the lines 

serving the affected area 

For future construction projects, local transit agencies should plan for small proportionate 

changes in ridership. More distant transit agencies may not be affected or temporarily see 

decreased ridership for reasons discussed in Section 5.5. This study did not analyze the 

impact of Fix I-5 on other modes of transportation, which may have been more affected 

than bus transit ridership. However, Regional Transit light rail ridership counts indicate 

that light rail also saw minor changes in ridership during the period of the Fix I-5 project, 

although no statistical analysis was conducted (Kim, 2008). 
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5.7 Threats to Validity  

This analysis was not a controlled experiment, so no statement of causality can be made 

between bus ridership and the Fix I-5 project. Further, the accuracy of data sets was 

dependent on each transit agency that supplied the study data. However, errors could be 

expected to be random, or if systematic (e.g. systematic over counts or undercounts of 

ridership) controlled for with the detrending and deseasonalizing steps. Validity is a 

measure of correctness (Maxwell and Delaney, 2004). Internal validity is concerned with 

possible other explanations for changes in the dependent variable (Maxwell and Delaney, 

2004). In this study, internal validity is strengthened by the inclusion of gas prices, 

unemployment and seasons as covariates. External validity is concerned with the 

generalizabliliity of the results and how representative the sample is of a population 

(Maxwell, 2004).  

History is not controlled in a time series quasi-experimental design (Campbell and 

Stanley, 1963). Some other event could have caused the results, producing a threat to 

internal validity.  For example, major wild fires in California during the same time period 

which caused air quality concerns could have kept people in their homes. The results 

could have been an artifact of problems with data quality, discussed earlier, or changes in 

transit agency measurements over time (instrumentation). For example, RT’s APC 

system is relatively new, and still in testing phases. The specific numerical results, even if 

internally valid, may not project beyond Sacramento (external validity), as the data 

sample is from a single city with its unique composition of commuters, employment, gas 

prices and network configuration. However, the methodology is broadly applicable, and it 

is expected that there would be similar roles of gas prices, unemployment and seasonality 
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elsewhere. Therefore, similar types of models could be expected elsewhere, even if the 

exact magnitudes of the covariates differed. Although this study’s novelty is that it is the 

first to examine the effects of construction projects on transit ridership, replication studies 

in the context of other reconstruction events are encouraged to begin a database of 

knowledge about the likely range of ridership impacts.
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CHAPTER 6 CONCLUSIONS 

The Fix I-5 project, which encompassed the rehabilitation of drainage and pavement of 

Interstate 5 in downtown Sacramento, was completed via an aggressive construction 

schedule of 35 days and 3 weekends between May 30, 2008 and July 28, 2008. The 

schedule included several complete closures of unidirectional portions of I-5 for 5-10 

days at a time. The average daily traffic of approximately 200,000 motorists was 

detoured from I-5. Media outreach from both the private and public sector aimed to warn 

about projected traffic conditions while encouraging alternative modes of travel (such as 

transit).  The purpose of this analysis was to determine if the change in mean bus transit 

ridership levels could be predicted by the Fix I-5 project, and if so, was that change 

permanent or temporary, and its magnitude and direction.  

6.1 Summary  

In this analysis, data on bus transit ridership was supplied by five agencies that provide 

commute service to the Sacramento downtown core, including Yuba-Sutter Transit, 

Yolobus, Roseville Transit, North Natomas TMA and Regional Transit. Where possible, 

only commute period travel was considered: more specifically, only inbound travel was 

considered for the AM peak period, while outbound travel was considered for the PM 

peak period, with peak period time intervals varying by transit agency. In total nine data 

sets were analyzed, four for AM travel, four for PM travel and one daily data set for 

Yolobus. 

Although some past studies have used time series models in conjunction with 

transportation-related data (e.g. Atkins, 1979; Rose, 1982; Rose, 1986), there are few 
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analyses of bus transit ridership.  Further, intervention analysis is seldom used for transit 

data. No known studies have analyzed the impact of construction work on bus transit 

ridership using time series intervention analysis. No other studies have examined the 

impact of Sacramento’s Fix I-5 project on bus transit ridership.  

 The five agencies in this study used four data collection methods, some in combination. 

They included automatic passenger counters, electronic fareboxes, manual counts by 

route checkers, and manual counts by bus drivers.  

In order to modify the original ridership data for this analysis, the data sets were filtered 

to only include ridership for transit lines which provide service to the Sacramento 

downtown core, and inbound ridership for the AM peak period and outbound ridership 

for the PM peak period. Additionally, data imputation was done for days on which the 

transit agency ran limited or no services as well as state holidays. Total data imputation 

was under 2.0%.  

An analysis of measures of central value and dispersion found that all agencies had 

overall increases in mean ridership during the study period (3 years for 3 agencies, 1 year 

for 2 agencies), but there were seasonal variations in mean bus transit ridership. An 

analysis of data dispersion indicated that the data sets were approximately normal. Data 

analyses were completed using intervention analysis, with the duration of the Fix I-5 

project as the intervention. 

Time series intervention analysis requires stationary data input, which entailed the 

elimination of trend and periodic components. Because the nine time series data sets 

displayed an overall increasing trend in ridership, trend components were eliminated 
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using multiple regression. Independent, predictor variables were determined through 

literature review.  Many studies have shown that gas prices positively affect ridership 

(Lane, 2009; Wang and Skinner, 1984; Taylor et al., 2009; Kyte et al., 1988), and the 

present analysis is no exception (aside from both RT peak periods). This analysis confirm 

past work as gas prices were significant predictors of ridership, with a positive ridership-

gas correlation, with the exception of both RT peak period. Although a small number of 

past studies use employment as an independent variable (Agrawal, 1981; Kyte et al., 

1988), this study found that unemployment is significant for all data sets except both RT 

peak periods, with positive ridership-unemployment correlations. No past work using bus 

transit ridership has used GDP as an independent variable. It was found to be highly 

correlated with the other independent variables (multicollinearity), and was eliminated 

from the analysis. Multiple studies have examined the effects of fare pricing on transit 

ridership, and found it to have a negative impact (Cervero, 1990; Curtin, 1968; Agrawal, 

1981; Wang and Skinner, 1984; Taylor et al., 2009; Kyte et al., 1988; Narayan and 

Considine, 1989). This study finds that the fare increases for Roseville Transit and Yuba-

Sutter (the only agencies to change fares within the study period) are insignificant 

predictors of transit ridership. More specifically, the four independent variables included 

monthly Sacramento unleaded regular gas price averages, national current dollar adjusted 

GDP data, monthly unemployment rates for the Sacramento— Arden-Arcade—Roseville, 

CA metropolitan area, and basic one-rider fare rates for those agencies whose fare pricing 

changed during the analysis period. For each agency, those predictor variables significant 

at the α = 0.1 level were used during exploratory model building, but all final coefficients 

are significant at the α=0.01 level. 
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The goal of the second stage of data analysis was to eliminate seasonal components using 

sinusoidal decomposition. Possible cycles were determined based on the periodogram, 

then tested for significance using spectral ANOVA. For each data set, those cyclic 

components significant at the 0.1 level were included in this analysis. Table 6.1 shows 

the significant cycles for each agency. 

Table 6.1: Significant Periodic Components of Each Transit Agency 

Transit Agency  
Data 
Aggregation 

Significant Cycles                                                                          
(days) 

Yuba-Sutter Transit AM 3, 74, 147 
Yuba-Sutter Transit PM 3, 73, 147 
Yolobus Daily 28, 38, 74, 220 
Roseville Transit AM 3, 58, 147 
Roseville Transit PM 3, 42, 147 
North Natomas TMA AM 3, 15, 19, 30 
North Natomas TMA PM 3, 8, 25, 74 
Regional Transit AM 4.5, 7.1 
Regional Transit PM 3.6, 4.2 

 

The results of the sinsusoidal decomposition show that transit agencies with daily, peak-

period ridership data indicate weekly cycles. Additionally, multiple agencies also indicate 

yearly cyclic behavior. Most agencies show differences in cyclic behavior between the 

AM and PM peak periods which is unanticipated. Eliminating trend and seasonal 

components was necessary so that the time series were stationary processes for input into 

an intervention analysis. Once the data sets were detrended and seasonal trends were 

eliminated, the first step of the intervention analysis was complete. The basic intervention 

model can be described as: 

� � A¶ � � 
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where  A represents the mean change in riders, and ¶ represent the indicator variable. 

Intervention analysis for both pulse and step indicator variables show that temporary 

changes in riders was most applicable. Yuba-Sutter Transits, Yolobus, and Roseville 

Transit saw decreased ridership, and were best modeled with a pulse indicator function, 

which signified that the decreased ridership was a temporary change. North Natomas 

TMA and RT saw increased ridership, and three of those four peak periods (North 

Natomas TMA AM peak, and RT AM and PM peaks) were best modeled as a step 

indicator function. For all analysis, four goodness-of-fit tests including the Sample ACF, 

qq plot, Ljung-Box test and rank test were used.  

Table 6.2 presents the model’s estimates of the increase or decrease in ridership during 

the construction period, in absolute as well as percentage terms. In all cases, the mean 

change in ridership is less than 4%, signifying a very small change attributable to Fix I-5.  
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Table 6.2: Intervention Model Summary 

Transit 
Agency 

Data 
Aggregation 

Indicator 
Function 

Final Model 
Estimate                    Ë (mean change 
in riders) 

Observed 
Mean 
Ridership 
during Fix I-
5 Project  
(Ë +CFR) 

Ë/(Ë+CFR) 
x 100% 

Ë/CFR 
x 100% 

Yuba-
Sutter 
Transit 

AM Pulse -7.4 314 -2.36% -2.30% 

Yuba-
Sutter 
Transit 

PM Pulse -6.25 317.2 -1.97% -1.93% 

Yolobus Daily Pulse -13.65 4023.5 -0.34% -0.34% 

Roseville 
Transit 

AM Pulse -1.15 253.8 -0.45% -0.45% 

Roseville 
Transit 

PM Pulse -3.75 226 -1.66% -1.63% 

North 
Natomas 
TMA 

AM Step 1.2 146.2 0.82% 0.83% 

North 
Natomas 
TMA 

PM Pulse 2.6 124.3 2.09% 2.14% 

Regional 
Transit 

AM Step 552.6 15525.8 3.56% 3.69% 

Regional 
Transit 

PM Step 351.1 13907.5 2.52% 2.59% 

* CFR, for “counterfactual ridership” which describes mean ridership levels in the absence of the Fix I-
5 project, but during the same period. 

The results of the intervention analysis show that the three agencies farthest from the Fix 

I-5 construction (Yuba-Sutter Transit, Roseville Transit, and Yolobus) saw small 

decreases in mean transit ridership (under 3%) during the period of the Fix I-5 project. 

Hypotheses for the decrease in ridership include a mode shift from transit to driving for 

more freedom, as well as commuters who worked at home, compressed their work 

schedules, or took vacations. The agencies that saw decreased ridership were best 

modeled with a pulse indicator function (a temporary change). The two transit agencies 

closest to the Fix I-5 project (North Natomas TMA and Sacramento RT) both had 
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increases in mean transit ridership (under 4%) during the period of the Fix I-5 project. 

For those agencies that saw increased ridership, three of the four peak periods (North 

Natomas TMA AM peak, and RT AM and PM peaks) were best modeled as a step 

indicator function (a permanent change). Further, Regional Transit, whose service area is 

centered on the downtown core, had the largest estimated change in number of riders, 

taken as a proportion of total ridership. However, all results showed very minor impacts 

on bus transit from the Fix I-5 project. For future planned or unplanned freeway closures, 

local transit agencies should plan for small increases in mean riders, while small 

decreases in riders for more distant transit agencies may not necessitate any changes. 

6.2 Future Work  

This study provides room for future research, more specifically in the areas of data 

collection and model building.  

First, within the data collection phase, monitoring of collection methods would provide 

additional insight into and influence on data quality. This study relied on data that was 

previously collected, some of which had been filtered. Monitoring of collection methods 

could also ensure sample randomness. 

In this study, neither bus miles of service nor headways (the time between consecutive 

buses) were used as independent variables. Level of service indicators significantly 

predict transit ridership (e.g. Lane, 2009; Wang and Skinner, 1984; Agrawal, 1978), and 

it would be desirable to include an independent variable which summaries bus transit 

comfort levels.  
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Finally, this study used intervention analysis with step and pulse indicator functions. 

Future research could utilize more complex indicator functions, which could better 

explain the effects of an intervention, such as the Fix I-5 project.  
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APPENDICES 

A. City of Sacramento Traffic Operations Center Visit, August 21, 2008 
According to Jacques Van Zeventer, PE, TE, California Department of Transportation 

(Caltrans) District 5 Traffic Manager, Intelligent Transportation Systems (ITS) are 

important to “get info out (for you) to make better choices about how to get to your 

destination... You can’t build your way out of congestion.” An operational tactic for 

traffic management is through the use of traffic operations centers (TOC). On August 21, 

2008, Michael Zhang and his research team consisting of Feng Xiao, Changmo Kim, 

Zhen Qian, Yi-ru Chen, Wei Shen, Robert Lim and Rachel Carpenter visited Sacramento 

City Hall, which houses the single jurisdiction, single agency TOC, operated by and 

serving the City of Sacramento. This TOC is staffed by the city’s Traffic Engineering 

Services Department. 

While visiting the TOC we met with the two employees who permanently staff the 

facility: Telecommunications Technician Shad Bennett and Telecommunications 

Engineer Ryan Billeci. Mr. Billeci is a Civil Engineer by education, and a California 

licensed Professional Engineer. According to Mr. Billeci, the Sacramento TOC was born 

out of three needs. First, the City wanted remote control of its 700 signals, including 

signal coordination, clock synchronization, the ability to download information and 

upload timing. They also wanted the ability to remotely observe traffic conditions in their 

system, and remotely conduct incident management. He said the goal of their TOC is 

twofold; first, they must make Sacramento City’s transportation network efficient for all 

transportation modes, and second, they must make the system reliable. Today, the City of 

Sacramento TOC is operational 5 days a week, and consists of a large room with 2 
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cubicles, in addition to a long table where there are nine computers. There is a system of 

six large display screens that show live traffic conditions from the CCTV camera system. 

The City TOC is funded by Measure A, the gas tax. 

Mr. Billeci discussed some institutional issues related to the TOC. The TOC participates 

in interagency collaboration with neighboring organizations including the County of 

Sacramento and their traffic management center (TMC), the Caltrans District 3 

Sacramento TMC, and the cities of Roseville, Citrus Heights, and Elk Grove. As part of 

an effort to connect these individual agencies, the Sacramento Area Council of 

Governments (SACOG) funded the Sacramento Transportation Area Network 

(STARNET). According to the SACOG website, STARNET has four major goals: 

• Connect the region’s real-time transportation management systems 

• Allow sharing or real-time data between systems and between users 

• Allow sharing of live video 

• Provide real-time information to the public via 511 and other outlets.  

The City of Sacramento has the long term goal to establish a traffic and transportation 

disseminating service similar to the Iowa Department of Transportation website. SACOG 

contracted with Castle Rock Consultants to implement the STARNET system, which will 

be in operation by 2009, and the main source of information for the planned all-inclusive 

website.  

During our visit to the City TOC, we were given a presentation about the City of 

Sacramento TOC during the Fix I-5 project. The following summarizes the presentation: 
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Traffic signal operation and traffic management is important for four main reasons: its 

direct economic impact, improvement of air quality, reduction in fuel consumption, and 

reduction in the number and severity of accidents. Some other functions of the TOC 

include live traffic surveillance, police, fire and CHP channel monitoring, and Caltrans 

camera monitoring. In terms of organizational issues, Mr. Billeci said that the City of 

Sacramento’s organizational culture still leans towards constructional improvements, as 

opposed to operational solutions. Therefore, TOC staff constantly have to prove the 

importance of the TOC and their jobs. It is hard to recognize a need when a system is 

running smoothly. Making the difficult task of traffic control look easy results in the 

TOC appearing to be unnecessary. However, the existence of a well-equipped traffic 

operation center points to a new direction for the City.  

During the Fix I-5 closure, many forces joined to ensure the efficiency of the 

transportation network. The City TOC was staffed with employees from many agencies 

and departments including the traffic signal operation group, the Sacramento Police 

Department, traffic investigation group, right-of-way management, the Sacramento Fire 

Department, Sacramento Regional Fire Dispatch, and Caltrans. 

Within the TOC, preplanning steps were taken to prepare for the Fix I-5 project. Problem 

corridors were identified, while focusing on downtown Sacramento commuters. 

Unfortunately, regional commuters, who largely impacted the transportation network, 

were not taken into consideration. Preventative maintenance measures were taken on 300 

signals. Additional ITS elements were identified and employed especially for the Fix I-5 

project. These additional elements included wireless closed-circuit television (CCTV) 

cameras using Dotworkz Systems camera housings. The wireless CCTV cameras were 
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built and maintained by City of Sacramento staff, and included full pan/tilt/zoom (PTZ) 

control with live motion video. Once impacted corridors were identified, a Synchro 

traffic model was constructed in order to implement direct routes. The TOC also 

developed coning and striping modification plans. Some of the anticipated impacted 

corridors that were identified in preplanning stages by the TOC included: 

• 16th Street 

• 3rd Street 

• 5th Street 

• Riverside Boulevard 

• Freeport Boulevard 

• Broadway 

• Truxel Road 

In order to prove the importance of the City of Sacramento TOC, cost of delay 

calculations were done: 

Given: $12.02 per vehicular hour of delay (Caltrans Progress Report with gas at 
$3.17/gallon) 

Calculations:  

Example 1: Corridor 

ADT 10,000 vehicles 

1.5 miles long 

10 signals 

Current average delay per signal is 24 seconds 

$300,000 = Monthly delay cost 

 

Example 2 
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Hourly vehicle volume 1800 vehicles 

Current average delay per vehicle is 20 minutes 

Duration: 1.5 hours 

$570,000 = Monthly delay cost 

 

Solution: By reducing the delay to 10 minutes the public saves $285,000. 

The traffic conditions on 16th Street were of major interest to the City TOC. Conditions 

on 16th street prior to Fix I-5 included an average peak hour of 3000 vehicles with a 

typical travel time of 6 minutes. During northbound lane closures, the estimated average 

peak hour increased to 4500 vehicles, and the average travel time during the first two 

days of closure increased to over 12 minutes. After travel time management strategies 

were in place, the average travel time was reduced to 7 minutes. Some of the mitigation 

measures that improved travel times included increased cycle length, the implementation 

of the preplanned coning plan, and police presence.  

Truck traffic posed a serious threat during the I-5 closures, as most City of Sacramento 

surface streets were not designed for heavy truck loads. The police department dealt with 

the truck problem by working in collaboration with the TOC. During northbound 

closures, CCTV video provided TOC operators notice when trucks were exiting I-5 onto 

downtown surface streets. TOC staff then contacted standby police who cited violators. 

During southbound closures, trucks were rerouted to avoid the downtown altogether.  

After the Fix I-5 presentation, Mr. Bennet and Mr. Billeci recalled actions that they had 

taken during the I-5 closures. They said that many decisions, including systematic 

changes, were made spontaneously. Some of these changes included signal timing, and 
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striping and signage. They made changes to cycles that worked so well that they are still 

being utilized today, even though there will be no further lane closures due to the Fix I-5 

project. While the locations of major traffic congestion changed throughout the project, 

the TOC worked to keep traffic moving smoothly. With the use of remotely accessible 

field equipment, spontaneous decisions were made about how to best operate the system. 

Field equipment is essential to any TOC because the equipment collects data for 

processing at the TOC. The City of Sacramento TOC uses a variety of data collection 

devices including inductive loop detectors, CCTV cameras and video-based detection 

systems. Interestingly, the City of Sacramento uses inductive loop detection (including 

mid, rear and front detection) for the majority of their detection devices. Mr. Billeci 

stated that inductive loops, even with their intrusive nature, are still the cheapest form of 

detection. They are also reliable, as they have approximately a 10-year life. The 

Sacramento TOC also uses a video-based detection system called Autoscope RackVision, 

however this system is expensive and maintenance intensive. They use the Autoscope 

Mini-hub, which provides the interface between the Autoscope RackVision and their 

Traconex TMP-390 traffic signal controller. The City of Sacramento does not have TS2 

capabilities. The City has recently received $4 million for a full upgrade on their 

transportation system. Part of this funding will be used for a Wavetronix system that has 

the ability to store traffic data, and provides vehicle speeds.  

Toward the end of our visit to the TOC, Sacramento City Traffic Engineer, Hector 

Barron, visited the TOC. He said that the City plans to work closely with Caltrans on 

certain corridors to make them run more smoothly. He also said that the City of 

Sacramento has debated the idea that all new development would be required to pay a 
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road improvement impact fee. Although Mr. Barron believes it is a good idea, there has 

been opposition from city officials. Additionally, Sacramento has considered High 

Occupancy Vehicles (HOV) lanes and High Occupancy Toll (HOT) lanes but 

Sacramento officials believe it promotes urban sprawl and no lanes have passed the 

preliminary planning stage.  

The City of Sacramento has a good start on its TOC. It has partnered with other agencies, 

and aims to produce an all-inclusive website for transportation related information 

available to the public. It is staffed by two full time employees who hold operational 

improvement mindsets- not construction approaches. Operational viewpoints lead to the 

use of more ITS technologies and greater promotion of what ITS can do for local 

communities. The various information gathering devices, control room devices, and 

information dissemination devices all make the traveling public’s trips more effective. 

The future in transportation continues to look brighter with the use of more ITS 

equipment for greater operational efficiencies of the roadways.  
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B. Original and Cleaned Transit Agency Ridership Data Sets 
Note: For all imputed data graphs, the first dashed vertical line represents June 3, 2008 (the first imputed 
day of Fix I-5 project construction), while the second dashed vertical line represents July 24, 2008 (the last 
imputed day of Fix I-5 project construction). 

1. North Natomas TMA AM Ridership 
 

Original North Natomas TMA Tuesday-Thursday AM Ridership 

 
 

Imputed North Natomas TMA Tuesday-Thursday AM Ridership 
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2. North Natomas TMA PM Ridership 
 

Original North Natomas TMA Tuesday-Thursday PM Ridership 

 
 

Imputed North Natomas TMA Tuesday-Thursday PM Ridership 
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3. Roseville Transit AM Ridership 

 

Original Roseville Transit Tuesday-Thursday AM Ridership 

 
 

Imputed Roseville Transit Tuesday-Thursday AM Ridership 

 

 
 

 
 

 

 



121 
 

 
 

4. Roseville Transit PM Ridership 

 

Original Roseville Transit Tuesday-Thursday PM Ridership 

 
 

Imputed Roseville Transit Tuesday-Thursday PM Ridership 
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5. Yolobus Ridership 

 

Original Yolobus Tuesday-Thursday Daily Ridership 

 
 

Imputed Yolobus Tuesday-Thursday Daily Ridership 
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6. Yuba-Sutter AM Ridership 

 

Original Yuba-Sutter Transit Tuesday-Thursday AM Ridership 

 
 

Imputed Yuba-Sutter Transit Tuesday-Thursday AM Ridership 
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7. Yuba-Sutter PM Ridership 

 
Original Yuba-Sutter Transit Tuesday-Thursday PM Ridership 

 
 

Imputed Yuba-Sutter Transit Tuesday-Thursday PM Ridership 
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8. Regional Transit AM Ridership 

 

Original Regional Transit Weekly AM Ridership 

 
 

Imputed Regional Transit Weekly AM Ridership 

 

 
 

 
 

 



126 
 

 
 

9. Regional Transit PM Ridership 

 

Original Regional Transit Weekly PM Ridership 

 
 

Imputed Regional Transit Weekly PM Ridership 
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C. Independent Variable Data Sets 
1. Gas Price Independent Variable 

 
 
2. Unemployment Rate Independent Variable 
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3. Gross Domestic Product Independent Variable 
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D. Holiday and Limited Service Imputation Dates 
1. Year: 2006 
No Service Holidays: 

Holiday Roseville* Yolobus Yuba-Sutter* 
New Year’s Day (Jan 1)  X⁺  
Day after New Year’s (Jan 2)   X 
Martin Luther King Jr. Day (Jan 
16) 

X Xo X 

President’s Day (Feb 20) X X⁺ X 
Memorial Day (May 29) X X⁺ X 
Independence Day (July 4) X X⁺ X 
Labor Day (Sep 4) X X⁺ X 
Veteran’s Day (Nov 10) X Xo X 
Thanksgiving Day (Nov 23) X X⁺ X 
Day after Thanksgiving (Nov 
24)  

 Xo X 

Christmas Day (Dec 25) X X⁺ X 
* New Year’s Day holiday not applicable since it fell on a Sunday and these 
   agencies only operate commuter services during the week ⁺ Except for routes 40, 41, 42A/B and 240 which operated Sunday schedules 
o Except for routes 39, 40, 41, 42A/B and 240 which ran full services 

 

Limited Service Holidays: 

Holiday Roseville Yolobus Yuba-Sutter 
Day after New Year’s (Jan 2) X   
Cesar Chavez Day (Mar 31) X   
Columbus Day (Oct 9) X   
Day after Thanksgiving (Nov 
24) 

X   

Day after Christmas (Dec 26) X   
Full service days that coincide with state holidays: 
• Yolobus operated full services on Cesar Chavez Day (Mar 31) and Columbus Day 

(Oct 9) 
• Yuba-Sutter operated full services on Cesar Chavez Day (Mar 31) and Columbus 

Day (Oct 9) 
 
 
 
 
 
 



130 
 

 
 

 
 
California State Holidays: 
 

Date Observed in 2006 Holiday 

Monday, January 2  
New Year’s Day*  
(observed) 

Monday, January 16  
Martin Luther King Jr. 
Day  

Monday, February 13  
Lincoln’s Birthday* 
(observed)  

Monday, February 20  Washington’s Birthday  
Friday, March 31  Cesar Chavez Day  
Monday, May 29  Memorial Day  
Tuesday, July 4  Independence Day  
Monday, September 4  Labor Day  

Monday, October 9  Columbus Day  

Friday, November 10  
Veteran’s** Day 
(observed)  

Thursday, November 23  Thanksgiving Day  
Friday, November 24  Day after Thanksgiving  
Monday, December 25  Christmas Day  
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2. Year: 2007 
No Service Holidays: 

Holiday Roseville Yolobus Yuba-Sutter 
New Year’s Day (Jan 1) X X⁺ X 
Martin Luther King Jr. Day (Jan 
15) 

X Xo X 

President’s Day (Feb 19) X X⁺ X 
Memorial Day (May 28) X X⁺ X 
Independence Day (July 4) X X⁺ X 
Labor Day (Sep 3) X X⁺ X 
Veteran’s Day (Nov 12) X Xo X 
Thanksgiving Day (Nov 22) X X⁺ X 
Day after Thanksgiving (Nov 
23) 

 Xo X 

Christmas Day (Dec 25) X X⁺ X ⁺ Except for routes 40, 41, 42A/B and 240 which operated Sunday schedules 
o Except for routes 39, 40, 41, 42A/B and 240 which ran full services 
 

Limited Service Holidays: 

Holiday Roseville Yolobus Yuba-Sutter 
Day after New Year’s (Jan 2) X   
Lincoln’s Birthday (Feb 12)    
Cesar Chavez Day (Mar 30) X   
Columbus Day (Oct 8) X   
Day after Thanksgiving (Nov 
23) 

X   

Christmas Eve Day (Dec 24) X   
Day after Christmas (Dec 26) X   
New Year’s Eve Day (Dec 31) X   

Full service days that coincide with state holidays: 
• Roseville Transit operated full service on Lincoln’s Birthday (Feb 12) 
• Yolobus operated full services on Lincoln’s Birthday (Feb 12), Cesar Chavez Day 

(Mar 30) and Columbus Day (Oct 8) 
• Yuba-Sutter operated full services on Lincoln’s Birthday (Feb 12), Cesar Chavez 

Day (Mar 30) and Columbus Day (Oct 8) 
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California State Holidays: 
 

Date Observed in 2007 Holiday 

Monday, January 1  New Year's Day  

Monday, January 15  
Martin Luther King Jr. 
Day  

Monday, February 12  Lincoln's Birthday  
Monday, February 19  Washington's Birthday  
Monday, May 28  Memorial Day  
Wednesday July 4  Independence Day  
Monday, September 3  Labor Day  
Monday, October 8  Columbus Day  

Monday, November 12  
Veteran's Day** 
(observed)  

Thursday, November 22  Thanksgiving Day  
Friday, November 23  Day after Thanksgiving  
Tuesday, December 25  Christmas Day  

3. Year: 2008 
No Service Holidays: 

Holiday Natomas RT* Roseville Yolobus Yuba-Sutter 
New Year’s Day (Jan 1) X X X X⁺ X 
Martin Luther King Jr. Day 
(Jan 21) 

X X X Xo X 

President’s Day (Feb 18) X  X X⁺ X 
Cesar Chavez Day (Mar 
31) 

X     

Memorial Day (May 26) X X X X⁺ X 
Independence Day (July 4) X X X X⁺ X 
Labor Day (Sep 1) X X X X⁺ X 
Veteran’s Day (Nov 11) X  X Xo X 
Thanksgiving Day (Nov 
27) 

X X X X⁺ X 

Day after Thanksgiving 
(Nov 28) 

X   Xo X 

Christmas Day (Dec 25) X X X X⁺ X 
* Except for routes 15, 30, 34, 38, 51, 67, 68, 86 and 88 which operated a 
Sunday/Holiday schedule ⁺ Except for routes 40, 41, 42A/B and 240 which operated Sunday schedules 
o Except for routes 39, 40, 41, 42A/B and 240 which ran full services 
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Limited Service Holidays: 

Holiday Natomas RT* Roseville Yolobus Yuba-Sutter 
Day after New Year’s (Jan 
2) 

  X   

Lincoln’s Birthday (Feb 12)  X    
President’s Day (Feb 18)  X    
Cesar Chavez Day (Mar 31)  X X   
Columbus Day (Oct 13)  X X   
Veteran’s Day (Nov 11)  X    
Day after Thanksgiving 
(Nov 28) 

 X X   

Christmas Eve Day (Dec 
24) 

  X   

Day after Christmas (Dec 
26) 

  X   

New Year’s Eve Day (Dec 
31) 

  X   

*Only applicable for routes 3, 7, 29 and 109; all other routes ran full services 

Full service days that coincide with state holidays: 
• North Natomas TMA operated full services on Lincoln’s Birthday (Feb 12) and 

Columbus Day (Oct 13)  
• Roseville Transit operated full services on Lincoln’s Birthday (Feb 12) 
• Yolobus operated full services on Lincoln’s Birthday (Feb 12), Cesar Chavez Day 

(Mar 31) and Columbus Day (Oct 13)  
• Yuba-Sutter operated full services on Lincoln’s Birthday (Feb 12), Cesar Chavez 

Day (Mar 31) and Columbus Day (Oct 13) 
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California State Holidays: 
 

Date Observed in 2008  Holiday 

Tuesday, January 1 New Year’s Day 

Monday, January 21 
Birthday of Martin 
Luther King, Jr. 

Tuesday, February 12 Lincoln’s Birthday 
Monday, February 18 Washington's Birthday 
Monday, March 31 Cesar Chavez Day 
Monday, May 26 Memorial Day 
Friday, July 4 Independence Day 
Monday, September 1 Labor Day 

Monday, October 13 Columbus Day 

Tuesday, November 11 Veterans Day 
Thursday, November 27  Thanksgiving Day  
Friday, November 28  Day after Thanksgiving  
Thursday, December 25  Christmas Day  
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E. Ad Hoc Data Imputation Method Details 

Yolobus  

“Missing” 
Data 
Cases 

“Missing” 
Data Date 

Observation 
Week  

Ridership 

Method 1** 
abs(T1-T2) 

Method 2*** 
abs(T1'-T2') Tuesday Wednesday Thursday 

1 4-Jul-06 26 2987 2889 2891     

    27 807 2993 2984 9 285 

    28 3272 2918 3173     

2 
23-Nov-

06 46 3177 3097 2975     

    47 3135 3049 730 86 179 

    48 3217 2946 3154     

3 4-Jul-07 78 3540 3205 3299     

    79 3413 1014 3203 210 279 

    80 3643 3484 3405     

4 
22-Nov-

07 98 3535 3524 3510     

    99 3450 3415 899 35 95 

    100 3389 3216 3415     

5* 
25-Dec-

07 103 2941 3023 3162     

    104 484 2336 2486 150 2078 

    105 863 2987 2903     

6* 1-Jan-08 104 484 2336 2486     

    105 863 2987 2903 84 2611 

    106 3095 3235 3235     

7 
11-Nov-

08 149 4548 4659 4483     

    150 2696 4386 4313 73 77 

    151 4471 4225 4318     

8 
27-Nov-

08 151 4471 4225 4318     

    152 4517 4016 847 501 10 

    153 4582 4579 4308     

9* 
25-Dec-

08 155 3914 3744 3655     

    156 3601 2236 635 1365   

    157 3404 2920       

Sum 914 925 

Average 152.333333 154.166667 
* Week to be removed (Thanksgiving, Christmas and New Year's holidays) 
Note: The shaded cells show the original data; these anomalous (holiday or limited service day) cases were 
treated as missing. 
** Method 1 uses adjacent days of the same week for data imputation. 
*** Method 2 uses the same days of adjacent weeks for data imputation. 
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F. Histograms for Each Transit Agency 
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Regional Transit AM Ridership
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G. Multiple Regression Model Selection 

 

  



139 
 

 
 

 



140 
 

 
 

  



141 
 

 
 

  



142 
 

 
 

 



143 
 

 
 

H. Transit Agency Periodograms 
 

1. Yuba-Sutter AM Periodogram 

 

2. Yuba-Sutter PM Periodogram 
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3. Yolobus Daily Periodogram 

 
 
4. Roseville Transit AM Periodogram 
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5. Roseville Transit PM Periodogram 

 
 
6. North Natomas AM Periodogram 
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7. North Natomas PM Periodogram 

 
 
8. Regional Transit AM Periodogram 
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9. Regional Transit PM Periodogram 
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I. Intervention Analysis Model Results 
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J. Goodness-of-fit Tests 

 

Yuba Sutter Transit 

AM Peak Period PM Peak Period 
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The Sample ACF                               

(# lags outside 95% 

bounds) 

2 3 0 0 

The Portmanteau Test               

(Ljung-Box)     (p-value) 
0.08445 0.06974 0.97388 0.96028 

The Rank Test                                        

(p-value) 
0.48041 0.29893 0.38718 0.10814 

Tests for Normality                             

(R2) 
0.996501 0.996709 0.981917 0.982649 

Model 

Selection 

("X" indicates best model 

fit) 
X   X   
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Daily Ridership 
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si
d

u
a

l 
T

e
st

s 

The Sample ACF                               

(# lags outside 95% 

bounds) 

1 2 

The Portmanteau Test               

(Ljung-Box)      (p-value) 
0.86634 0.26009 

The Rank Test                                        

(p-value) 
0.13297 0.04008 

Tests for Normality                       

(R2) 
0.972679 0.974811 

Model 

Selection 

("X" indicates best model 

fit) 
X   
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Roseville Transit 

AM Peak Period PM Peak Period 

PULSE 

INPUT 

INDICATOR 

STEP INPUT 

INDICATOR 

PULSE 

INPUT 

INDICATOR 

STEP INPUT 

INDICATOR 
R

e
si

d
u

a
l 

T
e

st
s 

The Sample ACF                               

(# lags outside 95% 

bounds) 

1 1 1 1 

The Portmanteau Test               

(Ljung-Box)      (p-value) 
0.59792 0.58891 0.46587 0.4959 

The Rank Test                                        

(p-value) 
0.34501 0.36623 0.14328 0.04078 

Tests for Normality                             

(R2) 
0.986268 0.98624 0.921784 0.919529 

Model 

Selection 

("X" indicates best model 

fit) 
  X X   

      

 

North Natomas T.M.A. 

AM Peak Period PM Peak Period 

PULSE 

INPUT 

INDICATOR 

STEP INPUT 

INDICATOR 

PULSE 

INPUT 

INDICATOR 

STEP INPUT 

INDICATOR 

R
e

si
d

u
a

l 
T

e
st

s 

The Sample ACF                               

(# lags outside 95% 

bounds) 

6 3 0 0 

The Portmanteau Test               

(Ljung-Box)      (p-value) 
0.06878 0.07897 0.87743 0.7747 

The Rank Test                                        

(p-value) 
0.28453 0.3272 0.57247 0.4561 

Tests for Normality                             

(R2) 
0.9895 0.990658 0.98097 0.986188 

Model 

Selection 

("X" indicates best model 

fit) 
  X X   

      

  



154 
 

 
 

 

Regional Transit 

AM Peak Period PM Peak Period 

PULSE 

INPUT 

INDICATOR 

STEP INPUT 

INDICATOR 

PULSE 

INPUT 

INDICATOR 

STEP INPUT 

INDICATOR 

R
e

si
d

u
a

l 
T

e
st

s 
The Sample ACF                               

(# lags outside 95% 

bounds) 

0 1 0 0 

The Portmanteau Test               

(Ljung-Box)      (p-value) 
0.54685 0.49637 0.94061 0.98919 

The Rank Test                                        

(p-value) 
0.27744 0.37928 0.54625 0.95875 

Tests for Normality                             

(R2) 
0.98812 0.990232 0.971005 0.983763 

Model 

Selection 

("X" indicates best model 

fit) 
  X   X 

 




