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Abstract 

Policies have been enacted that promote biofuels with the goal of reducing 

greenhouse gas emissions, reduce dependence on petroleum and to spur rural 

economic growth.  The supply of biofuels that can meet these three goals is 

limited.  The cost of this supply is influenced by the geography of the biomass 

resource and demand for fuels.  Existing studies projecting the future supply 

have not accounted for the spatial aspects of the biofuel supply in detail.   

This dissertation presents a spatially-explicit model of future biofuel 

supply chains in the United States, with the goal of providing supply curves 

of biofuels by resource-technology pathway with detailed accounting of the 

required infrastructure.  The model is used to analyze the potential supply of 

biofuels for meeting the federal Renewable Fuel Standard (RFS2) and 

analyze biofuels from waste and residue resources in California at high 

resolution with accounting for air pollutant emissions. 

The results of the national case study project that domestic biofuels can 

achieve the RFS2 mandates for 2022 at fuel prices of between $3.4 and $5 per 

gasoline gallon equivalent.  The largest sources of variation are the cost of 

cellulosic biofuel technologies and the availability of low cost waste resources. 

Building the 200-250 cellulosic biorefineries needed to achieve the target 

requires a capital investment greater than $100 billion but less than $360 

billion depending on technology development and choice of cellulosic 

technology.   
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Waste and residue biomass can provide quantities of biofuels that assist 

with policy goals.  Nationally, waste and residue resources are projected to 

provide between 35 and 64 percent of the RFS2 mandate in both 2018 and 

2022.   In California, biofuels from waste and residue resources have limited 

potential for petroleum displacement, but could contribute 40-70% of the 

LCFS emissions reductions with mixed and uncertain results on air quality. 
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1 INTRODUCTION 

1.1 Motivation 

Production of biofuels is increasing worldwide and especially in the United 

States (OECD-FAO, 2010).  This increase is driven by many factors but chief 

among them are policies mandating or promoting biofuels (see Table 1).  

These policies promote biofuels as a means to reduce petroleum dependence, 

reduce greenhouse gases and spur rural economic development.  Looking to 

the future, the policies in place call for transformative change and growth in 

the biofuels sector.   The dominant biofuel technology in the United States, 

corn ethanol, has little room to grow within the existing federal mandate, 

while a nascent cellulosic biofuel industry is required to grow from today’s 

demonstration units to commercial production of 16 billion gallons per year 

(BGY) in 12 years.  Where this fuel will come from, at what cost and with 

what economic, environmental, and land use impacts are questions without 

satisfactory answers to date. This dissertation presents a spatially explicit 

model of future biofuel supply chains in the United States, with the goal of 

providing answers to these key policy questions. 
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Table 1: Major biofuels related policies  

Policy Jurisdiction Summary 

Renewable Fuels 

Standard 

United 

States 

36 billion gallons of renewable fuels 

mandated by 2022 in 4 categories  

Fuel Quality 

Directive 

European 

Union 

10% of energy used in transport must be 

from renewable sources by 2020 and a 

6% reduction in GHG emissions in 

transport 

Low Carbon Fuel 

Standard 

California  The average carbon intensity of fuels sold 

must be reduced by 10% by 2020.  

 

Spatial features of energy supplies are generally simplified to national or 

regional averages in existing assessments future energy supplies.  All could 

be improved with greater detail to the spatial layout of the energy 

infrastructure with biomass the spatial features are especially important as 

it has low yield (Btus/acre) compared to other energy sources and costly 

transport due to low energy density.  Furthermore, the generally low 

economic value per mass of energy feedstock biomass relative to agricultural 

commodities leads to greater importance of the transportation costs than is 

generally considered in models of agricultural production (Searcy et al., 

2007).  For these reasons, existing tools for considering either agricultural 

production or energy supply are likely to be inadequate for a realistic 

analysis of biofuel supply. 

1.2 Research questions 

 The focus of this dissertation is the development of a modeling 

methodology explicitly incorporating the spatial aspects of the biofuel supply 

chain. Using a spatially explicit framework, I seek to estimate the cost, 
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quantity, direct land use and lifecycle greenhouse gas emissions of 

biofuels supplied.  Since the underlying assumptions regarding biomass 

feedstock availability, conversion technology costs, and future demand are 

highly uncertain, a significant portion of this dissertation explores the 

sensitivity of the model results to alternative assumptions.  

The methodology has been developed to be flexible in the policy relevant 

questions that can be analyzed.  However, due to the limited scope of this 

dissertation not the full breadth of research questions have not been 

considered.  The two case studies presented focus on the following questions 

for the United States and California in the next decade.  

• What will the marginal cost be for producing and delivering biofuels as 

the quantity demanded changes (i.e., a biofuel supply curve)? 

• How much biofuel can be produced relying only on waste and residue 

resources? 

• Where will the industry take root?  

• What is the cost and impact – air pollutant emissions and resource 

consumption – of waste biofuels in the Californian context? 

Some of the additional research questions that should be taken into account 

as policies are developed to promote biofuels that can be asked using the 

model developed here are listed below.  

• Where will the benefits and impacts occur? 

• Under what conditions are biofuels the most profitable use of biomass? 
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• What will be the incremental capital cost of a transition to biofuels 

(i.e., capital investment required)? 

• Are there tradeoffs between the biofuel production cost and 

environmental or societal benefits? 

To be clear, I do not attempt to answer all of these questions in this 

dissertation.  

1.3 Organization  

The dissertation is organized as follows.  Chapter 2 provides background 

information important to understanding the research questions.  First, the 

stage is set for biofuel supply assessment by explaining the potential role of 

biofuels in the fuel sector, and how their production fits into the scheme of 

energy and agriculture.  Previous work describing biofuel supply in both 

quantities and impacts is reviewed.  Past methodological approaches for 

modeling future biofuel supplies are described. The strengths and 

weaknesses of each approach are discussed, defining how the methodology 

developed here contributes to the field.     

Chapter 3 lays out the methodology that has been developed.  First, the 

framework of the model and the generic model formulation are given, 

followed by refinements on the formulation.  

Chapter 4 describes the current status of biomass conversion technologies 

and describes the technology characterizations used in the subsequent case 
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studies.  Chapter 5 reviews background literature and describes the data 

sets used for resource assessments, transportation cost models, and fuel 

demand. 

In Chapters 6 and 7, case studies utilizing the methodology are described.  

Chapter 6 considers biofuel supply potential in the United States referenced 

to the year 2018 with a focus on meeting policy goals. Chapter 7 considers 

near term utilization of waste and residue biomass for biofuels production in 

California with an emissions accounting framework integrated with the 

spatial economic model.  The two case studies highlight different challenges 

and benefits in utilizing the methodology.  The national scale model uses 

county-level resource estimates with a spatial fuel demand constraints. The 

size of this analysis constitutes computational challenges resolved through 

the coupling of regional scale solutions.  The California model demonstrates a 

high-resolution implementation of the approach with the explicit emissions 

accounting for the modeled biofuel industry.  

Chapter 8 provides a summary of main findings, highlights the strengths, 

weaknesses and draws relevant conclusions regarding suitability of the 

modeling approach with recommendations for future enhancements. 
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2 BACKGROUND 

2.1 Biofuel context 

In recent government policy in the United States and around the world, 

biofuels have been suggested as a cure for a number of ills caused by the 

transportation sector’s dependence on petroleum for energy (European 

Parliament and Council, 2003; U.S. Congress, 2007).  The most prominent of 

these are the reduction of greenhouse gas emissions in the face of global 

climate change (European Parliament and Council, 2003), enhancement of 

energy security (U.S. Congress, 2007) and supporting rural economies 

(European Parliament and Council, 2003; U.S. Congress, 2007).  Secondary 

arguments have been made that the use of some biofuels would have lower 

air and water quality impacts compared to gasoline and diesel. In particular, 

ethanol has been used as an oxygenate for reformulated gasoline in order to 

reduce emissions of smog-forming compounds (Nadim et al., 2001).  

From a broad-brush perspective, recent studies suggest that biofuels 

appear capable of contributing to progress towards those policy goals over the 

next few decades.  An economic model of United States agriculture found that 

domestic agricultural and forest resources could provide 60 billion gallons of 

ethanol and 1.6 billion gallons of biodiesel while also significantly increasing 

farm income and jobs in agriculture and renewable energy (De La Torre 

Ugarte et al., 2007).  A study of the technical potential for “sustainable” 

cellulosic biomass production in the US was found to be 1.3 billion tons per 
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year, equivalent to approximately 30% of the US petroleum consumption 

by energy content (Perlack et al., 2005). A study of climate mitigation 

strategies from the agriculture and forestry sectors found that biofuels 

provide reductions of approximately 100 million metric tons of carbon 

equivalent (MMTCE) at a carbon price of $100/MMTCE (McCarl et al., 2001). 

However, it is becoming increasingly clear that the attractiveness of 

biofuels is dependent on the specific pathways used to produce them (Kim et 

al., 2005; Delucchi, 2006; Farrell et al., 2007; Turner et al., 2007; Unnasch et 

al., 2007; Zah et al., 2007). Even within corn ethanol production, there is a 

large range of potential direct greenhouse gas emissions and environmental 

impacts (Kim et al., 2005; Turner et al., 2007; Unnasch et al., 2007).  Zah et al 

(2007) found a large range of both local environmental impacts and 

greenhouse gas emissions when considering potential biofuel options for 

Switzerland.  Many biofuel pathways demonstrated significantly worse 

environmental performance than the petroleum fuels they would replace (Zah 

et al., 2007).   

Consequently, there is a vigorous debate within the academic community 

and among government, environmental and industry groups regarding the 

sustainability of biofuel production – due to both environmental impacts and 

competition with food production.  However, information that relates 

sustainability to the supply potential is scarce. The definition of “sustainable 

biofuels” is neither clear nor agreed upon.  Generally, the definition of 
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sustainable practice is one that meets current needs without 

compromising the ability of future generations to meet their needs (WCED, 

1987).  But the generality of this definition leaves broad room for 

interpretation in application to the questions surrounding biofuel production 

(Yeh et al., 2009). 

There are many ways in which biofuels can be environmentally 

unsustainable – habitat loss/deforestation, soil degradation, greenhouse gas 

emissions, pollution of water and air, aquifer depletion, etc.  The production 

of energy crops and the conversion processes of all biofuels require significant 

water consumption, and many biofuel pathways can lead to reduction in 

water quality through intensification of agriculture (National Research 

Council, 2008).  The change in life cycle air pollutant emissions using biofuels 

compared to a baseline petroleum fuel depends on the particular biofuel 

pathway, with some yielding a net benefit and others a net detriment (Wu et 

al., 2005).  There are also concerns about the soil quality impacts of 

agricultural residue removal for use in biofuel production (Lal, 2005).  And 

production of biofuels can pose a threat to biodiversity through habitat loss as 

well as water and soil quality impacts (Cook et al., 1991). 

Competition for land between food and energy crops is also cause for 

caution.  The boom in production of corn-based ethanol in response to both 

federal mandates and gasoline prices played a significant role in the doubling 

of the price of corn from 2006 to 2008 (Babcock, 2008).   Most options to 
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produce biofuels on a significant scale will require the use of large 

quantities of agricultural land.  But productive agricultural land is a limited 

and valuable resource that provides the basic need of nourishment to a 

growing global population.  The question of whether it is a good idea to 

incentivize the development of another major use for this scarce resource is 

becoming important, especially since many agricultural practices have 

negative environmental impacts.   

Furthermore, introducing biofuel production that is competitive with 

petroleum fuels links the global agricultural and land markets to energy 

markets. It is not likely to be possible to limit production of biofuels to 

marginal land; biomass, like traditional crops, will grow better and be more 

profitable on good agricultural land.  A potential danger in linking these 

markets is that it can give those with higher purchasing power the ability to 

meet their energy needs by indirectly starving those with lower purchasing 

power. 

Although expanding the quantity of lands in agricultural production can 

ease the problem of direct food-fuel competition, this expansion often leads to 

major environmental impacts, including deforestation, habitat loss and 

resulting loss in biodiversity (Cook et al., 1991), as well as greenhouse gas 

emissions caused by releasing the carbon stocks of the converted land 

(Fargione et al., 2008; Searchinger et al., 2008).  For many stakeholders in 
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biofuels policy, these impacts more than cancel the gains achieved by the 

production of biofuels. 

Despite these serious issues, however, it is important to note that there is 

a great deal of variability in the potential impact of biofuel production 

pathways – on both food production and the environment. Within this 

variability, the opportunity exists for a limited sustainable biofuel industry.  

But the viability and extent of such a sustainable biofuels industry depends 

on the costs of production, primary and co-product market values, and any 

subsidies for such production influencing overall profits. The policy basis for 

the latter, in addition to mandates and other government influences, 

therefore requires extensive information relating to net economic, 

environmental, and social benefits, if any.  The present debate over biofuels 

in part reflects high levels of uncertainty about these outcomes and the need 

for more comprehensive information.    

The costs and impacts of producing biofuels depend on the geography of 

the resource to be exploited, the size of the biorefinery and the cost of 

accessing the fuel market.  These factors are not independent.  For example, 

the economically optimal size of a biorefinery will depend on the spatial 

density of the resource it is exploiting, with dense biomass resources capable 

of supporting large biorefineries.  As biomass resource supply becomes more 

dispersed, increasing feedstock transportation costs can outpace the scale 

economies of increasing biorefinery size.  High costs to access fuel markets for 
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the sale of biofuel products can also make a low-cost producer less 

profitable than a producer with higher costs but nearer to the market.  

Geography is salient for the environmental impacts associated with biofuel 

production since the transportation of both biomass feedstock and product 

fuels can be significant for the life cycle impact of biofuel pathways (Wakeley 

et al., 2008).   

A number of studies have considered the basic tradeoff in the design of 

biofuel supply chains between the size of a biorefinery – taking advantage of 

economies of scale – and the cost of biomass and biofuel transportation.  

Transportation of biomass is expensive relative to its value as an energy 

feedstock due to low energy density (Searcy et al., 2007).  Thus in many cases, 

the additional transportation costs quickly outweigh opportunities for 

economies of scale in the biorefinery, leading to a clearly defined optimal size 

of the biorefinery.  However, the exact capacity of this optimal size is 

situation dependent, with the spatial layout of the resource base, the scaling 

of the technology, purchasing agreements for feedstock (Kaylen et al., 2000) 

and the product market (Parker et al., 2008) all being relevant factors to 

consider.  The spatial layouts of the resource and product markets in 

particular are not easily generalizable and vary considerably by locations. 

In addition to the spatial aspects, competition for biomass may come from 

a number of sectors besides transportation fuels.  Biomass production and 

conversion systems resulting in low lifecycle greenhouse gas emissions (low-
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carbon) are considered attractive for a number of potential products in a 

carbon-constrained world.  Electricity produced from biomass was found by 

Campbell et al. (2009) to be a more efficient use of biomass for the purpose of 

reducing carbon emissions than biofuels (Campbell et al., 2009).  At present, 

it is unclear which of these products or combination of products will become 

the most attractive use of biomass.  There are viable low or zero carbon 

alternatives in some sectors – such as wind and solar in the electricity sector 

– while other sectors that require energy dense liquid fuels – such as aviation 

and long haul freight – have fewer options and are likely to place the highest 

value on biomass as a feedstock.  

The foregoing narrative illustrates that good policy will require an 

improved understanding of biofuel systems, including the tradeoffs that exist 

between the size of the biofuel supply, economics and potential adverse 

environmental and/or societal impacts.  There has been little work done to 

show the quantity of biofuels that could be brought to bear on the 

transportation energy system with clear accounting for cost estimation, 

technology choice, regional variations in supply, systems analysis of the full 

supply chain, environmental impacts and resource constraints, and the 

impact of potential regulations.  I seek to fill this gap.  

2.2 Approaches to modeling biofuel futures  

A few different approaches have been taken to project future biofuel 

supplies.  No method provides a satisfactory representation of all the 
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important aspects of the biofuel supply system, but each method can 

leverage data and knowledge found using the other methods.  Consequently, I 

classify the research to date into three categories.  First, there are 

assessments of biomass and/or biofuels using either technical estimates or 

economic models of the agriculture sector.  Second are transportation fuel or 

energy sector economic models with limited description of resource supplies.  

Third are spatial infrastructure optimization models that find the optimal 

supply system for biomass-based fuels. 

Technical estimates of biofuel potential have been performed at a number 

of scales using a range of limiting factors.  Field et al (2008) developed a 

global estimate of biofuel potential using abandoned agricultural land that is 

not currently forested or urbanized.  They found approximately 5% of the 

world primary energy could be provided by biofuels grown on these marginal 

lands.  Other researchers using similar methods (Tillmann, 2006; Hoogwijk, 

2003) found that a range of 2  - 35% of the energy demand could be met.  

Perlack et al (2005) estimated that 1.3 billion tons of biomass could become 

available in the United States by 2030 under optimistic scenarios of energy 

crop and agricultural residue production.  Williams et al (2008) calculated 

that 32 of 83 million dry tons of the gross biomass produced in the state of 

California are technically available for energy production.  These studies 

provide quantified resource assessments but do not account for the economics 

of biomass production and give little if any consideration to the conversion 
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technologies required to produce fuels.  They are meant to provide rough 

estimates of the total sustainably available biomass resource only and do not 

provide any understanding of whether an economically viable industry is 

possible.         

Economic models of the agriculture and forestry sectors improve upon 

technical assessments by capturing market effects.  Two agricultural sector 

models have been developed with the purpose of answering questions about 

biomass as a potential energy and industrial feedstock in the United States 

and are describe in the following two paragraphs.   

De la Torre Ugarte and Ray (2000) developed a dynamic, systems model of 

United States agriculture that is anchored to an externally provided baseline 

(such as FAPRI or USDA projections).  A value for biomass as an energy 

feedstock along with estimated cost of production is introduced and   the 

reaction of the agricultural market is simulated.  The POLYSYS model has 

been used to project the impact on agricultural markets of producing 60 

billion gallons per year of ethanol by the year 2030 (De La Torre Ugarte et 

al., 2007).     

Khanna  et al (2010) have developed a “dynamic multi-market equilibrium” 

model to consider the effects of policies on competition between food and fuel 

crops.  The agricultural sector is modeled in detail with the introduction of 

switchgrass (Panicum virgatum) and miscanthus (Miscanthus giganteus) 

energy crops.  Transport of the biomass and conversion to fuels are treated as 
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linear factors that convert biomass to fuel for a single set cost.  The fuel 

market is simulated using elasticities of demand for gasoline and elasticity of 

substitution between gasoline and ethanol.  Also, gasoline price is responsive 

to changes in demand as ethanol elbows its way into the market.  Khanna 

and her co-authors make use of the detailed data within the model to report 

endogenously calculated emissions of greenhouse gases. 

The Forest and Agricultural Sector Optimization Model – Greenhouse Gas 

Version (FASOMGHG) is an integrated economic model of the forest and 

agricultural sectors with a focus on land allocation decisions and subsequent 

impacts on greenhouse gas emissions (Daigneault et al., 2009).  It was used 

by the EPA in analyzing the RFS2 policy with two main goals (US EPA, 

2010).  First it provided the economic basis for the allocation of lands to 

energy crop production.  Second it provided the domestic indirect land use 

change greenhouse gas emission component in analyzing the greenhouse gas 

impact of the fuel pathways (US EPA, 2010).   

The economic models of the agricultural sector treat biomass as having a 

single value across all locations and types of biomass.  This is not an accurate 

description of biomass for several reasons.  Spatial markets will result from 

the high cost of biomass transportation and discrete locations of large 

biomass consumers.  Biomass producers located near the large consumers of 

biomass can demand higher prices for their biomass and therefore be more 

profitable than producers far from the consumers with the same costs of 
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production.   Additionally, the term biomass refers to a heterogeneous set 

of materials of recent organic origin.  This heterogeneity will be exploited to 

maximize the benefits of using biomass.  The value of biomass generally 

varies with its end use.  A bale of switchgrass has a value to a feedlot based 

on the nutritional content.  The same bale is valued by its 

cellulose/hemicellulose content by a biochemical ethanol producer and by its 

heating value (and ash properties) by thermochemical biofuel producers and 

electricity producers.  These three aspects of a biomass feedstock are not 

proportional and different end users will value different biomass differently.  

In a simplified world, the end user with the highest value sets the price.  Due 

to these two aspects of biomass it is important to consider both the value of 

the end use product and the location of the consumers of biomass when 

projecting supplies of biomass in a competitive market. 

Other approaches to economic modeling of biomass and biofuels have 

focused on the energy market.  Two studies to date demonstrate this 

approach.  Alfstad (2008) used the Department of Energy-Energy Technology 

Perspectives (DOE-ETP) MARKet ALlocation (MARKAL) model to analyze 

the likely outcome of the RFS2 biofuels mandate in the United States.  

MARKAL models are dynamic energy sector models with rich supporting 

information on technologies, resources and markets for energy products.  The 

MARKAL framework uses a least-cost criterion for choosing between energy 

pathways to meet specified energy demands.  In order to focus on biofuels, 
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Alfstad and his collaborators updated the biomass resource assessments 

and the technology models for biofuels production in the United States and 

countries most likely to export fuels to the United States and imposed the 

constraints of the RFS2 policy.  The results predict that the mandate will not 

be met without overcoming significant barriers on the market and 

infrastructure side of the equation.  However, due to the nonspatial nature of 

these findings, they are more a reflection of assumptions in the model than 

analysis. 

  The BioTrans model has been developed to study biofuel transitions in 

Europe in reaction to policy mandates for biofuels (Lensink and Londo, 2010).  

It uses a least cost network flow modeling framework to choose biofuel 

pathways in order to meet mandated production targets.  Built with the 

purpose of analyzing biofuels, it makes several improvements while 

sacrificing complexity of market interactions in both the agricultural and 

energy markets.   The spatial resolution is country-level for everything except 

the biomass supply, which is done at a sub national scale.   It makes an 

explicit characterization of marginal lands and the economics of potential 

energy crop production – yields, cost of production and revenue from an 

incumbent crop.   Multiple technologies compete for resources and fuel 

market share.  Each year is solved successively with installed capacity 

impacting the conversion cost through learning curves.   Despite the focus of 

dynamics there is no consideration of sunk capital costs and existing 
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capacity.  De Wit et al (2010) used BioTrans to demonstrate the potential 

for large market shares for biodiesel in the European market by 2030 and 

found that technological lock-in is a likely outcome if policies are not designed 

to diversify the market.  The method is limited in that it uses set 

transportation distances for intra-country deliveries and linear conversion 

costs.  

To address the spatial aspects of biofuels production, a significant 

literature exists that focuses on understanding the best way to design 

bioenergy supply chains.  A number of studies have focused on optimal 

biorefinery siting relative to the resource, given a standard biorefinery size 

(Graham et al., 2000; Zhan et al., 2005).  Other studies explore the tradeoff 

between biorefinery size and feedstock transportation cost (Kaylen et al., 

2000; Kumar et al., 2003).   

Several recent papers have begun to address the design of a biomass-based 

industry in a full optimization framework.  Freppaz developed a decision 

support system for the exploitation of forest resources considering multiple 

energy products and the spatial layout of both the supply and demand 

(Freppaz et al., 2004).  My previous work has included research on the siting 

and sizing of biomass hydrogen biorefineries exploiting California’s rice straw 

resource (Parker et al., 2008) and biofuels production in the western United 

Sates (Parker et al., 2010).  Schmidt et al (2009) developed a spatially explicit 

supply chain optimization to compare the cost-effectiveness of CO2 emissions 
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reduction through heat, electricity or fuels production using woody 

biomass in Austria.  The methods used are similar to the methods presented 

in this dissertation.  The main differences are that continuously variable 

biorefinery sizes are used here while Schmidt et al use discrete sizes and the 

objective is to minimize cost rather than maximize profit.  Schmidt and his 

co-authors use a prescreening method to select potential biorefinery sizes.   

These studies have necessarily limited their scopes due to computational 

and data availability concerns.  In order to be used for policy analysis these 

models need to have an expanded scope that studies large regions such as the 

United States or the European Union.  

The biofuel infrastructure models borrow their analytical formulation from 

the field of facility location within the field of operations research.  For a good 

background on the facility location problem, see Owen and Daskin (1998).  

Melo et al (2009) provides a recent review of supply chain management 

studies with facility location.  Melo points out that surprisingly few studies of 

facility location and supply chain management use a profit-maximizing 

objective despite it being the presumed goal of all industries that are 

modeled.  The profit-maximizing objective described later is a key component 

to enable policy analysis within the framework.  

2.2.1 Summary 

The three approaches described above focus on different important traits of 

the biofuel pathway.  The agricultural partial equilibrium models have the 
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strongest representation of the supply of energy crops incorporating the 

competition for scarce land resources between conventional food crops and 

energy crops.  In general, they either ignore or simplify the infrastructure 

and conversion technology considerations.  The infrastructure models provide 

the opposite, focusing on the important spatial features and layout of 

biorefineries while using a simplified resource assessment and considering 

small regions.  The “bottom-up” engineering-economic models bring in the 

dynamic aspect on the technology side and the full energy market but 

sacrifice the detailed spatial aspects of resource supply and biofuel system 

layout.  The work presented in this dissertation is a spatially explicit 

infrastructure model that has been demonstrated at the U.S. national scale. 

The main advantages of this approach are the following. First, explicit 

consideration is given to the tradeoff between economies of scale and 

transportation costs that is constrained by real-world geographic information. 

This not only improves the estimate but also guarantees that the modeled 

system is anchored to a realistic supply system.  Second, the use of a profit-

maximizing framework allows greater flexibility in the types of questions 

that can be asked.  For example, the impact of incentives in the form of 

subsidies can be analyzed or the impact of spatial variation in fuel prices can 

be considered.  Finally, the data intensive approach based in engineering 

estimates of costs provides a relatively transparent and flexible model for 
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analyzing the sensitivity of the highly uncertain parameters involved in 

projecting future fuel supplies. 
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3 METHODOLOGY 

The methodology used here is to build a series of scenarios varying policy, 

market and technology parameters that influence the design of the biofuel 

industry.  The industry is then modeled using a spatially explicit integrated 

supply chain model.  This model describes the optimal behavior of a biofuel 

industry given a fuel demand, biofuel selling price, and feedstock supply 

constraints.  If biofuel can be delivered to the fuel terminals for less than the 

given selling price then it is profitable for the industry to supply that biofuel 

and the infrastructure is built to reap that profit.  If biofuels cannot be 

delivered for less than the selling price then the fuel demand is met with 

conventional fuels at the given selling price.  In addition, when demand for 

fuel exceeds the supply of feedstock, the difference is made up with 

conventional fuels.   

The model has been adapted to be responsive to policy and market 

conditions.  This is made possible by (1) flexible spatially explicit resource 

and technology assessments, (2) a mixed integer-linear supply chain 

optimization model, (3) spatial models of transportation costs and (4) an 

environmental accounting model of emissions and resource consumption.   

For each scenario, the optimal designs of the biofuel systems are found 

over a range of prices in order to produce supply curves.  The supply curves 

show the quantity of fuel that would be made available at a given market 

price for biofuels.  In economic terms they are considered long-run marginal 
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cost curves for biofuel production as they account for both capital and 

operating costs. Along with these optimized supply curves, estimates of 

greenhouse gas emissions, emissions of criteria air pollutants, water demand, 

consumption of primary energy sources, land use changes, and types and 

quantities of biomass consumed can be made subject to data availability at 

each price point.  

To develop optimal biofuel system designs, a number of models are 

integrated to work together, enabling a systemic view while maintaining 

computational feasibility.  At the center of the integrated model is the supply 

chain optimization model that sites and sizes biorefineries, allocates the 

resources to the biorefineries and allocates the fuel produced to the demands.  

External models provide the input parameters for this optimization model.  

The resource is spatially characterized using a Geographic Information 

System (GIS) model that integrates and expands several existing resource 

assessments.  Fuel demand is characterized using a spatial demand 

assignment model and allocated to fuel distribution terminals.  

Transportation cost calculations are performed in a GIS network model.  The 

biorefinery cost and performance are described by a spreadsheet engineering 

model that simplifies the production costs into an integer-linear function of 

the fuel output and biomass inputs. 
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3.1.1 Major Strengths and Weaknesses of the Modeling 

Framework 

The proposed approach is an engineering-centric method for developing 

supply curves.  It focuses on the details of engineering costs, environmental 

impact accounting and spatial modeling.  This approach enables meticulous 

analysis of the variation in environmental impacts, supply and cost of a 

variety of biofuel pathways with real-world geographies.  Capturing the 

richness of this variation in biofuel pathways will provide insight in the 

degree to which biofuels can accomplish policy goals. The major weakness of 

this approach is that agricultural and energy markets are not endogenously 

considered.   

The framework proposed here does not naturally lend itself to the study of 

economic feedback loops that the industry will create.  First, demand for 

feedstock does not impact the modeled cost of acquiring the feedstock.  Since 

the model maximizes total industry profit, a portion of the profit is expected 

to flow to the feedstock providers.  Second, it is assumed that the modeled 

biofuels industry does not create any impact on the market price of the co-

products.  Because the co-product markets are not endogenously considered, 

sensitivity analysis is required.   Finally, it is assumed that the consumption 

of biomass waste and residue streams does not impact the industries 

producing the wastes and residue streams.  Additionally, biorefineries are 

developed in a cooperative fashion, which maximizes profit for the industry 
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as a whole, not considering individual market actors.  These limitations 

are due to simplifying assumptions for the model.  The simplifications allow 

the model to focus on spatial aspects – resource and demand layout and 

infrastructure design – including the secondary market effects would require 

an iterative approach to finding market clearing prices that would lead to 

significantly longer computation times.     

3.2 Overview 

A geographically explicit biomass resource assessment and infrastructure 

network model is integrated with technoeconomic models of the conversion 

technologies and an emissions inventory model to provide analysis of 

potential biofuel supply pathways. The analysis has five main components – 

1) geographically-explicit biomass resource assessments, 2) 

engineering/economic models of the conversion technologies, 3) models for 

multi-modal transportation of feedstock and fuels based on existing 

transportation networks, 4) a supply chain optimization model that designs 

the fuel production system based on inputs from the other models, and 5) an 

emissions inventory model that calculates the emissions resulting from the 

designed supply chain. The optimization and emissions inventory models are 

described below.   
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Figure 1: Model organization and interaction of submodels 

3.3 Supply chain model formulation 

3.3.1 General formulation 

The optimization model is formulated as a deterministic, multi-commodity, 

capacitated facility location problem.  A biofuel supply chain optimization 

model was developed to consider explicit spatial distributions of biomass 

supply and fuel demands, competition among technologies for resources, and 

the economies of scale of conversion technologies in finding the best design 

for biofuel supply chains. The model locates, sizes, and allocates feedstock to 

biorefineries with the objective of maximizing the profitability of the industry 

as a whole.  The profit considered is the sum of the profits for each individual 

feedstock supplier and fuel producer over the entire study region.  Costs 

considered are those associated with feedstock procurement, transportation, 

conversion to fuel, and fuel transmission to distribution terminals.  Fuel 

production and selling price determine industry revenue.  The selling prices 
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of the product fuels are input parameters that are varied to create a 

supply curve. 

 

Figure 2: Schematic of optimization model. 

The model is formulated as a mixed integer linear program.  Decisions 

integrated into the model are whether to build a biorefinery of a given 

technology type, ‘t’, at a given site, ‘j’, (Xjt); if built, how many dry tons (US) of 

feedstock of type, ‘f’, is consumed per year by the biorefinery (Yfjft), the 

quantity of fuel product type ‘p’ produced (Ybjpt) measured in millions of 

gallons per year (MGY), the fuel distribution terminals to which the fuel is 

delivered (Tjkt), and which feedstock supplies, located at location, ‘i’ at a 

particular procurement cost level, ‘c’, are exploited by the facility (Fijfc) 

measured in dry tons per year.  Feedstock supply curves for each feedstock 

and supply point are defined at discrete cost levels in the model.  These 

decisions are made for all potential sites simultaneously with no double 
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counting of resources.  The objective of the program is to maximize the 

total annual profit of producing and delivering biofuels to distribution 

terminals. The profit is defined here as the annual revenue from the sale of 

biofuels and co-products less the annual cost of producing those biofuels.  

  
Table 2: Model variables and indices 

Set Index Description Unit  

i supply location   

j potential biorefinery location  

k fuel terminal location  

f feedstock type  

t conversion technology  

p product type  

c procurement cost level  

e emission (CO, CO2, NOx, etc…)  

   

Variables   

Fijfc Feedstock transported dry tons per year 

Xjt Biorefinery built or not [0,1] 

Yfjft Feedstock consumption  dry tons per year 

Ybjpt Product output gallons/kWh per year 

Tjkp Product deliveries gallons per year 

Ie Total emissions from modeled industry tons per year 
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Table 3: Model parameters 

Parameters Description Unit  

Sifc Maximum available supply dry tons per year 

Dkp Maximum demand at terminal ‘k’ gallons per year 

Pifc Procurement cost $/dry ton 

TCijf Feedstock transport cost $/dry ton 

DCjkp Product transport cost $/gallon 

ajt Fixed biorefinery annualized cost $/year 

bjft Feedstock dependent biorefinery cost $/dry ton 

cjpt Product dependent biorefinery cost $/gallon or kWh 

MPkp Market price of product  $/gallon or kWh 

!fpt Conversion factor unit per dry ton 

ggep Conversion factor for transforming all fuel 

products from volumetric units to energy 

units of gge 

gge/gallon 

Mjt Maximum biorefinery size dry tons per year 
! Relaxation parameter for the proportional 

blend requirement 

 

"k Fraction of national vehicle miles traveled 

allocated to terminal ‘k’ 

 

#p Fraction of LDV fuel demand that can be met 

by fuel ‘p’ 

 

LDV fuel 

demand 

Demand for light duty vehicle fuels in the 

analysis year 

Gallons of gasoline-equivalent 

per year 

   

CP Carbon price $/ton CO2-eq 

CIpt Carbon intensity of fuel product ‘p’ produced 

using technology ‘t’ due to conversion process 

tons CO2-eq/gallon or kWh 

CIft Carbon intensity related to the production 

and consumption of feedstock ‘f’ using 

technology ‘t’ 

tons CO2-eq/dry ton 

FCifc Diesel consumed in harvest/ production of 

biomass 

MMBtu/ton 

EFem Emissions factor for emission ‘e’ per unit of 

diesel fuel consumed by mode ‘m’ 

grams/MMBtu 

EFfe emissions factor for emission ‘e’ for feedstock 

harvest/production from non-diesel inputs 

grams/ton feedstock 

EFte Emission factor for emission ‘e’ from the 

conversion of biomass to fuel through 

technology ‘t’ 

grams/ton feedstock 

FEm Fuel economy of transport by mode ‘m’ MMBtu/ton-mile 

dmij Miles by mode for each link in the feedstock 

supply chain 

miles 

$p Specific volume of product fuels gallons/ton 

MCf Moisture content of feedstock type ‘f’ ton H2O/wet ton feedstock 

GWPe Global warming potential of emissions species tons CO2-eq/ton  
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The revenue is determined by the quantities and selling prices of the 

products (MPkp).   In the model formulation, the energy products are 

differentiated from other co-products. Non-energy co-products are included in 

the cost function (as negative variable cost) while energy co-products are part 

of the revenue.  The costs considered are the procurement of feedstock (PCifc), 

the transportation of feedstock to the biorefinery (DCijf), the transportation of 

the product fuel to the distribution terminals (TCjkp) and the conversion cost.  

The conversion cost is dependent on the size of the biorefinery.  I characterize 

it here as a binary-linear function with a fixed cost (at) if a facility is built and 

a variable cost (bt) dependent on the capacity of the biorefinery expressed in 

terms of feedstock input (Yfjft).   

       (1) 

 

The objective function is combined with a number of constraints 

representing the physical limitations or restrictions of the biomass industry 

in the mathematical model.  The first set of constraints limit the biomass 

originating from a source at a price level to be less than the maximum supply 

of biomass of that type and price level at that source (Sifp) (equation 3). 

       (3) 

The biofuel produced at a biorefinery is equal to the quantity of biofuel 

that can be produced from the biomass entering the biorefinery, given the 
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conversion efficiency (%ft) including handling loss (equation 4).  I also 

relate the biorefinery biomass input capacity to the biomass coming into the 

facility (equation 5) and the product fuels leaving the biorefinery to the 

production of biofuel at the biorefinery (equation 6). 

       (4) 

       (5) 

       (6) 

The size of the biorefinery must be zero if the fixed cost has not been paid 

(binary variable at that site is 0).  If the binary variable is 1 then the 

biorefinery can be no greater than its maximum allowable size for the 

technology (Mt) (equation 7).  

       (7) 

Fuel demand is limited at each terminal to represent either technical or 

policy constraints to the consumption of the fuel at that terminal.  Different 

approaches for this spatial fuel demand constraint are discussed in section 

3.3.2. 

                                        (8) 

Non-negativity constraints 
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All variables representing physical quantities must take on either a 

zero or positive value (equation 9).  The binary variable for the existence of a 

biorefinery must take on a value of zero or one (equation 10).  

        (9) 

         (10) 

Each model run gives results of the industry-wide fuel production for a 

given price; which biorefinery locations are optimal and how big they are; and 

which biomass resources are used at each biorefinery.  Multiple model runs 

are performed over a range of fuel prices.  Plotting the industry production 

against fuel price gives the supply curve.   

3.3.2 Approaches to spatial fuel demand constraint 

Fuel demand at each terminal can be limited in a number of ways.  The 

assumption used in the baseline model is that a proportion of fuel deliveries 

of a specific fuel type to each terminal must not be greater than ! more than 

the proportional vehicle fuel demand allocated to the terminal (equation 11).  

The parameter!provides the model a small degree of flexibility in fuel 

deliveries.  The choice of this parameter is a tradeoff between computational 

difficulty and the desired strictness of the constraint.  The fuel demand is 

allocated by the fraction of the national VMT within the terminal’s service 

territory; this value is the parameter "#.  Alternative formulations could 

include a blend wall (equation 12), where $p represents the allowable blend 
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fraction of a given fuel.  Modeling E85 infrastructure requires changes to 

the objective to track the cost of installing E85 fuel pumps and additional 

constraints to track the quantities of ethanol used in E85 versus E10.  I have 

not modeled in this analysis the required number of E85 stations in a region 

to accommodate full use of E85 in flex-fueled vehicles.   

       (11) 

     (12) 

3.3.3 Approaches to handling greenhouse gas emissions 

In a carbon-constrained world, an economic cost will exist for greenhouse 

gas emissions that must be accounted for in the profit equation of the biofuel 

industry.  Two options have been explored for incorporating greenhouse gas 

emissions into the economic model.  The first and simplest method uses 

default carbon intensity values for different classifications of fuels.  For 

example, wet mill corn ethanol facilities can be given a value of 100 g MJ-1 of 

carbon dioxide equivalent emissions while ethanol from corn stover is given a 

value of 20 g MJ-1.  Using this method converts the cost equation to Equation 

13.  This method requires established emission factors for each biofuel 

pathway considered, which are not well known in some cases.  Furthermore, 

existing emissions factors may not match the exact pathways being modeled 

and therefore are not true measures of the modeled biofuel supply.   
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  (13) 

Alternatively, emissions for the biofuel pathways modeled can be tracked 

within the model to provide accurate estimates of the specific pathways 

modeled down to the transportation distances and modes.  This method 

presents its own difficulties in data requirements and ensuring consistency.  

It is also not used in the current regulatory environment.  The California Air 

Resources Board, the US EPA and UK Renewable Transport Fuel Obligation 

all use a default and opt-in framework for determining the carbon intensity of 

a specific batch of fuel.  The emissions tracking model is described by 

Equation 14.     

  (14) 

  (15) 

The emission factor formulation (equation 13) is appropriate for analysis of 

the industry response to policies with default values for different pathways.  

It can also give a better representation of the carbon impacts in some cases.  

For example, the best value for the carbon intensity of a bushel of corn may 

not be the carbon intensity for the particular bushel used but rather the 

marginal bushel on the world market.    
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3.3.4 Alternative cost minimization model 

The modeling approach taken here is to develop a profit-maximizing 

model.  In many cases, a profit-maximizing model yields the same results as 

a cost minimization model.  However, a profit maximizing model has several 

characteristics that make it more advantageous than cost minimization for 

this particular application.   

The first advantage of profit maximization is the flexibility of constraints it 

allows.  In cost minimization, some constraints must be predetermined that 

are not necessary for profit maximization.  For example one must minimize 

cost subject to the full utilization of the resource or satisfying a 

predetermined demand.  These constraints are necessary to prevent the 

model from always producing a null answer.  The constraints have the 

disadvantage of reducing the model’s flexibility.  In choosing the optimal 

design, fractional levels of resource use and demand satisfaction may be the 

best option.  This is especially true for modeling the biofuel industry which 

will account for a fraction of the fuel market into which the biofuels are sold.  

A profit maximizing approach avoids these issues by allowing the model to 

choose which resources to use and which demands to serve based on 

balancing the costs of production of a good with the price of the good. 

The second advantage is in the interpretation of the results.  A profit 

maximizing approach seeks to resolve the question about how much fuel can 
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be produced from a resource while recognizing the importance of market 

prices for answering the question.  

A third advantage is that with mixed integer-linear models the marginal 

values are not reliably obtained.  Economic theory tells us that the marginal 

cost is the interesting metric for evaluating cost of meeting a production 

target for any good.  The profit maximizing model – as the dual problem to 

cost minimization – provides this information in a straightforward manner.   

 The last advantage of the profit maximizing method is that it allows for 

infrastructure design to respond to price differentials between demand 

centers.  This feature can be used to replicate the disparate fuel prices 

currently seen across space or to evaluate regional policies that may attract 

biofuels to a region such as California’s Low Carbon Fuel Standard.  The 

model can be used to evaluate the prices that California would need to pay in 

order to attract enough low carbon biofuels to meet the standard. 

Despite the advantages of the profit-maximizing model, some research 

questions are better suited to a cost minimization approach of the model. 

Conversion from the profit-maximizing framework to a cost minimization is 

straightforward.  The objective is replaced by an objective to minimize the 

cost and a binding constraint must be introduced. 

Depending on the research question, either the supply or the demand can 

be binding constraints.  In the case of a mandated volume of fuel, an 

interesting question is: what is the least cost system for meeting the 
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mandate? The total demand becomes the binding constraint, as seen in 

Equation 16.  In some cases, the research may be interested in the least cost 

system for utilizing a certain resource.  For example, the results of an 

agricultural-economic model may give the production of biomass at $40/ton at 

the roadside.  This assessment depends on all farmers being able to get that 

price and so all the resource must be used for a consistent biofuel supply 

assessment.  In these cases, Equation 17 replaces the supply constraint 

(Equation 3) in the generic formulation. 

        (16) 

       (17) 

Greenhouse gas emissions may also provide a binding constraint for a cost 

minimization model.  Either as an absolute reduction against the baseline 

gasoline or by expanding the system boundaries to include petroleum fuels 

production.  As a reduction against the baseline the constraint can be 

formulated as Equation 18. 

    (18) 

3.3.5 Competition with other biomass consuming industries 

Competition for biomass feedstock between industries is an expected 

outcome of the combination of policy, market, and technology developments 

that seek to move away from fossil feedstocks for many sectors including 

electricity, fuels, plastics, and chemicals.  These new and increased uses for 
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biomass will impact the cost of providing biofuels by providing a 

competing use for biomass. Each sector has its own characteristics of 

quantities, technologies, yields and prices that influence the competitiveness 

of each for limited biomass resource.  The generic model can easily 

accommodate these uses of biomass, provided availability of the needed data.  

The nonfuel markets would be added as additional products from 

biorefineries with the conversion technology models updated to include the 

technologies to produce the alternative biomass-based products.  An example 

of this considering competition between electricity and biofuel sectors can be 

found in Tittmann, et al (2010).    

3.3.6 Linking to results from agricultural economic models 

Agricultural economic models are arguably the preferred method for a 

resource assessment for agricultural biomass.  The predominant method for 

performing a resource assessment with agricultural economic models is to set 

a farm gate price for biomass as a perturbation of the existing agricultural 

system and find out how the introduction of this new commodity impacts the 

system.  For the purposes of the proposed modeling framework this is 

problematic.  To remain consistent with results of agricultural economic 

models, only biomass corresponding to a single farm gate price can be used 

and all of the biomass available at a single farm gate price must be consumed 

if any of it is consumed.  This type of resource assessment does not fit neatly 

into the modeling framework.   
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To address this shortcoming two approaches can be taken.  The first is 

to employ the cost minimization version of the model for each farm gate price.  

The second is to loop the profit maximizing analysis to find the price point 

where all or almost all of the biomass available at a farm-gate price is 

consumed.  The second approach allows for the integration of other resource 

assessments with the agricultural resource assessment and for the model to 

exclude a small fraction of resources that are unattractive mostly due to high 

transportations costs associated with remote locations or feedstocks with 

especially low conversion efficiencies.  I prefer the second approach. 

3.4 Submodels 

3.4.1 Conversion technology characterization 

A central component of the supply chain optimization model is the 

characterization of the cost and performance of each biorefinery.  

Spreadsheet engineering/economic models of the conversion technologies are 

developed based on literature.  These models standardize the accounting 

framework and allow for key parameters to be analyzed.   The model outputs 

an integer-linear function for production costs, yields over a range of 

feedstock types, and environmental performance.   The integer-linear 

functional form is used because it allows for the inclusion of economies of 

scale in a model that is computationally feasible. 

The costs of production consider capital, operating and maintenance and 

non-feedstock input costs.  The capital costs are annualized based on a given 
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discount rate and economic lifetime for the biorefinery.   The annualized 

costs of production for the biorefinery are calculated for the size range 

considered valid for the technology characterization.  To convert the 

polynomial functions into linear functions, a linear regression is performed on 

the annualized costs to give the parameters at, and bt used in the annual cost 

equation (equation 2).  If there is a strong dependence on the product 

capacity as opposed to the feedstock capacity, then the parameter ct is 

estimated.  Similarly if there is a compelling reason to consider each 

feedstock differently then a set bft can be found.  The parameter Mt is the 

upper limit for the biorefinery size in terms of feedstock capacity, which is 

taken from the technology characterization. 

The technology characterization models are designed to flexibly react to 

changes in assumptions, automatically updating the parameters for the 

optimization model.  When existing biorefineries are considered, the capital 

costs are either set to zero – as a sunk cost – or depreciated based on the age 

of the existing facility.   

It is important to note that the linear regression of the economies of scale 

for the biorefineries can change the nature of the production function.  

Linearizing the annualized cost of production converts any constant economy-

of-scale production function to a decreasing economy-of-scale production 

function with implications for any resulting conclusions on optimal facility 

size.  The linearized model will generally predict smaller optimal facility sizes 
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than a model would using the functional form presented in the literature.  

Conversion to integer-linear production functions is required in order to avoid 

cost equations with terms X%, where 0 <%< 1.  These types of functions 

perform poorly using existing optimization algorithms when X can equal zero.  

 

Figure 3:  Impact of linearizing the conversion cost models on 

average and marginal costs – axis intentionally left blank  

3.4.2 Resource assessments 

The resource assessments can come from a variety of sources and 

methodologies.  More detail on the resource assessment methodologies is 

provided in the section 4.2.  The assessments need to be standardized for use 

in the model.  The resources need to be located and made to conform to the 

discrete supply curve framework of the model.    

The resources are given a geographic identifier matched to a point layer in 

the GIS.  County resolution data are mapped to the county centroid.  

Municipal data are resolved to the city center.  These point sources for the 
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resources are connected to the transportation network by a shortest path 

algorithm so that their transportation costs can be calculated.  

All discrete procurement costs (costs at the roadside of the supply location) 

provided in the assessment become unique identifiers of the set of 

procurement cost levels (the index ‘c’ in the formulation).  Marginal additions 

of biomass supply are denoted for each feedstock type, location and 

procurement cost level.  Some resource assessments are reported in 

cumulative quantities and are converted to marginal quantities.  When 

available, emission factors for the biomass supplies are recorded to the 

database using the same identifiers. 

3.4.3 Potential biorefinery locations 

Selecting a set of potential biorefinery locations can be done in a number of 

ways.  The goal in selecting potential locations is to include all locations that 

may be optimal while limiting the total number of potential locations to ease 

computational effort.  One method is to use all supply locations as potential 

locations.  In most cases this provides more locations than are needed.  

Potential locations that are close together can be effectively redundant but 

cause significant issues with the computational effort of deciding between 

two nearly identical outcomes.   

An alternative approach that is taken here is to limit the potential 

locations based on logical constraints and then reduce the number by 

removing redundant locations.  Logical constraints include the following: 
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adequate population to provide workforce, access to transportation 

infrastructure (major highways and rail lines) or the existence of a similar 

facility such as a pulp mill or biomass power plant.  The criteria used here 

are taken from Tittmann, et al (2010) and can be described as follows. 

Potential locations are a subset of cities in the region. Cities are included if 

they have existing petroleum refineries, existing or proposed biomass 

conversion facility or existing industrial facility with similar requirements. 

Cities without existing facilities but with connectivity to infrastructure are 

considered if their population is greater than 10,000.  Infrastructure 

connectivity is defined as maximum distance to a railroad less than 5 km or 

maximum distance to a marine terminal less than 15 km.  Removing facilities 

that are less than 50 km apart further reduces these potential locations.  In 

this case, the largest city of the cluster is chosen to be the representative 

potential location.   

Using the largest city in the cluster results in all large population centers 

being chosen as potential locations.  The exact locations used in the model are 

not likely good candidates in these cases.  However, the transportation costs 

to the location is representative of the area within 50 km of the location.  In 

most cases, there will be an appropriate site within that distance.   The 

emphasis of this analysis is solving a national scale implementation for policy 

analysis which requires ignoring some details in the local geography.     
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Figure 4: Potential locations for biorefineries 

3.4.4 Transportation network model 

The transportation costs are modeled using the Network Analyst feature 

in ArcGIS (McCoy, 2005). The unit costs for all potential links – cost of 

transporting one ton of biomass or one gallon of fuel between each source and 

biorefinery or each biorefinery and fuel distribution terminal – are calculated 

over the transportation network and passed to the supply chain optimization 

model.  This includes loading and unloading costs in addition to the distance 

dependent costs.  The transportation network consists of a GIS network of 

the road, rail, and marine routes available for transporting feedstock and fuel 

along with a set of engineering economic models for the cost and performance 

of the transportation modes for each feedstock and fuel type.  

In addition to the unit cost of transportation on a given link, the route 

distance by mode and fuel use is calculated for the chosen routes.   These can 
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be used to provide emissions accounting data and to adjust the cost of 

transportation to quickly reflect sensitivities to the fuel price.  Full 

accounting for fuel price changes would require re-optimizing the routes as 

route choice and mode switching may occur.  The benefit of performing the re-

optimization of routes would be small compared to the effort required and 

therefore it is not performed.  

The optimal route choice for any given origin and destination pair and its 

cost are not impacted by the design of the biofuel industry.  The additional 

congestion caused by the biorefinery is not modeled in the work to date.  

Accounting for the congestion costs would require an iterative process of 

solving the optimization model, updating the cost function, resolving the 

network analyst, then resolving the optimization model and repeat until 

convergence. 

3.5 Defining the appropriate spatial resolution for analysis 

The main advantage of the approach developed in this dissertation 

compared with previous approaches is the explicit consideration of space.  

The choice of spatial resolution for the analysis presents a tradeoff between 

improving model fidelity and increasing computational effort.  At the 

extremes, low resolution can aggregate resources to greater than the 

biorefinery maximum size – negating the value of the optimization model – 

and high resolution can lead to a computationally intractable model.  An 
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additional consideration in this tradeoff is the resolution of credible and 

consistent resource data for the scope of the analysis.   

There are three aspects of spatial resolution.  First is the resolution of the 

resource assessment.  In most cases, the resource assessments spatial 

resolution is going to be limited by the available underlying data.  The second 

aspect is the resolution of the potential biorefinery locations. As discussed 

earlier, the resolution of the set of potential locations can be limited by 

aggregating qualifying locations that are redundant for the purposes of 

modeling.  Finally the resolution of the fuel demand needs to be considered.  I 

have chosen to aggregate fuel demand to fuel distribution terminals.  

Extending the analysis to refueling stations would require an increase in the 

number of fuel delivery variables for each refueling station in the region of 

analysis.   
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4 CONVERSION TECHNOLOGIES 

In this chapter, I provide the background on the literature of biofuel 

conversion technologies that are used in the following case studies.  Costs and 

performance are described for a range of current and future conversion 

technologies.  The data used in the national case study is described and set in 

the context of the existing literature.   

The technologies to produce biofuels are in various stages of development.  

Some, corn ethanol and FAME biodiesel, are currently operating 

commercially.  These technologies have well known current costs and 

informed projections of how they will develop in the future.  Other 

technologies are in early demonstration phase.  The best available estimates 

for these technologies are from detailed techno-economic modeling and 

evaluations.  The diversity of uncertainty between the different technologies 

needs to be recognized in evaluating the relative costs.   

Table 4: Summary of Conversion Technology Status and Cost Models 

Used 

 
Corn Ethanol FAME 

Cellulosic 

Ethanol 
F-T Diesel 

CURRENT 

TECH. 

STATUS 

Commercial Commercial Demo Demo 

COST MODEL 

   Current tech 

 Future tech  

c. 2018 (nth 

plant) 

 

X1  

 

X2   

 

 

X 3 

 

 

X 4 

                                            
1 (Antares, 2009; Shapouri and Gallagher, 2005)  
2 (Antares, 2009) 
3 (Antares, 2009; Laser et al., 2009; Hamelinck, 2006) 
4 (Antares, 2009; Hamelinck, 2006) 
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The Antares Group, LLC as part of a collaborative project (Antares, 2009), 

developed many of the conversion technology models used here.   I have 

departed from these models in the cases of cellulosic ethanol where the rest of 

the literature points to a more conservative view of the technologies for the 

2017-2022 timeframe and for biomass-based Fischer-Tropsch diesel where a 

significant fraction of the literature is more optimistic.  In both cases, 

optimistic and pessimistic technology models are presented.  

 The cost data are presented in year 2008 constant dollars with 2018 

energy prices taken from the Annual Energy Outlook 2010 (EIA, 2010) unless 

otherwise noted.  The data from the referenced papers have been modified to 

be consistent using a simple levelized cost of production found using equation 

19 with an after tax real internal rate of return of 10% and a 20 year lifetime, 

unless otherwise noted.  The capital and maintenance costs were adjusted 

from each study to year 2008$ using the Chemical Plant Engineering Index 

(2010) which accounts for escalation in the cost of building chemical plants 

over time.  The operating and non-energy variable costs were adjusted using 

the Producer Price Index for basic chemical manufacturing (Bureau of Labor 

Statistics, 2010). 
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           (19) 

Table 5: Parameter definition for levelized cost equation 

Term Definition Commonized Value 

i internal rate of return 10% 

n economic lifetime 20 years 

Cb Capital cost at base scale varies by study 

Sb Reference or base scale varies by study 

Sx Modeled scale varies by technology 

CostFOM Fixed annual operation and 

maintenance cost 

varies by study 

Costv Variable cost as a linear function of 

scale 

varies by study 

MPcoproduct Market price received for co-product see Table 6 

Ycoproduct Annual production of co-product varies by study 

Table 6: Standardized assumptions for comparing technologies 

Energy Inputs/co-products Source 

Natural gas 6.51 $/MMBtu AEO2010 

Electricity 0.050 $/kWh AEO2010 

Gasoline 3.07 $/gal AEO2010 

Diesel 3.12 $/gal AEO2010 

Propane 23.86 $/MMBtu EPA (2010) 

Hydrogen 1,590 $/ton EPA (2010) 

Feedstock Costs   

Corn 3.60 $/bu FAPRI (2009) 

Soy oil 0.498 $/lb  FAPRI (2009) 

Yellow grease 0.255 $/lb 

USDA Market 

News (2009) 

Corn Stover 50 $/ton -dry assumed  

Wood Chips 50 $/ton -dry  assumed 

Switchgrass 50 $/ton -dry  assumed 

Non-energy co-products   

Distillers Dry Grains 123 $/ton FAPRI (2009) 

Glycerin 0.058 $/lb Antares (2009) 
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Three recent comprehensive studies project the cost of many of the 

conversion technologies that provide a consistent context for the rest of the 

literature. The EPA studied the cost of biofuel production as part of an 

impact analysis of the EISA 2007 (EPA, 2010).  A European project (de Wit et 

al., 2010) modeled the current cost of biofuel technologies with progress ratios 

and scale economies to simulate growth of the industry.  Future technology 

costs were not calculated from this study and only current technology costs 

are shown.  Tao and Aden (2009) provide a review and comparison of techno-

economic models of biofuel technologies developed by the National Renewable 

Energy Laboratory and USDA for policy analysis.  The authors revised the 

models to compare the technologies at the same capacity of 45 million gallons 

per year of fuel output.  

4.1 Corn ethanol 

Ethanol produced from corn is the dominant biofuel pathway in the United 

States.  There are two types of technologies – wet mill and dry mill.  Wet mill 

technologies separate the germ, fiber, gluten and starch components of the 

corn kernel through steeping, screens, cyclones and presses.  The starch 

fraction can then be converted to ethanol.  It is the more capital and energy 

intensive process with lower ethanol yields but higher value co-products.  Dry 

mill processes first grind the corn, sending the full kernel through the 

saccharification and fermentation process before separating ethanol from the 

co-product distiller’s grains (which is typically dried) - the rest of the corn 
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plus yeast bodies (dried distillers grains or DDG).  Dry mill ethanol 

facilities produce more than 86% of the current ethanol production (Mueller, 

2010).   

The Antares model for dry mill ethanol is based primarily on the USDA’s 

2002 Ethanol Cost of Production Survey (Shapouri and Gallagher, 2005) with 

capital costs taken from (Gallagher et al., 2005).  Building on these earlier 

studies, the Antares study updated the yield of ethanol to 2.8 gallons per 

bushel, the electricity costs to $0.057/kWh and updated the capital and other 

operating costs to year 2008 dollars using appropriate inflation indices.  

Process energy fuel (mostly natural gas) is a significant cost that has 

increased at a rate greater than the production cost index.  The main process 

energy fuel price was not indexed directly to a current fuel price because the 

process fuel is reported only as a cost and the surveyed plants used a variety 

of process fuels.  Average process heat energy input is reported as 34,800 Btu 

per gallon.  Assuming natural gas fuel for process heat and 85% efficient 

boilers the natural gas demand is 40,941 Btu per gallon of ethanol.  An 

updated cost curve is shown in Figure 5 with AEO2010 projected energy 

prices for 2017 (natural gas, electricity and gasoline) and 2017 DDGs price 

from agricultural projections by Food and Agricultural Policy Research Institute 

(FAPRI) at the University of Missouri  (FAPRI, 2009) for the co-product credit. 

The Antares model gives one estimate of current ethanol technology.  Tao 

and Aden (2009) provide another using a techno-economic model developed 
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by USDA (Kwiatkowski et al., 2006).  Tao and Aden estimate higher costs 

of production than the Antares study due to significantly higher capital costs.   

Offsetting a fraction of the assumed higher capital costs are assumed lower 

energy use and labor costs compared with the Antares study.   

 

Figure 5: Comparison of estimated levelized costs of production for 

corn ethanol - Near term technology assessments are represented by 

squares and mid term technology (7-15 years ahead) are triangles 

For analysis of the RFS2 regulation, the US EPA developed a technology 

projection for 2022 for most biofuel technologies (EPA, 2010).  The corn 

ethanol technology modifies the same USDA techno-economic model used in 

Tao and Aden with lower energy use.   Further potential improvements to the 

technology are given as reductions in the levelized cost of production from the 

baseline, the largest of which was -$0.093/gallon for corn fractionation where 
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corn oil is separated as an additional co-product.  Revising the Antares 

model with EPA’s assumed energy use brings it into agreement with EPA’s 

cost estimate.    

The Antares model was used for two reasons.  First, it provides costs of 

production over a range of biorefinery scales, allowing the modeling of 

existing facilities that have a distribution of capacities.  Second, the existing 

corn ethanol industry will provide the majority of the 15 billion gallons of 

corn ethanol that is eligible for credit under the RFS2.  While improvements 

to the corn ethanol industry will continue to be made, refinements on the 

corn ethanol model are a low priority for this research.   

Table 7: Economic parameters for dry mill corn ethanol technology 

 <40 MGY >40 MGY 

Base Study Antares (2009) Antares (2009) 

Capital Cost* ($) Sx*(3.263*Sx-0.0565*Sx
2+0.00044*Sx

3)*106 

Fixed O&M ($/gal) $0.218 $0.198 

Natural Gas Consumption 

(Btu/gal) 
40941 40941 

Electricity Consumption 

(kWh/gal) 
1.19 1.19 

Other variable costs $0.177 $0.166 

Ethanol Yield (gal/bushel) 2.8 2.8 

DDG Yield (lb/bushel) 18.8 18.8 
*Sx = ethanol production capacity in million gallons of ethanol per year 

4.2 Fatty Acid Methyl Ester (FAME) biodiesel and “Renewable” 

diesel – hydrotreatment of lipids 

Conversion of lipids to diesel replacement fuels is currently performed 

using a transesterfication process to create fatty acid methyl esters (FAME) 

or conventional biodiesel.   Emerging technologies seek to create a 
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hydrocarbon fuel that can be freely blended with diesel through a 

hydrotreatment process.  These two technologies are modeled as competitors 

for the lipid feedstocks.   

FAME biodiesel is made by transesterfication, a catalyzed chemical 

conversion of oils or fats and an alcohol (typically methanol) to biodiesel and 

significant quantities of glycerol co-product.  FAME can be produced from 

virgin seed oils, waste greases or animal fats though the process design is 

optimized differently for the different resources.  The dominant production 

process in the US uses alkali catalyst with virgin soy oil feedstock accounting 

for approximately 78% of biodiesel production in 2008 (U.S. Census Bureau, 

2009).  This process is described in Haas et al. (2006) and Zhang et al. (2003).  

Zhang eta al. (2003) finds that an acid catalyzed process is most economic for 

waste cooking oil.  The dominant cost in producing biodiesel is the feedstock, 

especially true for virgin seed oils.   

The Antares models for FAME production are based on Haas et al. (2006) 

for virgin seed oils and Zhang et al. (2003) for yellow grease.  Adjustments 

were made to update costs to 2008 dollars.  Specifically, Antares adjusted 

labor costs upward based on experience and the value of the co-product 

glycerol downward to $0.05/lb due to market saturation.  The glycerol value 

of $0.15/lb is used in most studies but the price of glycerol has dropped to 

$0.05/lb during periods of high biodiesel production as the additional supply 

of glycerol resulting from biodiesel production greatly outpaced demand 
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growth.  With a billion gallon per year mandate for biodiesel, Antares 

expects the price of glycerol to remain low.    

 

Figure 6: Comparison of estimated levelized cost of production for 

FAME biodiesel - Near term technology assessments are represented 

by squares and mid term technology (7-15 years ahead) are triangles 

 

The EPA projects a lower cost for biodiesel production in 2022.  The 

expected improvements are from reduced operation and maintenance with 

labor and chemicals making up the majority of the reduction.  The difference 

is not large as the feedstock cost dominates (EPA, 2010).  de Wit et al (2010) 

also project similar but lower costs of production for seed oil-based biodiesel.   

The acid catalyzed process for waste greases has higher operating cost but 

making use of a low cost feedstock makes it less expensive than FAME from 
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soy oil.  The de Wit et al. (2010) study has a much lower capital cost, 

lower O&M and slightly higher yields for waste grease-based biodiesel 

leading to a $0.43/gallon difference in the levelized cost.   

Techno-economic analyses of the hydrotreatment process are based on the 

UOP/Eni process (Holmgren et al., 2007).  In the process, the lipids and 

hydrogen pass through a hydroprocessing unit where the oxygen is stripped 

from the lipids through decarboxylation and hydrodeoxygenation reactions. 

The resulting products are a combination of “green diesel” and lighter 

hydrocarbons (naphtha and/or propane) with byproducts of water and carbon 

oxides (CO and CO2).   The green diesel fuel is reported to have a number of 

desirable properties – high cetane number (70-90), energy density equivalent 

to ultra low sulfur diesel, sulfur content of less than 1 ppm (USLD < 10 ppm 

sulfur) and good stability.  Holmgren et al (2007) identify the potential to use 

green diesel as a premium blendstock allowing for the use of lower valued 

light-cycle oil as part of a diesel blend. 

The Antares model considers two configurations for the hydrotreatment 

process; one as a stand-alone unit within a petroleum refinery and one as co-

processing within the same hydroprocessing units as petroleum products.  

The stand-alone units have higher capital costs but lower hydrogen demand 

and higher green diesel yields.  The coprocessing design has higher hydrogen 

requirements because the hydroprocessing units for crude oil operate in 

conditions that favor the hydrodeoxygenation reactions over the 
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decarboxylation reactions, which consume 3.75 times the hydrogen per 

oxygen removed (Antares, 2009).    

The EPA’s estimate of the cost of hydrotreament-based diesel is slightly 

higher than the Antares model.  The EPA model is based on the stand-alone 

design but assumes higher hydrogen consumption (.224 lb/gal compared to 

0.117 lb/gal) (EPA, 2010).  The higher hydrogen cost is offset somewhat by an 

assumed lower capital and operating expenses besides hydrogen.   

 

Figure 7: Comparison of estimated levelized cost of production for 

hydrotreatment of lipids to diesel – all estimates are for mid term 

technologies (7 – 15 years ahead) 
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Table 8: Economic parameters for lipids to diesel conversion 

technologies 

 

FAME - virgin 

oils 

FAME - waste fats and 

greases 
Hydrotreatment 

Base Study 

Antares 
(2009) 

Antares (2009) Antares (2009) 

Capital Cost @ 20 MGY 

(million$) 
$19.813 $19.813 86.603 

Scaling factor 0.6 0.6 0.6 

Fixed O&M (% of Capital) 0.021 0.021 0.055 

Natural Gas Consumption 
(Btu/gal) 

6424 16417 - 

Electricity Consumption 

(kWh/gal) 
0.1008 0.1512 - 

Other variable costs 

($/gal) 
$0.205 $0.470 $0.094 

Biodiesel Yield (gal/ton) 258.2 266.3/249.1 255.4 

Glycerin Yield (lb/gal) 0.8 0.8 - 

Propane Yield (gal/ton) - - 22.4 

 

4.3 Cellulosic ethanol 

Ethanol production from cellulosic biomass is not currently a commercially 

viable technology.   Estimates for the cost of production rely on a number of 

engineering studies with process-level modeling of the biorefinery.  The 

majority of studies of cellulosic ethanol consider the biochemical pathway 

where the cellulose and hemicellulose are converted to sugars through 

enzymatic hydrolysis and saccharification then fermented to make ethanol.  

Tao and Aden considered the thermochemical pathway via gasification and 

synthesis and found the cost and performance to be similar to the biochemical 

pathway at the scale of 45 million gallons of ethanol per year (Tao and Aden, 

2009).  The biochemical route is taken to be the model cellulosic ethanol 

technology due to the larger base of supporting literature.  The 
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thermochemical pathway may prove to be the technology better suited in 

certain cases but given the overall uncertainty in the technology costs and 

performance the performance of the thermochemical pathway is likely to fall 

in the range studied. 

The biochemical pathway begins with feedstock pretreatment to make the 

cellulose available to the enzymes.  There are a number of techniques under 

research and development for this pretreatment including dilute acid 

hydrolysis, ammonia fiber explosion, liquid hot water, and steam explosion.   

In the process of exposing the cellulose the hemicellulose is broken into its 

component sugars (xylose, arabinose, etc.).  The exposed cellulose is then 

converted to glucose with cellulase enzymes.  Glucose is fermented to ethanol 

and the 5-carbon sugars are fermented to ethanol either in a combined 

reactor using recombinant Zymomonas mobilis or in separate reactors using 

yeast for the C6 sugars and Z. mobilis for the C5 sugars.  In the advanced 

designs of Laser et al. (2010) and Hamelinck et al. (2005) a consolidated 

bioprocessing (CBP) approach is taken where all biological conversions 

(enzyme production, enzymatic hydrolysis and fermentation) occur in the 

same reactor.  This design is attractive but the catalyst to make it possible 

has yet to be identified.  In most designs, the lignin is separated from the 

beer, dried and combusted to produce steam and electricity for the biorefinery 

with some net export of electricity.     



 

 

60 

There is a large range of projected costs using “current” technology.      

There are three main sources of variation in the costs estimates.  First is the 

expected yield of ethanol from cellulosic material.  Estimates range from 52.4 

gallons per ton to 76.4 gallons of ethanol per dry ton of switchgrass or corn 

stover.  This variation is due to difference in the performance of the 

pretreatment, cellulase enzymes and fermentation organisms each study 

assumes.  Dutta et al. (2010) and Kazi et al. (2010) use experimentally 

verified performance measures and result in the highest production costs.  

Second is the capital investment required.  This is due to the variety of 

configurations studied as well as the yield differences.  Within the same 

study capital costs varied by 42% due to different configurations of 

pretreatment, hydrolysis, fermentation, and distillation (Kazi et al., 2010).  

The third factor is the variable operating cost – mainly the cost of cellulase 

enzymes.  For example, Aden (2008) projects cellulase enzymes available at 

$0.32/gal of ethanol where Kazi et al. (2010) puts the cost at $1.05/gal.  Also 

of interest is that the estimate for year 2000 technology in Wooley et al. 

(1999) falls below the more recent estimates of current costs, demonstrating 

that as more is learned about these technologies limitations are identified 

that lead to additional costs.  
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Figure 8: Comparison of estimated levelized cost of production for 

cellulosic ethanol - Near term technology assessments are 

represented by squares, mid term technology (7-15 years ahead) are 

triangles; long-term projections are shown as diamonds. 

For this dissertation, I have chosen to use three potential technology 

outcomes for the timeframe of 2017-2022.  The pessimistic case is represented 

by the current technology estimate by Hamelinck et al. (2005).   The middle 

case is represented by the base case characterization of Laser et al. (2009) 

which is also the best-in-class design for 2000 in Wooley et al. (1999).  Scaling 

of capital costs for the optimistic case uses the same 0.84 scaling factor as in 

Hamelinck et al. Finally an optimistic case is based on the Antares model for 

“mid-term” technology (Antares, 2009).    
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Table 9: Economic parameters for cellulosic ethanol conversion 

technologies 

 Baseline Pessimistic Optimistic 

Base Study Laser (2009) Hamelinck (2005) Antares (2009) 

Base scale (tonnes of dry 

biomass per day)  
2,000 2,000 2,000 

Ethanol output (million 
gallons per year) 

53.1 50.7 50.9 

Capital Cost @ base scale $349.60 $458.17 $211.09 

Scaling Factor 0.84 0.84 0.8 

Fixed O&M (% of Capital) 0.03 0.017 - 

Variable Costs ($/gal) $0.35 - $0.35 

Cellulase enzymes ($/gal) - $1.00 - 

Cellulose to ethanol  

(% theoretical)5 
0.720 0.7 .799 

Hemicellulose to ethanol  
(% theoretical) 

0.765 0.714 0.765 

Electricity efficiency (LHV) 0.035 0.05 0.034 

The pessimistic and baseline characterizations are for nth of a kind 

facilities using what the authors consider near-term technologies.  There are 

two reasons why these current technology characterization are used rather 

than future technology characterization for the timeframe.  First, all future 

technology cases have costs of production for enzymes around $0.10 per 

gallon of ethanol.  The current state of technology based on press releases 

and industry presentations has enzyme costs of at least $0.50 per gallon of 

ethanol up to $1.00 per gallon of ethanol (Novozymes, 2009).  Given that the 

baseline scenario here is based on technology that was projected to be 

available in 2000 and has yet to be achieved by 2010, assuming quick 

                                            
5 Biological conversion of ethanol achieves maximum yield when all sugars 

present in the biomass are converted to ethanol.  The maximum yield is 

dependent on the type and quantity of sugars in the biomass. The efficiency 

of the conversion technologies is described here relative the maximum yield 

based on the composition of the biomass. 
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progress to $0.10/gallon is an optimistic outlook.   Second, I take the 

approach that cost reductions to the nth of a kind plant from the 1st of a kind 

plant will require a number of biorefinery construction cycles estimated to be 

3 to 4 years by the technoeconomic studies making current nth of a kind 

projections appropriate for commercial cost in the medium term (<12 years). 

4.4 Fischer-Tropsch diesel 

Thermochemical conversion of biomass to fuels can take many routes.  The 

Fischer-Tropsch synthesis process is among the most studied and furthest 

developed.  Commercial facilities exist or have existed in the past for 

production of F-T fuels from both coal and natural gas.  The biomass gasifier 

and the optimizing of gas clean up and the F-T synthesis process for biomass-

based synthesis gas are the required advancements.  There are a number of 

biomass gasifier configurations that have been studied, the details of which 

can be found in Hamelinck et al. (2004), Larson et al. (2009) and Swanson et 

al. (2010).   

There is a large range in the projected cost for current technology F-T 

diesel production.  This represents some disagreement on what technologies 

are current and which are unproven as well as difference in design.  The 

Swanson study states that hot gas clean up (tar cracking) is not yet 

commercial while all other studies use it.  The Antares study uses an 

indirectly fired atmospheric gasifier while most others use pressurized 

oxygen blown directly fired gasifiers.  In projecting future technology versus 
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current technology, Hamelinck et al. (2004) foresees no changes in the 

design but projects reductions in capital and operating costs due to 

incremental improvements and increases in scale.  Larson et al. (2009) 

present a case with mature technology where a once through configuration is 

designed for greater electricity production than the other studies.   The EPA 

projection is significantly lower compared to other studies at similar scale 

and timeframe (EPA, 2010).  Little information was provided to support this 

estimate. 

 

Figure 9: Comparison of estimated levelized cost of production for F-

T diesel technologies - Near term technology assessments are 

represented by squares, mid term technology (7-15 years ahead) are 

triangles; long-term projections are shown as diamonds. 

Baseline and pessimistic technology models were developed from the 

Antares (2009) and the Hamelinck et al. (2005) studies respectively.  There 
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are three main differences in the cost and performance of F-T diesel for 

the purposes of this study.  First is the Antares technology characterization 

has significantly higher capital costs.  Second, the Antares technology 

characterization has stronger economies of scale up to 750,000 tons per day 

capacity and weaker economies of scale beyond that size.  Third, the 

Hamelinck technology produces more fuel products and less electricity.  The 

Antares technology has a higher overall efficiency (including electricity) but 

at significantly higher cost.      

Table 10: Economic parameters for Fischer-Tropsch diesel 

conversion technologies 

 Baseline Pessimistic 

Base Study Hamelinck (2005) Antares (2009) 

Base scale (tonnes dry biomass 
per day) 2,000 2,000 

F-t Diesel output (million gallons 

per year) 31.7 27.3 

Capital Cost @ base scale 
(million $) $459.59 $765.69 

Scaling Factor 0.85 0.74/0.9* 

O&M (% of Capital) 0.044 0.042 

Diesel efficiency (LHV) 0.370 0.304 

Naphtha efficiency (LHV) 0.069 0.12 

Electricity efficiency (LHV) 0.035 0.157 
*Scaling factor is 0.74 below 680,000 dry tonnes of biomass input per year 

and 0.9 above.  

4.5 Comparison of cellulosic technologies 

The two technologies for cellulosic biomass produce different fuel products, 

have yield advantages with certain feedstocks, have different assumed 

maximum and minimum capacities and the F-T diesel technology relies more 

heavily on income from co-products.  A comparison of the levelized cost for 

the modeled technologies is given in Figure 10.  Under the assumptions of the 
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analysis, the optimistic and pessimistic scenarios for F-T technologies 

have lower levelized cost than the cellulosic ethanol technologies with similar 

levels of optimism.  This does not mean cellulosic ethanol will not be the 

technology of choice.  Its lower capital cost – the pessimistic ethanol 

technology has lower capital costs than the optimistic F-T diesel technology – 

translates into lower risk in investment in the initial small scale biorefineries 

that will lead to learning.  Given limited capital availability, path 

dependencies develop when one technology is more aggressively pursued 

impacting the relative cost in the future.  For this reason, scenarios are 

developed in the national modeling analysis with all combinations of 

technology optimism. 

 

Figure 10: Comparison of modeled cellulosic biofuel technologies 

using switchgrass as feedstock 
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4.6 Conversion technology model parameters 

 The detailed technoeconomic models are simplified into integer-linear 

annualized cost functions for use in the optimization model.  Using the 

detailed models, the annualized cost of production for each technology is 

plotted as a function of the input capacity of the biorefinery in units of tons of 

feedstock per year.  A linear fit is found for the plot. The intercept (at) and 

slope (bt) are parameters used for the cost function in the optimization model.  

The cost estimates are only valid over the analyzed range of facility 

capacities.   The sizing the biorefineries below the minimum biorefinery size 

is avoided by the model due to the high average cost of production.  Sizes 

above the maximum size are prevented by a constraint in the model using the 

parameter Mt giving the maximum size for a biorefinery of technology ‘t’.  The 

model parameters used in the national case study are given in Table 11. 
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Table 11: Model parameterization for conversion facilities 

Annualized Cost of 

Productiona 

 

Fixed  

(million $) 

Capacity 

Dependent 

($/ton) 

Maximum 

Capacity 

(tons input 

/year) 

Model Parameter at bt Mt 

Grains to Ethanol:             

Dry Mill 

Wet Mill 

 

$1.79 

$15.35 

 

$32 

-$64b 

 

1 million tons 

3.37 million tons 

Cellulosic Ethanol: 

Baseline 

Pessimistic 

Optimistic 

 

$13.76 

$15.96 

$7.35 

 

$77 

$99 

$53 

 

1.31 million tons 

1.15 million tons 

1.36 million tons 

Fischer-Tropsch Diesel: 

Baseline 

Pessimistic 

 

$12.76 

$30.16 

 

$89 

$154 

 

1.72 million tons 

1.36 million tons 

Fatty Acids Methyl Esters:           

Yellow Grease 

Virgin oil/Tallow 

 

$0.93 

$1.81 

 

$170 

$60 

 

320,000 tons 

320,000 tons 

a Includes capital and operating cost and value of non-energy co-products 
b The value of the co-products is more than the operating cost of the wet mill facility 

 

4.6.1 Existing Facilities 

 Existing biorefineries have fundamentally different cost structures 

compared with new biorefineries.   The capital investment has already been 

made and has limited bearing on whether or not the facility produces.  For 

these facilities the operating costs determine their profitability.  The 

distinction is made for existing corn ethanol facilities, whose costs were 

modeled using the same conversion cost models as new facilities with two 

modifications.  First, the sizes of the facilities were fixed at their current size.  

Second, the capital costs are not charged because they are assumed to have 

already been spent.  The existing biodiesel facilities were not considered 

separately from new biodiesel facilities in the work shown here.   
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5 DATA 

The framework described in Chapter 3 is sufficiently general to consider a 

wide range of the problems requiring spatial supply chain modeling.  In this 

chapter, I provide the background on the literature of the resource 

assessment, harvest and transportation costs, and spatial fuel demand that 

are used in the following case studies.  The data used in the national case 

study is described and set in the context of the existing literature.  The 

existence of these data sources has influenced the development and 

implementation of the model to date.  However, deviations on and 

improvements to these data sources can be accommodated within the 

framework. 

5.1 Resource assessments 

One of the advantages of the modeling framework developed in this 

dissertation is the ability to bring in diverse resources for consideration.  

However, this requires consistency across the resource assessments used.  

Each resource type is unique in terms of the data available and appropriate 

methodology for an assessment.  For waste and residue resources, one must 

first answer how much is produced and then must consider how much can be 

technically and/or sustainably collected and at what cost.  For energy crops, 

the potential production must be determined and then an estimation of the 

economically viable quantities determined including the cost of production 

and competition for land. 
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5.1.1 Agricultural residues 

Agricultural residues are straws, stovers and other plant components 

remaining in the field after harvest of the crop.  They play a role in 

maintaining soil health and preventing erosion (Lal, 2009; Wilhelm et al., 

2007).  Limited removal of the residues has been proposed as a source of 

biomass.  This depends on there being excess residues beyond their soil 

maintenance function or an economic alternative to provide the soil 

maintenance functions.  The quantity of residues per acre that can be 

sustainably removed (Qs) can be described by the simple difference between 

the gross production of residues per acre (Qg) and the residue retention 

requirement for soil maintenance (Qr) (equation 20). 

Qs = Qg - Qr         (20) 

Gross residue production is estimated based on grain production statistics 

using equation 21.  HIc is the harvest index of the crop defined as the grain 

fraction of the total above ground biomass (by weight).  The residues are the 

remainder of the above ground biomass.   

Since agricultural statistics track grain yields only and do not track 

residues or total biomass, estimates of residues are based on the harvest 

index and grain yield.  This makes estimates of total residue production 

highly dependent on the harvest index.  However, the harvest index is not 

measured on a regular basis and may change over time or across space.  

There is an incentive to increase the harvest index to shift the effort of the 
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crop towards the production of grains.  If the harvest index increases, the 

production of residues will drop if total biomass does not also increase.     

The harvest index values used in many current assessments (Graham et 

al., 2007; NAS, 2009; Banowetz et al., 2008) trace back to Gupta et al. (1979).  

The underlying assumption in these studies is that yield growth has not and 

will not come from increasing the harvest index but from increasing the total 

biomass per unit area.   According to Johnson et al. (2006), this is not the 

case.  Between 1940 and 200 grain yield increase far outstripped residue 

yield increases (see Table 12).   

        (21) 

Table 12: Grain and residue yield growth from 1940 to 2000 

 

Grain yield 

kg ha-1 Harvest index 

Residue Yield 

kg ha-1 

Grain 

increase 

Residue 

increase 

Crop 1940 2000 1940 2000 1940 2000   

Barley 1280 3860 0.27 0.5 3460 3860 201.6% 11.6% 

Corn 1890 8400 0.35 0.53 3510 7450 344.4% 112.3% 

Oat 1150 2210 0.33 0.44 2340 2810 92.2% 20.1% 

Sorghum 930 3980 0.34 0.47 1800 4490 328.0% 149.4% 

Soybean 1260 2560 0.3 0.46 2940 3000 103.2% 2.0% 

Wheat 1050 2800 0.28 0.45 2700 3420 166.7% 26.7% 

Source: Johnson et al., (2006) 

Residues also play an important and not completely understood role in 

maintaining soil health.  Metrics of soil health that have been identified and 

studied for residue requirements are erosion prevention (Nelson, 2002; 

Graham et al., 2007; Banowetz et al, 2008) and soil organic carbon (Wilhelm 

et al., 2007; Johnson et al., 2006).  In contrast, Lal argues that no removal is 

the only sustainable practice due to potential issues with soil health, 
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specifically cultivation of beneficial soil organisms (Lal, 2009).  The 

existing studies show that the required residue retention rates are dependent 

on the soil type, slope, climate, crop rotation and tillage practices.  The 

residue retention is determined by the maximum required for each of three 

metrics, water erosion, wind erosion and soil organic carbon. Wilhelm  et al. 

(2007) demonstrate that for corn stover the binding soil health constraint is 

soil organic carbon.   

The accepted methodology for estimating required residue retention rates 

due to soil erosion concerns was developed by Nelson et al (2002).  The 

minimum residue retention rate in this work is the quantity of residues that 

are required to prevent soil loss due to erosion from exceeding the tolerable 

soil loss level T.   T is the maximum amount (tons/acre-year) of soil erosion 

that will not lead to prolonged loss of productivity as defined by the United 

States Department of Agriculture‘s Natural Resource Conservation Service 

(USDA-NRCS, 1999).  T-values are established based on soil type, soil depth 

and local climate/geology.   Although T-values vary across the landscape, they 

generally range from 1 to 5 tons per acre per year.   

The Revised Universal Soil Loss Equation 2 (RUSLE2) model [citation] is 

used to simulate rainfall erosion for a given crop rotation on a given soil type 

and given climate.  RUSLE2 has been developed by the USDA – Agricultural 

Research Service, National Resource Conservation Service and the 

University of Tennessee to aid farmers in making informed choices in 
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cultivation practices with respect to soil erosion (USDA –ARS, 2008).  The 

model finds the soil loss due to water erosion for a given soil under a given 

cultivation practice in a given location.  The model is run over multiple 

values for crop yields in order to develop a curve describing soil loss as a 

function of residue cover.  The curve is then used to find the residue cover 

corresponding to a soil loss of T for the major soil types in every county 

(Nelson, 2002).   Residues required to prevent wind erosion are found in a 

similar fashion using the Wind Erosion Equation (WEQ) (Woodruff and 

Siddoway, 1965). 

Nelson is expanding the above methodology to include consideration of soil 

carbon (Nelson, 2010). The soil carbon constraint is modeled using the Soil 

Conditioning Index (SCI) in the RUSLE2 model.  If a rotation with residue 

removal yields a negative SCI, that rotation is disallowed.  By batching 

multiple rotations with different levels of residue removal, the maximum 

potential residue removal rate for each soil type can be determined.  A 

realistic set of crop rotations were developed in consultation with regional 

experts from NRCS and then allocated to soil types within the counties based 

on NASS statistics of current production (Nelson, 2010).  The maximum of 

the three retention rates (wind erosion, rain erosion, and SCI) is reported as 

the minimum sustainable residue retention (Qr) and the available residue is 

found using equation 20.  This is the approach used for the national case 

study. 
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There are several points where varying the assumptions made in the 

analysis can lead to significantly different results.  Decisions must be made 

to estimate crop yields and harvest indices in the future.  Two approaches 

have been taken in the work shown here for estimating crop yields.  The first 

and more conservative approach is to estimate residue production based on 

historical yields and planted areas.  Average yields and planted acres for the 

past ten years are used.  The second approach uses projections of future 

county-level yields based on current yields (average of 2006-20096) (USDA-

NASS, 2010) and the projected national yield increase over time from the 

USDA’s Long-term Projection (2009).  Each county is assumed to experience 

the same percentage increase in yields.  This provides a more optimistic 

estimate of available residues.  

In both cases, the harvest index remains the same.   This may lead to an 

overestimate of available residues as small differences in harvest index can 

have large impacts on the calculated residue that can be sustainably 

removed.  For corn, the harvest index of 0.5 reported as used in Graham et al 

(2007) predicts 12% more gross residue produced and 43% more residue that 

can be sustainably removed7 compared with the 0.53 harvest index reported 

in Johnson et al (2006).  Despite this potential for overestimation, the data 

set used is the best that is currently available.  

                                            
6 Averages taken only for years when the crop was planted in a given county. 
7 Calculated using 3,860 kg ha-1 corn grain yield and a residue retention 

requirement of 5.25 Mg ha-1 reported by Wilhelm et al. (2007) for continuous 

corn rotations with no or conservation till cultivation. 
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The second important set of assumptions is the allocation of rotations 

and tillage practices to specific soil types.  Data are not available at this fine 

a scale so assumptions are unavoidable and introduce a level of uncertainty 

in the total quantity of residue that is sustainably available.  National and 

county level data are available on the tillage practices used for the major 

crops (CTIC, 2008).  Conservation or no till agriculture result in significantly 

lower residue retention rates compared to conventional till.  Projecting how 

the shares of these cultivation practices will change over time has a large 

impact on total residue quantities.   In the work presented here, the current 

shares are used in the conservative case (historical averages) and all 

conservation tillage is used in the optimistic case (projected yield case).  

The costs of harvesting these residues were generated using standard 

engineering and economic parameters for machinery that might typically be 

used to harvest and/or field process, bale, and transport corn stover or small-

grain straw to the field edge (INL, 2008). The agricultural feedstock harvest 

and logistics model is described in Appendix A.  An additional limiting factor 

on residue removal comes from the efficiency of the harvest equipment – the 

ability of the equipment to harvest the residues on the field (1 = total removal 

of biomass).  The harvest model used here assumes a 38% harvest efficiency 

(INL, 2008) using a two pass harvest system with a combination 

shredder/windrower and baling.  Others report as much as 70% harvest 

efficiency using a three pass system (shred, windrow and bale) (Brechbill and 
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Tyner, 2008).  In the base case, the 38% harvest efficiency is used.  As a 

sensitivity, the optimistic case is run with 70% harvest efficiency and the 

same cost as the base case.  Using the 70% harvest efficiency increases the 

total residue available by 70%.   

In the data set obtained from Nelson using projected yields, land area and 

100% conservation or no till cultivation, 75% of gross corn stover production 

is on fields where at least 70% of the stover can be sustainably removed.  92% 

of the gross stover production is on fields where ate least 38% of the stover 

can be removed.  In these cases the majority of the stover is limited by the 

assumed harvesting constraints.  For wheat straw this is also the case.   

Additionally, the value of the nutrients removed from the field is included 

in the cost of residues.  It is assumed that all of the macronutrients (nitrogen, 

phosphorous, and potassium) that are removed with the residue must be 

replaced with commercial fertilizers above the application that would take 

place if the residues remained in place.  Assumptions on nutrient content of 

the residue biomass are given in Table 13 along with the assumed price for 

fertilizer replacement. The 2018 prices for nutrients were found by taking the 

2008 prices reported in (USDA-NASS, 2009) and adjusting them using the 

prices paid indices for fertilizers in (FAPRI, 2009).  The yields and cost were 

aggregated into county-level supply curves expressed in terms of total dry 

tons available at the field edge at a given cost of production for each county in 

the region.  
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Table 13: Nutrient replacement for agricultural residues (lb 

nutrient/dry ton residue removed) 

Residue Nitrogen  Phosphorus Potassium Source 

Corn Stover 15.9 5.9 30 
Brechbill and Tyner 

(2008) 

Wheat Straw 11 3 15 
Mullen and Lentz 

(2007) 

Barley Straw 12.8 1.6 33 
Tarkalson et al. 

(2009) 

Sorghum Stover 8.5 2.4 33.9 Powell et al. (1991) 

 Fertilizer Price 

2008 | 2018  

($/lb nutrient) 

0.35 | 0.33 0.89 | 0.98 0.46 | 0.51 
USDA-NASS (2009) 

|FAPRI (2009) 

 

Residues (trimmings, dead wood, etc.) are also generated from the growth, 

cultivation, and removal or replacement of orchard and vineyard crops.  

Production statistics (land area and yields) by crop were obtained from the 

2007 Census of Agriculture (USDA-NASS, 2009).  Average annual quantity of 

residue produced from cultivation of each crop was obtained from an analysis 

performed in California (Williams, 2008).  The cost of residue pick-up and 

transport to the field edge is assumed for purposes here to be $30 dry ton-1 

based on Jenkins et al. (1984). 

Three scenarios for agricultural residues are used in the national case 

study.  In the baseline and high residue cases, the quantity of residue that is 

sustainably available was obtained using 2018 projected yields and crop land 

allocations.  The baseline is further reduced by a 38% harvest efficiency limit.  

The high residue case uses a 70% harvest efficiency limit.  The third scenario 

uses historical yields and crop land allocations in determining the 

sustainably available residue quantities.     
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The residues available in the high and historical residue scenarios are 

mapped in Figure 11 at $50, $100 and $150 per dry ton.  The baseline case 

follows the same spatial distribution as the high case but with lower 

quantities and higher costs.  The resource is concentrated in the corn 

producing regions of the country.   The harvest cost is dependent on the yield 

making the low cost and high producing regions co-located. 
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Figure 11: Maps of agricultural residues in the historical and high 

cases 

5.1.2 Forest residues 

Forest residues can come from three sources – integrated harvesting 

operations, “other forest removals” and mill residues.  For the national case 
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study, data developed by Skog (2008) are used.  Their methods are 

described below and in (BRDi, 2008) . 

Two estimates were made for residues from the integrating harvesting of 

lumber, pulpwood and wood biomass.  The first is to take a fraction of recent 

logging residues from timber harvest.  Data on the 2007 timber harvest was 

used with 50 and 65% of gross logging residues assumed to be available.  The 

second method is to simulate thinning operations on all timberland where 

stand density is greater than 30% of the maximum stand density index for a 

given forest type.  The simulated uneven aged thinnings produce woody 

biomass from the tops and branches for trees greater than 5 inches in 

diameter at breast height (dbh) and from whole trees 1 to 5 inches dbh.  Costs 

for this woody biomass are estimated based on the cost of roadsiding and 

chipping as well as a stumpage price ranging from $4 per dry ton when no 

residues are used to 90% of pulpwood stumpage when all residues are used.  

The Fuel Reduction Cost Simulator (FRCS) model is used to find the costs of 

roadsiding and chipping (Fight et al., 2006).  An average of these two 

estimates is used for the national model analysis.  The integrated harvesting 

operations that would yield the biomass estimated here are not conventional 

practice currently and would represent a shift in harvest methods. 

Residues are also available from “other forest removals” including urban 

land clearing and cultural operations.  The quantity of this resource is taken 

from an estimate of 2007 removals (USFS, 2008).  The estimate makes no 
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projection for how this resource may change over time.  Skog et al assume 

that 50% of the resource is technically available with 34% of the technically 

available resource available at a cost of $20 per dry ton and the remainder 

available at $30 per dry ton. 

Some residues produced in from primary wood products mills are not 

currently used and others could be available if the price paid is above the 

value of their current use.  2007 production of mill residues is used as the 

estimate of future residue production.  The unused fraction – 1.3 of 86.7 

million dry tons – is assumed to be available at $10/odt.  No attempt was 

made to characterize the prices at which the residue currently used would 

become available and therefore they are excluded from the analysis.  

Two scenarios were considered for forest residues.  The first excludes forest 

on federal lands while the second includes these lands.  The reason for this 

distinction is that the federal Renewable Fuel Standard (RFS2) disallows 

forest residues from these lands for the production of fuels that meet the 

mandate (USEPA, 2010).   
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Figure 12: Map of forest residue resources 

5.1.3 Pulpwood 

In the case where biorefineries demand biomass at a high price, they 

would compete directly with pulp mills for pulpwood.  Skog et al (2010) have 

estimated pulpwood supplies using an econometric approach.   The quantity 
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of pulpwood that would become available at higher prices from both 

increases in supplies and decreases in demand from pulp mills in response to 

the price shift were found using estimates of the elasticity of pulpwood 

supply.  At a county level, increases in pulpwood supply are limited to not 

exceed annual timber growth.  Displacement of current pulpwood uses is also 

limited to below 20% of 2007 use due to uncertainties in the elasticity 

estimates especially the range over which they are valid.  

The pulpwood supply for 2017 is shown in Figure 13.  The resource is 

concentrated in the south east and the states around the Great Lakes.  

 

Figure 13: Map of pulpwood supply 
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Sensitivity to the base pulpwood supply was performed by varying the 

prices by +/- 20%.  The case of a 20% reduction in the prices represent a 

depressed market for pulpwood in other industries and is used in the high 

feedstock scenario.  The case of a 20% increase in the prices represents an 

increase in pulpwood demand for conventional uses and is used in the low 

feedstock scenario. 

5.1.4 Municipal solid wastes 

Current municipal waste production in the United States is estimated by 

two sources – the EPA (USEPA, 2009) and the biannual “State of Garbage” 

report (Arsova et al., 2008).   These two sources have significantly different 

estimates.  For 2006, EPA estimates 169.55 million wet tons of biomass were 

landfilled while the State of Garbage study puts that number at 266.4 million 

tons.  The two studies use significantly different approaches.  The EPA study 

uses a “materials flow methodology” using data on the 

production/consumption of products in the U.S., average data on use and 

their expected lifetimes supplemented with waste characterizations and 

surveys to estimate the annual generation and recovery of wastes.  The 

approach bypasses the need for consistent data collection of the waste which 

varies by state and locality (USEPA, 2008).  The State of Garbage study 

attempts to standardize the data collected by states using a survey.  A 

characterization of the waste stream is not attempted; only the mass of waste 

that is recycled, combusted or landfilled is estimated (Simmons et al., 2006; 
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Arsova et al., 2008].   In the national model shown in Chapter 5, state-

specific waste generation rates (tons per capita) from the State of Garbage 

report are used along with the characterization from the EPA method. 

The total quantity of biomass of several categories available from 

municipal wastes are calculated at the city level based on population (Pi), 

state specific generation estimates (WGi), the fraction of total MSW 

generated that is currently landfilled of a given category (ff), the fraction 

recoverable (Rf) and the moisture content (MCf) using equation 22. The 

fraction of a resource that is recoverable is unknown and will vary with the 

price the market is willing to pay for it.  The assumptions used here were 

developed from consultation with experts (Antares, 2008).  These estimates 

represent an optimistic scenario where 45% of all wastes currently landfilled 

are diverted for fuel production.  As a base case, the quantity available is 

assumed to be half of this.  In a pessimistic case, only the woody construction 

and demolition debris is considered available.  

Sif = Pi*WGi*ff*Rf*(1 – MCf)       (22) 

Table 14: Summary of MSW landfilled 

MSW Category Fraction of Total 

MSW (wet weight 

basis) - ff 

Recoverable 

Fraction - Rf 

Moisture 

Content 

- MCf 

Food Waste 18.6% 50% 70% 

Paper/Cardboard 20.7% 50% 10% 

Wood 8.9% 75% 12% 

Yard trimmings 7% 75% 46.5% 

Mixed waste* 18.4% 75% 18.6% 
*Mixed waste includes the unrecoverable fraction of the other categories plus inorganics.  It 

is 51.7% biogenic by weight and 40.8% biogenic by energy content 
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Both of these estimates do not include construction and demolition 

debris, biosolids or industrial process wastes that may also be landfilled.   

McKeever (2004) estimates that 11.6 tons of woody construction wastes and 

69.3 of demolition wastes were generated in 2002.  40% of the demolition 

wastes were woody with 11.7 million tons economically recoverable.  The 

demolition generation rates are based on an EPA study for 1996.  The 

construction wastes are calculated using 10% and 20% waste factors for wood 

used in construction and renovation respectively.  This resource is highly 

dependent on the housing market and can be expected to fluctuate over time.  

As a conservative estimate, construction and demolition wastes are assumed 

to remain the same as the 2002 estimate.  Demolition wastes may contain 

lead and other heavy metal contaminants which make this resource 

unattractive for some applications, for example, biomass power plants.   

Biomass is culled from the MSW stream at materials recovery facilities. 

These facilities accept MSW for a charge (tipping fee), sort out saleable 

fractions and send the rest to the landfill where they must pay a tipping fee. 

Materials recovery for biomass is a relatively new and undocumented 

operation for cost estimates. Antares, LLC reported an estimated $25 to $30 

per ton cost for sorting feedstock quality biomass out of the MSW stream 

(Antares, 2008). In a review of studies on materials recovery facilities, Porter 

reported in 2002 that costs range from $30 to $80 per ton of recycled material 

(Porter, 2002).  A cost of $30 per dry ton of feedstock quality biomass is used 
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here.  Tipping fees are not considered in the analysis and the $30 per dry 

ton cost is meant as a net cost including tipping fees received and paid by the 

materials recovery facility.    

Individual states may have better data for their particular waste streams.  

California, for example, provides detailed reporting of wastes landfilled in the 

Solid Waste Information System (SWIS).  Williams et al (2008) use 

information provided to estimate biomass potential from municipal wastes.  

The SWIS data are used for the California case study.  

Furthermore, projections of future municipal waste production are 

speculative.  The EPA data suggest that while waste generation has 

increased slightly below the rate of population growth between 1990 and 

2008, increases in waste recovery has kept the discards constant (USEPA, 

2009).   There is good reason to believe this trend will continue as virgin 

materials become scarcer and the global demands for materials increases in 

line with population increases and increasing global affluence.   Even if the 

total quantity stays the same, the composition of the waste stream will 

change over time.  Between 1990 and 2008, paper and yard trimming 

discards decreased by 18 and 19.2 million tons per year, respectively, due to 

recovery while food scrap discards increased 10 million tons.  Projections of 

available wastes are highly uncertain and the ones used here are likely 

optimistic considering historical trends. 
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Figure 14: Distribution of estimated MSW production 

5.1.5 Energy Crops 

A number of crops are being considered for cultivation for the purpose of 

energy production.  Chief among these are perennial grasses and short 

rotation woody crops.   

Any estimate of production of energy crops relies on basic agronomic data 

for the yields and costs of production for the energy crop.  As these crops are 

not currently grown in wide-scale agricultural systems, these data are not 

available across space.  Projecting yields is therefore done using either 
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models of growth based on the limited available data (Clifton-Brown et 

al., 2004; Jain et al., 2010; Thomson et al., 2009; Wullschleger et al., 2010) or 

by simply using average yields from available data and limiting the areas to 

regions with similar conditions as the existing trials. Alternatively yields and 

costs for similar crops such as hay for perennial grasses or pulpwood for 

woody crops can be used as proxies.  Assumptions about yield growth over 

time can greatly impact total quantities and the economic viability of the 

resource.   

Models have been developed for switchgrass and miscanthus production in 

the United States using average precipitation, temperatures, solar radiation 

and soil moisture data at sub-county scale and averaged to county level yields 

(Khanna et al., 2008;Wullschleger et al., 2010; Thomson et al., 2009). The 

estimates of productivity vary by study and are difficult to compare without 

the full spatial data set.  Reported averages are not a good reflection of the 

different distributions of yield for economically viable crops.  The averages 

consider all lands not selecting locations that are likely to be put into 

production, which are likely to be some of the higher yielding locations.  The 

model of miscanthus production in Illinois projects yields that are as much as 

3.5 times higher than switchgrass leading to lower costs of production 

(Khanna et al., 2008).  Additionally the locations of greatest yield for 

miscanthus were in different regions of the state than the greatest yields for 

the incumbent crop rotation (corn/soy bean) suggesting that there may be 
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locations where energy crops have a competitive advantage over 

conventional crops depending on market prices.  For the national case study, 

the switchgrass yields developed by Wullschleger et al (2010) were used.  The 

switchgrass cultivars are classified into two categories; upland and lowland 

varieties.  In general, upland varieties are adapted to poor quality lands 

while lowland varieties are native to river bottom soils and have higher 

yields.   

Next, the land base for energy crop production needs to be estimated.  This 

can be done by including the energy crops in an agricultural sector economic 

model as done in de la Torre Ugarte and Ray (2000) and Khanna et al (2008) 

and explained in section 2.2.  An alternative method is to assign production 

on lands that are logical candidates.  Examples include lands that are 

currently underutilized such as idled cropland and cropland put into pasture 

(West et al., 2009) or Conservation Reserve Program (CRP) lands that may 

have harvests of perennial grasses with minimal impact on the conservation 

goals (Perlack et al., 20005).    

The approach taken in the national case study is to assign energy crop 

production to currently underutilized lands.  Land use data from the Census 

of Agriculture (USDA-NASS, 2009) on a county level were used.  Lands 

classified as cropland but that were either idled or used as pasture during the 

2007 growing season were considered to be underutilized.  Idle cropland is 

land on farms that does not require improvements for crop production but 
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was not reported as harvested, summer fallow, pastured or having crop 

failure.  Idle cropland includes lands set aside through the Conservation 

Reserve Program (CRP), which provide an environmental benefit by keeping 

marginal lands out of intensive agricultural production.  Cropland that is 

pastured is generally the marginal lands that shift into and out of crop 

production depending on the market.  For example, in 2007 there were 35.8 

million acres of cropland pasture while in 2002 when crop prices were lower 

there were 60.5 million acres in cropland pasture.  Scenarios were considered 

with 25 and 50% of these lands put into energy crop production.  Additional 

lands were considered for the conversion of pastureland to energy crop 

production.   

While this method is arbitrary, it provides similar land type conversions as 

found using economic modeling methods.  Khanna et al. (2010), found that 

the majority (75-98%) of land converted to energy crop production as 

predicted by their model is from cropland-idle and cropland-pasture.  Only in 

the case where CRP lands are disallowed and farm-gate prices for biomass is 

high ($90/dry ton) is a significant fraction of energy crops grown replacing 

conventional crops. 

The cost of production for energy crops depends on the cultivation 

practices, including fertilizer and pesticide use, seeding rates, and equipment 

operations (tilling, harvesting, etc.), which in turn depend on and impact the 

yield of energy crops.  The cost of the inputs – labor, fertilizers and fuel – 
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vary across space and will impact the relative competitiveness of regions.  

In addition, the opportunity cost for the use of the land must be taken into 

account.  This can be done through integrated economic models that 

determine the land value endogenously or through exogenous evaluations 

using either land rent surveys or the value of the land for production of the 

dominant crop in the county.    

In the national case study, variable production cost (all cost excluding land 

rent) were estimated based on the study of switchgrass production for the 

Iowan context (Duffy, 2008).   This assumes an eleven year crop rotation. The 

first year is establishment only with no harvest.  In the second year, 25% of 

the area is expected to need to be replanting.  The yields of the crop are 

assumed to be the average yield for the county from year 2 through year 11.   

Nitrogen fertilizer is applied at a rate of 100 pounds per acre every year.  

Phosphorous and potassium fertilizers are applied at replacement rate based 

on the yield of switchgrass.  Land rent is taken from the 2008 National 

Agricultural Statistics Service survey (USDA-NASS, 2010), using non-

irrigated cropland at the county level where available and the state average 

where county level land rents were not reported. 

Three scenarios were explored for energy crop production in 2018 for the 

national case study.  In the baseline and low cases, switchgrass can 

potentially be grown on 50% and 25% respectively of the cropland classified 

as idled or pastured in the 2007 US Census of Agriculture.  The quantity and 



 

 

93 

costs for this potential switchgrass production are found using upland 

switchgrass yields and the production cost model discussed above.  The 

upland yields were chosen to represent yields on the marginal lands assumed 

to be available. This resource is provided to the optimization as potential 

feedstock.  However, if they are not profitable to be consumed, they are not 

produced and the land is idled or put into pasture.  For the high energy crop 

scenario, the land available is expanded from the baseline by adding 5% of 

current pastureland and production is increased by assuming higher yielding 

lowland switchgrass on all lands. 
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Figure 15: Maps of potential energy crop supplies under the baseline 

and high energy crop scenarios 

5.1.6 Commodity Crops 

Projections of production and prices for corn, soybeans, and canola in 2018 

by county was estimated using national projections from the USDA’s 
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Baseline Agricultural analysis (USDA, 2009) and county-level production 

statistics for the 2007/2008 crop year as reported by USDA’s National 

Agricultural Statistics Service (USDA-NASS, 2010).  Similar statistics exist 

from the Food and Agricultural Policy Research Institute (FAPRI) (2009).  

For each crop, FAPRI and the baseline analysis provide annual estimates of 

potential commodity crop yields and area planted for the crop years of 

2008/2009 through 2018/2019.  Projected production (total volumes or 

weights) forecasts for each county in the study area in which corn, soybeans, 

and/or canola were produced were estimated by multiplying the percentage 

change in yield and planted area on a national basis for each of the three 

crops between the 2008/2009 crop year and the average of the 2017/2018 and 

2018/2019 crop years.  The crop years of 2017/2018 and 2018/2019 were used 

instead of one single year as decisions concerning 2018 plantings could be 

made in an earlier year.  Increases in yield and area were projected to be 

16.2% and 6.0% for corn; 8.2% and 2.8% for soybeans; and 10.1% and 16.3% 

for canola and these were applied to 2008/2009 crop year statistics.  Prices 

were taken from the FAPRI projections and were applied as a single national 

price point. 

The projections could be used to develop estimates for national supply 

curves, but they would be at an extremely aggregated resolution and only 

valid for a single year due to potential changes in exports, agriculture and 

energy legislation, and alternative fuel demand.   County-level supply curves 
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for individual grain crops are also subject to these factors, but especially 

local grain/oilseed prices, which are not accurately known.  Therefore, due to 

these reasons, supply curves were not developed.   Instead, the quantity of 

corn and soy oil provided to biofuel production is specifically limited through 

constraints on the maximum national consumption in the model.  The 

fraction of soy oil going to biodiesel is limited to not increase more than 50% 

above the FAPRI projection.  At this maximum use, 38% of all soy oil is 

consumed for biofuel as opposed to 25% in the original projection.  A 

constraint is introduced to the model to limit corn ethanol to 15 billion 

gallons per year in accordance with receiving credit within the federal RFS2.  

This level of corn consumption for ethanol is identical to the projected corn 

use for ethanol in the agricultural projections used.  Both the soy oil and corn 

consumption constraints are maximum limits.  The model is free to choose 

lower values of commodity crop consumption. 

Projections of agricultural commodities such as these are tenuous at best 

as agricultural, energy, and/or environmental legislation, market forces, and 

the world petroleum situation concerning supply and demand strongly 

influence the agricultural markets and are highly uncertain. 

5.1.7 Animal fats and waste greases 

Edible and inedible tallow, lard and choice white grease, byproducts of the 

meat processing/slaughter industry, are potential feedstocks for biodiesel 

production.  Each has distinct characteristics and price structures. Statistics 
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derived from two independent sources (Kay, 2009; Jacobsen, 2009) give 

an average generation of edible and inedible tallow of about 5.8 billion 

pounds from approximately 70 separate locations across the United States, 

primarily in Kansas, Nebraska, Texas, and Colorado which if utilized for 

biodiesel production would equate to almost 800 million gallons.  Over 1.8 

billion pounds of both pork lard and choice white grease are generated in 

approximately 70 separate locations that could potentially supply up to 255 

million gallons of biodiesel. Prices for edible and inedible tallow and pork lard 

and choice white grease obtained from a national source have varied 

considerably between 2003 and mid-2009 ($0.11 to $0.48 per pound) 

(Jacobsen, 2009).  A price of $0.25 per pound ($500/ton) is assumed for the 

analysis. 

Waste grease feedstocks (e.g. restaurant greases) are a secondary but 

accessible source of biodiesel feedstock. Estimates of this resource were made 

based on methodology developed by (Wiltsee, 1998)  using urban population 

statistics. Municipalities with populations greater than 100,000 according to 

the 2000 U.S. Census were included in this analysis.  Population expansions 

were estimated for each city in 2017 using data for state population growth 

derived from data provided by the U.S. Census Bureau (U.S. Census Bureau, 

2005). 
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Figure 16: Lipid resources including canola and soy crushing plants 

and animal fats from rendering facilities (thousand tons per year). 

5.1.8 Summary of national resource data set 

The resources considered in this study are all assumed to be available at a 

given procurement cost (at the roadside) without feedback from the biomass 

demanded.  A summary of the costs and quantities is given in Table 15 for 

resources that have a single cost without spatial variation.  For the 

commodity crops, the total projected production is given in Table 15.  In the 

model, the total quantity of these resources that can be consumed is 

constrained nationally but not at the county level of resolution.  The costs 

and quantities for cellulosic resources, which have spatial distribution of cost, 

are aggregated and shown in Figure 17 for the baseline scenario, Figure 18 
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for the high scenario and Figure 19 for the low scenario.  

Table 15: Roadside cost of grain and lipid resources  

Resource Procurement cost 
Available Quantity 

(tons) 

Corn $130/ton ($3.64/bushel) 386,397,000 

Soy oil $690/ton ($0.35/lb) 16,174,000 

Canola oil $794/ton ($0.40/lb) 459,000 

Animal Fats  

(Choice white grease, 

tallow and lard) 

$500/ton ($0.25/lb) 3,866,000 

Yellow grease $320/ton ($0.16/lb) 652,000 

 

 

Figure 17: Baseline supply of cellulosic biomass resources. 

In total, this study considers a baseline scenario where 533 million dry 

tons of cellulosic biomass are available at a maximum roadside cost of 

$200/dry ton. There are very few cellulosic resources available below $20/dry 

ton in the resource assessment.  Below this point only unused mill residues 

and source-separated yard wastes are available.  The majority of the forest 



 

 

100 

residue biomass becomes available at roadside costs of $20 to $30 per dry 

ton.  At $30/dry ton a significant amount of MSW resource is made available. 

This is a result of assumptions about MSW sorting costs and is an area where 

further study could improve the estimate.  At roadside costs between $55 and 

$70 per dry ton, the majority of agricultural residues become available.  The 

majority of energy crops are estimated to cost between $80 and $120 per dry 

ton depending on the county of production.  The pulpwood supply for biomass 

grows constantly starting at $70 per dry ton. 

 

Figure 18: Cellulosic biomass supply in high scenario 

In the high scenario for cellulosic biomass, a maximum supply of 797 

million dry tons of biomass are projected to be available at a procurement 

cost of $200 per dry ton.  In the high scenario, the largest increase from the 

baseline comes from agricultural residues.  The resource increases by more 

than 100 million dry tons and the range of procurement costs is reduced with 

the majority of the resource becoming available between $45 and $50 per dry 
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ton.  The second large increase comes from energy crops where 

approximately 80 million dry tons of additional resource is projected.  The 

supply of municipal wastes is doubled, increasing the supply by 67 million 

dry tons.  The pulpwood supply curve is shifted down by 20%, making the 

supply available starting at $60/dry ton.  Only minor additions are made to 

the forest residues due to including federal lands.  

 

Figure 19: Cellulosic biomass supply in low scenario 

In the low scenario for cellulosic biomass, a maximum supply of 317 

million dry tons of biomass are projected to be available at a procurement 

cost of $200 per dry ton.  Energy crops are reduced to half the baseline.  

Limiting MSW to woody resources, reduces the supply of MSW biomass to 

36% of the baseline estimate.  The agricultural residue resource is 

significantly reduced and the distribution of costs are spread over a greater 

range.  The forest residues are unchanged and make up a greater percentage 

of the total resource.  
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Table 16: Summary of projected biomass resources in 2018 

(million dry tons) 

 This Study (<$50/dry ton | <$75/dry ton | <$100/dry ton) 

 Low Estimate Middle Estimate High Estimate 

Agricultural Residues 0 | 30.2 | 71.2 0 | 122.7 | 128.2 159.2|227.5|238.8 

Orchard & Vine. Wastes 8.0 | 8.0 | 8.0 8.0 | 8.0 | 8.0 8.0 | 8.0 | 8.0 

Forest Residues 47.9|52.3|52.5 47.9 | 52.3 | 52.5 53.4 | 60.5 | 60.9 

Pulpwood 0 | 1.6 | 26.0 0 | 8.7 | 33.2 1.6 | 33.2 | 64.4 

Energy Crops 0 | 0.4 | 26.0 0 | 0.4 | 52.1 0 | 60.4 | 293.8 

MSW - Total 24.2 67.55 135.2 

C & D Wood 15.8 15.8 31.5 

Urban Wood 8.5 8.5 16.9 

Paper and Cardboard 0.0 13.3 26.6 

Food Wastes 0.0 3.9 7.8 

Yard/Green Wastes 0.0 3.3 6.7 

Mixed Organics 0.0 22.9 45.7 

Total 80.1|116.7|207.9 123.5|259.7|341.6 357.4|524.8|801.1 

 

A summary of the resource assessments from three other studies is shown in 
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Table 17.  The studies all found significant quantities of cellulosic 

biomass available with the lowest value of 410 million dry tons for the 

National Academies current assessment.  The assessment used in this 

analysis is roughly in agreement with these studies.   
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Table 17: Summary of other resource assessments (million dry 

tons unless otherwise noted) 

 

Liquid Transportation Fuels 

from Coal and Biomass (NAS, 

2009) 

Billion 

Ton 

Study 

(2005) 

U.S. EPA RFS2 

Impact Analysis 

(2010) 

 Current 2020 

Estimated 

delivered cost 

($/dry ton)  Possible8 

Used 

in 

20228 

Agricultural Residues 91 130 $55 - $140 250 - 425 642 (wet) 61.8 

Orchard & Vineyard 

Wastes N/A N/A N/A N/A N/A N/A 

Forest Residues 110 124 $72 - $104 109 - 186 40 – 118 1 

Pulpwood N/A N/A N/A  N/A N/A 

Energy Crops 119 182 $101 - $199 156 - 377 321 85.6 

Municipal Solid Wastes 

- Total 90 100 N/A  44.5 26 

C & D Wood    8  

Urban Wood    
28 – 39 

5.3  

Paper and Cardboard     23.8  

Food Wastes     6.5  

Yard/Green Wastes     0.9  

Mixed Organics       

Animal Manure 6 12 N/A N/A N/A N/A 

Agricultural Processing 

Wastes N/A N/A N/A 75 N/A N/A 

 

5.2 Transportation cost model 

Transportation costs for all modes have two components; a fixed cost for 

loading and unloading of the material and a variable cost of transportation. 

The fixed cost depends on the format of the material (liquid, bale, or chip) 

and the resulting equipment operations required.  The variable costs depend 

on the distance and time of the route along with local labor, fuel rates, truck 

capital cost and the effective size of the load.  The format, density and 

                                            
8 The EPA document provides a rough estimate of possibly available 

resources and a projection for the biomass used in 2022 to meet the RFS 

mandate as determined using economic modeling. 
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moisture content of the material transported determine the effective load 

size. 

The transportation cost model must account for the loading and unloading 

costs separate from the variable cost.  Not doing so changes the functional 

form of the transportation costs and leads to an overestimate of the marginal 

cost of longer delivery distances.  This would result in erroneous optimal 

sizing of biorefineries at smaller scales than the actual costs.       

5.2.1 Biomass transportation costs 

The model of biomass transportation via truck used here is based on the 

feedstock logistics model developed by Idaho National Laboratory, which 

includes labor and fuel estimates that vary based on year and state (INL, 

2010).  Separate cost models were developed for transportation of baled 

material and bulk material.   

For transport of baled material, bales are loaded onto a flat bed trailer 

with a capacity of 26 bales or 17 tons.  Loading is performed by a loader with 

the truck driver waiting and strapping down the load.  The total load time is 

33 minutes.  The truck travels to the biorefinery where it is weighed in and 

unloaded using a loader again with a total time at the biorefinery of 35 

minutes.  The return trip is assumed to be empty, requiring the biomass to 

assume the entire roundtrip cost.  The truck is assumed to have a fuel 

economy of 6 miles per gallon.   
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Bulk material is loaded via conveyor or directly from the chipper.  The 

load time is 13 minutes for a 19.9 ton load.  Emptying the truck using a truck 

tipper takes 12 minutes.     

A fixed price of diesel that varies by state corresponding to a $3.55 per 

gallon national average is used. It is feasible for the price of diesel to instead 

be linked to the fuel price used for each point on the supply curve for 

consistency but this approach was not pursued at this time.  The cost of labor 

also varies by state and corresponds to a national average of $20.24/hr for 

truck drivers and $14.70/hr for loader operators.   

Rail costs used in this study are based upon a study of published ethanol 

transport rate schedules (Hughes, 2009).  The costs are fitted to a linear 

model. Previous analysis of rail rates found no significant difference between 

agricultural products (similar to biomass) and ethanol on a per rail car basis.  

The ethanol rail rates are converted to biomass rates using an assumed 100 

tons per rail car.  I have also included a loading and unloading cost (INL, 

2010).  

Marine transportation costs are based on a published rate schedule for 

river barge (Tidewater, 2007). The rates were fitted to a linear function of 

distance similar to the rail rates above.  

Searcy et al. (2007) provides an alternative model of biomass transport in 

the Canadian context.  A comparison between the models used here and 

Searcy et al. is shown in Figure 20.  The largest difference is in the fixed cost 
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for rail transport.  Searcy et al. uses an engineering basis to calculate the 

cost of a rail transport.  This includes the rail spur and time/equipment/labor 

for loading and unloading the biomass onto a unit train for the biomass 

supplier and the cost of transporting the unit train for the railroad.   

 

 

Figure 20: Transportation cost as a function of distance by mode 

5.2.2 Liquid fuel transportation costs 

Costs for transportation of liquid feedstocks and fuels for rail and marine 

transport are assumed to be the same as biomass on a per rail car or barge 

basis.  The rail cars have 30,000 gallon liquid capacity and the barges have 

1,260,000 gallon capacity.  
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For truck transport, the cost of the tanker trailers replaces the cost of 

the bulk transport trailers in the biomass transport cost equations.  

Additional insurance is applied for the transport of hazardous material.   

5.2.3 Network Data Set 

 To accurately calculate the costs of transporting feedstock and fuels along 

the supply chain. The transportation network includes existing highways, 

rail lines, and marine transport routes, as well as inter-modal facilities. The 

inclusion of inter-modal facilities allows for the calculation of loading and 

unloading costs associated with the transfer of feedstock or fuel from one 

mode of transport to another. For road transportation, the network was built 

to enable the calculation of both time and cost of travel between two 

locations. Thus, each segment of the network is attributed with a mode and 

speed of travel.  Data from a variety of sources was compiled to build the 

geographic and cost components of the transportation network.  The Bureau 

of Transportation Statistics has recently released a new version of the road 

and rail network.  The data include estimates of the actual speeds on each 

road.  These are incorporated into the transportation model (BTS, 2009).   

  The railway network model contains mainline and secondary lines 

(spurs).  Connections of a refinery to the railway only occur on secondary 

lines to identify the most likely locations for rail service.  Figure 4 shows an 

overview of the national transportation model. 
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Many of the resources are reported at the county level and need an 

additional transportation cost added to account for the travel within the 

county.  The intra-county transportation cost is calculated using the average 

“city-block” distance from any point in the county to the centroid.  This 

geometric measure uses the perimeter of the county to estimate average 

travel distance.  Additionally, it is assumed that the average travel speed 

along this route is 35 mph.  These intra-county costs are then combined with 

the county centroid-based network transportation model.   

These data were incorporated into a geodatabase in the ArcGIS software 

environment. Once the network was built the Network Analyst extension was 

used to create an origin-destination cost matrix from all source origins to all 

potential biorefinery locations.  Similarly, network analysis was used to 

calculate the least cost paths from all potential biorefinery locations to all 

petroleum distribution terminals.   
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Figure 21: National transportation network. 

5.3 Terminal costs 

At the fuel distribution terminals, investments will be needed to 

accommodate the use of biofuels.  These investments include new storage 

tanks, blending equipment, rail or barge receiving facilities and upgrades to 

the vapor recovery equipment if handling ethanol blends for the first time.   

The storage tanks are sized for 8.2% of average annual throughput (30 days). 

New storage tanks cost $40/bbl for ethanol, $35/bbl for the F-T diesel or 

diesel via hydrotreatment of lipids and $70/bbl for biodiesel (USEPA, 2010).  

Blending equipment capable of blending each fuel were estimated at 



 

 

111 

$310,000 (USEPA, 2010).  The cost of rail facilities were estimated by the 

EPA to be $500,000 for manifest deliveries (individual rail cars), $10,000,000 

and $25,000,000 for unit train facilities with capacities of 229 million gallons 

per year and 613 million gallons per year.  The terminals are assumed to use 

a unit train facility when annual capacity reaches 9 million gallons per year.  

The cost of unit train facilities were linearly extrapolated from the two points 

given in the EPA analysis.    

5.4 Spatial fuel demand  

While this work does not find an equilibrium between supply and demand, 

two aspects of demand are important in determining the cost of supplying 

biofuels.  First is the total consumption limit for each fuel (ethanol, F-T 

diesel, or biodiesel).  Second is the spatial distribution of the demand, which 

impacts the cost of delivering biofuels to the market.   This spatial 

distribution of demand is a constraint in the model limiting the quantity of 

each type of biofuel that may be sold from each fuel distribution terminal.   

The fuel demand is based on a projection of vehicle miles traveled (VMT) 

by census tract for the year 2015 obtained from Oak Ridge National 

Laboratory (Hu, 2010).  This data set is based on the National Household 

Transportation Survey from 2001 (Hu et al., 2007) and county-level 

projections of population.  A regression analysis was used to find the 

determinants of VMT from the survey data.  Then the VMT by census tract 

was calculated based on statistics for each census tract and the parameters 
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from the regression analysis.  In performing the analysis, the Hu et al 

eliminated Manhattan because it was an outlier with less VMT per capita.  I 

added Manhattan to the data set provided by using the 2005 county level 

VMT data from the EPA (Codd and Mullen, 2007) and a population correction 

to project to 2015.  No attempt was made in this analysis to adjust the 

projections from 2015 to 2018.  

 

Figure 22: Distribution of fuel terminals and projected 2015 VMT by 

census tract 

VMT for each census tract is assigned to the nearest fuel distribution 

terminal.  The set of distribution terminals was limited by merging terminals 



 

 

113 

within 20 km of each other with the terminal in the largest population 

city being retained in the set.  Fuel demand is calculated by multiplying the 

fraction of the national VMT that is supplied by a given terminal and 

national projections for fuel demand.  The demand provides a limit on biofuel 

consumption based on blend limits and/or the market share of vehicles 

capable of consuming higher blends (for example, FFVs) as described in 

section 3.3.2.     

 

Figure 23: Modeled service areas for each fuel distribution terminal 

Improvements to this basic method can be made if there is knowledge 

about the spatial variation in the fleet of vehicles.  Two main refinements are 
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possible.  First is to correct for relative fuel economy of the fleet mix in 

different regions.  Second would be to use knowledge about the spatial 

deployment of the fleet of FFVs to improve upon case studies considering 

spatially targeted deployment of E85 stations. 
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6 CASE STUDY 1: NATIONAL MODEL 

6.1 Introduction to the Case Study 

 The revised Renewable Fuel Standard (RFS2) in the United States 

mandates significant growth in the biofuels industry through 2022. Biofuels 

equal to the 36 billion gallons of ethanol (on energy basis) or 23.6 billion gge 

are required to be consumed.  The mandate represents an increase of 25.4 

billion gallons of ethanol-equivalent from 2009 production levels.  Volumes of 

biofuels are mandated for each year from 2009 to 2022.  This case study 

employs the methodology and data sets described above to analyze the 

potential for biofuels to meet this target.  The analysis focuses on the 2018 

mandate because it is the last year provided in the agricultural projections 

that were used to develop the agricultural residues and commodity crop 

resource assessments (USDA, 2009).  I will discuss the implications for 

achieving the 2022 mandate as well.   

The RFS2 creates four embedded categories of biofuels (See Table 18).  The 

categories are designated by their lifecycle greenhouse gas intensity and the 

feedstocks used to create them.  To qualify as a renewable fuel, the lifecycle 

greenhouse gas emissions of the fuel must be 20% less than gasoline and be 

derived from “renewable biomass”; existing biorefineries are given an 

exemption for this requirement.  Advanced biofuels are a subset of renewable 

fuels with greenhouse gas emissions 50% less than gasoline and not ethanol 

derived from corn starch.  Cellulosic biofuels are a subset of advanced 
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biofuels with greenhouse gas emission 60% less than gasoline and that 

are derived from cellulose, hemicellulose or lignin.  Biomass-based diesel is a 

second subset of advanced biofuels with the added restriction that it must be 

a diesel fuel (the 50% greenhouse gas reduction applies).  The mandate is 

uses an energy basis, which gives a gallon of renewable diesel a credit of 1.6 

gallons of ethanol-equivalent. 

Table 18: RFS2 mandated quantity of biofuels (billion gallons of 

ethanol equivalent) (USEPA, 2010) 

Year 

Renewable 

Fuel 

Advanced 

Biofuel 

Cellulosic 

Biofuel 

Biomass-based 

Diesel 

RFS2 Corn 

ethanol limit 

2006 4       4 

2007 4.7       4.7 

2008 9       9 

2009 11.1 0.6   0.5 10.5 

2010 12.95 0.95 0.1 0.65 12 

2011 13.95 1.35 0.25 0.8 12.6 

2012 15.2 2 0.5 1 13.2 

2013 16.55 2.75 1 1 13.8 

2014 18.15 3.75 1.75 1 14.4 

2015 20.5 5.5 3 1 15 

2016 22.25 7.25 4.25 1 15 

2017 24 9 5.5 1 15 

2018 26 11 7 1 15 

2019 28 13 8.5 1 15 

2020 30 15 10.5 1 15 

2021 33 18 13.5 1 15 

2022 36 21 16 1 15 
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  The study uses a 2018 target for technology costs and feedstock 

availability, which is presumed to allow sufficient time for the development 

and initial deployment of second-generation biofuel production technologies.  

As a first approximation, a scenario is examined for a coordinated refinery 

infrastructure built in 2018 based on a representative year for resource and 

cost estimation.  Sensitivity scenarios were developed around uncertainties in 

conversion technology performance, resource availability and limits to the 

demand for ethanol fuels.  More detailed information on conversion 

technologies and feedstock supply data is given in the preceding two 

chapters.  

6.2 Model Formulation 

The general model formulation is given in Chapter 3.  However, several 

refinements were made for this case study.  First, corn ethanol production is 

limited to 15 billion gallons per year.  Second, soy oil consumption for 

biodiesel is limited to increase by no more than 150% of the projected soy oil 

used for biodiesel in the FAPRI projection for 2018 as described in section 

5.1.6 (FAPRI, 2009).  This is equal to 30% of all soy oil projected to be 

produced in the United States in 2018.  The reason for this constraint is that 

there is no explicit price response in the model and biodiesel production 

would consume all soy oil at high fuel prices without a limitation.  Third, a 

supply of imported sugarcane ethanol is introduced to the model at coastal 

ports.  
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To model imported sugarcane ethanol, a stepwise supply for imported 

sugarcane ethanol was developed based on the work of Babcock et al (2010) 

that analyzed the ethanol prices and supplies under combinations of the 

ethanol policies with a stochastic model of gasoline prices and corn yields in 

2011 and 2014.  I fitted a linear curve to the price and imported ethanol 

quantities derived under the no policy scenario in Babcock et al.  I used the 

slope of this curve for the elasticity for imported ethanol however the 

quantity does match the projected imports at the price in AEO2010 so I 

shifted the intercept of the supply curve to match the price and quantity 

predicted in AEO 2010 for 2018 for consistency with the AEO2010 (EIA, 

2010).  

The cellulosic conversion technologies were differentiated by the category 

of resource that they can consume.  Both cellulosic ethanol and F-T diesel 

technologies were assumed to be capable of using all cellulosic materials but 

any single biorefinery is limited to a single category of feedstock (herbaceous 

material, woody material or other waste materials).  These categories 

represent resources that with similar pretreatment processes at the 

biorefinery.  A potential biorefinery is considered for each of the categories at 

each location.  The result is that there are three potential cellulosic ethanol 

and three potential F-T diesel biorefineries at any given site all of which 

could be chosen in the optimal solution. 
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The energy co-products of electricity and naphtha are credited at the 

biorefinery.  In the general formulation, the co-products have spatially 

explicit demand nodes.  Incorporating the spatial demand for co-products 

requires additional data collection effort, which has not been undertaken. 

Electricity is valued at $0.05/kWh.  Naphtha is valued at 90% of the fuel 

price for a given model run.   There is a possibility that the naphtha could be 

upgraded to be mixed with gasoline and would then count as part of the 

renewable fuel production.  However, in their analysis of the RFS2 mandate, 

the EPA stated that naphtha from biomass F-T production is not a good 

candidate for upgrading to gasoline unlike petroleum naphtha (USEPA, 

2010).  I have followed this convention of not including naphtha for defining 

the volumes of biofuels produced.  

6.3 Scaling up the model 

The biorefinery siting optimization model is solved using the MIP solving 

algorithm in CPLEX optimization software from ILOG using the GAMS 

model language (ILOG, 2009; McCarl, 2004).  The computational difficulty of 

the model depends on the number of variables with the number of binary 

variables being most important.  The full national model proved too large for 

commercial MIP solvers to solve in reasonable time.  Attempts to solve the 

full model did not progress past building the model.  The attempts were 

aborted after 15 hours with more than 25 GB of memory required.  To speed 

the process, the optimization is performed in two steps where the results of 



 

 

120 

first stage models were used to define the feasible set for a simplified 

national model.  The first stage models optimize the biofuel production 

without consideration of the fuel deliveries.  The first stage models were split 

out of the national model based on resource type and region; regional models 

for the woody and herbaceous resources, and national models for grain, lipid 

and municipal solid waste resources.  Several first stage models were run for 

each region to span the likely set of outcomes including all lignocellulosic 

resources going to F-T diesel production in the case of limited ethanol 

demand.  The production models were run for all scenarios (given below) at 

$3 and $6 per gge with both cellulosic biofuel technologies and each biofuel 

technology separately. 

In a previous study of the western United States, cellulosic resources 

were rarely economical to delivered more than 100 miles to the refineries 

(Parker et al., 2010).  This trait allows the fuel production and resource 

allocation portion of the model (leaving fuel deliveries out) to be solved 

regionally without loss of the optimal solution.  I divided the country into 9 

regions. In order to avoid unusual solutions at the region boundaries, the 

regions are expanded to include all resources with transportation costs to the 

potential locations in the region below $45 per wet ton.  This way the regions 

are overlapping.  Through this approach the majority of variables that do not 

add value to the model but just computational difficulty are removed from 

consideration for the national model.  
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To take advantage of the two stage models the 21 sets of screening models 

need to solve quickly.  Each model requires computer hardware with at least 

12 GB of memory and multiple fast processors.  Solving the models for this 

case study sequentially on one server would require 4 weeks to provide a 

feasible set for the reduced national model, then an additional 3 to 6 days to 

develop supply curves for each scenario.  This process would need to be 

repeated as errors are found or changes in the parameters were desired.  To 

speed the process without the prohibitively expensive purchase of multiple 

servers, the screening models were solved simultaneously using cloud 

computing.  Solving the 21 screening models simultaneously reduced the time 

from 4 weeks to 3 days.  This allows for analysis to be completed in a weeks 

time instead of 2 months at much lower cost.  

The results of the screening models were combined to form the feasible set 

for the national model.  Then the national models for each scenario were run 

to develop supply curves simultaneously.  Finally, the national models were 

revised to find the price point where the 2018 RFS2 mandate is achieved.  

The fuel price is adjusted using a while loop starting at the nearest point on 

the supply curve that is below the mandated volume then adding $0.01/gge 

and solving until the mandated volume is reached.   

6.4 Scenarios 

Scenarios were developed around technology performances and feedstock 

availability for cellulosic biofuels and fuel demand limits.   The baseline 
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scenario uses the best estimates for technology performance and resource 

availability.  All other scenarios present deviations from the baseline.  Across 

all scenarios, the lipid and corn technologies remain the same and the lipid 

resource supplies are unchanged.   They are described in Chapters 4 and 5 

respectively.   

The cellulosic biomass resource base for the baseline uses the middle case 

resource datasets that were described in Chapter 5.  The technologies 

employed are the baseline technologies described in Chapter 4.  The demand 

for ethanol fuel is limited to the blend limit of E10 for all gasoline vehicles.  

The demand for F-T diesel is limited at 95% of all diesel demand and 

biodiesel is limited to 5% of diesel fuel.   To simulate this, a limit on ethanol 

demand was given for each terminal equal to providing all gasoline energy as 

E10.  Due to the lower energy density of E10 versus gasoline, the volumes are 

adjusted to reflect an equal quantity of energy.  The ethanol limit is 

calculated from the projected gasoline-like fuel demand in 2018.  The EIA 

projects 17.3 Quads (1 Quad = 1015 Btu) of energy will be consumed by the 

transportation sector in the form of gasoline-like fuels.  If all of this fuel is 

provided as E10 that translates into a limit of 153 billion gallons of E10 or 

15.3 billion gallons of ethanol.  50.9 billion gallons of diesel fuel are projected 

to be consumed in the transportation sector for 2018 by the EIA (2010).  

There are three sets of scenarios developed off the baseline (See Table 19).  

The first concerns the conversion technologies for cellulosic biofuels.  An 
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optimistic scenario uses the optimistic parameterization for cellulosic 

ethanol along with the baseline F-T diesel technology.  An optimistic 

characterization was developed for the cellulosic ethanol technology but not 

F-T diesel because there was a greater range of supported literature values 

for the cellulosic ethanol technology.  The optimistic literature value for F-T 

diesel comes from the EPA (USEPA, 2010) however, it is not considered due 

to lack of supporting information.  A pessimistic scenario uses pessimistic 

assessments for both cellulosic biofuel technologies.  In the baseline model, F-

T diesel is the lower cost pathway of the two cellulosic biofuel technologies. 

The difference in cost is not large but the “penny switching” nature of linear 

program leads to a single technology choice not the distribution of choices 

that may occur when all the performance variability is taken into account.  

An additional “ethanol dominant” scenario was developed using the baseline 

ethanol technology along with the pessimistic F-T diesel technology.    The 

ethanol dominant scenario captures the impact of the ethanol technology 

developing while the F-T diesel technology does not improve.   

The second set of scenarios captures the uncertainty in resource 

availability.  High and low feedstock scenarios were developed based on the 

high and low sets of resource assessments shown in Section 5.1.8.  The two 

resources with the largest range of values among the three assessments (low, 

middle and high) were agricultural residues and energy crops.  The high and 
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low assessments for these two resources were run as four independent 

scenarios to evaluate the impact of these two important resources.   

The model does not currently consider the feedback of biofuel demand on 

the price of the feedstocks that the industry consumes.  This is most 

important in the case of corn ethanol.  With a single price for the 

procurement of corn the modeled industry will consume as much corn as 

allowed at high fuel prices.  By limiting the corn ethanol to a maximum 15 

billion gallons per year the maximum corn consumption for ethanol in the 

baseline is consistent with the FAPRI projection (2009) from which the corn 

quantities and prices come.  However, there are a number of outside market 

factors that can impact the price of corn in the future.  To show the impact of 

corn price on the overall supply of biofuels I have developed scenarios with 

corn prices at $2.50/bushel for the low case and $5.50/bushel for the high 

case. 

The final set of scenarios considers the impact of limits on biofuel demand.  

The baseline E10 demand limit does not account for all the potential ethanol 

demand.  The EPA ruled in 2020 that vehicles made after the model year 

2007 can operate on an E15 blend.  If this blend limit is expanded to all 

vehicles, there would be a significant increase in the potential market for 

ethanol.  An E15 scenario is presented with a limit of 23.56 billion gallons of 

ethanol.   
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Ethanol can also be consumed in the form of E85 by flex-fuel vehicles 

(FFV).  There are a limited but growing number of these vehicles on the road.   

In 2010, 9 million FFVs were on the road in the United States accounting for 

4% of the total light-duty vehicle stock.  The AEO2010 projects FFVs to grow 

to 28 million (11.5% of LDVs) in 2018 and 39 million vehicles (15% of LDVs) 

by 2022.  As their name suggests, they can be driven on conventional gasoline 

or up to 85% blend of ethanol with 15% gasoline.  In order to entice the 

drivers of these vehicles, E85 will need to be both readily available and cost 

competitive with gasoline.  These two conditions are not met any place in the 

country today.  However, as a bounding argument for how far ethanol 

demand could be pushed without changing the blend limit, a sensitivity 

scenario is performed with the fleet of FFVs predicted to be on the road in 

2018 fueled exclusively on E85.  In 2018 FFVs are projected to account for 

11.3% of vehicle miles traveled according to the 2010 Annual Energy Outlook 

Base Case [31].  Assuming that the fleet of FFVs have the same fuel 

efficiency as the fleet of conventional vehicles, the maximum ethanol demand 

from FFVs plus the rest of the fleet operating on E10 is 30.38 billion gallons. 

For the above scenarios, the blend limit is a maximum constraint on the 

quantity of biofuels that can be consumed at each terminal.  The resulting 

system will yield a distribution of blends across the country with those 

terminals near biofuel supplies having higher blends than terminals far from 

biofuel supplies.   
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The last fuel demand scenario considers a variable national blend where 

the blend of each type of biofuel is consistent across the country.  This is 

independent of the volume of fuels produced.  For example, if enough ethanol 

can be profitably produced at a volume that is 5% of the national gasoline 

demand then every fuel terminal will be using an E5 blend.  The blend 

changes across the supply curve as more biofuel becomes profitable.  This 

scenario does not reflect any expected future but it can highlight 

improvements to the cost structure of the biofuel supply if blend limits are 

removed.   
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6.5 Results 

6.5.1 Baseline scenario 

The baseline scenario meets the 2018 RFS2 mandate at a fuel price of 

$2.87/gge at the fuel distribution terminal without subsidies.  Local 

distribution, marketing and taxes would add approximately $0.65/gge on 

average making the fuel price at the pump approximately $3.52/gge.  This is 

within the range of the projected prices for gasoline ($2.00-$4.71/gge) and 

diesel ($1.92-$4.46/gge) fuel for 2018 in the AEO2010 low and high oil price 

scenarios.  While the RFS2 mandate is expressed in terms of gallons of 

ethanol equivalent, I present results in terms of gallons of gasoline 

equivalent that is more readily comparable to the existing fuel market. 

 

Figure 24: Baseline biofuel supply curve 
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A variety of biofuel pathways are exploited to meet the mandate. The 

largest pathway by volume is corn ethanol with 13 billion gallons of ethanol 

projected.  This volume does not reach the mandated limit of 15 billion 

gallons.  A small quantity (200 million gallons) of Brazilian ethanol is also 

consumed but not enough to reach the E10 blend limit imposed on the model.  

No cellulosic ethanol production appears in the baseline solution.  The model 

projects 336 million gallons of biodiesel produced from waste greases and 

animal fats.  The remaining 8.3 billion gge of fuel is projected to come from F-

T diesel from cellulosic biomass.  Three main resources are exploited.  

Agricultural residues provide the largest fraction (37.5% of F-T diesel).  

Municipal wastes (33% of F-T diesel) and forest residues (27% of F-T diesel) 

also provide a significant fraction.  While the specific bins within the RFS2 

mandate were not explicitly modeled, the resulting system would qualify 

because the F-T diesel fuels qualify for all bins and none of the other fuels 

exceed the limit for the bin for which they qualify. 
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Figure 25: Fuel pathways for meeting 2018 RFS2 mandate under the 

baseline assumptions 

No switchgrass is produced or consumed at this quantity of biofuel.  Only 

the corn ethanol puts pressure on the extent of agricultural land in the 

United States with 26.5 million acres dedicated to the production of corn for 

ethanol.  Intensification of agriculture – increased fertilizer use and soil 

erosion – occurs due to the removal of agricultural residues.  47% of the 

available agricultural residues are consumed in order to meet the mandate.   

None of the resources are fully consumed at the national level.  However, 

the solution approaches two resource limits and the corn ethanol limit.  The 

solution contains 13 billion gallons of corn ethanol or 87% of the corn ethanol 

that is allowed by the formulation.  82% of the forest residue resources are 

consumed and 86% of the MSW resources are consumed.   Free blending of F-

T diesel with petroleum diesel was allowed up to 95% by volume meaning the 

limit on F-T diesel demand is defined by the diesel demand.  This limit is not 
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approached but it should be noted that 16% of the projected 2018 diesel 

demand is met with biomass-based diesel (F-T diesel and biodiesel). At $6/gge 

– the highest price analyzed – 52% of transportation diesel demand is met 

with biomass-based diesel while only 7% of the gasoline demand is met with 

ethanol.   Petroleum refineries have limited flexibility in the fraction of diesel 

versus gasoline that they produce from a barrel of oil.  If biofuels provide 

disproportionate displacement of either diesel or gasoline, they will impact 

the relative prices between gasoline and diesel.     

The infrastructure required to realize the projected supply of biofuels is 

significant in scale and capital cost.  The projected system requires 25 new 

dry mill corn ethanol biorefineries and 159 new biorefineries producing F-T 

diesel from cellulosic biomass.  The F-T diesel biorefineries range in size from 

750 dry tons per day to 5,250 dry tons per day with average size of 3,200 dry 

tons per day.  This system represents $107.9 billion in new capital 

investment in biorefineries.   
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Figure 26: Distribution of F-T diesel biorefinery sizes in baseline 

In addition to the F-T diesel, the biorefineries produce 30,277 GWh of 

renewable electricity and 1.76 billion gallons of renewable naphtha.  The 

electricity represents 0.76% of the projected electricity demand in 2018 and  

8% of the projected growth in electricity demand from 2010 to 2018 in the 

AEO2010 baseline.  The naphtha production is not trivial either.  It is 

roughly equal to 1.5% of the refinery naphtha projected to be produced and 

consumed in North America in 2018 (SRI Consulting, 2010).  If the naphtha 

could be used to produce a renewable gasoline, it would provide a 19.6% 

increase in the quantity of renewable fuels produced using the F-T diesel 

technology and reduce the quantity of resource needed met the same level of 

fuel demand.  The impact on the cost of the biofuels will depend on the cost of 

upgrading the naphtha.     
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Expanding the analysis to consider the full supply curve, I see that there 

are discrete regions of the curve that are dominated by the growth of one or a 

few fuel pathways.  Below $2/gge, only existing corn wet mill biorefineries are 

profitable.  From $2/gge to $2.60/gge, existing dry mill corn ethanol and F-T 

diesel from MSW and forest residues become feasible and reach most of their 

full potential.  At $2.80/gge new dry mill corn ethanol and F-T diesel from 

agricultural residue enter the market.  F-T diesel from agricultural residues 

accounts for the majority of the growth in supply up to $3.40/gge, when the 

supply of agricultural residues begins to reach a maximum.  At $3/gge, the 

corn ethanol limit is reached and biodiesel from soy oil enters the market.  F-

T biofuels from pulpwood and energy crops begin to grow significantly at 

$3.40/gge and most increases in the supply beyond this point are from energy 

crops and pulpwood.      
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Figure 27: Baseline supply curve by pathway 

The supply curve is highly elastic (flat) from $2.20/gge to $3/gge, 

increasing from 1.7 billion gge per year to 22.2 billion gge per year.  This is 

due in large part to the structure of the resource supply curves.  The corn and 

MSW supplies are available at single prices and the forest and agricultural 

residue supplies have most of their resources available over small price 

ranges.  For the cellulosic resources, these are simplified supply curves based 

on estimated costs.  The real supply curves are likely less elastic when more 

of the real variability in cost structure and willingness to participate of the 

agents who control these resources (waste management companies, timber 

companies and farmers) are included.  The price of corn is not independent of 

the ethanol industry, as assumed in this analysis.  Including these market 
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effects in the supply would cause the curve to become less elastic with more 

supply becoming available below $2/gge and increasing the slope of the curve. 

There are a number of features in this baseline scenario that are 

dependent on assumptions made about highly uncertain parameters.  The 

dominance of the F-T diesel technology for cellulosic biomass resources is a 

result of the specific choice of baseline technologies, the discount rate, the 

value given to the co-products and an assumption that F-T diesel can be 

freely blended with petroleum diesel. The limit for corn ethanol was not 

reached due to the availability of cheap MSW and forest residue resources 

and the existence of a competitive cellulosic conversion technology.  In the 

sections below the sensitivities to these parameters are analyzed. 

6.5.2 Resource sensitivities 

The supply curves for resource scenarios are shown in Figure 28 along 

with the baseline.  The high and low feedstock scenarios provide bounds for 

the total supply.  It would be possible to meet the 2022 RFS2 mandate at fuel 

prices between $3/gge and $4/gge.  The 2022 volume is 78% of the maximum 

potential for the low feedstock scenario, leaving little room for meeting the 

mandate if the available resource is lower than the low scenario analyzed 

here.  In the high scenario, 23% of all transportation fuel demand in 2018 

could be met with biofuels at $4/gge. 

F-T diesel produced using agricultural residues is the marginal fuel 

pathway in the baseline case at the 2018 RFS2 mandated volume.  Therefore 
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the sensitivities to the agricultural residues have the largest impact on the 

fuel price needed to meet the 2018 mandated volume.  In the high residue 

scenario, the required fuel price is reduced by 2.4%.  Additional reductions in 

the price come from increased MSW F-T diesel production in the high 

feedstock scenario bringing the required fuel price down to $2.67/gge.  All of 

these reductions in price come from displacing corn ethanol with additional 

low cost cellulosic F-T diesel.  In the historical residue scenario, the required 

fuel price increases by 5%.   The price is further increased in the low 

feedstock scenario due to less low cost MSW resources being available. This 

forces the model to move up the agricultural residue and forest residue 

supply curves as well as expanding corn ethanol production to the 15 billion 

gallon per year limit and requiring biodiesel from soy oil.  The result is a 

required fuel price of $3.23/gge.   
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Figure 28: Supply curves for resource sensitivity scenarios 

Changing the corn price causes large changes in the supply curve.  The 

corn price shifts the corn ethanol fraction of the biofuel supply up or down 

depending on direction.  Corn ethanol provides one quarter of all supply and 

44% of the supply available under $3/gge in the baseline.  Shifting this large 

fraction of supply has a big impact. The low corn price scenario has a limited 

impact on the required fuel price for the 2018 RFS2 mandate because the 

baseline is near the 15 billion gallon per year limit and the supply curve is 

highly elastic at that point.  The high corn price, however, has a major impact 

as it removes all dry mill corn ethanol from the solution forcing the industry 

to use 58% of all cellulosic resources compared with 32% in the baseline.  The 
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required fuel price is the highest of all the feedstock sensitivity scenarios at 

$3.36/gge.   

The shifts in the fuel pathways utilized to meet the mandate would have 

large impacts on the agricultural sector.  In the high feedstock scenario, lands 

dedicated to production of corn ethanol are reduced to 18.9 million acres 

while the low feedstock scenario increases lands in corn ethanol to 30.7 

million acres.  The introduction of seed oil biodiesel presents another demand 

on agriculture.    

 

Figure 29: Biofuel pathways for meeting 2018 RFS2 mandate in high 

(left) and low (right) feedstock scenarios 

While energy crops do not play a role in meeting the 2018 RFS2 mandate 

under any of the scenarios, changes to the energy crop resource assessment 

result in significant differences in the supply curve above 22 billion gge per 

year.  At $3.80/gge, the difference between the low and high energy crop 

scenarios is 6.6 billion gge per year, which is similar to the difference 

between the agricultural residue scenarios. 
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6.5.3 Technology sensitivities 

The technology scenarios lead to a larger range of price outcomes at the 

2018 RFS2 mandate.  The pessimistic technology results in a 32% increase in 

the required fuel price.  The reason for such a large increase is twofold.  First 

the technology is significantly more expensive.  Second, the technology is less 

efficient at producing fuel.  This has two impacts on the cost.  First, more 

feedstock must be purchased per unit fuel produced.  Second as more 

feedstock is consumed the industry is forced to purchase more expensive 

feedstock as the low cost feedstock are consumed for less fuel produced.       

 

Figure 30: Supply curves for technology sensitivity scenarios 

The optimistic case demonstrates an interesting interaction between the 

ethanol demand limit and the technologies.  In the optimistic case, the 
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cellulosic ethanol technology is less expensive than both F-T diesel technology 

and new dry mill corn ethanol.  However, the quantity of ethanol that can be 

sold is less than the mandated volume when limited to E10.  Beyond the 

ethanol limit, the industry must decide between making cellulosic ethanol 

with a high profit margin along with F-T diesel from more expensive 

feedstocks or lower profit margin corn ethanol along with F-T diesel from the 

lower cost cellulosic feedstocks.  Up to $3.60/gge, it is more profitable to make 

some low cost cellulosic ethanol and increase the marginal cost of F-T diesel 

than to satisfy the ethanol demand with corn ethanol and imports.  The 

result is that the optimistic technology scenario has a higher required fuel 

price for the 2018 RFS2 mandate than the baseline despite having a lower 

cost cellulosic technology.  The profit for the industry is 52% higher in the 

optimistic scenario than the baseline.  When the ethanol demand limit is 

relaxed by allowing all FFVs to consume E85, the optimistic technology 

scenario has a lower required fuel price at all levels of supply.  This does not 

account for the cost of E85 infrastructure, which would increase the but 

requires further research to determine how much the costs would increase. 

The ethanol dominant scenario uses the baseline cellulosic ethanol 

technology along with the pessimistic F-T diesel technology.  The result is 

similar to the optimistic technology in that the ethanol dominant scenario 

has a portion of the supply curve that is more expensive than the pessimistic 

case despite utilizing lower cost technology.  At the 2018 mandate the ethanol 
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dominant scenario is identical to the pessimistic technology scenario.  When 

the ethanol demand constraint is relaxed, the ethanol dominant scenario 

performs better than the pessimistic technology increasing the fuel price by 

7% relative to the baseline.     

While the ethanol dominant with FFV scenario results in higher required 

fuel prices compared with the baseline, the infrastructure investments are 

lower.  It requires $45 billion in investment compared to the $107.9 billion for 

the baseline.  This result suggests that in a scenario where E85 is a viable 

competitor for fueling FFVs (adequate availability), a higher rate of return on 

investment may come from the cellulosic ethanol technology as opposed to the 

F-T diesel technology. 

6.5.4 Demand sensitivities 

In the scenarios where the cellulosic ethanol technology is preferred to the 

F-T diesel technology on a production cost basis, the blending limits on 

ethanol play a large role in shaping the supply curve.   To demonstrate this, 

the supply curves for the ethanol dominant scenario are shown in Figure 31 

with an E10 blend limit, an E15 blend limit, a blend limit with 100% FFVs 

using E85 and E10 for conventional vehicles and finally a proportional blend 

limit where all terminals get the same blend but the total ethanol is not 

limited.  For all but the proportional blend, there is a sharp increase in the 

supply curve where the ethanol limit is reached and the cellulosic resources 

are shifted to a more expensive F-T diesel technology.  The pessimistic F-T 
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diesel technology produces less fuel (on an energy basis) per unit of biomass 

than the cellulosic ethanol technology.  This translates into greater biofuel 

potential in scenarios where more ethanol demand exists. 

 

Figure 31: Supply curves for the fuel demand sensitivity scenarios 

with the ethanol dominant technology scenario 

The technology assumptions and ethanol limits impact how biofuels will be 

used in different subsectors of the transportation system.  In scenarios where 

cellulosic ethanol is the low cost cellulosic technology and there is ethanol 

demand in the form of E85, then most biofuels replace gasoline.  In scenarios 

where F-T diesel is the low cost cellulosic technology or there is  not ethanol 

demand in the form of E85, then cellulosic biofuels replace diesel.   
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6.5.5 Results summary 

All of the scenarios analyzed achieve the 2018 RFS2 mandate below the 

projected fuel price in the AEO2010 high oil price scenario ($3.81/gge for 

diesel and $4.06/gge for gasoline at fuel terminal).  The range of possible 

outcomes are from $2.65/gge to $3.78/gge with the bounds coming from 

technology scenarios.  

While the required fuel prices deviate at most 32% from the baseline, the 

fuel pathways used to meet the mandate vary wildly.  Corn ethanol meets 

58% of the mandate in some cases and only 4% in the high corn price case.  

The cellulosic resources switch between ethanol and F-T diesel leading to 

large difference in the quantities of ethanol versus biomass-based diesel 

between scenarios.   In all scenarios, the majority of available MSW and 

forest residue resources are consumed.   

The capital investment required for the biorefineries is highly variable.  

The highest capital investment is more than twice the lowest capital 

investment.  In scenarios that depend on F-T diesel for large quantities of 

fuel the capital intensity is high.  In scenarios where conventional 

technologies and/or cellulosic ethanol provide the majority of the fuel, the 

capital investment is lower.    
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Table 20: Summary of baseline and resource sensitivity scenarios for 

meeting 2018 RFS2 mandate 

Scenario 

 Baseline 

High 

Feedstock 

Low 

Feedstock 

High 

Residue 

Historic 

Residue 

Fuel Price ($/gge) $2.87 $2.67 $3.23 $2.73 $2.94 

Total Biofuel (MGGEY) 17,300 17,265 17,213 17,562 17,106 

Biomass-based Diesel  8,630 11,269 7,358 11,279 7,221 

% of Diesel Demand  15.93% 20.79% 11.69% 20.81% 11.44% 

Ethanol  8,671 5,995 9,855 6,283 9,885 

% of Gasoline Demand  5.82% 4.02% 6.61% 4.22% 6.63% 

Number of biorefineries needed 

Cellulosic Ethanol 

Biorefineries 0 0 0 0 0 

F-T Diesel 

Biorefineries 159 188 112 183 133 

Biodiesel Biorefineries 16 16 27 16 27 

Dry Mill Biorefineries 157 112 173 115 170 

Wet Mill Biorefineries 9 9 9 9 9 

Required Capital Investment in Biorefineries (million $) 

Total Capital   $107,897 $138,134 $65,484 $132,683 $76,586 

Cellulosic Ethanol 

Capital $0 $0 $0 $0 $0 

F-T Diesel Capital  $103,686 $137,913 $64,729 $132,462 $75,831 

Biodiesel Capital $221 $221 $755 $221 $755 

New Corn Ethanol 

Capital $3,989 $0 $7,072 $0 $6,543 

Biofuel production by pathway (MGGEY) 

Corn Ethanol 8,540 5,995 9,855 6,152 9,629 

Imported Ethanol 131 0 0 131 256 

Ag. Residue Ethanol 0 0 0 0 0 

MSW Ethanol 0 0 0 0 0 

Forest Ethanol 0 0 0 0 0 

Pulpwood Ethanol  0 0 0 0 0 

Energy Crop Ethanol  0 0 0 0 0 

Ag. Residue F-T Diesel  3,085 3,299 1,791 6,282 384 

MSW F-T Diesel  2,716 5,113 1,227 2,537 2,755 

Forest F-T Diesel 2,297 2,246 2,598 2,057 2,420 

Pulpwood F-T Diesel 186 265 331 57 289 

Energy Crop F-T 

Diesel  0 0 38 0 0 

Yellow Grease 

Biodiesel 135 135 135 135 135 

Animal Fats Biodiesel  211 211 212 211 212 

Seed Oil Biodiesel 0 0 1,026 0 1,026 

Co-products      

Electricity (GWh/yr) 30,277 40,410 19,583 38,404 22,423 

Naphtha (MGY) 1,763 2,353 1,140 2,236 1,306 
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Table 22: Summary of baseline and resource sensitivity scenarios for 

meeting 2018 RFS2 mandate (continued) 

Scenario 

 Baseline 

High 

Feedstock 

Low 

Feedstock 

High 

Residue 

Historic 

Residue 

Consumption of Biomass (1,000 dry tons per year) 

Agricultural Residue  56,189 61,920 29,062 123,575 0 

Energy Crops  0 0 742 0 0 

Forest Residues  42,845 41,882 48,450 38,370 45,131 

Orchard/Vineyard 

Waste  7,508 6,277 7,789 6,485 7,673 

Pulpwood  3,468 4,938 6,180 1,063 5,384 

MSW – Wood 8,123 16,105 8,277 7,963 8,149 

MSW – Paper 12,102 25,013 0 11,568 12,270 

MSW – C&D 15,142 30,380 15,372 14,902 15,164 

MSW – Yard 3,101 6,015 0 2,803 3,179 

MSW – Mixed 19,350 28,475 0 16,057 20,045 

Corn grain 131,732 93,006 151,751 95,393 148,315 

Animal Fats 789 789 793 789 793 

Yellow Grease 521 521 521 521 521 

Seed Oils 0 0 3,830 0 3,830 

   



 

 

148 

 

Table 21: Summary of technology scenarios 

Scenario 

Optimistic 

Technology 

Pessimistic 

Technology 

Optimistic 

w/E85 in FFV 

Baseline 

w/E85 in FFV 

Fuel Price ($/gge) $2.99 $3.78 $2.65 $2.83 

Total Biofuel (MGGEY) 17,305 17,161 17,315 17,194 

Biomass-based Diesel 6,936 6,801 1,185 7,752 

% of Diesel Demand 12.81% 10.67% 2.21% 14.31% 

Ethanol  10,369 10,360 16,130 9,443 

% of Gasoline Demand  6.96% 6.95% 10.82% 6.34% 

Number of biorefineries needed    

Cellulosic Ethanol Biorefineries 114 0 208 0 

F-T Diesel Biorefineries 117 125 21 145 

Biodiesel Biorefineries 16 27 16 16 

Dry Mill Corn Ethanol 

Biorefineries 108 173 108 166 

Wet Mill Corn Ethanol 

Biorefineries 9 9 9 9 

Required Capital Investment (million $)   

Total Capital  $106,236 $140,781 $57,714 $93,132 

Cellulosic Ethanol Capital $17,846 $0 $41,685 $0 

F-T Diesel Capital $88,169 $140,026 $15,808 $92,910 

Biodiesel Capital  $221 $755 $221 $221 

New Corn Ethanol Capital $0 $0 $0 $5,798 

Biofuel production by pathway (MGGEY)   

Corn Ethanol 5,716 9,855 5,790 9,312 

Imported Ethanol 131 505 131 131 

Ag. Residue Ethanol 649 0 5,256 0 

MSW Ethanol 1,114 0 1,615 0 

Forest Ethanol  2,389 0 2,835 0 

Pulpwood Ethanol 369 0 502 0 

Energy Crop Ethanol 0 0 0 0 

Ag. Residue F-T Diesel 4,318 1,264 0 2,350 

MSW F-T Diesel  1,800 2,001 839 2,664 

Forest F-T Diesel  398 1,927 0 2,244 

Pulpwood F-T Diesel  64 236 0 148 

Energy Crop F-T Diesel 10 0 0 0 

Yellow Grease Biodiesel 135 135 135 135 

Animal Fats Biodiesel  211 213 211 211 

Seed Oil Biodiesel 0 1,026 0 0 

Co-products     

Electricity (GWh/yr) 37,220 107,335 32,223 27,220 

Naphtha (MGY) 1,454 2,428 256 1,585 
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Table 23: Summary of technology scenarios (continued) 

Scenario 

Optimistic 

Technology 

Pessimistic 

Technology 

Optimistic 

w/E85 in FFV 

Baseline 

w/E85 in FFV 

Consumption of Biomass (1,000 dry tons)   

Agricultural Residue 93,352 24,480 89,860 41,190 

Energy Crops  202 0 0 0 

Forest Residues  47,306 43,740 47,336 41,844 

Orchard/Vineyard Waste  7,850 7,151 7,865 7,264 

Pulpwood  7,349 5,351 8,389 2,766 

MSW - Wood  8,319 8,103 8,319 8,099 

MSW - Paper  12,410 10,795 10,981 12,006 

MSW - C&D  15,464 15,089 15,464 15,101 

MSW - Yard 3,224 2,598 2,525 3,022 

MSW – Mixed 20,720 14,188 10,116 18,228 

Corn grain 88,755 151,751 89,885 143,483 

Animal Fats  789 794 789 789 

Yellow Grease  521 521 521 521 

Seed Oils 0 3,830 0 0 

 

6.6 Conclusions 

The potential for biofuel production in the United States is large relative to 

the current production.  Cellulosic biofuels can be produced from a range of 

resources that do not inflict major land use impacts.  In the scenarios for the 

meeting the RFS2 mandates cellulosic energy crops are a minor contributor.  

They make up less than 1% of the biofuel production in all cases because 

switchgrass and pulpwood-based biofuels are the most expensive pathways.  

The bulk of the cellulosic biofuels comes from waste and residue resources.   

Not surprisingly, the industry is expected to site biorefineries concentrated 

in the Midwest to take advantage of corn and agricultural residue resources, 

near metropolitan areas to take advantage of municipal wastes, and in 

regions with large forestry operations to utilize the residues of that industry. 
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The results are particularly sensitive to corn price, the development of a 

low cost lignocellulosic biofuel technology, blending limitation for ethanol (if 

the low cost lignocellulosic technology is ethanol) and the availability of low 

cost waste and residue resources. Corn ethanol provides approximately one-

quarter of the biofuel potential.  The importance of the price of corn falls 

logically from this fact.  A dollar per bushel increase in the corn price shifts 

one third of the supply up $0.66/gge and a dollar per bushel decrease does the 

opposite.   

The modeled performance of conversion technologies represents significant 

learning and rapid deployment of lignocellulosic biofuels.  This is a great 

challenge for the industry.  The nascent cellulosic biofuel industry would 

need to build more plants over the next 8 years than the already mature corn 

ethanol industry built between 2002 and 2010.  A supply of experienced labor 

needed for this rapid deployment also may not be available.  Early 

biorefineries will necessarily have higher costs than the nth of kind facilities 

modeled here unless technology develops faster than expected.  These 

dynamic factors should be considered in applying model results. 

Ethanol demand limitations become a factor if a low cost technology to 

convert lignocellulosic biomass into hydrocarbons does not exist.  The E10 

blend wall directs lignocellulosic biomass toward the production of 

hydrocarbon fuels (e.g. by Fischer-Tropsch processes) even if it is a 

significantly more expensive route.  Extensive use of E85 in flex-fueled 
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vehicles can provide enough ethanol demand for the 2018 target if all biofuels 

are ethanol.  However, the 2022 target would require all FFVs projected to be 

on the road in 2022 to use E85 exclusively.      

This modeling effort provides an initial look at the spatial design of the 

future biofuel industry.  There are two main advantages of this modeling 

approach compared to other national scale efforts that I are aware of. First, it 

allows for the spatial distributions of supply and demand to impact the 

optimization of the predicted industry.  Second, competition between 

technologies and between potential locations for a given resource is allowed 

with the most profitable configuration being chosen. 

The model predictions are fully tied to the quality of the data used and the 

assumptions made.  With the cellulosic biofuel industry in its infancy, the 

range of uncertainty is very large for conversion technologies and feedstock 

production.  I have made an effort to use the best information available and 

to indentify where data limitations can impact the interpretation of the 

results.  Many of these limitations can be addressed through additional 

research and as knowledge about the industry develops.  
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7 CASE STUDY 2: HIGH RESOLUTION CALIFORNIAN 

MODEL WITH EMISSIONS ESTIMATATION 

7.1 Introduction  

This case study seeks to develop comparisons of biofuel pathways 

(feedstock-fuel combinations) from waste and residue resources in California.  

There is a fundamental difference between this case study and the previous 

in that it considers each pathway separately in the supply chain optimization 

model in order to compare the economic costs and emissions benefits for each 

pathway with optimized supply chains.  The potential for these pathways to 

provide compliance options for the California Low Carbon Fuel Standard 

(LCFS) is calculated. 

A refinement on the model for this case study is the use of high resolution 

resource data.  Where the national study in Chapter 6 uses county-level 

resource data sets which includes county areas from 34 km2 to 52,071 km2, 

this study uses approximately a 5 km x 5 km pixel resolution.  This higher 

resolution allows for better accounting of the transportation cost and 

emissions.  In doing so, it allows for improved accounting of the conversion 

economies of scale and the transportation costs in the sizing of biorefineries.  

In California, the high resolution data is especially important due to the size, 

shape and heterogeneity of the counties.  Locating resources at the centroid of 

many California counties leads to a very poor spatial representation of the 

resource.  For example, in Fresno County, the agricultural residue is 
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produced in the western half of the county and the forest resources are 

produced in the eastern half. 

The scope of the case study is biofuel production pathways from waste and 

residue biomass resources in California using projections for technology cost 

and performance appropriate for the time period before 2020.  The State of 

California has adopted a low carbon fuel standard (LCFS), which will likely 

lead to a high value for any low carbon biofuel that can be delivered to the 

state prior to 2020.  The state’s waste and residue biomass resources are 

large and diverse with approximately 32 million tons produced and 83 million 

tons technically available per year (Williams, 2008).  Biofuels produced from 

these waste and residue resources are expected to qualify as low carbon fuels.  

Given this resource is the most probable source of biofuel to meet the LCFS 

produced within California (Yeh et al., 2009), the case study analyzes 

different pathways to produce biofuels from these resources using optimized 

supply chains.  A comparison between the pathways is presented in terms of  

levelized cost, capital cost, carbon intensity of the fuels (g CO2-equivalent 

emitted per MJ of lower heating value of the fuel), emissions relative to a 

gasoline baseline and total fuel production potential. 

This work considers the two major pathways for producing biofuels from 

cellulosic materials: biochemical and thermochemical.  The biochemical 

process modeled is the production of ethanol through dilute acid hydrolysis 

and fermentation.  The thermochemical route is the production of middle 
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distillates and naphtha through gasification and the Fischer-Tropsch 

synthesis.   

7.2 Pathway Descriptions 

7.2.1 Overview 

Six pathways combining three resource sets and two conversion 

technologies were analyzed.  The resources are woody feedstocks from forest 

thinnings and slash and prunings from orchards and vineyards; harvestable 

straws and stovers from rice, corn, wheat, sorghum, barley and oats; and the 

organic fraction of municipal waste that is currently being landfilled.  The 

conversion technologies are ethanol via dilute acid hydrolysis and 

fermentation as a representative biologically based conversion process and 

production of diesel and naphtha blend stocks via gasification and Fischer-

Tropsch synthesis as a representative thermochemical conversion process.  

For both conversion processes the feedstock production, harvest, storage and 

logistics are assumed to be the same except for potential differences in the 

distances traveled to a biorefinery.  From the biorefinery the fuels are 

transported to a distribution terminal for blending with petroleum-based 

fuels and distribution to local refueling stations. 

7.2.2 Forest residues 

Forest residues are produced from commercial logging, pre-commercial 

stand thinning, fire hazard reduction activities, and as mill residue. Each of 
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these resources is produced from distinct forest management operations and 

is thus available in a variety of conditions ranging from loose slash scattered 

throughout the stand to uniform sawdust or hog fuel at a mill or secondary 

processing facility.  There are a number of different frameworks that can be 

taken in considering the allocation of costs and emissions for this resource. 

For this work, the starting point for the analysis is the harvest landing in the 

forest where tops and branches are available for loading and transport.  The 

cost and emissions are calculated from this point forward.  The biomass is 

chipped into chip vans for transport to the biorefinery.  For long distance 

transport, transfer to rail or marine transportation may occur along the way 

to a biorefinery.  This last is true for all feedstocks. 

7.2.3 Agricultural residues 

For straw and stover resources, the biomass is assumed to be a by-product 

of production agriculture with emissions calculations starting with operations 

after the harvest of the grain crop.  Total harvest systems are not explored 

here.  The straw or stover is harvested, baled and taken to the roadside 

where it is stored. Additionally, when residues are removed nutrients that 

are removed with them need to be replaced.  The fertilizers required to 

replace the full value of the nutrients removed are included in the cost and 

the emissions analysis.  Bales are wrapped in plastic and stored at the 

roadside at the site of production.  Bales are loaded onto trucks for delivery to 

the biorefinery.  Short-term storage is provided at the biorefinery. 
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7.2.4 Municipal waste 

Municipal wastes can either be source separated yard wastes or 

construction/demolition debris or mixed wastes.  The wastes are brought to a 

material recovery facility (MRF) where they are sorted for recyclables and 

fractions that could be used for energy production.  This classification step is 

included in the estimation of cost and emissions.  The fractions that are 

separated for energy production are then transported to a biorefinery.  No 

long-term storage has been included in the supply chain for MSW as the 

volume of feedstock is expected to be large enough year-round to support the 

biorefinery.  In practice, the feedstock composition will change over the 

course of the year but this complication is not considered here. 

7.2.5 Biological conversion 

The model biological conversion technology is based on the Antares near-

term technology characterization (Antares, 2009) – see Figure 8.  It uses 

dilute acid pretreatment to hydrolyze the hemicellulosic fraction to sugars 

and an enzymatic hydrolysis to convert the cellulosic fraction to sugars [1].  

Hydrolysis results in both five and six carbon sugars, which are fermented 

into ethanol.  The acid from the pretreatment is recycled to the extent 

possible with lime used to neutralize the remaining acid before the enzymatic 

hydrolysis step.  The fraction of the feedstock that is not converted to sugars 

(lignin plus the hemicellulose and cellulose that did not hydrolyze) is 

separated, dried and burned in biomass boilers to produce heat and 
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electricity.  The process model used here produces excess electricity for sale to 

the grid at a rate of 2.63 kWh/gallon of ethanol produced (Antares, 2009).  

Ethanol yields from different feedstocks depend on the fraction of the 

feedstock that is cellulose or hemicellulose and the process efficiency.  The 

process efficiencies assumed in this work are shown in Table 22.  Using these 

conversion efficiencies, the ethanol produced per ton of feedstock varies from 

63.9 gallons of ethanol per dry ton of yard wastes to 80.9 gallons per ton of 

softwoods (forest residue) (Antares, 2009).  The conversion of biomass to 

ethanol and electricity occurs at an efficiency of 37 – 41% (lower heating 

value basis).  Approximately 4% of the energy in the biomass becomes 

electricity while 33 – 37% becomes ethanol.  

Table 22: Conversion efficiency of cellulosic ethanol technology 

Process Percent of maximum theoretical 

yield (Antares, 2009) 

Hemicellulose conversion to xylose, etc. 82.5% 

Cellulose conversion to glucose 75% 

Xylose to ethanol 86% 

Glucose to ethanol 92.5% 

   

7.2.6 Thermochemical conversion 

The model thermochemical conversion technology is the production of 

diesel and naphtha blendstock via gasification and Fischer-Tropsch synthesis 

(F-T). The conversion technology is based on the F-T technology reported in 

(Antares, 2009).  This is the same as the pessimistic F-T diesel technology 

used in Chapter 6.  Specifically, it uses an indirectly fired gasifer operating at 

atmospheric pressure to convert the biomass to a syngas.  A steam methane 
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reformer and water gas shift reactors convert the syngas to a 2:1 H2 to CO 

ratio for the F-T reactors.  The F-T reactors have Co catalysts and a CO 

conversion rate of 42%.  Unconverted syngas is used for electricity and heat 

production in a combined cycle power plant.  

The yields for the thermochemical process are modeled to be dependent on 

the heating value of the fuel.  The conversion of biomass to liquid fuels occurs 

at an efficiency (lower heating value basis) of 42% with the production of 0.43 

gallons of naphtha per gallon of diesel produced.  The electricity is co-

produced at a rate of 19 kWh/gallon of diesel.  Including the electricity 

production brings the overall efficiency of the biorefinery to 58% of the energy 

in the feedstock distributed as 30% of the input energy in diesel fuel, 12% in 

naphtha and 16% in electricity. 

7.3 Methodology 

The methodology follows from the general formulation presented in 

Chapter 3 with small changes for considering one pathway at a time and to 

incorporate emissions accounting.  The emissions accounting model was used 

solely to aggregate emissions metrics.  It was not used to introduce a cost for 

carbon or any other emissions.    

7.3.1 Emissions accounting 

This work considers fuel pathways that are to the location of the resource 

providing the fuel.  With this level of spatial detail, an analysis of the impacts 

of the particular system modeled is possible as opposed to an average system.  
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The emissions accounting model is incorporated into the optimization model 

in order to provide that analysis.  

Emissions are calculated at all points along the supply chain for the waste 

biomass to fuel pathways.  The major stages are the production/harvest of the 

biomass, the transport of the biomass, the conversion of the biomass to fuel, 

co-product credits, fuel transmission to distribution terminals and local fuel 

delivery.  At each of these stages emissions due to energy use and inputs are 

recorded and then aggregated to find the total emissions for the pathway 

measured in grams of pollutant per MJ of fuel delivered to the fuel terminal.   

\ 

 

Figure 32: Accumulation of inputs and emissions along the supply 

chain 

The impact model has its foundation in Argonne National Laboratory’s 

GREET model (ANL, 2009).  Where possible, emissions factors were obtained 

from GREET 1.8c.  California GREET, used by the Air Resources Board, is 

based on GREET 1.8b with changes to some input parameters that are 
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mostly geographic (such as transport distances) but the basic emission factors 

are the similar.  Some parts of the system are not modeled in GREET and 

values for these were taken from additional literature and are described 

below in section 0.   

7.4 Data 

7.4.1 Resource assessment 

A California-specific resource assessment was performed at high resolution 

by Tittmann et al (2009).  The assessment differs from the national case 

study in order to make use of high resolution data sets that are available for 

California.  Available forestry residues were taken from a CalFire assessment 

of available forest biomass (CBC, 2006) with collection costs calculated using 

the Fuel Reduction Cost Simulator (Fight et al., 2006).  Municipal waste 

resources were taken from the Solid Waste Information System (CIWMB, 

2009).  The agricultural residues assessment uses the methods described in 

section 5.1.1 for calculating the gross residue production by county which 

were then assigned proportionally by area to field plots within the county.  

The field boundaries were taken from the Department of Water Resources 

land use maps (DWR, 2000-2003). The quantity of residues available and 

their cost were found using the INL feedstock logistics model with a 38% 

harvest efficiency.  The assessment is a refinement on the California Biomass 

Collaborative report on biomass supplies in California (CBC, 2006) in 

disaggregating supplies to the field, landfill, or forest plot level.   
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This assessment found approximately 16.9 million tons of organic 

municipal wastes currently being land filled; 4.1 million dry tons of biomass 

potential from agricultural production in straws, stovers and prunings; and 

5.9 million dry tons of potential unused forest biomass.  A couple of changes 

were made to the resource assessment.  First, residues from cotton fields 

were removed.  Discussions with an expert in the field convinced the authors 

that no cotton residue was sustainably removable.9  

 

Figure 33: Biomass cost ($/dry ton), volume (dry tons) and number of 

discrete supply points by type 

The original assessment used a very high spatial resolution.  The forest 

data was reported using a 40 by 40 meter grid.  The agricultural data uses 

Department of Water Resources field level data and the municipal wastes are 

reported by landfill location.  The resolution of this resource assessment is 

greater than the resolution of the road network.  The resolution of the 

                                            
9 Personal communication with Dr. Richard Nelson, 2009. 
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transportation costs is what defines the spatial resolution for the model.  The 

extra resolution for the resource assessment is lost when the transportation 

costs are calculated.  To address this, the forest and agricultural data sets 

were aggregated to a 5 by 5 km resolution using k-means algorithm using 

SAS statistical package.   K-means is a statistical method that groups 

observations into “k” clusters by allocating each observation to the cluster 

with the nearest mean.  Efficient heuristics have been developed to find good 

approximation for the best clusters (Kanungo et al., 2002).  For this analysis 

the data were clustered by their x and y coordinates and by the resource type 

(e.g. rice straw, forest thinnings, wheat straw).  Clustering reduced the 

source points to 23,723 distinct locations.  An alternative would be to increase 

the resolution of the road network but the original assessment with more 

than 140,000 distinct source points result in a difficult optimization model 

that is not feasible to solve with the available methods. 

 

Figure 34: Location of biomass resources - forest, agricultural and 

municipal 
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7.4.2 Transportation Network 

 

Figure 35: Transportation network showing the connections to the 

resource locations and the set of potential locations 

The sources of biomass were located on the transportation network as 

point sources. The municipal waste resources are located as points at the 

nearest municipality to the landfill although some municipalities are known 

to transport their wastes long distances for landfill disposal. The centroid of 

the clusters of agricultural fields or forest grid cells were used as the starting 

point for these resources. If these points are not on the network, connectivity 

is provided by drawing lines representing the shortest distance from the 

point source to the nearest point on any road in the network. These lines are 

considered part of the road network with a low speed of travel (25 MPH).  

These data were incorporated into a geodatabase in the ArcGIS software 
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environment (McCoy, 2005). The Network Analyst extension was used to 

create an origin-destination cost matrix from all source destinations to all 

potential facility locations.    

7.4.3 Cost  

Conversion technology cost models 

The conversion technology models are adapted from work by the Antares 

Group (Antares, 2009).  Spreadsheet models of the conversion technology 

performance (yields of all products by feedstock type) and costs were 

developed by the Antares Group based on the available literature on biofuel 

production.  The F-T diesel technology model is the same as the pessimistic 

technology used in the national case study.  The cellulosic ethanol technology 

is different for any of the technologies considered in the national case study.  

A summary of the cost parameters is provided below. 

Accounting for economies of scale, the capital cost for a biorefinery is 

described by the equation: 

Cx = Cb*(Sx/Sb)
!         (23) 

 

Table 23: Capital cost parameters for biorefineries (Antares, 2009) 

Base Cost Base Scale Scaling factor 

Technology Cb Sb ! 

Cellulosic 

Ethanol 

$340 million 40.7 MGY 0.8 

F-T Diesel $759 million 658,752 tons/yr 0.74 
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Table 24: Process description (Antares, 2009) 

 F-T diesel Cellulosic ethanol 

Biomass input  550 – 13,700 tons/day  550 – 3,600 tons/day 

Products F-T Diesel 37-42 gal/ton 

biomass 

Naphtha 16-18 gal/ton biomass 

Electricity 19 kWh/gallon 

Diesel 

Ethanol 63.9-80.9 

gal/ton biomass 

Electricity 2.63 

kWh/gallon ethanol 

 

Energy conversion 

efficiency (LHV 

basis) 

% of biomass input 

energy as product 

30% diesel fuel 

12% naphtha 

16% electricity 

33-37% ethanol 

4% electricity 

Cost F-T diesel Cellulosic ethanol 

Maintenance 2.3% of initial capital  $0.35/gallon 

capacity 

Labor  $0.33*(Feedstock_Capacity)0.75  

Variable operating $9.45/bbl products $0.29/gallon ethanol 

The operating costs for the F-T diesel process includes a fixed maintenance 

cost, labor and variable operating costs.  The labor cost is scaled by the 

biorefinery size.  For the ethanol, the variable costs are a function of the 

output capacity of the biorefinery. 

Table 25: Operating cost parameters (Antares, 2009) 

Cost FT diesel Cellulosic ethanol 

Maintenance 2.3% of initial capital  $0.35/gallon capacity 

Labor  $0.33*(Feedstock_Capacity)0.75  

Variable operating $9.45/bbl products $0.29/gallon ethanol 

 

An annualized cost of production was found for each conversion technology 

over the range of feedstock input capacities that the cost models are valid.  A 

linear fit to the annualized cost as a function feedstock input capacity was 

found for both technologies.  The linear fit gives the values of the parameters 

at and bt that are used in the model formulation as previously discussed. 
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The economic parameters in this case were different than in the national 

case study.  A higher electricity price reflects higher electricity prices in 

California compared to the national average (EIA, 2011).   A higher discount 

rate is used because this case study was developed with a nearer term focus 

which results in higher risk for the investments in the earliest cellulosic 

biorefineries.  It is also a crude method to bring nth of a kind conversion costs 

reported in literature closer to the cost for the first few biorefineries. 

Table 26: Additional economic parameters 

Parameter Value 

Discount rate 15% 

Economic lifetime of biorefinery 20 years 

Price of electricity co-product $0.08/kWh 

Constant year 2008 dollars 

 

7.4.4 Emission factors 

The majority of the emissions data was taken from the GREET model 

(ANL, 2009) in order to provide a consistent comparison with petroleum 

based fuels.  The emissions inventory is meant to be analogous to the GREET 

model but using inputs from the optimized system rather than the average or 

best estimate inputs that are used in GREET. However, there were a few 

instances where I have deviated from or augmented the GREET emission 

factors. They are described in detail below. 

Embodied emissions for feedstock 
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In the framework of this research, none of the feedstocks are the primary 

product from the operations that produce them and therefore the emissions 

accounting begins at the point in their lifecycle that their fate is 

differentiated as becoming an energy product.  For residues, this is 

harvesting for agricultural residues and roadsiding/chipping for forest.  For 

municipal wastes this is the classification step where the biomass is 

separated from the inert material.  This is in agreement with the approach 

taken in the GREET model. 

Energy input requirements for harvesting, roadsiding, and chipping were 

derived from the resource assessments (INL, 2010; Fight et al, 2006; Kalogo 

et al., 2007).  Emission factors from GREET were applied to the energy input 

requirements.  The removal of agricultural residues is assumed to induce an 

additional fertilizer requirement, which are described in Table 13.  The 

embodied emissions for the fertilizers were allocated to each ton of straw or 

stover removed using emission factors found in the GREET model.  

Emissions for classification of biomass from municipal waste were taken from 

Kalogo et al. (2007).  GREET does not have emission factors for municipal 

waste as a feedstock.  The emission factors used can be found in Appendix B. 

Transportation emissions 

The transportation network model reports miles by mode as well as cost 

for each link.  These data along with the energy intensity of each mode and 

the emissions factors from GREET for burning diesel fuel in each of the 
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modes of transport are used to find the emissions for each link of the 

transportation network. 

Conversion emissions 

Due to the lack of existing facilities producing cellulosic biofuels, data for 

the air pollutant emissions are highly speculative.  I was not able to identify 

a study with the criteria air pollutants estimated for the dilute acid 

hydrolysis and the Fischer – Tropsch diesel processes that were modeled 

other than the GREET model (ANL, 2009). These emissions estimates rely on 

published engineering design studies that are proof of concept level with 

values obtained from Aspen chemical engineering process flow models (Wu et 

al., 2006).  The emissions are calculated based on average emissions factors 

for individual pieces of equipment.  There are two main issues with the 

GREET model emissions factors for use in this study of California.  One is 

that in California these biorefineries will be required to use the best available 

control technology (BACT) in order to obtain permits to construct and operate 

due to California’s environmental regulations and the large fraction of the 

state that is in non-attainment with ambient air quality standards.  GREET 

uses emissions factors representative of national average production not 

BACT emission factors.  The second issue is that some data have recently 

become available have not been used to update GREET.  Proposed 

biorefineries have submitted permit applications stating their potential to 
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emit, the control technologies they plan to use and provide some detail on the 

major sources of pollutants at the biorefinery. 

I have acquired documentation (Environmental Impact Reports (EIR) or 

air permit applications) for three proposed cellulosic biorefineries (Bluefire, 

2009; AMEC Earth & Environmental, 2009; Range Fuels, 2007).  Two 

(Bluefire and Verenium) use an acid hydrolysis pretreatment technology for 

producing ethanol via a biochemical route. One (Range Fuels) is a 

gasification-based technology producing alcohols via a thermochemical 

synthesis.  None of these processes is an exact match with the conversion 

processes that were modeled in the economic optimization model but they 

provide a basis for comparison.  Due to the locations of the facilities, each 

faced different levels of reporting requirements.  Table 27 shows the 

emissions factors that were calculated based on the information provided by 

dividing the annual potential to emit reported by each facility by the annual 

feedstock input for the facility.  Differences in the yields and the production 

of co-products impact the emissions per MJ of fuel produced. 

The default GREET values for cellulosic ethanol are based on the NREL 

study by McAloon et al (2000).  The technology modeled here uses more 

conservative estimates on the yield of ethanol from biomass and 

correspondingly a greater production of electricity.  I have adjusted the 

GREET model to address these differences.  The major source of air 

pollutants at the cellulosic biorefinery is the biomass boiler accounting for 
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12.5-17% of VOCs, 52-93% of PM, 99.98-100% of SOx and 83-99.5% of NOx 

(See Appendix B for breakdown).  By applying BACT to the biomass boilers 

the emissions for the biorefinery can drop significantly, the most likely 

outcome for facilities sited in California.  BACT emission factors for biomass 

boilers were found via the EPA clearinghouse (CATC, 2009).  These emissions 

factors were used in replacement of the default GREET values.  The adjusted 

GREET values are generally lower than the values reported by the proposed 

biorefineries.  This can be partially explained by scale.  The BACT 

technologies employed in the adjusted GREET values may not be cost 

effective at the small scale for the pilot plants listed in Table 7.  The biggest 

difference is in sulfur oxide emissions.  The important factor here is how 

much of the sulfur from the acid pretreatment ends up in the biomass boiler 

versus being recirculated.  The adjusted numbers, shown in Table 8, are the 

values used in the emissions analysis. 

Table 27: Potential to emit for various proposed biorefineries (g/ton 

feedstock) 

 

Range Fuels 
(ethanol via 

gasification- 

100 MGY) 

Verenium 
(ethanol/acid 

hydrolysis – 36 

MGY) 

Blue Fire 
 (ethanol/acid 

hydrolysis—   

3 MGY) 
     VOC 27.15 123.06 515.18 
     CO 89.73 331.39 482.71 
     NOx 98.96 270.12 515.18 
     PM10 96.37 57.99 270.58 
     PM2.5 42.69 42.63 270.58 
     SOx 0.75 179.68 474.05 

     CH4 27.15   

     N2O 2.96   
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Default GREET values for Fischer – Tropsch diesel from biomass are 

based on a facility with higher conversion of biomass to fuels and less 

electricity production than the facility modeled here. The appropriate 

changes were made to the efficiency of conversion and the quantity of 

electricity produced.  Additionally, the default values were questionable for 

other reasons. The value of zero for VOCs is highly unlikely in a facility that 

stores significant quantities of biomass and fuel; the sulfur oxide emission 

rate is approximately equal to maximum potential production of sulfur oxides 

given the sulfur content of the pine (the modeled feedstock for the F-T 

technology in GREET).  I estimate the maximum sulfur oxides emissions to 

be approximately 363 grams per ton of feedstock if all of the sulfur in pine 

(0.02% S by mass) is converted to SO2.  Not all sulfur will become sulfur 

oxides especially when pollution control technologies are applied.  For our 

estimates I have taken the values reported by Range Fuels to be 

representative of thermochemical biorefinery using modern control 

technologies.   

The most significant co-product for both processes is electricity.  For the 

purposes of this study, I report the emissions with and without a credit taken 

for displaced electricity.  The electricity displaced is taken to be produced 

from natural gas in a combined cycle power plant (NGCC).  The emissions 

factors for NGCC electricity were taken from GREET and are reported in 

Table 28. 
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Table 28: Emission factors for conversion technologies 

Cellulosic Ethanol 
Fischer - Tropsch 

Diesel 
Displaced 

Electricity 
GREET 

default 
Adjusted 

GREET 
GREET 

default Adjusted  
Natural Gas 

Combined Cycle 
 g/ton feedstock g/kWh 

VOC 137.0 98.8 0.000 27.2 0.07 
CO 434.8 242.9 141.5 89.7 0.29 
NOx 625.1 228.2 534.9 99.0 0.25 
PM10 153.4 105.7 85.2 96.4 0.02 
PM2.5 50.1 54.1 42.6 42.7 0.02 
SOx 23.6 31.5 368.6 0.8 0.08 
CH4 23.4 30.5 0.000 27.2 1.26 
N2O 62.0 44.8 9.6 3.0 0.01 

 

7.5 Results 

The results are divided into four sections.  The economic results are 

discussed first and provide information on the total potential for the pathway 

and the costs.  Second, the emissions results are discussed. Third, I present 

the optimal layout of biorefineries for each pathway along with the location of 

the resources exploited.  Finally a summary comparison is provided. 

7.5.1 Economic results 

A total of 988 million gallons of gasoline equivalent ethanol or 1,070 

million gallons of gasoline equivalent F-T diesel and naphtha could be 

produced from waste and residue biomass resources in California below 

$4/gge.  For reference, approximately 15 billion gge of gasoline and 4 billion 

gge of diesel were sold in California in 2007 (Schremp et al., 2010). The F-T 

diesel pathways produce more overall fuel than the ethanol pathways with 

the same resource base but the ethanol pathways are less expensive.  The 
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ethanol pathways are $0.20 per gge less expensive on average than the F-T 

diesel for the same quantity of fuel energy produced using the assumptions of 

this case study.  The assumptions on the technology cost and the discount 

rate favor the cellulosic ethanol pathway compared to the assumptions in the 

national case study.  In general, the costs of the biofuels are higher than most 

historical wholesale prices of gasoline and diesel.  However, they may be a 

relatively low cost pathway for compliance with government mandates such 

as the Low Carbon Fuel Standard and the Renewable Fuel Standard 

compared to purpose grown crop-based biofuels as seen in Chapter 6.   

 

 

Figure 36: Potential supply of biofuels by pathway – FTD and ethanol 

lines for a specific resource are not additive  

Comparing the three resource types (Figure 36), the straws and stovers 

lead to the most expensive pathways with the least potential for petroleum 

displacement.  This is due to the high cost of procurement of the feedstock 

relative to the other feedstock options.  The woody resources (forest residues 
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and prunings from orchards and vineyards) have the lowest cost pathways.  

The longer transport distances of the forest residues are compensated by low 

procurement costs and high fuel yields. The municipal waste resource is the 

largest source of biomass in California.  It is the only resource where ethanol 

produces as much fuel as F-T diesel. This is due to the assumption about 

yields of food wastes, which were prohibited from the F-T diesel pathway due 

to their high moisture content. 

 

Figure 37: Breakdown of levelized cost of fuel by stage of the supply 

chain 

The components of the levelized cost of producing biofuels and delivering 

them to fuel terminals is seen in Figure 37.  The costs of the pathways 

considered are dominated by the conversion step.  Large credits are 

generated for electricity production by the F-T diesel technology.  The net cost 

(total cost minus the co-product credit) is given by the black diamond.  
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Despite higher transportation costs, the delivered feedstock contribution to 

the finished fuel costs is less for the F-T diesel pathways due to higher 

conversion efficiencies and therefore more fuel produced per ton of feedstock 

processed.  None of the optimal supply chains had a significant average fuel 

transport cost to reach a fuel distribution terminal because most biorefineries 

were sited at existing fuel terminals.  Whether the space is available at these 

fuel terminals to accommodate the biorefineries was not determined for this 

study.  

Electricity co-product value is an important factor in determining which 

conversion technology is economically optimal.   If a premium is paid for 

renewable electricity, the F-T diesel pathway becomes cost competitive with 

the ethanol pathway at an electricity price of $0.10/kWh.   

 

Figure 38: Required capital investment for a given annual 

production of biofuel by pathway 
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There is a large difference in capital expenditure for the F-T diesel 

biorefineries compared to the ethanol biorefineries.  For the same annual fuel 

energy production capacity, the F-T diesel biorefineries required 

approximately 1.7 times the capital investment compared to ethanol 

biorefineries.   

7.5.2 Emissions results 

The emissions inventory for biofuels production depends on the allocation 

of emissions between the electricity co-product and the fuel product.  In 

California, the two most reasonable allocations are 1) no allocation to 

electricity or 2) allocation of emissions via the displacement method with the 

electricity assumed to displace electricity produced using natural gas 

combined cycle power plants.  The no allocation for electricity is appropriate 

if the electricity is used to meet the Renewable Portfolio Standard (RPS) and 

is therefore displacing other renewable forms of electricity.  If the electricity 

from these biorefineries provide electricity above the RPS then the electricity 

displaced would be from natural gas combined cycle.  These two allocation 

methods yield significantly different levels of emissions for the biofuel 

pathways. 

For all emissions and both allocation methods, the ethanol pathways have 

higher emissions than the F-T diesel pathways.  The lowest emission 

pathway is the thermochemical conversion of municipal wastes to diesel and 

naphtha with significant co-production of electricity.   
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Compared to the gasoline baseline, the ethanol pathways have 

significantly higher CO, N2O and PM2.5 emissions.  The straw pathways have 

higher emissions than the other pathways especially for SOx and N20 

emissions.  Emissions of VOCs are improved in all pathways expect the straw 

ethanol pathway. 

 

Figure 39: Emissions by pathway normalized by California 

reformulated gasoline without credit for electricity production 
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Figure 40: Emissions by pathway normalized by California 

reformulated gasoline emissions with credit for electricity 

production displacing natural gas combined cycle electricity 

The sign of the difference between biofuel NOx emissions and gasoline 

emissions depends on the allocation method.  Without credits for electricity 

production, most pathways make NOx emissions worse compared to gasoline.  

With the credit, all F-T diesel pathways and the MSW ethanol pathway 

result in improvements in well-to-tank NOx emissions.   
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Figure 41: Breakdown of emissions of CO, N20, NOx and PM2.5 

The impacts are different for greenhouse gases.  All biofuel pathways make 

significant reductions in fuel carbon intensity compared to gasoline or diesel 

with or without the credits for electricity co-production.  Credits for electricity 

result in very negative carbon intensity biofuels.  This is due to significant 

reductions in both CO2 and CH4 lifecycle emissions for the displaced 

electricity.  CO2 makes up approximately 93% of the credit.  To better 

understand how such a large credit comes about, consider the total energy 

produced by product type.  For the F-T diesel process, 0.37 MJ of electricity 

are produced for every 1 MJ of biofuels.  For the ethanol process, 0.12 MJ of 

electricity are produced for every 1 MJ of ethanol.  Since the natural gas-

based electricity being displaced has high carbon intensity (~134.7 g CO2-
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eq/MJ), every MJ of electricity displaced has a large impact on the lifecycle 

emissions of the biofuels. 

 

Figure 42: Carbon intensity of biofuel pathways – for reference the 

CI of CA gasoline (CARBOB) is 95.86 g/MJ and diesel is 94.71 g/MJ 

7.5.3 System layout 

Cellulosic ethanol favors many medium scale biorefineries while the F-T 

diesel process favors fewer larger biorefineries.  The optimal systems result 

in 3 to 4 ethanol biorefineries for every F-T diesel biorefinery.  This result has 

both positive and negative implications for the F-T diesel pathways.  Fewer 

facilities mean fewer permit applications in order to produce the same 

amount biofuels.  The larger biorefineries are more expensive on an 

individual project basis and so incur greater risk at least during initial build 

out with commercially unproven technologies and markets.  Permitting may 

also be more difficult for larger size facilities due to local transport and other 
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impacts.  Development of standardized permitting procedures may improve 

permitting times for multiple facilities of similar type, however.  These 

uncertainties are not yet addressed through this modeling effort.  

The maps below present the system configurations at the point in their 

supply curves where additional biofuel production comes at significantly 

steeper costs.  This gives a picture of the potential industry at the largest size 

that might reasonably be expected.  

 

 

Figure 43: Optimal configuration for biofuel production for forest 

and wood wastes at $3.25/gge - F-T diesel (left) and ethanol (right) 
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Figure 44: Optimal configuration for biofuel production from MSW - 

F-T diesel (left) and ethanol (right) 

 

Figure 45: Optimal configuration for biofuel production from 

agricultural straws and stovers - F-T diesel (left) and ethanol (right) 
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7.5.4 Summary 

There is no pathway that is the most attractive on all metrics of 

comparison. The F-T diesel from MSW pathway has clear environmental 

advantages over the other pathways but it has the highest capital cost per 

gallon of biofuel capacity of all the pathways.  Additionally there has been 

great difficulty in getting innovative projects producing energy from MSW 

through the permitting process in California.   

The ethanol pathways provide a mix of low capital cost; lower levelized 

costs but higher greenhouse gas and criteria air pollutant emissions 

compared with F-T diesel pathways using the same resource base.  The 

increases in CO, NOx and PM compared with the gasoline baseline are high 

and pose a serious hurdle for these biorefineries to be sited in California 

where many air basins are in non-attainment.   

All the biofuel pathways are low carbon fuels.  The value of the low carbon 

fuels will need to be weighed against the potential for mixed results on air 

pollutant emissions and higher costs in comparison to petroleum fuels.
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7.6 Discussion 

The production of biofuels from waste and residue resources in California 

can provide limited petroleum displacement.  For the year 2009, California 

consumed 19 billion gallons of gasoline equivalent of petroleum gasoline and 

diesel (Schremp et al., 2010). At maximum the total ethanol pathways could 

provide for 5.1% of this total demand.  The F-T diesel pathways could provide 

and maximum of 5.6% of this total demand.  The biofuel pathways considered 

here are not major sources of petroleum displacement for California. 

Biomass from residues and wastes can go a long way towards meeting the 

policy goals laid out by the Low Carbon Fuel Standard (LCFS).  According to 

Yeh et al. (2009) the LCFS 2020 target translates to a reduction of 25.5 

million tonnes of the carbon dioxide emissions.  At maximum the F-T diesel 

pathways can provide 46% of the total emissions reductions required by the 

LCFS without the carbon credit for electricity co-production and 71% with the 

credit for electricity co-production.  The ethanol pathway leads to lower LCFS 

compliance potential.  With the electricity co-production carbon credit the 

total ethanol pathways result in 40% of the LCFS emissions reduction goals.  

Including the electricity credits increases the LCFS compliance potential to 

47%.  To make up the rest of the LCFS reductions, fuels will need to be 

imported to California from other states or countries.  In the case of ethanol 

pathways, the ethanol produced from the in-state resources account for most 

of the ethanol that could be sold as E10.  Therefore, either E85 strategies or 
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fuels other than ethanol will need to be pursued. 

A major finding of the research is that the co-production of electricity might 

greatly improve the environmental performance of biofuels if the electricity 

that is displaced is made from fossil sources without carbon capture and 

sequestration.  One possible implication of this result is that the best use of 

biomass may be to produce electricity.  Other researchers have argued this 

point (Campbell et al., 2009).  However, research to date does not explicitly 

account for costs of fuel production or the value of co-products, nor have the 

aviation or heavy transport markets been expressly addressed in terms of 

supplies of low-carbon fuels.  I see this as an area for future work. 

The air pollutant emissions data for advanced biofuel conversion 

technologies are not yet known.  I have made a simple estimate given 

existing data at the time of the study.  As can be seen in Figure 41, the 

majority of emissions that were found in the emission inventory occur at the 

biorefinery.  If these emissions can be controlled or prevented through 

technology not considered here, the environmental performance of biofuels 

could be made positive on most, if not all, air pollutants.  It is possible that 

uncontrolled air pollution emissions associated with biorefineries are worse 

than shown here and more expensive control technologies will be needed in 

order for the biorefineries to acquire permits to construct and operate.  As 

cellulosic biofuels come closer to commercialization, emissions will be better 

known and an update of this study may be useful. 
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In summary, biofuels from waste and residue resources in California have 

limited potential for petroleum displacement, could contribute 40-70% of the 

LCFS emissions reductions but with mixed and uncertain results on air 

quality.  This study is limited by lack of information on commercial scale 

conversion technology performance – especially for emissions. 
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8 CONCLUSIONS AND DISCUSSION 

In this concluding chapter, I summarize the main findings.  Additional 

discussion is given for the choice of cellulosic biofuel technology and the 

computational issues encountered in the implementation of the national scale 

model.  Next I discuss limitations of the work present here with comment on 

the resulting basis in the reported results and methods that may be employed 

to address the limitations.  The chapter concludes with a discussion of the 

future work that I plan to undertake utilizing the methodology developed 

here as a basis.   

8.1 Main Findings 

In this dissertation, I set out to develop methodology that makes explicit 

the spatial features of biofuel supply chain in projecting future biofuel 

supplies.  The spatial features include the locations of the supplies of biomass 

and demands for fuels, and the trade off between economies of scale in 

conversion and additional feedstock collection costs in sizing biorefineries.  

These features have been greatly simplified in large scale analysis of future 

biofuels supply to date.  The method was demonstrated at the national scale 

considering the Renewable Fuel Standard mandate for 2018.  Additional 

refinements of high resolution and emissions accounting were demonstrated 

for California. 

The methodology developed expands the use of facility siting and supply 

chain optimization modeling to include the entire United States biofuel 
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industry.  Explicitly modeling of the infrastructure required to bring about 

biofuel supply provides several advantages over previous methods for 

projecting biofuels.  First, it guarantees that the modeled system is anchored 

to a realistic supply system.  Second, it allows the analysis of regional 

differences in supply.  Third, the data intensive approach based in 

engineering estimates of costs provides a transparent and flexible model for 

analyzing the sensitivity of the highly uncertain parameters involved in 

projecting future fuel supplies. 

The potential for biofuel production in the United States is large relative to 

the current production.  The national case study found biofuel potentials 

ranging from 20 to 46 billion gallons of gasoline-equivalent below $4/gge in 

2018 depending on the resource scenario.  This represents 10 to 23 percent of 

the projected transportation fuel demand and an increase of at 300% of 2009 

production levels.  Below $3/gge, between 12 and 32 billion gge are projected 

to be feasible.   Constraints on the supply of biomass restrict growth of 

biofuels to not much more than the quantities available at $4/gge.  The 

maximum supply found was 50 billion gge at $6/gge in the high feedstock 

scenario.   

Waste and residue biomass can provide quantities of biofuels that assist 

with policy goals.  Nationally, waste and residue resources are projected to 

provide between 35 and 64 percent of the RFS2 mandate in both 2018 and 

2022.  The remaining biofuels are predominantly corn ethanol (up to 15 
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billion gallons) and soy biodiesel (up to 1 billion gge) in the 2018 case and 

expanding to include switchgrass and pulpwood-based biofuels at the higher 

volumes of the 2022 mandate.  In California, biofuels from waste and residue 

resources have limited potential for petroleum displacement, but could 

contribute 40-70% of the LCFS emissions reductions with mixed and 

uncertain results on air quality. 

Investment in biorefineries required to meet mandated volumes of biofuels 

are large and depend on the specific pathways chosen.  Greater reliance on 

cellulosic technologies requires higher capital investment than systems that 

rely on conventional biofuel technologies such as corn ethanol or FAME 

biodiesel.  The total investment in biorefineries to required meet the 2022 

RFS2 mandate is between $100 and $360 billion with the baseline estimate of 

$160 billion.  This would represent an investment of $9 to $30 billion ($13 

billion in baseline) annual investment over the next 12 years.  To put this in 

perspective with the cost of past biofuel policies, the volumetric ethanol 

excise tax credit (VEETC) provided roughly $5 billion to the industry in 2009 

and $5.8 billion in 2010.   

The diverse set of biofuels have different policy values.  All provide 

petroleum displacement but the magnitude of the potential displacement and 

the cost of that displacement varies.  Corn ethanol was shown to provide 

significant quantities of fuel at relatively low prices.   However, the net 

climate impact of corn ethanol is uncertain with a strong probability that 
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large production of corn ethanol will increase global greenhouse gas 

emissions (Plevin et al., 2010).  The projected cellulosic biofuels from 

municipal wastes and forest residues have limited potential for petroleum 

displacement in the same cost range as corn ethanol with larger and more 

certain greenhouse gas reductions.  Other cellulosic biofuels that offer 

significant greenhouse gas reductions are feasible only at costs higher than 

corn ethanol.  This result highlights the challenge in providing a balance 

between two primary goals of biofuels policies; petroleum displacement and 

reductions in greenhouse gases. 

8.1.1 Optimal choice of cellulosic biofuel technology 

Two cellulosic biofuel technology classes – thermochemical processes to 

hydrocarbons (F-T diesel) and biochemical processes to alcohol (cellulosic 

ethanol) – were considered in the case studies above.  Each have distinct 

advantages and disadvantages.  Unlike the biochemical process, the 

thermochemical process is expected to produce fuels that are fungible with 

petroleum fuels.  This is a distinct advantage as the F-T diesel technology 

does not require the roll out of alternative refueling infrastructure or the 

adoption of E85 by consumers.  The biochemical technologies have the 

advantage of lower capital intensity.    Lower capital requirements reduce the 

exposure to risk for those investing in the developing biofuels industry.  

The cellulosic ethanol biorefineries capital costs in the baseline are 

between $8.50 and $9.25 per gge of annual fuel capacity.  They range from 
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$5.5-6.5 per gge of annual fuel capacity in the optimistic case to $14-17 per 

gge of annual fuel capacity in the pessimistic case.  F-T diesel biorefineries 

have capital costs of between $12 and $16 per gge of annual capacity in the 

baseline and $27-35/gge annual capacity in the pessimistic scenario.  In the 

national case study, the baseline system favors the F-T diesel despite the 

higher capital cost due the high variable costs for the cellulosic ethanol and 

higher co-product credits for the F-T diesel technology.  However, at higher 

discounts the optimal system would favor cellulosic ethanol.  Discount rates 

above 20% result in optimal systems where the cellulosic ethanol technology 

is more attractive.   

Capital constraints may play a large role in the biofuel industry for several 

reasons.  First, biofuels are not expected to provide a consistently lower cost 

alternative to petroleum fuels in the early build out of cellulosic biofuels 

industry.  The market for cellulosic biofuels is being created at least in part 

as a response to government policy and is therefore subject to the additional 

uncertainty in the durability and stringency of the policy.  This is likely to 

increase the perceived risk of investments in biofuels.  The uncertainty in 

technology performance will also result in a high premium on capital.  There 

are two implications from this increased cost of capital.  First, capital 

intensive technologies will be at a disadvantage in the marketplace relative 

to the results presented here.  Second, policy instruments that lower the risk 
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to capital – such as, loan guarantees – may be necessary compliments to the 

current mandate in order to launch the cellulosic biofuels industry.     

The ethanol demand scenarios in Chapter 6 demonstrate that a low cost 

cellulosic ethanol technology provides no benefit in terms of biofuel supply 

unless actions are taken to either increase the blend limit or induce drivers of 

FFVs to use E85.  Increasing E85 availability may not be profitable owners of 

refueling stations.  In 2018, slightly more than 10% of vehicle miles travelled 

are expected to be by vehicles that are flexibly fueled.  This is a small volume 

at any given refueling station that can also be met with gasoline that does 

not require the station owner to make any changes or sacrifices of existing 

pumps.  While there will be more vehicles on the road in 2018 that can 

consume ethanol than any other alternative fuel, there is not a business 

model to serve them without some form of market shift towards a preference 

for E85 or financial incentives.  Easing the blend limits and/or accelerating 

the growth of FFVs in the vehicle fleet are policy actions that may change the 

long-term outlook for cellulosic ethanol.   

 Technology development is a function of the investment in research and 

development of the technology.  Path dependencies will develop as the private 

sector and the government agencies select which technologies are worthy of 

funding.  In light of this, the cellulosic ethanol technology is attractive for 

research and development investment due to capital cost differential that 

increases at small scales.  On the other hand, the current ethanol market 
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with near saturation of the E10 demand may discourage investment in 

ethanol technologies.  Of the 14 current commercial and demonstration 

cellulosic biorefineries that have received funding from the United States 

Department of Energy, ethanol is the main product for 10 and renewable 

diesel is the product of only two.  The cellulosic pilot projects receiving some 

funding from the U.S. Department of Energy are more evenly distributed 

with half producing ethanol and half producing hydrocarbon fuels (USDOE, 

2010).    

The suite of technologies considered in the modeling exercise is necessarily 

limited.   In part, this is due to a dearth of good data for the performance and 

capital requirements of alternative biofuels.  The industry is experimenting 

with a large suite of technologies and the eventual biofuels industry will be 

comprised of many biorefineries utilizing a variety of technologies, and in all 

likelihood none will be the exact technologies modeled here.  However, the 

results of the work here can inform what types of technologies would be 

preferred.  First, technologies that produce fuels that can be blended to a 

high fraction of the fuel content have a major advantage over ethanol.  

Second, technologies that can make use of municipal wastes have a limited 

but important role to play in the biofuels market, potentially providing low 

carbon fuels using a low cost feedstock.  
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8.2 Computational issues 

The national implementation of the model pushed limits of the 

computational power using commercial mixed integer programming solvers.  

I limited the problem size by solving a series of smaller regional screening 

models first, that allowed for a manageable national model.  Despite this, 

some models still required greater than 15 hours to converge to an acceptable 

solution.  The run model time is dependent on the exact parameterization of 

the model.  Some runs found solutions easily (under one hour) while others 

required more than 10 hours.  The scenarios that posed the greatest 

computational difficulties were either scenarios where two fuel pathways had 

similar costs or where the demand limits were binding and the next best 

production pathway needed to be found.  For example, the E10 blend limit 

constrained growth of cellulosic ethanol beyond 7 billion gge in the optimistic 

scenario forcing the model to shift cellulosic resources to the F-T diesel 

technology that more expensive than the cellulosic ethanol technology.   

The models were not run to proven optimality as the computation time 

would have exceeded 36 hours for most price points and provided limited 

benefit for a model of national policy.  The algorithm generally progressed to 

a 1% optimality gap within 5 hours but progress slowed significantly below 

0.5%.  I consider the optimality gap of 0.5% an acceptable solution.  The 

optimality gap can be interpreted as that the algorithm has not ruled out the 

possibility of a another feasible solution existing with 0.5% greater profit.  
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There may be multiple solutions that are within this gap.  The maximum 

possible error introduced by terminating the optimization at an optimality 

gap of 0.5% increases with increasing profit because the gap is a percentage 

of the profit.  For the baseline scenario in the national case study the 

maximum possible error is 100 million gge at the $6/gge price point and less 

than 12.5 million gge for the $2.87/gge price point.   

Some of the more interesting extensions to the work presented here would 

require larger models.  Extending the model to consider uncertainty, time 

dynamics or competition from other sectors for biomass feedstock all 

represent significant increases in model size (number of variables and 

constraints).  These extensions, especially modeling uncertainty, will require 

improvements in algorithm development that take advantage of the structure 

of this specific problem.  This is an open question that will need further 

exploration in order to develop a national scale stochastic model based on the 

deterministic formulation given in this dissertation 

8.3 Limitations  

There are several limitations to the modeling framework that impact the 

results of the analysis.  First, there is no interaction between facility siting 

and land use.  This impacts the results by not allowing cropping patterns to 

respond to the spatially differentiated energy crop value due to the existence 

of a facility.  Second, the model does not account for the temporal evolution of 

the industry as supplies, technologies and demands change over time.  A 



 

 

197 

third and related limitation is that this framework ignores uncertainty 

inherent in the system.  The use of a deterministic model with an implied 

constant supply and demand over time, leads to optimizations that do not 

account for robustness and underutilized capacity.   

Several of the limitations to the current modeling framework can be 

overcome by extension of the model in future work.  Methods that may be 

used to extend the model are briefly described below along with the expected 

outcome of addressing the limitations of the model.  

8.3.1 Time dynamics 

The dynamic build of a biofuel industry can be modeled using the existing 

modeling framework as the base for a dynamic simulation model.   The 

simulation would step through time in 1 to 5 year increments with decisions 

made at each time step based on the result of the supply chain optimization 

model and expected changes in fuel demands.  Costs, prices and supplies can 

be updated to reflect learning as in de Wit,  et al (2010).     

Including the path dependence for developing the biofuel industry over 

time would make explicit a number of important issues with the introduction 

of a cellulosic biofuel industry.  Explicitly modeling the learning needed to 

reduce the cost of biofuel production would highlight the buy down cost for 

biorefineries and the delivery infrastructure scale up.  The learning is 

assumed to happen over the next 8 years but no cost is assigned for this 

development under the current modeling framework.  Additionally using 
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short time horizons along with current technology cost will lead to some 

entrenched capital in inferior 1st of a kind biorefineries and path 

dependencies for technology development.   In theory, the cost of accelerated 

deployment of the technologies could be captured as well.  Construction cost 

would be a function of the current stock of biorefineries and the number of 

biorefineries to be constructed in the current time step.      

The expected outcome from explicit inclusion of time dynamics would be a 

higher but more realistic estimate of the cost of biofuels to account for 

entrenched capital in early biorefineries and the costs of rapid industry 

deployment.  

8.3.2 Competition between biomass consumers 

Biomass may play a large role in other industries, most notably electricity 

and heat.  The competition from these sectors could be included in the 

modeling framework conditional on the availability of the appropriate data.  

A model that included all energy sectors as potential consumers of biomass 

would help answer questions about the most economical use of the feedstock 

and whether a single pathway is likely to dominate the biomass industry or a 

suite of uses will be the end result and what policies might be most effective.  

With respect to the results presented here, the additional competition for 

feedstock will either increase the cost of biofuels or make no change if 

biofuels are the dominant biomass technology.   
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8.3.3 Links to agricultural economic model 

A dynamic link between the biorefinery siting model and an agricultural 

economic model for modeling biomass producers would provide improvements 

on two fronts.  First it would allow for local markets of biomass induced by 

the placement of biorefineries to impact the production decisions for the 

modeled farmers. This would lead to denser production of biomass feedstock 

near the biorefineries than is seen in the unlinked models and a reduction in 

the total cost of production.  For example, farmers in a given county may 

plant equal areas of soy and corn under current markets.  However, if a corn 

stover biorefinery is sited in the county, the farmers have an incentive to 

produce more corn than soy and would likely do so.  By planting more corn 

near the biorefinery, the farmers reduce the cost of transporting corn stover 

to the biorefinery.  This effect is not currently captured in the model.  Second, 

the market impacts on land rents, input prices and agricultural commodity 

prices could be explicitly modeled. Market feedback loops would lead to 

increased prices as the demand for biomass places additional pressure on 

scarce resources of land, water and agricultural inputs.  This in turn would 

lead to higher biofuel prices than are predicted in the preceding case studies.    

8.3.4 Uncertainty 

There is a great deal of uncertainty on a number of levels in the system 

modeled.  There is year to year uncertainty in feedstock availability and 
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price, fuel price and supporting policies.  Uncertainties also exist for the 

technology performance development over time. 

A result of the deterministic model is that biorefineries are sited to utilize 

all the feedstock in a region leaving little slack in the supply to account for 

the inevitable down year in supply.  This is not a robust infrastructure design 

and will lead to volatile fuel prices for profitability of the industry.  The 

existing biomass power industry has accommodated year-to-year supply 

variations, mostly due to the relatively low fraction of biomass currently 

utilized.  As industry demands on supplies increase toward the maximum 

available, shortfalls will likely result in sharp price increases and greater 

demand on feedstock imports, if not increased facility shutdowns and 

business failures.  A better method would be to account for the volatility of 

supply and petroleum prices in the design of the system.   This requires a 

stochastic model with higher computational effort.  The resulting system 

from the stochastic model would be less aggressive in consuming biomass 

leading to a higher required fuel price for the same volume of fuel in the 

expected scenario but would be more robust in face of changes in supply and 

fuel prices.    

8.4 Future research directions 

There are four research directions that are immediately interesting.  First, 

the omission of the electricity sector as a competitor for biomass must be 

addressed.  Demand for biomass in the electricity sector is expected to rise 
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sharply as a number of states have enacted Renewable Portfolio Standards 

and the Northeastern states have implemented a regional cap-and-trade 

policy in the electricity sector.  A minimum these new demands for biomass 

in electricity and fuels sectors need to be considered together in order to 

understand the degree to which the available biomass can support all 

existing policies.  Taking the analysis a step further, the use of limited 

biomass resources  should maximize the benefits to society.  The electricity 

sector has been shown to be the most efficient use of biomass for carbon 

reductions if used as a replacement to coal fired electricity (Campbell et al., 

2009).  However, the picture is less clear when considering low carbon 

alternatives in the electricity and transportation sectors (Rhodes, 2007; 

Lemoine et al., 2010).   An expanded version of the modeling framework 

presented here can provide good insight into where biomass would be best 

used.  It would provide a compliment to full energy systems models, such as 

MARKAL, considering the same question as it would be able to accommodate 

greater spatial detail in the analysis. 

Second, the ethanol demand limit scenarios highlighted the importance of 

E85 in a world where ethanol is the dominant cellulosic technology.  

However, the costs of provide the E85 infrastructure and the relative prices of 

E85 and gasoline that would be needed to induce the required level of E85 

demand were not analyzed.  The spatially-explicit nature of the supply chain 

optimization provides a good framework for exploring the extent to which the 
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limits on ethanol demand cause a cost premium relative to a hydrocarbon 

biofuel.   

Third, the path to cost competitive biofuels will require investment in and 

the development of technologies that are not competitive in order to develop 

the learning that is needed.  Additional cost are incurred in the form of 

infrastructure scale up for the deliver of both the fuels and the biomass 

feedstocks.  The buy down cost representing the investment required to make 

the industry is self-sustaining is an important metric for comparing the 

diverse set of alternative fuels that exist (hydrogen, electric drive, biofuels).  

A dynamic implementation of the model is an ideal candidate for calculating 

this metric as it tracks infrastructure investments at in a detailed manner.   

Fourth, air quality restrictions may limit the ability of facilities to operate 

within regions that are currently in non-attainment of Federal EPA air 

quality standards. These regions, which include many major urban areas in 

the U.S., are required to restrict emissions of criteria air pollutants. Most 

biofuel production facilities emit significant amounts of multiple criteria 

pollutants and while these emissions can be mitigated through utilization of 

emissions control technology (Brady and Pratt, 2007) no facility can be 

completely emission-free. In some situations, meeting emissions permit 

requirements or providing emission offsets may be too costly to allow for 

ethanol production at realistic prices, which serves as a functional constraint.  

The model can be used to explore the impact of non-attainment regions on the 
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siting of biorefineries and the cost of producing biofuels.  



 

 

204 

REFERENCES 

Aden, A. (2008). Biochemical Production of Ethanol from Corn Stover: 2007 

State of Technology Model. National Renewable Energy Laboratory. 

NREL/TP-510-43205. 

Alfstad, T. (2008). World Biofuels Study. Brookhaven National Laboratory. 

BNL-80238-2008. 

AMEC Earth & Environmental (2009). PSD Permit Application for Proposed 

Highlands Ethanol Facility. Verenium Corp. 

Antares Group Inc (2008). Strategic Assessment of Bioenergy Development in 

the West:  Bioenergy Conversion Technology Characteristcs. Western 

Governors' Association  

Antares Group Inc (2009). National Biorefinery Siting Model Draft Final 

Report - Task 2: Technologies for Biofuels Production. 

Argonne National Laboratory (ANL) (2009). Greenhouse Gases, Regulated 

Emissions and Energy Use in Transportation (GREET) Model 1.8c. 

Arsova, L., R. van Haaren, N. Goldstein, S. Kaufman and N. Themelis (2008). 

"The State of Garbage in America." BioCycle 49(12): 22. 

Babcock, B. A. (2008). Hearing on Fuel Subsidies and Impact on Food Prices. 

U.S. Senate Committee on Homeland Security and Government Affairs. 

Washington, DC. 

Babcock, B. A., K. Barr and M. Carriquiry (2010). Cost and Benefits to 

Taxpayers, Consumers, and Producers from U.S. Ethanol Policies. Center 

for Agricultural and Rural Development, Iowa State University. Staff 

Report 10-SR 106. 

Banowetz, G. M., A. Boateng, J. J. Steiner, S. M. Griffith, V. Sethi and H. El-

Nashaar (2008). "Assessment of straw biomass feedstock resources in the 

Pacific Northwest." Biomass and Bioenergy 32(7): 629-634. 

BlueFire Ethanol Lancaster (2009). Antelope Valley AQMD Engineering 

Evaluation of BlueFire Ethanol.  

Brady, D. and G. Pratt (2007). "Volatile Organic Compound Emissions from 

Dry Mill Fuel Ethanol Production." Journal of the Air & Waste 

Management Association 57(9): 1091-1102. 



 

 

205 

Bureau of Labor Statistics (2010). Producer Price Index Detailed Report - 

July 2010. 

Bureau of Transportation Statistics (BTS) (2009). National Transportation 

Atlas Database. 

California Biomass Collaborative (CBC) (2006). An Assessment of Biomass 

Resources in California. California Energy Comission. Contract 500-01-

016. Sacramento, CA. 

California Department of Water Resources (DWR). (2000 - 2003). "California 

Land Use Datasets."   Retrieved April 25, 2005, from 

http://www.landwateruse.water.ca.gov/baiscdata/landuse/landusesurvey.c

fm. 

California Integrated Waste Management Board (CIWMB) (2009). Solid 

Waste Information System (SWIS). 

Campbell, J. E., D. B. Lobell and C. B. Field (2009). "Greater Transportation 

Energy and GHG Offsets from Bioelectricity Than Ethanol." Science 

324(5930): 1055-1057. 

Clean Air Technology Center (CATC) (2009). RACT/BACT/LAER 

Clearinghouse, U.S. Environmental Protection Agency. 

Clifton-Brown, J. C., P. F. Stampfl and M. B. Jones (2004). "Miscanthus 

biomass production for energy in Europe and its potential contribution to 

decreasing fossil fuel carbon emissions." Global Change Biology 10(4): 

509-518. 

Codd, A. and M. Mullen (2007). Methodology for Preparing VMT Estimates 

for the National Emission Inventory: 2003, 2004, and 2005. U.S. 

Environmental Protection Agency, Office of Air Quality Planning and 

Standards. 

Conservaton Technology Information Center (CTIC) (2008). National Crop 

Residue Management Survey. 

Cook, J. H., J. Beyea and K. H. Keeler (1991). "Potential impacts of biomass 

roduction in the U.S. on biological diversity." Annual Reviews of Energy 

and Environment 16: 401-431. 

Daigneault, A., R. Beach, B. McCarl and B. Murray (2009). Modeling 

alternative policies for forestry and agricultural GHG mitigation: 

Allowances vs. offsets. Climate Change: Global Risks, Challenges and 

Decisions, IOP Publishing. 



 

 

206 

De La Torre Ugarte, D. G., B. C. English and K. Jensen (2007). "Sixty Billion 

Gallons by 2030: Economic and Agricultural Impacts of Ethanol and 

Biodiesel Expansion." American Journal of Agricultural Economics 89(5): 

1290-1295. 

De La Torre Ugarte, D. G. and D. E. Ray (2000). "Biomass and bioenergy 

applications of the POLYSYS modeling framework." Biomass and 

Bioenergy 18(4): 291-308. 

de Wit, M., M. Junginger, S. Lensink, M. Londo and A. Faaij (2010). 

"Competition between biofuels: Modeling technological learning and cost 

reductions over time." Biomass and Bioenergy 34(2): 203-217. 

Delucchi, M. (2006). Lifecycle Analyses of Biofuels: Draft Manuscript. 

Institute of Transportaion Studies, University of California, Davis Davis, 

CA. 

Duffy, M. (2008). Estimated Costs or Production, Storage and Transportation 

of Switchgrass. Iowa State University,  University Extension Ames, IA. 

Dutta, A., N. Dowe, K. N. Ibsen, D. J. Schell and A. Aden (2010). "An 

Economic Comparison of Different Fermentation Configurations to 

Convert Corn Stover to Ethanol Using Z. mobilis and Saccharomyces." 

Biotechnology Progress 26(1): 64-72. 

Energy Information Administration (EIA) (2010). Annual Energy Outlook 

2010. U.S. Department of Energy. 

Energy Information Administration (EIA) (2011). Electric Power Monthy 

with data for October 2010. U.S. Department of Energy. 

European Parliment and Council (2003). "Directive 2003/30/EC on the 

promotion and use of biofuels or other renewable fuels for transport of 8 

May 2003." Official Journal of the European Union L 123: 42-46. 

Fargione, J., J. Hill, D. Tilman, S. Polasky and P. Hawthorne (2008). "Land 

Clearing and the Biofuel Carbon Debt." Science 319(5867): 1235-1238. 

Farrell, A. and D. Sperling (2007). A Low-Carbon Fuel Standard for 

California, Part 1: Technical Analysis. Institute of Transportation 

Studies, University of California, Davis Davis, CA. 

Field, C. B., J. E. Campbell and D. B. Lobell (2008). "Biomass energy: the 

scale of the potential resource." Trends in Ecology & Evolution 23(2): 65-

72. 



 

 

207 

Fight, R., B. Hartsough and P. Noordijk (2006). Users Guide for FRCS: Fuel 

Reduction Cost Simulator. USDA Forest Service. General Technical 

Report PNW-668. Portland, OR. 

Food and Agricultural Policy Research Institute (FAPRI) (2009). FAPRI 2009 

U.S. and World Agricultural Outlook. Food and Agricultural Policy 

Research Institute Ames, IA. 

Freppaz, D., R. Minciardi, M. Robba, M. Rovatti, R. Sacile and A. Taramasso 

(2004). "Optimizing forest biomass exploitation for energy supply at a 

regional level." Biomass and Bioenergy 26(1): 15-25. 

Gallagher, P. W., H. Brubaker and H. Shapouri (2005). "Plant size: capital 

cost relationships in the dry mill ethanol industry." Biomass and 

Bioenergy 28(6): 565-571. 

Graham, R. L., B. C. English and C. E. Noon (2000). "A Geographic 

Information System-based modeling system for evaluating the cost of 

delivered energy crop feedstock." Biomass and Bioenergy 18(4): 309-329. 

Gupta, S. C., C. A. Onsted and W. E. Larson (1979). "Predicting the effects of 

tillage and crop residue on soil erosion." Journal of Soil and Water 

Conservation Spec. Publ. 25: 7-9. 

Haas, M. J., A. J. McAloon, W. C. Yee and T. A. Foglia (2006). "A process 

model to estimate biodiesel production costs." Bioresource Technology 

97(4): 671-678. 

Hamelinck, C. N. and A. P. C. Faaij (2006). "Outlook for advanced biofuels." 

Energy Policy 34(17): 3268-3283. 

Hamelinck, C. N., A. P. C. Faaij, H. den Uil and H. Boerrigter (2004). 

"Production of FT transportation fuels from biomass; technical options, 

process analysis and optimisation, and development potential." Energy 

29(11): 1743-1771. 

Hamelinck, C. N., G. v. Hooijdonk and A. P. C. Faaij (2005). "Ethanol from 

lignocellulosic biomass: techno-economic performance in short-, middle- 

and long-term." Biomass and Bioenergy 28(4): 384-410. 

Holmgren, J., C. Gosling, R. Marinangeli, T. Marker, G. Faraci and C. Perego 

(2007). "New developments in renewable fuels offer more choices." 

Hydrocarbon Processing(September): 67-71. 



 

 

208 

Hoogwijk, M., A. Faaij, R. van den Broek, G. Berndes, D. Gielen and W. 

Turkenburg (2003). "Exploration of the ranges of the global potential of 

biomass for energy." Biomass and Bioenergy 25(2): 119-133. 

Hu, P. (2010). Biofuel demand modeling methodology and vmt data. Personal 

communication. 

Hu, P., T. Reuscher, R. Schmoyer and S. Chin (2007). Transferring 2001 

National Household Travel Survey. Oak Ridge National Laboratory. 

ORNL/TM-2007/013  

Hughes, J. (2009). The Higher Price of Cleaner Fuels: Market Power in the 

Rail Transport of Fuel Ethanol. ITS-Davis. UCD-ITS-RR-09-20. Davis, 

CA. 

Idaho National Laboratory (INL) (2010). Uniform-Format Solid Feedstock 

Supply System: A Commodity-Scale Design to Produce an Infrastructure-

Compatible Bulk Solid from Lignocellulosic Biomass Idaho Falls, ID. 

ILOG (2009). CPLEX. 

Jacobsen (2009). http://www.thejacobsen.com/. 

Jain, A. K., M. Khanna, M. Erickson and H. Huang (2010). "An integrated 

biogeochemical and economic analysis of bioenergy crops in the 

Midwestern United States." GCB Bioenergy 2(5): 217-234. 

Jenkins, B., J. Arthur, G. Miller and P. Parsons (1984). "Logistics and 

economics of biomass utilization." TRANSACTIONS of the ASAE 26(6): 

1898-1904. 

Johnson, J. M.-F., R. R. Allmaras and D. C. Reicosky (2006). "Estimating 

source carbon from crop residues, roots and rhizodeposits using the 

national grain-yield database." Agronomy Journal 98(3): 622-636. 

Kalogo, Y., S. Habibi, H. L. McLean and S. V. Joshi (2007). "Environmental 

Implications of Municipal Solid Waste-Derived Ethanol." Environmental 

Science and Technology 40(1): 35-41. 

Kanungo, T., D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman and 

A. Y. Wu (2002). "An efficient k-means clustering algorithm: analysis and 

implementation." Pattern Analysis and Machine Intelligence, IEEE 

Transactions on 24(7): 881-892. 

Kay, S. (2009). Cattle Buyers Weekly. Petaluma, CA. 



 

 

209 

Kaylen, M., D. L. Van Dyne, Y.-S. Choi and M. Blase (2000). "Economic 

feasibility of producing ethanol from lignocellulosic feedstocks." 

Bioresource Technology 72(1): 19-32. 

Kazi, F. K., J. A. Fortman, R. P. Anex, D. D. Hsu, A. Aden, A. Dutta and G. 

Kothandaraman (2010). "Techno-economic comparison of process 

technologies for biochemical ethanol production from corn stover." Fuel 

89(Supplement 1): S20-S28. 

Khanna, M., X. Chen, H. Huang and H. Onal (2010). "Meeting the Mandate 

for Biofuels: Implications for Land Use, Food and Fuel Prices." University 

of Illinois Law Review  

Khanna, M., B. Dhungana and J. Clifton-Brown (2008). "Costs of producing 

miscanthus and switchgrass for bioenergy in Illinois." Biomass and 

Bioenergy 32: 482-493. 

Kim, S. and B. E. Dale (2005). "Life cycle assessment of various cropping 

systems utilized for producing biofuels: Bioethanol and biodiesel." 

Biomass and Bioenergy 29(6): 426-439. 

Kumar, A., J. B. Cameron and P. C. Flynn (2003). "Biomass power cost and 

optimum plant size in western Canada." Biomass and Bioenergy 24(6): 

445-464. 

Kwiatkowski, J. R., A. J. McAloon, F. Taylor and D. B. Johnston (2006). 

"Modeling the process and costs of fuel ethanol production by the corn 

dry-grind process." Industrial Crops and Products 23: 288-296. 

Lal, R. (2005). "World crop residues production and implications of its use as 

a biofuel." Environment International 31(4): 575-584. 

Lal, R. (2009). "Soil quality impacts of residue removal for bioethanol 

production." Soil and Tillage Research 102(2): 233-241. 

Larson, E. D., H. Jin and F. E. Celik (2009). "Large-scale gasification-based 

coproduction of fuels and electricity from switchgrass." Biofuels, 

Bioproducts and Biorefining 3(2): 174-194. 

Lemoine, D. M., R. J. Plevin, A. S. Cohn, A. D. Jones, A. R. Brandt, S. E. 

Vergara and D. M. Kammen (2010). "The Climate Impacts of Bioenergy 

Systems Depend on Market and Regulatory Policy Contexts." 

Environmental Science & Technology 44(19): 7347-7350. 

Lensink, S. and M. Londo (2010). "Assessment of biofuels supporting policies 

using the BioTrans model." Biomass and Bioenergy 34(2): 218-226. 



 

 

210 

McAloon, A., F. Taylor, W. Yee, K. Ibsen and R. Wooley (2000). Determining 

the cost of producing ethanol from corn starch and lignocellulosic 

feedstocks. National Renewable Energy Laboratory Golden, CO. 

McCarl, B. A. (2004). "GAMS User Guide." GAMS Development Corporation. 

McCarl, B. A. and U. A. Schneider (2001). "CLIMATE CHANGE: Greenhouse 

Gas Mitigation in U.S. Agriculture and Forestry." Science 294(5551): 

2481-2482. 

McCoy, J. (2005). Using ArcGIS Spatial Analyst, ESRI. 

McKeever, D. B. (2004). Inventories of woody residues and solid wood waste 

in the United States, 2002. The Ninth International Conference on 

Inorganic-Bonded Composite Materials COnference. Vancouver, BC, 

University of Idaho: 12. 

Melo, M. T., S. Nickel and F. Saldanha-da-Gama (2009). "Facility location 

and supply chain management - A review." European Journal of 

Operational Research 196(2): 401-412. 

Mueller, S. (2010). Detailed Report: 2008 National Dry Mill Corn Ethanol 

Survey. Energy Resources Center, Unversity of Illinois at Chicago. 

Mullen, R. and E. Lentz (2007). Nutrient Value of Wheat Straw. 

Nadim, F., P. Zack, G. E. Hoag and S. Liu (2001). "United States experience 

with gasoline additives." Energy Policy 29(1): 1-5. 

National Academy of Sciences (NAS) (2009). Liquid Transportation Fuels 

from Coal and Biomass: Technological Status, Costs, and Environmental 

Impacts. Washington, DC, National Academies Press. 

National Research Council and The National Academies (2008). Water 

Implications of Biofuels Production in the United States. Washington, 

D.C., The National Academies Press  

Nelson, R. G. (2002). "Resource assessment and removal analysis for corn 

stover and wheat straw in the Eastern and Midwestern United States—

rainfall and wind-induced soil erosion methodology." Biomass and 

Bioenergy 22(5): 349-363. 

Novozymes (2009). Cellulosic cost savings with Novozymes expertise. 

OECD-FAO (2010). OECD-FAO Agricultural Outlook 2010. 



 

 

211 

Owen, S. H. and M. S. Daskin (1998). "Strategic facility location: A review." 

European Journal of Operational Research 111(3): 423-447. 

Parker, N., P. Tittmann, Q. Hart, R. Nelson, K. Skog, A. Schmidt, E. Gray 

and B. Jenkins (2010). "Development of a biorefinery optimized biofuel 

supply curve for the Western United States." Biomass and Bioenergy 

34(11): 1597-1607. 

Parker, N. C., J. M. Ogden and Y. Fan (2008). "The role of biomass in 

California's hydrogen economy." Energy Policy 36(10): 3925-3939. 

Perlack, R. D., L. L. Wright, A. F. Turhollow, R. L. Graham, B. J. Stokes and 

D. C. Erbach (2005). Biomass as Feedstock for a Bioenergy and 

Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual 

Supply. U.S. Department of Energy and U.S. Department of Agriculture. 

Oak Ridge, TN, Oak Ridge National Laboratory,: 75. 

Plevin, R. J., M. O'Hare, A. D. Jones, M. S. Torn and H. K. Gibbs (2010). 

"Greenhouse Gas Emissions from Biofuels' Indirect Land Use Change Are 

Uncertain but May Be Much Greater than Previously Estimated." 

Environmental Science & Technology 44(21): 8015-8021. 

Porter, R. C. (2002). The Economics of Waste. Washington, DC, Resources for 

the Future. 

Powell, J. M., F. M. Hons and G. G. McBee (1991). "Nutrient and 

Carbohydrate Partitioning in Sorghum Stover." Agronomy Journal 83(6): 

933-937. 

Range Fuels (2007). Final Environmental Assessment: Construction and 

Operation of a Proposed Cellulosic Ethanol Plat, Range Fuels Inc. 

Treutlen County, Georgia. U.S. Department of Energy. 

Rhodes, J. S. (2007). Carbon mitigation with biomass: An engineering, 

economica and policy asessment of opportunities and implicaitons. 

Department of Engineering and Public Policy. Pittsburgh, PA, Carnegie 

Mellon University. Doctor of Philosophy. 

Schmidt, J., S. Leduc, E. Dotzauer, G. Kindermann and E. Schmid (2010). 

"Cost-effective CO2 emission reduction through heat, power and biofuel 

production from woody biomass: A spatially explicit comparison of 

conversion technologies." Applied Energy 87(7): 2128-2141. 

Schremp, G., A. Bahreinian and M. Weng-Gutierrez (2010). Transportation 

Energy Forecasts and Analysis for the 2009 Integrated Energy Policy 

Report. California Energy Commission. CEC-600-2010-002-SF. 



 

 

212 

Searchinger, T., R. Heimlich, R. A. Houghton, F. Dong, A. Elobeid, J. Fabiosa, 

S. Tokgoz, D. Hayes and T.-H. Yu (2008). "Use of U.S. Croplands for 

Biofuels Increases Greenhouse Gases Through Emissions from Land-Use 

Change." Science 319(5867): 1238-1240. 

Searcy, E., P. Flynn, E. Ghafoori and A. Kumar (2007). "The relative cost of 

biomass energy transport." Applied Biochemistry and Biotechnology 137-

140(1): 639-652. 

Shapouri, H., P. W. Gallagher and M. Graboski (2002). USDA's 1998 Ethanol 

Cost-of-Production Survey. 

Simmons, P., N. Goldstein, S. Kaufman, N. Themelis and J. Thompson Jr 

(2006). "The State of Garbage in America." BioCycle 47(3): 26-43. 

Skog, K. (2008). WGA forest biomass supply curves. Personal communication. 

Skog, K. (2010). County-level pulpwood supply curves. Personal 

communication. 

SRI Consulting (2010). World Petrochemical report of Refinery Naphtha. 

Swanson, R. M., A. Platon, J. A. Satrio and R. C. Brown (2010). "Techno-

economic analysis of biomass-to-liquids production based on gasification." 

Fuel 89(Supplement 1): S11-S19. 

Tao, L. and A. Aden (2009). "The economics of current and future biofuels." In 

Vitro Cellular & Developmental Biology - Plant 45(3): 199-217. 

Tarkalson, D. D., B. Brown, H. Kok and D. L. Bjorneberg (2009). "Impact of 

Removing Straw from Wheat and Barley Fields: A Literature Review." 

Better Crops 93(3): 17-19. 

Thomson, A., R. Izarrualde, T. West, D. Parrish, D. Tyler and J. Williams 

(2009). Simulating potential switchgrass production in the United States. 

Pacific Northwest National Laboratory. PNNL-19072. 22. 

Tidewater. (2007). "Rate Schedule 200-A." from 

http://www.tidewater.com/transport.php. 

Tilman, D., J. Hill and C. Lehman (2006). "Carbon-Negative Biofuels from 

Low-Input High-Diversity Grassland Biomass." Science 314(5805): 1598-

1600. 

Tittmann, P., N. Parker and J. Ogden (2009). California Biomass Supply 

Potential. Institute of Transportation Studies, University of California, 

Davis. Final Report RSO#10. 



 

 

213 

Tittmann, P. W., N. C. Parker, Q. J. Hart and B. M. Jenkins (2010). "A 

spatially explicit techno-economic model of bioenergy and biofuels 

production in California." Journal of Transport Geography 18(6): 715-728. 

Turner, B. T., R. J. Plevin, M. O'Hare, A. E. Farrell, C. Transportation 

Sustainability Research, Energy, G. Resources, P. Goldman School of 

Public, S. Institute of Transportation and C. Berkeley University of 

(2007). Creating Markets for Green Biofuels: Measuring and Improving 

Environmental Performance, Institute of Transportation Studies, 

University of California at Berkeley. 

U.S. Census Bureau (2005). U.S. Population Projections. 

U.S. Census Bureau (2009). Fats and Oils: Production, Consumption, and 

Stocks - 2008  

U.S. Congress (2007). Energy Policy and Security Act of 2007. United States 

of America. 

U.S. Department of Agriculture - Agricultural Research Service (USDA-ARS) 

(2008). Science Documentation: Revised Universal Soil Loss Equation 

Version 2 (RUSLE2). 

U.S. Department of Agriculture - National Agricultural Statistics Service 

(USDA-NASS) (2009a). 2007 Census of Agriculture. USDA. Washington, 

DC. 

U.S. Department of Agriculture - National Agricultural Statistics Service 

(USDA-NASS) (2009b). Agricultural Prices 2008 Summary. 

U.S. Department of Agriculture - National Agricultural Statistics Service 

(USDA-NASS) (2010). County Level Data. 

U.S. Department of Agriculture (USDA), Office of the Chief Economist and 

World Agricultural Outlook Board (2009). USDA Agricultural Projections 

to 2018. 

U.S. Department of Agriculture Natural Resources Conservation Service 

(USDA-NRCS) (1999). National Soil Survey Handbook: Title 430-VI 

Washington, DC, U.S. Government printing office. 

U.S. Department of Energy (USDOE). (2010, December 06, 2010). "Biomass 

Program: Integrated Biorefineries."   Retrieved January 14, 2011, from 

http://www1.eere.energy.gov/biomass/integrated_biorefineries.html. 



 

 

214 

U.S. Environmental Protection Agency (2010). Renewable Fuel Standard 

Program (RFS2) Regulatory Impact Analysis. EPA-420-R-10-006. 1120. 

U.S. Environmental Protection Agency (USEPA) (2008). Methodology for 

MSW Characterization Numbers. 12. 

U.S. Environmental Protection Agency (USEPA) (2009). 2008 MSW 

Characterization Report. 

U.S. Forest Service (USFS) (2008). Timber Products Output 2007. 

Unnasch, S. and J. Pont (2007). Fuel Cycle Assessment: Well-To-Tank 

Energy Inputs, Emissions and Water Impacts - DRAFT CONSULTANT 

REPORT. California Energy Commission. CEC-600-2007-002-D. 

USDA Market News (2009). USDA Tallow, Protein, and Hide Report - FOB 

Central U.S. . 

Wakeley, H. L., C. T. Hendrickson, W. M. Griffin and H. S. Matthews (2009). 

"Economic and Environmental Transportation Effects of Large-Scale 

Ethanol Production and Distribution in the United States." 

Environmental Science & Technology 43(7): 2228-2233. 

West, T., K. Dunphy-Guzman, A. Sun, L. Malczynski, D. Reichmuth, R. 

Larson, J. Ellison, R. Taylor, V. Tidwell and L. Klebanoff (2009). 

Feasibility, economics, and environmental impact of producing 90 billion 

gallons of ethanol per year by 2030. Sandia National Laboratory. 30. 

Wilhelm, W. W., J. M. F. Johnson, D. L. Karlen and D. T. Lightle (2007). 

"Corn stover to sustain soli organic carbon further constrains biomass 

supply." Agronomy Journal 99(6): 1665-1667. 

Williams, R. (2008). An Assessment of Biomass Resources in California, 2007. 

California Biomass Collaborative: CEC PIER Contract. 

Wiltsee, G. (1998). Waste Grease Resources in 30 US Metropolitan Areas. 

BioEnergy '98 - Expanding Bioenergy Partnerships 8th Biennial 

Conference. Madison, WI. 

Woodruff, N. and H. Siddoway (1965). "A Wind Erosion Equation1." Soil 

Science Society of America Journal 29(5). 

Wooley, R., M. Ruth, J. Sheehan, K. Ibsen, H. Majdeski and A. Galvez (1999). 

Lignocellulosic biomass to ethanol process design and economics utilizing 

co-current dilute acid prehydrolysis and enzymatic hydrolysis current 

and futuristic scenarios. National Renewable Energy Laboratory. 



 

 

215 

World Commission on Environment and Development (WCED) (1987). Our 

Common Future. Oxford, Oxford University Press. 

Wu, M., M. Wang and H. Huo (2006). Fuel-cycle Assessment of Selected 

Bioethanol Production Pathways in the United States. Center for 

Transportation Research, Energy Systems Division, Argonne National 

Laboratory. 

Wu, M., Y. Wu and M. Wang (2005). Mobility Chains Analysis of 

Technologies for Passenger Cars and Light-Duty Vehicles with Biofuels: 

Application of the GREET Model to the Role of Biomas in America's 

Energy Future (RBAEF) Project. Center for Transportation Research, 

Argonne National Laboratory. 

Wullschleger, S. D., E. B. Davis, M. E. Borsuk, C. A. Gunderson and L. R. 

Lynd (2010). "Biomass Production in Switchgrass across the United 

States: Database Description and Determinants of Yield." Agronomy 

Journal 102(4): 11. 

Yeh, S., N. P. Lutsey and N. C. Parker (2009). "Assessment of Technologies to 

Meet a Low Carbon Fuel Standard." Environmental Science & 

Technology 43(18): 6907-6914. 

Yeh, S., D. A. Sumner, S. R. Kaffka, J. M. Ogden and B. M. Jenkins (2009). 

Implementing Performance-Based Sustainability Requirements for the 

Low Carbon Fuel Standard - Key Desing Elements and Policy 

Considerations. Institute of Transportation Studies, University of 

California, Davis. UCD-ITS-RR-09-42. 

Zah, R., H. Boni, M. Gauch, R. Hischier, M. Lehmann and P. Wager (2007). 

Life Cycle Assessment f Energy Products: Environmental Assessment of 

Biofuels. Bern, Switzerland. 

Zhan, F. B., X. Chen, C. E. Noon and G. Wu (2005). "A GIS-enabled 

comparison of fixed and discriminatory pricing strategies for potential 

switchgrass-to-ethanol conversion facilities in Alabama." Biomass and 

Bioenergy 28(3): 295-306. 

Zhang, Y., M. A. Dube, D. D. McLean and M. Kates (2003). "Biodiesel 

production from waste cooking oil: 2. Economic assessment and 

sensitivity analysis." Bioresource Technology 90(3): 229-240. 

 



 

 

216 

APPENDIX A: FEEDSTOCK LOGISTICS COST MODEL  

The “Pioneer Feedstock Logistics Chain” developed by Idaho National 

Laboratory (INL, 2010) is used to describe the cost of harvesting, storing, and 

transporting straw and stover feedstocks.  The transportation cost model is 

used for all biomass resources.  The equations below describe the model.  

There are a few parameters that are maintained outside of the hard coded 

model to allow for variation between states and over time.  These are labor 

rates, fuel costs and land rents.  The INL model assumptions can be found in 

the “State-specific” sheet of the excel model. 

Parameter notation 

LCf   Farm labor rate ($/hr) 

LCtd  Truck driver labor rate ($/hr) 

LCpl  Plant loader operator labor rate ($/hr) 

LCbh  Bulk handling labor rate ($/hr) 

LCgo  Grinder labor rate ($/hr) 

FCr   On-road fuel cost ($/gallon) 

FCo   Off-road fuel cost ($/gallon) 

Rent  Land rent ($/acre) 

 

Straw bale truck transportation 

Truck costs are calculated for a 26 bale truckload.  The bale density (bd) 

and moisture content (MC) will impact the cost per dry ton. For generic 

model, use 17 wet tons per load (bd = 0.65445 tons/bale) and leave moisture 

content adjustment for post processing of network outputs. 

Loading Costs (spatially located at farm gate) 

load_cost ($/dry ton) = {(0.325 hrs)*[$6.71/hr + 1.67*LCpl + (1.725 

gal/hr)*FCo] + (0.56 hrs)*1.67*LCtd} / [26*bd/(1-MC)] 
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Unloading Costs (spatially located where bale trucks unload) 

unload_cost ($/dry ton) = {(0.325 hrs)*[$6.71/hr + 1.67*LCpl + (1.725 

gal/hr)*FCo] + (0.59 hrs)*1.67*LCtd} / [26*bd/(1-MC)] 

Travel Cost (spatially located on road links) –includes roundtrip  

travel_cost ($/dry ton) = 2*{[$0.29/mile + (1/6 mpg)*FCr]*road_miles + 

1.67*LCtd*travel_time(hours)} / [26*bd/(1-MC)] 

 

Bulk material transport 

Truck costs are calculated for a single truckload (4371 ft3).  The per dry ton 

cost will depend on the density (d) and the moisture content (MC).  For 

generic model, use 19.9 wet tons per load (d = 9.1 lbs/ft3) and leave moisture 

content adjustment for post processing of network outputs. 

Loading Costs (spatially located at depot) 

load_cost ($/dry ton) = {(0.22 hrs)*1.67*LCtd} / [(4371/2000)*d/(1-MC)] 

Unloading Costs (spatially located at biorefineries or intermodal facilities) 

unload_cost ($/dry ton) = {(0.16667 hrs)*[$44.31/hr + 1.6*LCbh] + (0.2 

hrs)*1.67*LCtd} / [(4371/2000)*d/(1-MC)] 

Travel Cost (spatially located on road links) –includes roundtrip  

travel_cost ($/dry ton) = 2*{[$0.35/mile + (1/6 mpg)*FCr]*road_miles + 

1.67*LCtd*travel_time(hours)} / [(4371/2000)*d/(1-MC)] 

 

Rail transportation 

Rail costs in the INL model follows a simplified format.  There is just a 

fixed cost plus a per mile cost. 

Rail Fixed Cost (spatially located at origin Intermodal facility) 

fixed_rail_cost ($/dry ton) = $17.10/(1-MC) 
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Rail per mile cost (spatially located on the links) – no roundtrip required 

var_rail_cost ($/dry ton) = $0.0172/(1-MC) 

Straw & Stover Harvest Cost (Bales) 

The Pioneer and Pioneer Uniform scenarios in the INL model have the 

same harvest system.  The residue remaining on the field after grain harvest 

is windrowed  

The parameters that impact the harvest cost are the effective yield (ye) 

measured in dry tons per acre (BDT/acre) and the field radius (rf) measured 

in miles.  

Effective yield is the minimum of the sustainably removable fraction 

biomass and the biomass that can be technically harvested.  The biomass 

that can be technically harvested is the gross residue production times the 

harvest efficiency (effh), which accounts for mechanical harvest limitations of 

the equipment.  In the Pioneer stover and straw models the harvest efficiency 

is 38%. 

ye (BDT/acre) = min{[gross residue yield – residue required on field], 

[gross residue * effh]} 

Windrowing & Baling 

 Residues are cut during grain harvest and therefore residue cutting is not 

charged to the cost of residue removal.  The residues are windrowed to 

improve drying and in preparation of baling.  The costs of the windrowing 

and baling operations are dependent on the area of the field to be traveled by 

the equipment.  The equipment capacity is assumed to be purely a function of 
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the speed and the width of the equipment for the windrowing.  Baling 

capacity is the minimum of the field operating capacity and the rated 

capacity.  Higher yields are not assumed to slow down the equipment up to 

the rated capacity.   

Windrow_cost ($/BDT) = [$40.82/hr + 1.1*LCf + 9.96gal/hr*FCo]/[ye*7.3 

acres/hr] 

 

Bale_cost ($/BDT) = [$115/hr + 1.1*LCf + 12.46 gal/hr*FCo]/[min{21.89 

BDT/hr, ye*10.72 acres/hr}] + $1.28/BDT 

 

Roadsiding 

The INL model assumes an average distance to storage site of 0.5 miles.  

The costs below are for roadsiding to storage at each farm to be consistent 

with the network analyst beginning at each pfarm. 

Roadsiding_cost ($/BDT) = [$55.97/hr + 1.1*LCf + 8.85 gal/hr*FCo]/[(5.184 

BDT/load)/(0.0413 hr/load + rf*0.1893 hr/load)] 

Storage 

The costs below are for storage at each pfarm roadside in wrapped bales.  

There are three main costs in storage as the INL model is designed.  First is 

the cost of placing the bales in the bale wrap.  Second is the land rent and 

insurance for the feedstock during storage.  And finally there are losses of 

feedstock in storage.  I believe the best way to handle the third cost is to 

calculate all harvest costs and then reduce the quantity of biomass leaving 

the pfarms to account for storage losses.   

 

Wrapping_cost ($/BDT) = [$38.35/hr + 2.2*LCf + 2.88*LCo]/[46.08 BDT/hr] 

+ $4.96/BDT 
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Land_ins_cost ($/BDT) = Rent*(0.00063769 acres/BDT) + $0.05/BDT 

 

Storage losses = 5% of feedstock 

 

Total Procurement Cost 

The total procurement cost for the stover or straw resource will be the sum 

of the windrowing, baling, roadsiding and storage costs.  The per BDT 

procurement cost will include an adjustment to the quantity that accounts for 

the storage losses. 

Procurement_cost ($/BDT) = {Windrow_cost ($/BDT) + Bale_cost ($/BDT) + 

Roadsiding_cost ($/BDT) + Wrapping_cost ($/BDT) + Land_ins_cost ($/BDT)}/ 

0.95 

 

The total quantity of biomass available from the pfarms for the 

biorefineries is given as. 

biomass (BDT) = ye*farm_size(acres)*0.95 

Preprocessing 

The preprocessing costs include the costs of grinding, densifying and 

storing biomass at a depot.  In the case of the pioneer feedstock supply chain 

the depot is part of the biorefinery.  On additional parameter is needed for 

calculating the preprocessing costs.  The depot_size is the size of the depot 

in dry tons per year.  This can be calculated by summing the biomass 

delivered to a depot (or biorefinery).   

 

Grinding 
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Grinding_Cost ($/BDT) = {$73.3/hr + 1.03*LCgo}/{min(14.6*(1-MC), 

depot_size(BDT/yr)/8400)} 

 

Grinding loader 

Loader_Cost($/BDT) = {$6.08/hr + 1.03*LCpl + 1.725*FCo}/{min(39.3*(1-

MC), depot_size(BDT/yr)/8400)} 

 

Miscellaneous depot equipment 

Misc_depot ($/BDT) = $47.16/{min(14.6*(1-MC), 

depot_size(BDT/yr)/8400)} 

 

Plant Handling and Queing 

Plant handling and queing costs are incurred at the biorefinery and 

represent the cost of the receiving equipment beyond unloading.  This 

includes a truck scale and asphalt pad for receiving. 

PHQ_Costs ($/BDT) = [($1.89/hr + 1.67*LCbh)/{min(255.3*(1-

MC),brfn_size(BDT/yr)/4200)}] +$178,151/brfn_size(BDT/yr) 
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APPENDIX B: ADDITIONAL EMISSIONS DETAILS 

The emissions acounting model in Chapter 7 is based on emissions factors 

from Argonne National Laboratory’s GREET Model where possible and data 

from peer-reviewed articles or environmental impact reports of proposed 

biorefineries.  In this Appendix, the emissions factors not reported in Chapter 

7 are given and the raw potential to emit data from two biorefineries are 

shown broken down by process to highlight the contribution of the boiler to 

the overall emissions of the facility.  

Table 30 gives the emissions factors for fertilizer applications from the 

GREET model.  The fertilizer required to replace nutrients lost from the 

removal of agricultural residues are given in Table 13 in the Chapter 5.  

 

Table 30: Emission factors for fertilizers (ANL, 2009) 

 Fertilizer (per gram of nutrient) 

Total Emissions: 
grams per gram N
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     VOC 0.0061 0.0004 0.0001  

     CO 0.0057 0.0013 0.0004  

     NOx 0.0034 0.0072 0.0018 0.0139 

     PM10 0.0009 0.0017 0.0006  

     PM2.5 0.0005 0.0011 0.0002  

     SOx 0.0018 0.0637 0.0013  

     CH4 0.0029 0.0018 0.0010  

     N2O 0.0016 0.0000 0.0000 0.0030 

     CO2 2.4260 0.9784 0.6519  
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MSW classification emissions were taken from Kalogo et al. (2007).  They 

were reported with a basis of wet-ton of MSW sorted.  To account for this 

adjustments have been made for each MSW resource type due to its moisture 

content and are reported in Table 31. 

 

Table 31: Emission factors for MSW classification  

 MSW Food MSW Paper MSW Other MSW Yard MSW Wood 

 g/ton g/ton g/ton g/ton g/ton 

VOC 2.1 0.7 0.7 1.2 0.7 

CO 54.2 18.1 16.9 30.7 18.5 

NOx 93.4 31.1 29.2 52.9 31.8 

PM10 6.0 2.0 1.9 3.4 2.0 

PM2.5 4.1 1.4 1.3 2.3 1.4 

SOx 77.8 25.9 24.3 44.0 26.5 

CH4 3.3 1.1 1.0 1.9 1.1 

N2O 1.9 0.6 0.6 1.1 0.6 

CO2 83,666.2 27,888.7 26,145.7 47,358.2 28,522.6 

 

The emissions from the operation of harvest equipment, trucks, 

locomotives and barges were found using emissions factors for each class and 

the diesel consumption found by the harvest and transport models described 

in Appendix A and Chapter 5.   
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Table 32: Emission factors for diesel consumed by mode 

(grams/mmBtu diesel) (ANL, 2009) 

 Off-road Marine Rail Truck 

VOC 69.25 40.99 73.95 30.03 

CO 363.20 119.64 213.33 153.08 

NOx 684.96 1,045.69 1,517.11 450.74 

PM10 62.32 26.03 35.94 8.38 

PM2.5 55.68 13.02 32.35 7.71 

SOx 8.04 8.04 8.04 5.21 

CH4 0.63 2.01 3.94 1.43 

N2O 0.92 2.00 2.00 2.00 

CO2 77,410.76 77,877.76 77,622.52 77,860.99 

 

 

The biomass boiler is a significant fraction of the emissions.  From the two 

air permit applications with detailed emissions reporting, the boiler is 

responsible for the majority of emissions for all pollutants except volatile 

organic compounds.  The VOC emission are significant from a number of 

operations.  
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Table 33: Potential to emit by process unit for proposed Bluefire 

MSW-to-ethanol biorefinery (Bluefire, 2009) 

Blue Fire Potential to emit (tpy) 

Process Unit VOC CO NOx PM10 PM2.5 SOx 

Biomass 

Storage and 

Processing 2.027   0.013   

Dryer 14.334      

Lignin 

Processing  0.57   0.249   

Biomass Bioler 4.118 22.176 23.76 11.722  21.859 

Cooling Tower   0.356   

Emergency Fire 

ICE 0.03 0.068 0.122 0.006   

Fermentation 0.726      

Valves, fittings, 

pumps & 

compressors 1.614      

Gasoline 

Storage 0.009      

Ethanol Storage 0.167      

Ethanol Tank 

and Loadout 0.167      

Ash Silo and Handling   0.084   

Lime Slacking System   0.084   

Limestone Storage Silo   0.003   

       

Total 23.762 22.244 23.882 12.517 0 21.859 

       

Boiler Percent 17.33% 99.69% 99.49% 93.65% - 100.00% 
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Table 34: Potential to emit for proposed Verenium energycane-to-

ethanol biorefinery (AMEC Earth & Environmental, 2009) 

Verenium Potential to emit (tpy) 

 VOC CO NOx PM10 PM2.5 SOx 

Fermentation 16.5      

Distillation 2.3      

Ethanol 

Storage 0.7      

Product 

Loadout Flare 5.3 2.3 0.4 0.02 0.02 0.004 

Gasolne 

Storage 0.9      

Misc. Storage Silos   4.7 4.7  

Wastewater 

Treatment 5.4 0.3 0.1 0.002 0.002 0.0005 

Cooling Tower 4.1   0.7 0.7  

Biomass 

Boilers 8.7 173.4 130.1 17.3 17.3 104.1 

Fire Pump ICE 0.1 0.5 0.5 0.03 0.03 0.001 

Backup 

Generator ICE 2.8 15.4 25.4 0.8 0.8 0.02 

Stillage 

Loadout 2.8      

Equipment 

Leaks 19.6      

Road Dust    9.9 1  

       

Total 69.2 191.9 156.5 33.452 24.552 104.1255 

       

Boiler % 12.57% 90.36% 83.13% 51.72% 70.46% 99.98% 
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APPENDIX C: MODEL CODE  

The model code for the national model is presented below.  The model is 

written in the GAMS language. There are two models presented.  First is the 

national model.  Second is a sample regional production model.  Between 

running the regional production models and the national model the output 

files of the regional models are combined to form a reduced transportation 

cost file for the national model and a list of location/technology combinations 

that were choosen in the regional models. 

National model 
$ontext 

This is the baseline model for dissertation modeling. 

$offtext 

 

*Sets a parameter that can be used to change all output file names  

$set scenario baseline 

 

*Turns off default GAMS output display 

Option   Solprint = off; 

Option   Limrow = 0; 

Option   Limcol = 0; 

 

*Create set indices for all supply locations plus a single supply point for Brazilian ethanol 

sets      plot   biomass source locations  / 

$include plot_list_all.csv 

B99999 

/ 

         brfn    biorefinery sites / 

$include brfn_all.csv 

/ 

         feed    /ag_res, hec, forest, ovw, pulpwood, msw_wood, msw_paper, msw_constr_demo, 

msw_yard, msw_food, msw_dirty, corngrain, animal_fats, grease, seed_oils, sugar/ 

*Biorefineries are specified by site/technology/feedstock class combinations 

         class   feedstock classification        /herb, woody, pulp, msw, new, exist1*exist6, virgin, 

waste, brazil/ 

*Set used in table of feedstock composition which is needed to calculate yields  

         comp    feedstock composition component /cellulose, hemicellulose, lignin, HHV/ 

*Define discrete price levels 

         plev    / 

$include price_list_all.csv 

$include brazilian_etoh_price_list.csv 

/ 
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         tech         tech type   /lce, ft_diesel, fame, fahc, dry_mill, wet_mill, sugar_etoh/ 

         term            terminal locations  / 

$include terminal_list.csv 

/ 

         trans        transportation mode /total_cost, road_miles, rail_miles, water_miles/; 

 

*Create subsets of the above sets 

sets     bulk(feed)      /ag_res, hec, forest, ovw, pulpwood, msw_wood, msw_constr_demo, 

msw_paper, msw_yard, msw_food, msw_dirty/ 

        woody(feed)     /forest, ovw, pulpwood, msw_wood, msw_constr_demo/ 

        herb(feed)      /ag_res, hec/ 

        msw(feed)       /msw_paper, msw_yard, msw_food, msw_dirty/ 

         liquid(feed)    / animal_fats, grease, seed_oils/ 

*Technologies are group by fuel chemistry for demand limits 

         etoh(tech)            /lce, dry_mill, wet_mill, sugar_etoh/ 

         ftd(tech)       /ft_diesel, fahc/ 

         biodiesel(tech) /fame/ 

*Biorefienery sites that are in port cities are considered as potential import locations for 

Brazilian ethanol 

         ports(brfn)     / 

$include ports4brazilian_etoh1.csv 

/; 

 

alias (tech, tech2); 

 

*Define transportation cost parameters 

Parameters       pbcost(plot, brfn, feed)        '$ per ton for feedstock transport' 

                  pbcost_base(plot, brfn, feed) 

                  btcost(brfn, term) 

         pbcost_dry(plot, brfn) '$ per wet ton' 

           pbcost_liq(plot,brfn)   '$ per 100 gallon' 

*Import supply data sets 

           supply(plot, feed, plev) 'matrix of supply quantities' / 

$ondelim 

$include ag_residues_38.csv 

$include ovw_supplies.csv 

$include hec_base.csv 

$include msw_supply.csv 

$include forest_nofed.csv 

$include 2017_BTS_pulpwood.csv 

$include lipids.csv 

$include supply_corn.csv 

$include brazilian_etoh_supply.csv 

$offdelim 

/ 

*Import file giving a dollar value for each price level 

         prices(plev)    'values for price levels'    / 

$ondelim 

$include prices_all.csv 

$include brazilian_etoh_prices.csv 

$offdelim 

/ 
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         feed_MC(feed)                   moisture content of dry biomass feedstocks   / 

ag_res           0.15 

hec              0.15 

msw_paper        0.1 

msw_wood         0.12 

msw_yard         0.465 

msw_dirty        0.186 

msw_food         0.7 

ovw              0.35 

forest           0.5 

pulpwood         0.5 

/ 

         feed_density(feed)                   transfers cost per 100 gallons to costs per ton  / 

grease           3.085 

seed_oils        2.588 

animal_fats      3.0 

/ 

 

         conv_eff(feed, tech, class)            conversion efficiency for converting feedstock to fuel      

/ 

 

$ondelim 

$include conv_eff_with_class.csv 

$offdelim 

sugar.sugar_etoh.brazil  1 

/ 

 

         conv_factor(tech, comp)    converts conversion efficiencies into gallons product per ton 

feedstock             / 

lce.hemicellulose    176.9 

lce.cellulose        172.85 

ft_diesel.HHV        6.84/ 

 

         tech_eff(tech, comp)       conversion efficiency for cellulosic technologies     / 

lce.hemicellulose    0.765 

lce.cellulose        0.72 

ft_diesel.HHV        0.387/ 

 

         electricity(tech, feed)               electricity produced per ton of biomass 

         elec_eff(tech)          / 

lce              0.0366 

ft_diesel        0.0366/ 

 

         naptha(tech, feed)                    naptha produced per ton of biomass 

         naptha_eff(tech)                / 

ft_diesel        0.072/ 

 

         gge_conversion(tech)          converts fuel quanitities into equivalent gallons of gasoline   

/ 

lce              0.657 

dry_mill         0.657 

wet_mill         0.657 

sugar_etoh       0.657 
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ft_diesel        1.065 

fame             1.03 

fahc             1.065/ 

 

         vmt_fraction(term)      'fraction of 2015 vmt allocated to each terminal'  / 

$ondelim 

$include terminal_vmt_fraction.csv 

$offdelim 

/ 

 

         fuel_price              fuel price for each model run                                  /2.8/ 

         naptha_price  price of naphtha defined below  

         elec_price              price of electricity in dollars per kWh                         /0.05/ 

 

         Ethanol_demand          total ethanol demand limit for scenario (units=10MGY)                   

/1580.5/ 

         Diesel_demand           total diesel demand limit for scenario (units=10MGY)                    

/5091/ 

         diesel_use(plot, brfn, feed); 

 

*Define naphtha price as function of fuel price 

naptha_price = 0.86*fuel_price; 

 

*Insert table giving composition and HHV (GJ/Mg) of feedstocks 

Table    biomass_composition(feed, comp) 

$ondelim 

$include feedstock_composition.csv 

$offdelim 

; 

 

*Insert regional model-limited feedstock transport cost matrix  

Table    feedstock_od_table(plot, brfn, feed, trans) 

$ondelim 

$include source2refine_production_links_limited.csv 

$include source2refine_corn_links_limited.csv 

$offdelim 

; 

 

*Fuel transport cost matrix 

Table        terminal_od_table(brfn, term, trans) 

$ondelim 

$include brfn2term_national.csv 

$offdelim 

; 

 

*Table of assigned cost for each terminal adding each type of biofuel on a per gallon basis 

($/gal) 

Table            terminal_cost(term, tech) 

$ondelim 

$include terminal_cost.csv 

$offdelim 

; 
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*Extract the base feedstock transport cost from table  

pbcost_base(plot, brfn, feed) = feedstock_od_table(plot,brfn, feed, 'total_cost'); 

 

*Extract fuel transportation cost from table 

btcost(brfn, term) = terminal_od_table(brfn, term, 'total_cost'); 

 

*Define any missing links as having a high cost 

btcost(brfn, term)$(btcost(brfn, term) lt 0.5) = 500; 

 

*Caluclate diesel use in 0.01 gge per ton-link 

diesel_use(plot, brfn, feed) = (feedstock_od_table(plot,brfn, feed, 'road_miles')*1084.5 + 

feedstock_od_table(plot,brfn, feed, 'rail_miles')*341 + feedstock_od_table(plot,brfn, feed, 

'water_miles')*510)/(1-feed_MC(feed))/116093; 

 

*Calculate the conversion yield for cellulosic technologies (gallons/ton) 

conv_eff(herb(feed), tech, 'herb') = sum(comp, biomass_composition(feed, comp)*tech_eff(tech, 

comp)*conv_factor(tech, comp))/1000; 

conv_eff(msw(feed), tech, 'msw') = sum(comp, biomass_composition(feed, comp)*tech_eff(tech, 

comp)*conv_factor(tech, comp))/1000; 

conv_eff(woody(feed), tech, 'woody') = sum(comp, biomass_composition(feed, 

comp)*tech_eff(tech, comp)*conv_factor(tech, comp))/1000; 

conv_eff(woody(feed), tech, 'pulp') = sum(comp, biomass_composition('pulpwood', 

comp)*tech_eff(tech, comp)*conv_factor(tech, comp))/1000; 

 

*Calculate the coproduct yields by feedstock type 

electricity(tech, feed) = elec_eff(tech)*biomass_composition(feed, 'HHV')/1.1023/.0036/1000; 

naptha(tech, feed) = naptha_eff(tech)*biomass_composition(feed, 

'HHV')/1.1023/0.1216089/1000; 

 

*Input potential locations and links from regional models to limit national locations 

Parameters       regional_locations(brfn, tech, class)   / 

$ondelim 

$include regional_locations_distinct.csv 

$include locations_corn.put 

$offdelim 

/; 

 

*Add brazilian ethanol at port cities 

regional_locations(ports, 'sugar_etoh', 'brazil') = 1; 

 

*Existing facility information (corn ethanol plant sizes) 

Parameters       remaining_cap(brfn, class, tech)        remaining capital for existing facilities 

                 existing_cap(brfn, class, tech)        existing capacity of ethanol facilities  / 

$ondelim 

$include existing_ethanol_capacity.csv 

$offdelim 

/ 

 

*Parameter that defines which technologies can use which feedstocks (0,1) 

                  feed_tech_match(feed, tech)     / 

$ondelim 

hec              lce             1 

ag_res           lce             1 
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ovw              lce             1 

forest           lce             1 

pulpwood         lce             1 

msw_wood         lce             1 

msw_yard         lce             1 

msw_paper        lce             1 

msw_dirty        lce             1 

msw_constr_demo  lce             1 

pulpwood         ft_diesel       1 

ovw              ft_diesel       1 

ag_res           ft_diesel       1 

forest           ft_diesel       1 

hec              ft_diesel       1 

msw_paper        ft_diesel       1 

msw_yard         ft_diesel       1 

msw_wood         ft_diesel       1 

msw_dirty        ft_diesel       1 

msw_constr_demo  ft_diesel       1 

msw_food         lce             1 

grease           fame            1 

grease           fahc            1 

seed_oils        fame            1 

seed_oils        fahc            1 

animal_fats      fame            1 

animal_fats      fahc            1 

corngrain        dry_mill        1 

corngrain        wet_mill        1 

sugar            sugar_etoh      1 

$offdelim 

/; 

*Give all existing facilities zero capital burden 

remaining_cap(brfn, class, tech) = 0; 

 

*Create subsets that will prevent the model from creating extra variables 

sets spar(plot, feed, brfn)  set used to eliminate unnecessary links 

     spar1(plot, feed, plev)       set used to eliminate unnecessary supplies 

         spar2(brfn, tech, class) 

         spar4(feed, brfn) 

         spar3(brfn, tech); 

 

 

*Only allow links that have cost in regional model-limited transport cost matrix or Brazilian 

ethanol to port cities 

spar(plot, feed, brfn)$(pbcost_base(plot, brfn, feed) gt 0.5 and smax(plev, supply(plot, feed, 

plev)) > 10)=yes; 

spar('B99999', 'sugar', ports) = yes; 

 

*Only consider feedstocks that are in the supply file and connected to the network 

spar1(plot, feed,  plev)$(supply(plot, feed, plev)*sum(brfn, pbcost_base(plot, brfn, feed)) gt 

10)=yes; 

spar1('B99999', 'sugar', plev)$(supply('B99999', 'sugar', plev) gt 0.01) = yes; 

 

*Only consider potential biorefineries that were chosen by the regional models 
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spar2(brfn, tech, class)$(regional_locations(brfn, tech, class) gt 0.5) = yes; 

spar3(brfn, tech)$(sum(class, regional_locations(brfn, tech, class)) gt 0.5) = yes; 

 

*Only consider supply point-biorefinery site combinations with a cost 

spar4(feed, brfn)$(sum((plot, plev), pbcost_base(plot, brfn, feed)) gt 0.5) = yes; 

 

*Assign missing links a very high cost (should be redundant with spar4) 

pbcost_base(plot, brfn, feed)$(pbcost_base(plot, brfn, feed) lt 0.05) = 200; 

 

*Model scaling - Fix the parameters to have units of $10M, 10M gallons, and 10k tons 

pbcost_base(plot, brfn, feed) = pbcost_base(plot, brfn, feed)/1000; 

supply(plot, feed, plev) = supply(plot, feed, plev)/10000; 

btcost(brfn, term) = btcost(brfn, term)/100; 

prices(plev) = prices(plev)/1000; 

 

*Make feedstock transport cost reflect fuel price of a given model run 

pbcost(plot, brfn, feed) = pbcost_base(plot, brfn, feed) + (fuel_price - 

3.55*gge_conversion('fahc'))*diesel_use(plot, brfn, feed)/1000; 

 

*Define model variables 

Positive Variables 

         biomass_consumed(feed, plot, plev)           annual quantity of feedstock consumed from 

plot "i" at price level "plev" 

         p2b(feed, plot, brfn)           annual quantity of biomass from plot "i" taken to biorefinery 

"k" 

         Qb(brfn, tech, class)                  quantity of fuel "b" produced at biofinery "k" 

         T(brfn, term, tech)  Fuel deliveries 

         x1(feed, brfn, tech, class)           quantity of feedstock consumed at each biorefinery  ; 

 

*Define economic variables that can be used as objective 

Variables 

         total_cost 

         profit; 

 

*Define binary biorefinery variable (build or don’t build) 

Binary variable 

         xi(brfn, tech, class); 

 

Equations 

         annual_cost                     total annual cost for biofuel supply 

         annual_profit 

         xi_constraint(brfn, tech, class)       constraint for integer variable xi 

         Qb_constraint(brfn, tech, class)       relates Qb to x1's 

 

*Constraints to set up biofuel networks 

         supply_constraint(plot, feed, plev)     limits biomass leaving a plot at a price level to 

what is available 

         plot_flow(feed, plot)                   constrains feedstock leaving plot to what is consumed 

         brfn_cap(feed, brfn)                   limits fuel production capcity at biorefinery to be less 

than or equal to the feedstock inputs 

         brfn_flow(brfn, tech)                   limits the fuel leaving the brfn to be less than the fuel 

produced 

         terminal_max(term)           upper bound on ethanol delivered to terminal 
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         terminal_max2(term)      upper bound on ft diesel delivered to terminal 

         terminal_max3(term)   upper bound on biodiesel delivered to terminal 

corn_limit    upper bound on corn ethanol 

         commodity_fraction(feed)       upper bound on commodity feedstock consumption 

; 

 

*Technology cost parameters 

Parameters 

         aa(tech, class)                         fixed cost component in linearized biorefinery costs      / 

$ondelim 

fame       virgin        0.18106 

fame       waste         0.09317 

fahc       virgin        1.3783 

$offdelim 

/ 

 

         bb(tech, class)                         feed capacity depedent component in linearized biorefinery 

costs      / 

$ondelim 

fame       virgin        0.06032 

fame       waste         0.1704 

fahc       virgin        0.068699 

$offdelim 

/; 

 

 

 

Parameters 

         ac(tech)                         fixed cost component in linearized biorefinery costs      / 

dry_mill         0.7504670 

wet_mill        12.4830588 

fame             0.72619 

fahc             7.1564 

lce              8.0794 

ft_diesel        7.9022/ 

 

         bc(tech)                         feed capacity depedent component in linearized biorefinery costs      

/ 

dry_mill         0.15337 

wet_mill         0.124006 

fame             0.13238 

fahc             0.3668 

lce              0.3517 

ft_diesel        0.55098/ 

         iir             /0.1/ 

         lifetime        /20/ 

         CRF 

 

         ao(tech)                         fixed cost component in linearized biorefinery costs      / 

dry_mill         0.0863381 

wet_mill         0 

fame             0.0576 

fahc             0.3936 
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lce              0.4476 

ft_diesel        0.3477/ 

 

         bo(tech)                         tech cap dependent component in linearized biorefinery costs    / 

dry_mill         0.01308 

wet_mill         -0.079505 

fame            0.06694 

fahc            0.008 

lce              0.03548 

ft_diesel        0.024243/ 

 

         MM(tech)                               big number used in constraints                                   

/ 

dry_mill        100 

wet_mill        400 

lce              131 

ft_diesel        172 

fame             32 

fahc             78.5 

sugar_etoh       200/ 

 

         a(brfn, tech, class) 

         b(brfn, tech, class) 

         M(brfn, tech, class); 

 

CRF = iir*(1+iir)**lifetime/((1+iir)**lifetime - 1); 

 

*Fixing the remaining capital parameter to reflect new and exisiting plants 

remaining_cap(brfn, class, tech) = 1; 

remaining_cap(brfn, class, 'dry_mill') = 0; 

remaining_cap(brfn, class, 'wet_mill') = 0; 

remaining_cap(brfn, 'new', 'wet_mill') = 1; 

remaining_cap(brfn, 'new', 'dry_mill') = 1; 

 

 

 

a(brfn, tech, class) = (CRF*ac(tech)*remaining_cap(brfn, class, tech) + ao(tech)); 

 

b(brfn, tech, class) = (CRF*bc(tech)*remaining_cap(brfn, class, tech) + bo(tech)); 

 

M(brfn, tech, class) = MM(tech); 

 

M(brfn, 'dry_mill', class) = existing_cap(brfn, class, 'dry_mill'); 

M(brfn, 'wet_mill', class) = existing_cap(brfn, class, 'wet_mill')*1.12; 

M(brfn, 'dry_mill', 'new') = MM('dry_mill'); 

M(brfn, 'wet_mill', 'new') = MM('wet_mill'); 

 

a(brfn, tech, 'virgin') = aa(tech, 'virgin'); 

b(brfn, tech, 'virgin') = bb(tech, 'virgin'); 

a(brfn, tech, 'waste') = aa(tech, 'waste'); 

b(brfn, tech, 'waste') = bb(tech, 'waste'); 

 

*Objective 
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annual_cost..            total_cost =e= sum((spar(plot, feed, brfn)), pbcost(plot, brfn, 

feed)*p2b(feed, plot, brfn)) + sum((spar1(plot, feed, plev)), 

prices(plev)*biomass_consumed(feed, plot, plev)) + sum((feed, brfn, tech, class), b(brfn, tech, 

class)*x1(feed, brfn, tech, class)) + sum((brfn, tech, class), a(brfn, tech, class)*xi(brfn, tech, 

class)) + sum((brfn, term, tech), T(brfn, term, tech)*(btcost(brfn,term)+ terminal_cost(term, 

tech))); 

 

annual_profit..          profit*100 =e= fuel_price*sum((brfn, term, tech), 

gge_conversion(tech)*T(brfn, term, tech))+ elec_price*sum((brfn, tech, class, feed), 

electricity(tech, feed)*x1(feed, brfn, tech, class)) + naptha_price*sum((brfn, tech, class, feed), 

naptha(tech, feed)*x1(feed, brfn, tech, class)) - total_cost; 

 

*Subject to: 

supply_constraint(plot, feed, plev)$spar1(plot, feed, plev)..     biomass_consumed(feed, plot, 

plev) =l= supply(plot, feed, plev); 

 

plot_flow(feed, plot)..        sum(spar1(plot, feed, plev), biomass_consumed(feed, plot, plev)) 

=g= sum(spar(plot, feed, brfn), p2b(feed, plot, brfn)); 

 

brfn_cap(feed, brfn)..        sum(spar(plot, feed, brfn), p2b(feed, plot, brfn))                                                                 

=g= sum((tech, class), x1(feed, brfn, tech, class)); 

 

brfn_flow(brfn, tech)..          sum(term, T(brfn, term, tech)) =l= sum(class, Qb(brfn, tech, 

class)); 

 

terminal_max(term)..       sum((brfn, etoh(tech)), T(brfn, term, tech)) =l= 

vmt_fraction(term)*Ethanol_demand; 

 

terminal_max2(term)..       sum((brfn, ftd(tech)), T(brfn, term, tech)) =l= 

vmt_fraction(term)*Diesel_demand*0.95; 

 

terminal_max3(term)..       sum((brfn, biodiesel(tech)), T(brfn, term, tech)) =l= 

vmt_fraction(term)*Diesel_demand*0.05; 

 

corn_limit..  sum((brfn, term), T(brfn, term, 'dry_mill')) + sum((brfn, term), T(brfn, 

term, 'wet_mill')) =l= 1500; 

 

commodity_fraction('seed_oils')..        sum((plot, plev), biomass_consumed('seed_oils', plot, 

plev)) =l= 383; 

 

xi_constraint(brfn, tech, class)..      sum(feed, x1(feed, brfn, tech, class)) =l= M(brfn, tech, 

class)*xi(brfn, tech, class); 

 

Qb_constraint(brfn, tech, class)..      Qb(brfn, tech, class) =l= sum(feed, x1(feed, brfn, tech, 

class)*conv_eff(feed, tech, class)); 

 

*Limit the upper bound of the binary variable to the regional locations  

xi.up(brfn, tech, class) = regional_locations(brfn, tech, class); 

x1.up(feed, brfn, tech, class) = feed_tech_match(feed, tech)*M(brfn, tech, class); 

 

*Set solver to CPLEX and set time and iteration limits for the model runs 

Option MIP = cplex; 

Option iterlim = 1000000; 
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Option reslim = 54000; 

 

*Define model as all equations 

Model USDA /ALL/; 

 

*Create CPLEX option file to control algorithm 

FILE opt "Cplex option file" / cplex.opt /; 

PUT opt; 

PUT 

'workmem 100000'/ 

'brdir 1'/ 

'cuts    2'/ 

'probe   3'/ 

'parallelmode -1'/ 

'threads=0'/; 

PUTCLOSE OPT; 

 

USDA.optfile=1; 

 

*Set the optimality criteria to a 0.5% relative gap  

USDA.OptCR = 0.005; 

 

*Define a looping set to create supply curve 

Set      run  /run1*run18/ ; 

 

alias  (class,class2); 

alias    (term, term2); 

 

*Define the fuel price for each model run 

Parameter fprice(run)   defines the fraction of the max demand for each run / 

run1  1.25 

run2  1.5 

run3  1.75 

run4  2 

run5  2.2 

run6  2.4 

run7  2.6 

run8  2.8 

run9  3 

run10  3.2 

run11  3.4 

run12  3.6 

run13  3.8 

run14  4 

run15  4.5 

run16  5 

run17  5.5 

run18  6/ 

 

  biogenic_mass(feed) 

         biogenic_energy(feed); 

 

*Define the biogenic mass and energy fractions for mixed MSW, everything else is 1 
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biogenic_mass(feed) = 1; 

biogenic_mass('msw_dirty') = 0.517; 

biogenic_energy(feed) = 1; 

biogenic_energy('msw_dirty') = 0.408; 

 

*Define a set for States to aggregate results to state level 

set      state           / 

$include state_list.csv 

/; 

 

*Indicate which state each terminal and biorefinery is in 

Parameter state_terminals(term, state)      / 

$ondelim 

$include terminal_fips.csv 

/ 

                 state_brfn(brfn, state)      / 

$ondelim 

$include state_brfn.csv 

/ 

*Yields of corn and energy crops for calculating land use 

         yield(plot, feed)       / 

$ondelim 

$include corngrain_yield.csv 

$include ornl_upland_yields_thinned.csv 

$offdelim 

/; 

 

*Create results output files 

file status_%scenario%; 

file results_%scenario%   ; 

file results_%scenario%_brfn; 

file results_%scenario%_feedstock_links; 

file state_results_%scenario%; 

file results_%scenario%_fuel_links; 

file results_%scenario%_biomass_consumed; 

file update; 

 

*Make results files CSV format 

results_%scenario%.pc=5; 

results_%scenario%_brfn.pc=5; 

results_%scenario%_feedstock_links.pc=5; 

state_results_%scenario%.pc=5; 

results_%scenario%_biomass_consumed.pc=5; 

 

*Increase width of files so that all results fit 

results_%scenario%_brfn.pw= 1500; 

results_%scenario%.pw=1500; 

 

*$onend turns on a coding option for using loop-do-endloop format 

$onend 

 

*Define headings for state specific results file 

put state_results_%scenario%; 
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put "scenario", "state_fips", "fuel_price ($/gge)", "pathway", "fuel_consumption (MGGEY)", 

"fuel_production (MGGEY)"/; 

 

*Define headings for feedstock delivery results file 

put results_%scenario%_feedstock_links; 

put "scenario", "fuel_price ($/gge)", "source_id", "dest_id", "type", "quant_tons"/; 

 

*Define headings for fuel delivery results file 

put results_%scenario%_fuel_links; 

put "scenario", "fuel_price ($/gge)", "source_id", "dest_id", "pathway", "fuel_deliveries 

(MGY)"/; 

 

*Define headings for feedstock consumption results file 

put results_%scenario%_biomass_consumed; 

put "scenario", "fuel_price ($/gge)", "source_id", "type", "price_id", "quantity (bdt/yr)"/; 

 

*Define headings for biorefinery results file 

put results_%scenario%_brfn; 

put "scenario", "fuel_price ($/gge)", "brfn_id", "technology", "class", "fuel_output (MGY)", 

"electricity output (GWh/yr)", "naptha (MGY)", "feedstock_cap (bdt/day)",  ; 

         loop (feed)     do 

         put feed.tl, 

         endloop; 

put "capital_cost (M$)", "annual_cost (M$/yr)", "annual_capital (M$/yr)", "O&M (M$/yr)", 

"feedstock_procurement (M$/yr)", "feedstock_transport (M$/yr)", "fuel_distribution (M$/yr)", 

"marginal_feedstock ($/GJ)", "mc ($/gge)", "ac ($/gge)", "max_trans_dist (miles)", 

"feed_truck_freight (ton-miles/yr)", "feed_rail_freight (ton-miles/yr)", "feed_barge_freight 

(ton-miles/yr)"/; 

 

*Define column headings for summary statistics file (two rows used)  

put results_%scenario%; 

put "scenario", "fuel_price", "total_biofuel", "electricity", "naptha",; 

         loop (tech, feed)$(feed_tech_match(feed, tech) gt 0.5)        do 

         put tech.tl, 

         endloop; 

         loop (tech)     do 

         put tech.tl, 

         endloop; 

         loop (feed)     do 

         put feed.tl, 

         endloop; 

put "annual_profit", "annual_cost",; 

         loop (tech) do 

         put tech.tl, 

         endloop; 

put "cellulosic truck freight", "cellulosic rail freight", "cellulosic barge freight", "corn truck 

freight", "corn rail freight", "corn barge freight", "lipid truck freight", "lipid rail freight", "lipid 

marine freight", "hec land", "corn land"/; 

put " ", "$/gge", "MGGEY", "GWh/yr", "MGY", 

         loop (tech, feed)$(feed_tech_match(feed, tech) gt 0.5)        do 

         put feed.tl, 

         endloop; 

         loop (tech)     do 
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         put "# brfns", 

         endloop; 

         loop (feed)     do 

         put "consumption ktons/yr", 

         endloop; 

put "billion $", "billion $",; 

         loop (tech) do 

         put "brfn capital (M$)", 

         endloop; 

put "million ton miles/yr", "million ton miles/yr", "million ton miles/yr", "million ton miles/yr", 

"million ton miles/yr)", "million ton miles/yr", "million ton miles/yr", "million ton miles/yr", 

"million ton miles/yr", "million acres", "milion acres"/; 

 

*Create parameters used for calculating outputs 

Parameter 

                 feedstock_consumption(feed) 

                 brfn_production(brfn, tech, class) 

                 brfn_consumption(brfn, tech, class, feed) 

                 links(plot, brfn, feed) 

                 term_links(brfn, term, tech) 

                 consumed_biomass(plot, feed, plev) 

                 quant 

                 quant_last_run 

                 brfn_quant(brfn, tech, class) 

                 state_consumption(state, tech) 

                 state_fraction(state, brfn, tech) 

                 state_by_pathway(state, tech, feed) 

                 state_production(state, tech, feed) 

                 brfn_count(tech) 

                 elect_quant 

                 naptha_quant 

                 fuel_by_pathway(tech, feed) 

                 total_annual_cost 

                 brfn_capital_total(tech) 

                 cellulosic_truck_freight 

                 cellulosic_rail_freight 

                 cellulosic_barge_freight 

                 corn_truck_freight 

                 corn_rail_freight 

                 corn_barge_freight 

                 lipid_truck_freight 

                 lipid_rail_freight 

                 lipid_marine_freight 

                 hec_lands 

                 corn_lands 

                 brfn_electricity(brfn, tech, class) 

                 brfn_naptha(brfn, tech, class) 

                 feedstock_cap(brfn, tech, class) 

                 capital_cost(brfn, tech, class) 

                 brfn_annual_cost(brfn, tech, class) 

                 annual_capital(brfn, tech, class) 

                 O_M(brfn, tech, class) 

                 feedstock_procurement(brfn, tech, class) 
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                 avg_feed_pc(plot, feed) 

                 feedstock_transport(brfn, tech, class) 

                 fuel_distribution(brfn, tech, class) 

                 marginal_feedstock(brfn, tech, class) 

                 mc(brfn, tech, class) 

                 avg_cost(brfn, tech, class) 

                 max_trans_dist(brfn, tech, class) 

                 feed_truck_freight(brfn, tech, class) 

                 feed_rail_freight(brfn, tech, class) 

                 feed_barge_freight(brfn, tech, class); 

 

*The model is looped over the set ‘run’ which defines the price points that are solved along 

the supply curve. 

 

Loop run do 

 

*Set a new fuel price for next solve statement. 

fuel_price = fprice(run); 

 

*Update naphtha credit to reflect new fuel price. 

naptha_price = fuel_price*.86; 

 

*Update transportation costs to reflect new fuel price. 

pbcost(plot, brfn, feed) = pbcost_base(plot, brfn, feed) + (fuel_price - 

3.55*gge_conversion('fahc'))*diesel_use(plot, brfn, feed)/1000; 

 

*Create an update file to let alert the user of the current run  

put update; 

put "Working on " run.tl / 

putclose; 

 

 

*Solve statement 

 

Solve USDA using MIP maximizing profit; 

 

*Calculate results for export 

 

*Calculate production for each biorefinery 

brfn_production(brfn, tech, class)$(regional_locations(brfn, tech, class) gt 0.5) = sum(feed, 

10*gge_conversion(tech)*conv_eff(feed, tech, class)*biogenic_energy(feed)*x1.l(feed, brfn, 

tech, class)); 

 

*Calculate total production 

quant = sum((spar2(brfn, tech, class)), brfn_production(brfn, tech, class)); 

 

*Calculate sumary statistics for each biorefinery 

feedstock_consumption(feed) = sum((brfn, tech, class), 10*biogenic_mass(feed)*x1.l(feed, 

brfn, tech, class)); 

brfn_quant(brfn, tech, class)$(brfn_production(brfn, tech, class) gt 0.1) = sum(feed, 

10*conv_eff(feed, tech, class)*biogenic_energy(feed)*x1.l(feed, brfn, tech, class)); 

brfn_consumption(brfn, tech, class, feed)$(brfn_production(brfn, tech, class) gt 0.1) = 

10*biogenic_mass(feed)*x1.l(feed, brfn, tech, class); 
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brfn_electricity(brfn, tech, class)$(brfn_production(brfn, tech, class) gt 0.1) = sum(feed, 

electricity(tech, feed)*x1.l(feed, brfn, tech, class)*10); 

brfn_naptha(brfn, tech, class)$(brfn_production(brfn, tech, class) gt 0.1) = sum(feed, 

naptha(tech, feed)*x1.l(feed, brfn, tech, class))*10; 

feedstock_cap(brfn, tech, class)$(brfn_production(brfn, tech, class) gt 0.1) = sum(feed, 

brfn_consumption(brfn, tech, class, feed))/365/.9; 

capital_cost(brfn, tech, class)$(brfn_production(brfn, tech, class) gt 0.1) =  10*(sum(feed, 

bc(tech)*x1.l(feed, brfn, tech, class)) + ac(tech)*xi.l(brfn, tech, class)); 

annual_capital(brfn, tech, class)$(brfn_production(brfn, tech, class) gt 0.1) = 

CRF*capital_cost(brfn, tech, class); 

O_M(brfn, tech, class)$(brfn_production(brfn, tech, class) gt 0.1) = 10*(sum(feed, 

bo(tech)*x1.l(feed, brfn, tech, class)) + ao(tech)*xi.l(brfn, tech, class)); 

avg_feed_pc(plot, feed)$(sum(plev, biomass_consumed.l(feed, plot, plev) gt 0.05)) = 

sum((plev), prices(plev)*biomass_consumed.l(feed, plot, plev))/sum((plev), 

biomass_consumed.l(feed, plot, plev)); 

feedstock_procurement(brfn, tech, class)$(brfn_production(brfn, tech, class) gt 0.1) = 

10*sum((feed)$(x1.l(feed, brfn, tech, class) gt 0.1), sum((plot)$(p2b.l(feed, plot, brfn) gt 0.1), 

avg_feed_pc(plot, feed)*p2b.l(feed, plot, brfn))); 

feedstock_transport(brfn, tech, class)$(brfn_production(brfn, tech, class) gt 0.1) = 

sum((feed)$(x1.l(feed, brfn, tech, class) gt 0.1), sum((plot), pbcost(plot, brfn, feed)*p2b.l(feed, 

plot, brfn)))*10; 

fuel_distribution(brfn, tech, class)$(brfn_production(brfn, tech, class) gt 0.1) = sum((term), 

T.l(brfn, term, tech)*(btcost(brfn,term)+ terminal_cost(term, tech)))/sum((term), T.l(brfn, 

term, tech))*Qb.l(brfn, tech, class)*10; 

brfn_annual_cost(brfn, tech, class)$(brfn_production(brfn, tech, class) gt 0.1) = 

annual_capital(brfn, tech, class) + O_M(brfn, tech, class) + feedstock_procurement(brfn, tech, 

class) + feedstock_transport(brfn, tech, class) + fuel_distribution(brfn, tech, class); 

marginal_feedstock(brfn, tech, class)$(brfn_production(brfn, tech, class) gt 0.1) = smax((plot, 

feed, plev)$(x1.l(feed, brfn, tech,class) gt 0.1 and p2b.l(feed, plot, brfn) gt 0.1 and 

biomass_consumed.l(feed, plot, plev) gt 0.1), 10*(prices(plev)*biomass_consumed.l(feed, plot, 

plev) + pbcost(plot, brfn, feed)*p2b.l(feed, plot, brfn))/conv_eff(feed, tech, 

class)/gge_conversion(tech)); 

mc(brfn, tech, class)$(brfn_production(brfn, tech, class) gt 0.1) = (annual_capital(brfn, tech, 

class) + O_M(brfn, tech, class))/brfn_production(brfn, tech, class) + marginal_feedstock(brfn, 

tech, class) + smax((term)$(T.l(brfn, term, tech) gt 0.1), (btcost(brfn,term)+ 

terminal_cost(term, tech)))/gge_conversion(tech); 

avg_cost(brfn, tech, class)$(brfn_production(brfn, tech, class) gt 0.1) = brfn_annual_cost(brfn, 

tech, class)/brfn_production(brfn, tech, class); 

max_trans_dist(brfn, tech, class)$(brfn_production(brfn, tech, class) gt 0.1) = smax((plot, 

feed)$(x1.l(feed, brfn, tech,class) gt 0.1 and p2b.l(feed, plot, brfn) gt 0.1), 

feedstock_od_table(plot, brfn, feed, 'road_miles') + feedstock_od_table(plot,brfn, feed, 

'rail_miles') + feedstock_od_table(plot,brfn, feed, 'water_miles')); 

feed_truck_freight(brfn, tech, class)$(brfn_production(brfn, tech, class) gt 0.1) = sum((plot, 

feed)$(x1.l(feed, brfn, tech,class) gt 0.1 and p2b.l(feed, plot, brfn) gt 0.1), 

feedstock_od_table(plot, brfn, feed, 'road_miles')*p2b.l(feed, plot, brfn)/100); 

feed_rail_freight(brfn, tech, class)$(brfn_production(brfn, tech, class) gt 0.1) = sum((plot, 

feed)$(x1.l(feed, brfn, tech,class) gt 0.1 and p2b.l(feed, plot, brfn) gt 0.1), 

feedstock_od_table(plot, brfn, feed, 'rail_miles')*p2b.l(feed, plot, brfn)/100); 

feed_barge_freight(brfn, tech, class)$(brfn_production(brfn, tech, class) gt 0.1) = sum((plot, 

feed)$(x1.l(feed, brfn, tech,class) gt 0.1 and p2b.l(feed, plot, brfn) gt 0.1), 

feedstock_od_table(plot, brfn, feed, 'water_miles')*p2b.l(feed, plot, brfn)/100); 

 

*Calculate summary statistics on a national level 
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feedstock_consumption(feed) = sum((brfn, tech, class), 10*biogenic_mass(feed)*x1.l(feed, 

brfn, tech, class)); 

brfn_count(tech) = sum((brfn, class), xi.l(brfn, tech, class)); 

elect_quant = sum((brfn, tech, class, feed), electricity(tech, feed)*x1.l(feed, brfn, tech, 

class)*10); 

naptha_quant = sum((brfn, tech, class, feed), naptha(tech, feed)*x1.l(feed, brfn, tech, 

class))*10; 

fuel_by_pathway(tech, feed) = sum((brfn, class), 10*gge_conversion(tech)*conv_eff(feed, tech, 

class)*biogenic_energy(feed)*x1.l(feed, brfn, tech, class)); 

 

total_annual_cost = annual_cost.l/100;#error in units 

 

*Calculate the capital cost of biorefineries by technology  

 

brfn_capital_total(tech) =  10*sum((feed, brfn, class), bc(tech)*x1.l(feed, brfn, tech, class)) + 

sum((brfn, class), ac(tech)*xi.l(brfn, tech, class)); 

 

*Calculate the sum of freight movements in the model 

 

cellulosic_truck_freight = sum((plot, brfn, bulk(feed)), feedstock_od_table(plot, brfn, feed, 

'road_miles')*p2b.l(feed, plot, brfn)/(1-feed_MC(feed)))/100; 

 

cellulosic_rail_freight = sum((plot, brfn, bulk(feed)), feedstock_od_table(plot, brfn, 

feed,'rail_miles')*p2b.l(feed, plot, brfn)/(1-feed_MC(feed)))/100; 

 

cellulosic_barge_freight = sum((plot, brfn, bulk(feed)), feedstock_od_table(plot, brfn, 

feed,'water_miles')*p2b.l(feed, plot, brfn)/(1-feed_MC(feed)))/100; 

 

corn_truck_freight = sum((plot, brfn), 

feedstock_od_table(plot,brfn,'corngrain','road_miles')*p2b.l('corngrain', plot, brfn)/(1-

feed_MC('corngrain')))/100; 

 

corn_rail_freight = sum((plot, brfn), 

feedstock_od_table(plot,brfn,'corngrain','rail_miles')*p2b.l('corngrain', plot, brfn)/(1-

feed_MC('corngrain')))/100; 

 

corn_barge_freight = sum((plot, brfn), 

feedstock_od_table(plot,brfn,'corngrain','water_miles')*p2b.l('corngrain', plot, brfn)/(1-

feed_MC('corngrain')))/100; 

 

lipid_truck_freight = sum((plot, brfn, liquid(feed)), feedstock_od_table(plot,brfn, feed, 

'road_miles')*p2b.l(feed, plot, brfn)*feed_density(feed))/100; 

 

lipid_rail_freight = sum((plot, brfn, liquid(feed)), feedstock_od_table(plot,brfn, 

feed,'rail_miles')*p2b.l(feed, plot, brfn)*feed_density(feed))/100; 

 

lipid_marine_freight = sum((plot, brfn, liquid(feed)), feedstock_od_table(plot, brfn, 

feed,'water_miles')*p2b.l(feed, plot, brfn)*feed_density(feed))/100; 

 

*Calculate resulting land use for corn and energy crop production 

 

hec_lands = sum((plot, plev), yield(plot, 'hec')*biomass_consumed.l('hec', plot, plev)); 
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corn_lands = sum((plot, plev), yield(plot, 'corngrain')*biomass_consumed.l('corngrain', plot, 

plev)); 

 

*Correct units for feedstock delieries and limit to biogenic fraction 

 

links(plot, brfn, feed)$(sum((tech, class), x1.l(feed, brfn, tech, class)) gt 0.05) =  sum(plev, 

biogenic_mass(feed)*p2b.l(feed, plot, brfn)*10000); 

 

*Calculate fuel deliveries on a MGGEY basis for only the biogenic portion of fuels 

 

term_links(brfn, term, tech)$(sum(class, Qb.l(brfn, tech, class) gt 0.001)) = T.l(brfn, term, 

tech)*10*sum((feed, class), gge_conversion(tech)*conv_eff(feed, tech, 

class)*biogenic_energy(feed)*x1.l(feed, brfn, tech, class))/sum(class, Qb.l(brfn, tech, class)); 

 

*Correct units for output of results. 

  

consumed_biomass(plot, feed, plev) = biomass_consumed.l(feed, plot, plev)*10000; 

 

*Calculate state specific statistics on optimal system 

 

state_consumption(state, tech) = sum((brfn, term), state_terminals(term, 

state)*term_links(brfn, term, tech)); 

 

state_fraction(state, brfn, tech)$(sum(class, Qb.l(brfn, tech, class)) gt 0.001) =  sum(term, 

state_terminals(term, state)*term_links(brfn, term, tech))/sum(term, term_links(brfn, term, 

tech)); 

 

state_by_pathway(state, tech, feed) = sum((brfn, class), state_fraction(state, brfn, 

tech)*10*gge_conversion(tech)*conv_eff(feed, tech, class)*biogenic_energy(feed)*x1.l(feed, 

brfn, tech, class)); 

 

state_production(state, tech, feed) = sum((brfn, class), state_brfn(brfn, 

state)*10*gge_conversion(tech)*conv_eff(feed, tech, class)*biogenic_energy(feed)*x1.l(feed, 

brfn, tech, class)); 

 

*Write files to save the results. 

 

*Model and solver status output file 

 

put status_%scenario%; 

put run.tl, "Model status", USDA.modelstat, "Solver status", USDA.solvestat/; 

 

*Output summary statistics of national results 

 

put results_%scenario%; 

put      "base", fuel_price, quant, elect_quant, naptha_quant, 

         loop (tech, feed)$(feed_tech_match(feed, tech) gt 0.5)        do 

         put fuel_by_pathway(tech, feed), 

         endloop; 

         loop (tech)     do 

         put brfn_count(tech), 

         endloop; 

         loop (feed)     do 
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         put feedstock_consumption(feed), 

         endloop; 

put profit.l, total_annual_cost, 

         loop (tech) do 

         put brfn_capital_total(tech), 

         endloop; 

put cellulosic_truck_freight, cellulosic_rail_freight, cellulosic_barge_freight, 

corn_truck_freight, corn_rail_freight, corn_barge_freight, lipid_truck_freight, 

lipid_rail_freight, lipid_marine_freight, hec_lands, corn_lands/; 

 

*Output description of each biorefinery 

 

put results_%scenario%_brfn; 

loop     (brfn, tech, class)$(brfn_production(brfn, tech, class) gt 0.5)         do 

put "base", fuel_price, brfn.tl, tech.tl, class.tl, brfn_quant(brfn, tech, class), 

brfn_electricity(brfn, tech, class), brfn_naptha(brfn, tech, class), feedstock_cap(brfn, tech, 

class), 

         loop (feed)     do 

         put brfn_consumption(brfn, tech, class, feed), 

         endloop 

put capital_cost(brfn, tech, class), brfn_annual_cost(brfn, tech, class), annual_capital(brfn, 

tech, class), O_M(brfn, tech, class), feedstock_procurement(brfn, tech, class), 

feedstock_transport(brfn, tech, class), fuel_distribution(brfn, tech, class), 

marginal_feedstock(brfn, tech, class), mc(brfn, tech, class), avg_cost(brfn, tech, class), 

max_trans_dist(brfn, tech, class), feed_truck_freight(brfn, tech, class), feed_rail_freight(brfn, 

tech, class), feed_barge_freight(brfn, tech, class)/ 

endloop; 

 

*Output the resulting feedstock deliveries between plots and biorefinieries 

 

put results_%scenario%_feedstock_links; 

loop (plot, brfn, feed)$(links(plot, brfn, feed) gt 0.01) do 

         put "base", fuel_price, plot.tl, brfn.tl, feed.tl, links(plot, brfn, feed)/ 

         endloop; 

 

*Output the resulting fuel deliveries between biorefineries and terminals  

put results_%scenario%_fuel_links; 

loop (brfn, term, tech)$(term_links(brfn, term, tech) gt 0.01) do 

         put "base", fuel_price, brfn.tl, term.tl, tech.tl, term_links(brfn, term, tech) / 

         endloop; 

 

put results_%scenario%_biomass_consumed; 

loop (plot, feed, plev)$(biomass_consumed.l(feed, plot, plev) gt 0.05)  do 

         put "base", fuel_price, plot.tl, feed.tl, plev.tl, consumed_biomass(plot, feed, plev)/ 

         endloop; 

 

put state_results_%scenario%; 

loop (state, tech, feed)        do 

         put     "base", state.tl, fuel_price, tech.tl, feed.tl, state_by_pathway(state, tech, feed), 

state_production(state, tech, feed)/ 

         endloop; 

endloop; 
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Sample regional model for woody feedstocks in the west  

$ontext 

This is the template for regional production models. The msw, lipid and corn models are 

similiarly designed.  The herbaceous feedstock model has more scenarios run. 

$offtext 

 

*Set parameters that define the regional model 

$set scenario baseline 

$set region   west 

$set fdstk    woody 

 

*Turn off GAMS default output 

Option   Solprint = off; 

Option   Limrow = 0; 

Option   Limcol = 0; 

 

 

*Create set indices for all feedstock plots, biorefinery sites, feedstocks, price levels, and 

technologies 

sets      plot   biomass source locations  / 

$include plot_list_all.csv 

/ 

         brfn    biorefinery sites / 

$include brfn_all.csv 

/ 

         feed    /ag_res, hec, forest, ovw, pulpwood, msw_constr_demo, msw_wood, msw_paper, 

msw_yard, msw_food, msw_dirty, corngrain, animal_fats, grease, seed_oils/ 

         class   feedstock classification        /herb, woody, msw, new, exist1*exist6, virgin, waste/ 

         comp    feedstock composition component /cellulose, hemicellulose, lignin, HHV/ 

         plev    / 

$include price_list_all.csv 

/ 

         tech         tech type   /lce, ft_diesel, fame, fahc, dry_mill, wet_mill/ 

         trans        transportation mode /total_cost, road_miles, rail_miles, water_miles/; 

 

 

*Create subsets for feedstock, fuels and the region of interest 

sets     bulk(feed)      /ag_res, hec, forest, ovw, pulpwood, msw_wood, msw_constr_demo, 

msw_paper, msw_yard, msw_food, msw_dirty, corngrain/ 

        woodyf(feed)     /forest, ovw, pulpwood, msw_wood, msw_constr_demo/ 

        herbf(feed)      /ag_res, hec/ 

        mswf(feed)       /msw_paper, msw_yard, msw_food, msw_dirty/ 

         liquid(feed)    / animal_fats, grease, seed_oils/ 

         etoh(tech)            /lce, dry_mill, wet_mill/ 

         ftd(tech)       /ft_diesel/ 

         biodiesel(tech) /fame, fahc/ 

        west(brfn)      / 

$include brfn_west.csv 

/ 

        west_plot(plot); 

 

alias (tech, tech2); 
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Parameters       pbcost(plot, brfn, feed)        '$ per ton for feedstock transport' 

  pbcost_base(plot, brfn, feed)        '$ per ton for feedstock transport' 

                 pbdist(plot, brfn)              'distance traveled on link' 

         pbcost_dry(plot, brfn) '$ per wet ton' 

         pbcost_liq(plot,brfn)   '$ per 100 gallon' 

*Import all supplies for baseline scenario 

        supply(plot, feed, plev) 'matrix of supply quantities' / 

$ondelim 

$include ag_residues_38.csv 

$include ovw_supplies.csv 

$include hec_base.csv 

$include msw_supply.csv 

$include forest_nofed.csv 

$include lipids.csv 

$include supply_corn.csv 

$offdelim 

/ 

*Make a parameter of prices that is feedstock specific so that the prices can be changed by a 

% as a sensitivity 

         prices_feed(plev, feed) 

        prices(plev)    'values for price levels'    / 

$ondelim 

$include prices_all.csv 

$offdelim 

/ 

 

         feed_MC(feed)                   moisture content of dry biomass feedstocks   / 

ag_res           0.15 

hec              0.15 

msw_paper        0.1 

msw_wood         0.12 

msw_yard         0.465 

msw_dirty        0.186 

msw_food         0.7 

ovw              0.35 

forest           0.5 

pulpwood         0.5 

/ 

         feed_density(feed)                   transfers cost per 100 gallons to costs per ton  / 

grease           3.085 

seed_oils        2.588 

animal_fats      3.0 

/ 

 

         conv_eff(feed, tech, class)            conversion efficiency for converting feedstock to fuel      

/ 

$ondelim 

$include conv_eff_with_class.csv 

$offdelim 

/ 
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         conv_factor(tech, comp)    converts conversion efficiencies into gallons product per ton 

feedstock             / 

lce.hemicellulose    176.9 

lce.cellulose        172.85 

ft_diesel.HHV        6.84/ 

 

*Define baseline technology assumptions 

         tech_eff(tech, comp)       conversion efficiency for cellulosic technologies     / 

lce.hemicellulose    0.765 

lce.cellulose        0.72 

ft_diesel.HHV        0.387/ 

 

         electricity(tech, feed)               electricity produced per ton of biomass 

         elec_eff(tech)          / 

lce              0.0366 

ft_diesel        0.0366/ 

 

         naptha(tech, feed)                    naptha produced per ton of biomass 

         naptha_eff(tech)                                  / 

ft_diesel        0.072/ 

         gge_conversion(tech)          converts fuel quanitities into equivalent gallons of gasoline   

/ 

lce              0.657 

dry_mill         0.657 

wet_mill         0.657 

ft_diesel        1.065 

fame             1.03 

fahc             1.065/ 

 

*Define the initial fuel price of $3/gge 

         fuel_price              fuel price for each model run                                  /3/ 

         naptha_price 

 

         elec_price              price of electricity in dollars per kWh                         /0.05/ 

 

         diesel_use(plot, brfn, feed); 

 

naptha_price = 0.86*fuel_price; 

 

 

Table    biomass_composition(feed, comp) 

$ondelim 

$include feedstock_composition.csv 

$offdelim 

; 

 

 

Table    feedstock_od_table(plot, brfn, trans) 

$ondelim 

$include source2refine_lceft_lt45.csv 

$offdelim 

; 
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Table    liq_feedstock_od_table(plot, brfn, trans) 

$ondelim 

$include source2refine_lipid.csv 

$offdelim 

; 

 

*Limit the transportation costs extracted frm the table to only include the biorefineries 

within the region 

pbcost_dry(plot, %region%) = feedstock_od_table(plot, %region%,'total_cost'); 

pbcost_liq(plot,%region%)= liq_feedstock_od_table(plot,%region%,'total_cost'); 

pbdist(plot, %region%) =  feedstock_od_table(plot,%region%,'road_miles') + 

feedstock_od_table(plot,%region%,'rail_miles') + 

feedstock_od_table(plot,%region%,'water_miles'); 

 

*Caluclate diesel use in 0.01 gge per ton-link 

diesel_use(plot, brfn, feed) = (feedstock_od_table(plot,brfn,'road_miles')*1084.5 + 

feedstock_od_table(plot,brfn,'rail_miles')*341 + 

feedstock_od_table(plot,brfn,'water_miles')*510)/(1-feed_MC(feed))/116093; 

 

*Calculate the fuel products and coproducts per ton of cellulosic biomass 

conv_eff(herbf(feed), tech, 'herb') = sum(comp, biomass_composition(feed, 

comp)*tech_eff(tech, comp)*conv_factor(tech, comp))/1000; 

 

conv_eff(mswf(feed), tech, 'msw') = sum(comp, biomass_composition(feed, 

comp)*tech_eff(tech, comp)*conv_factor(tech, comp))/1000; 

 

conv_eff(woodyf(feed), tech, 'woody') = sum(comp, biomass_composition(feed, 

comp)*tech_eff(tech, comp)*conv_factor(tech, comp))/1000; 

 

electricity(tech, feed) = elec_eff(tech)*biomass_composition(feed, 'HHV')/1.1023/.0036/1000; 

 

naptha(tech, feed) = naptha_eff(tech)*biomass_composition(feed, 

'HHV')/1.1023/0.1216089/1000; 

*Existing facility information 

 

Parameters       remaining_cap(brfn, class, tech)        remaining capital for existing facilities 

                 existing_cap(brfn, class, tech)        existing capacity of ethanol facilities  / 

$ondelim 

$include existing_ethanol_capacity.csv 

$offdelim 

/; 

 

*Find the regional supply points by find those supplies with less than $45/wet ton cost to a 

biorefinery in the region    

%region%_plot(plot)$(smin(%region%, pbcost_dry(plot, %region%)) lt 45 )=yes; 

 

sets spar(plot, %fdstk%f, %region%)  set used to eliminate unnecessary links 

     spar1(plot, %fdstk%f, plev)       set used to eliminate unnecessary supplies 

        spar2(%fdstk%f, %region%)         set used to define feedstock-brfn combinations that 

have a linkage; 

spar(%region%_plot, %fdstk%f, %region%)$(sum(plev, supply(%region%_plot, %fdstk%f, 

plev)) gt 0 and pbcost_dry(%region%_plot, %region%) gt 0 and pbcost_dry(%region%_plot, 

%region%) lt 45 and pbdist(%region%_plot, %region%) lt 1000)=yes; 
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spar1(%region%_plot, %fdstk%f,  plev)$(supply(%region%_plot, %fdstk%f, plev))=yes; 

spar2(%fdstk%f, %region%)$(sum((%region%_plot, plev), supply(%region%_plot, %fdstk%f, 

plev)*pbcost_dry(%region%_plot, %region%)) gt 0) = yes; 

 

 

 

*Assign liquid transportation costs to oils and greases and dry bulk cost to cellulosic 

feedstocks and corn 

pbcost_base(%region%_plot, %region%, %fdstk%f)$(bulk(%fdstk%f)) = 

pbcost_dry(%region%_plot, %region%)/(1-feed_MC(%fdstk%f)); 

 

pbcost_base(%region%_plot, %region%, %fdstk%f)$(liquid(%fdstk%f)) = 

pbcost_liq(%region%_plot, %region%)*feed_density(%fdstk%f); 

 

*pbcost(plot, brfn, feed)$(sum(plev, supply(plot, feed, plev)) lt 106) = pbcostR_dry(plot, 

brfn)/(1-feed_MC(feed)); 

 

 

 

*Assign missing links a very high cost 

pbcost_base(%region%_plot, %region%, %fdstk%f)$(pbcost_base(%region%_plot, %region%, 

%fdstk%f) lt 0.05) = 200; 

 

*Model scaling - Fix the parameters to have units of $10M, 10M gallons, and 10k tons 

 

pbcost_base(%region%_plot, %region%, %fdstk%f) = pbcost_base(%region%_plot, %region%, 

%fdstk%f)/1000; 

supply(%region%_plot, %fdstk%f, plev) = supply(%region%_plot, %fdstk%f, plev)/10000; 

prices(plev) = prices(plev)/1000; 

prices_feed(plev, feed) = prices(plev); 

 

pbcost(plot, brfn, feed) = pbcost_base(plot, brfn, feed) + (fuel_price - 

3.55*gge_conversion('fahc'))*diesel_use(plot, brfn, feed)/1000; 

 

Positive Variables 

         biomass_consumed(%fdstk%f, plot, plev)           annual quantity of feedstock consumed 

from plot "i" at price level "plev" 

         p2b(%fdstk%f, plot, %region%)           annual quantity of biomass from plot "i" taken to 

biorefinery "k" 

         Qb(%region%, tech, class)                  quantity of fuel "b" produced at biofinery "k" 

         x1(%fdstk%f, %region%, tech, class)                  linearizing variables for biorefinery 

costs; 

 

Variables 

         total_cost                      objective variable 

         profit; 

 

Binary variable 

         xi(%region%, tech, class); 

 

Equations 

         annual_cost                     total annual cost for biofuel supply 

         annual_profit 
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         xi_constraint(%region%, tech, class)       constraint for integer variable xi 

         Qb_constraint(%region%, tech, class)       relates Qb to x1's 

 

 

 

*Constraints to set up biofuel networks 

         supply_constraint(%fdstk%f, plot, plev)     limits biomass leaving a plot at a price level 

to what is available 

         plot_flow(%fdstk%f, plot)                   constrains feedstock leaving plot to what is 

consumed 

         brfn_cap(%fdstk%f, %region%)                   limits fuel production capcity at biorefinery to 

be less than or equal to the feedstock inputs 

; 

 

Parameters 

         aa(tech, class)                         fixed cost component in linearized biorefinery costs      / 

$ondelim 

fame       virgin        0.18106 

fame       waste         0.09317 

fahc       virgin        1.3783 

$offdelim 

/ 

 

         bb(tech, class)                         feed capacity depedent component in linearized biorefinery 

costs      / 

$ondelim 

fame       virgin        0.06032 

fame       waste         0.1704 

fahc       virgin        0.068699 

$offdelim 

/ 

 

         feed_tech_match(feed, tech)     / 

$ondelim 

hec              lce             1 

ag_res           lce             1 

ovw              lce             1 

forest           lce             1 

pulpwood         lce             1 

msw_wood         lce             1 

msw_yard         lce             1 

msw_paper        lce             1 

msw_dirty        lce             1 

msw_constr_demo  lce             1 

pulpwood         ft_diesel       1 

ovw              ft_diesel       1 

ag_res           ft_diesel       1 

forest           ft_diesel       1 

hec              ft_diesel       1 

msw_paper        ft_diesel       1 

msw_yard         ft_diesel       1 

msw_wood         ft_diesel       1 

msw_dirty        ft_diesel       1 
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msw_constr_demo  ft_diesel       1 

msw_food         lce             1 

grease           fame            1 

grease           fahc            1 

seed_oils        fame            1 

seed_oils        fahc            1 

animal_fats      fame            1 

animal_fats      fahc            1 

corngrain        dry_mill        1 

corngrain        wet_mill        1 

$offdelim 

/; 

 

Parameters 

         ac(tech)                         fixed cost component in linearized biorefinery costs      / 

dry_mill         0.7504670 

wet_mill        12.4830588 

lce              8.0794 

ft_diesel        7.9022/ 

         bc(tech)                         feed capacity depedent component in linearized biorefinery costs      

/ 

dry_mill         0.15337 

wet_mill         0.124006 

lce              0.3517 

ft_diesel        0.55098/ 

 

         iir             /0.1/ 

        lifetime        /20/ 

         CRF 

 

         ao(tech)                         fixed cost component in linearized biorefinery costs      / 

dry_mill         0.0863381 

wet_mill         0 

lce              0.4476 

ft_diesel        0.3477/ 

 

         bo(tech)                         tech cap dependent component in linearized biorefinery costs    / 

dry_mill         0.01308 

wet_mill         -0.079505 

lce              0.03548 

ft_diesel        0.024243/ 

 

         MM(tech)                               big number used in constraints                                  / 

dry_mill        100 

wet_mill        400 

lce              131 

ft_diesel        172 

fame             32 

fahc             78.5/ 

 

         a(brfn, tech, class) 

         b(brfn, tech, class) 

         M(brfn, tech, class); 
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CRF = iir*(1+iir)**lifetime/((1+iir)**lifetime - 1); 

 

remaining_cap(brfn, class, tech) = 1; 

remaining_cap(brfn, class, 'dry_mill') = 0; 

remaining_cap(brfn, class, 'wet_mill') = 0; 

remaining_cap(brfn, 'new', 'wet_mill') = 1; 

remaining_cap(brfn, 'new', 'dry_mill') = 1; 

 

a(brfn, tech, class) = (CRF*ac(tech)*remaining_cap(brfn, class, tech) + ao(tech)); 

b(brfn, tech, class) = (CRF*bc(tech)*remaining_cap(brfn, class, tech) + bo(tech)); 

M(brfn, tech, class) = MM(tech); 

 

M(brfn, 'dry_mill', class) = existing_cap(brfn, class, 'dry_mill'); 

M(brfn, 'wet_mill', class) = existing_cap(brfn, class, 'wet_mill')*1.12; 

M(brfn, 'dry_mill', 'new') = MM('dry_mill'); 

M(brfn, 'wet_mill', 'new') = MM('wet_mill'); 

 

a(brfn, tech, 'virgin') = aa(tech, 'virgin'); 

b(brfn, tech, 'virgin') = bb(tech, 'virgin'); 

a(brfn, tech, 'waste') = aa(tech, 'waste'); 

b(brfn, tech, 'waste') = bb(tech, 'waste'); 

 

*Objective 

annual_cost..            total_cost =e= sum((spar(%region%_plot, %fdstk%f, %region%)), 

pbcost(%region%_plot, %region%, %fdstk%f)*p2b(%fdstk%f, %region%_plot, %region%)) + 

sum((spar1(%region%_plot, %fdstk%f, plev)), prices_feed(plev, 

%fdstk%f)*biomass_consumed(%fdstk%f, %region%_plot, plev)) + sum((%fdstk%f, %region%, 

tech, class), b(%region%, tech, class)*x1(%fdstk%f, %region%, tech, class)) + sum((%region%, 

tech, class), a(%region%, tech, class)*xi(%region%, tech, class)); 

 

annual_profit..          10*profit =e= fuel_price*sum((%region%, tech, class), 

gge_conversion(tech)*Qb(%region%, tech, class))+ elec_price*sum((%fdstk%f, %region%, tech, 

class), electricity(tech, %fdstk%f)*x1(%fdstk%f, %region%, tech, class)) + 

naptha_price*sum((%fdstk%f, %region%, tech, class), naptha(tech, %fdstk%f)*x1(%fdstk%f, 

%region%, tech, class)) - total_cost; 

 

*Subject to: 

supply_constraint(%fdstk%f, %region%_plot, plev)$spar1(%region%_plot, %fdstk%f, plev)..     

biomass_consumed(%fdstk%f, %region%_plot, plev) =l= supply(%region%_plot, %fdstk%f, 

plev); 

 

plot_flow(%fdstk%f, %region%_plot)..        sum(spar1(%region%_plot, %fdstk%f, plev), 

biomass_consumed(%fdstk%f, %region%_plot, plev)) =g= sum(spar(%region%_plot, %fdstk%f, 

%region%), p2b(%fdstk%f, %region%_plot, %region%)); 

 

brfn_cap(%fdstk%f, %region%)..        sum(spar(%region%_plot, %fdstk%f, %region%), 

p2b(%fdstk%f, %region%_plot, %region%)) =g= sum((tech, class), x1(%fdstk%f, %region%, 

tech, class)); 

 

xi_constraint(%region%, tech, class)..      sum(%fdstk%f, x1(%fdstk%f, %region%, tech, class)) 

=l= M(%region%, tech, class)*xi(%region%, tech, class); 
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Qb_constraint(%region%, tech, class)..      Qb(%region%, tech, class) =l= sum(%fdstk%f, 

x1(%fdstk%f, %region%, tech, class)*conv_eff(%fdstk%f, tech, class)); 

 

biomass_consumed('seed_oils', %region%_plot, plev)) =l= 383; 

 

x1.up(%fdstk%f, %region%, tech, class) = feed_tech_match(%fdstk%f, tech)*M(%region%, 

tech, class); 

 

 

Option MIP = cplex; 

Option iterlim = 1000000; 

Option reslim = 54000; 

 

 

Model USDA /ALL/; 

 

 

FILE opt "Cplex option file" / cplex.opt /; 

PUT opt; 

PUT 

'workmem 10000'/ 

'brdir 1'/ 

'cuts    2'/ 

'polishaftertime 36000'/ 

'probe   3'/ 

'parallelmode -1'/ 

'threads=0'/; 

PUTCLOSE OPT; 

 

USDA.optfile=1; 

USDA.OptCR = 0.005; 

 

*Solve with baseline assumptions 

Solve USDA using MIP maximizing profit; 

 

 

*Define parameters to save the optimally designed system 

Parameter        locations(brfn, tech, class) 

                 links(feed, plot, brfn); 

 

*Save baseline woody @ $3/gge 

links(%fdstk%f, plot, %region%)$(p2b.l(%fdstk%f, plot, %region%) gt .1) = 1; 

locations(%region%, tech, class)$(Qb.l(%region%, tech, class)) =1; 

 

*Change fuel price to $6/gge 

fuel_price = 6; 

 

*Update parameters 

naptha_price = 0.86*fuel_price; 

pbcost(plot, brfn, feed) = pbcost(plot, brfn, feed) + (fuel_price - 

3.55*gge_conversion('fahc'))*diesel_use(plot, brfn, feed)/1000; 
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*Solve using baseline assumptions @ $6/gge 

Solve USDA using MIP maximizing profit; 

 

*Save baseline woody @ $6/gge 

links(%fdstk%f, plot, %region%)$(p2b.l(%fdstk%f, plot, %region%) gt .1) = 1; 

locations(%region%, tech, class)$(Qb.l(%region%, tech, class)) =1; 

 

*Remove cellulosic ethanol from consideration 

x1.up(%fdstk%f, %region%, 'lce', class)= 0; 

 

*Resolve @ $6/gge 

Solve USDA using MIP maximizing profit; 

 

*Save 

links(%fdstk%f, plot, %region%)$(p2b.l(%fdstk%f, plot, %region%) gt .1) = 1; 

locations(%region%, tech, class)$(Qb.l(%region%, tech, class)) =1; 

 

*Change fuel price 

fuel_price = 3; 

 

*Update parameters 

naptha_price = 0.86*fuel_price; 

pbcost(plot, brfn, feed) = pbcost_base(plot, brfn, feed) + (fuel_price - 

3.55*gge_conversion('fahc'))*diesel_use(plot, brfn, feed)/1000; 

 

*Resolve @ $3/gge 

Solve USDA using MIP maximizing profit; 

 

*Save 

links(%fdstk%f, plot, %region%)$(p2b.l(%fdstk%f, plot, %region%) gt .1) = 1; 

locations(%region%, tech, class)$(Qb.l(%region%, tech, class)) =1; 

 

*Reinstate cellulosic ethanol and remove FTD from consideration 

x1.up(%fdstk%f, %region%, tech, class) = feed_tech_match(%fdstk%f, tech)*M(%region%, 

tech, class); 

x1.up(%fdstk%f, %region%, 'ft_diesel', class) = 0; 

 

*Solve @ $3/gge 

Solve USDA using MIP maximizing profit; 

 

*Save 

links(%fdstk%f, plot, %region%)$(p2b.l(%fdstk%f, plot, %region%) gt .1) = 1; 

locations(%region%, tech, class)$(Qb.l(%region%, tech, class)) =1; 

 

*Change fuel price 

fuel_price = 6; 

 

*Update parameters 

naptha_price = 0.86*fuel_price; 

pbcost(plot, brfn, feed) = pbcost_base(plot, brfn, feed) + (fuel_price - 

3.55*gge_conversion('fahc'))*diesel_use(plot, brfn, feed)/1000; 
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*Solve @ $6/gge 

Solve USDA using MIP maximizing profit; 

 

*Save 

links(%fdstk%f, plot, %region%)$(p2b.l(%fdstk%f, plot, %region%) gt .1) = 1; 

locations(%region%, tech, class)$(Qb.l(%region%, tech, class)) =1; 

 

*Change cellulosic ethanol technology to optimistic case and reinstate FTD 

a(brfn, 'lce', class) = 0.73497; 

b(brfn, 'lce', class) = 0.0529116; 

M(brfn, 'lce', class) = 136; 

 

tech_eff('lce', 'hemicellulose') = 0.765; 

tech_eff('lce', 'cellulose') = 0.799; 

elec_eff('lce') = 0.0338; 

 

conv_eff(herbf(feed), tech, 'herb') = sum(comp, biomass_composition(feed, 

comp)*tech_eff(tech, comp)*conv_factor(tech, comp))/1000; 

conv_eff(mswf(feed), tech, 'msw') = sum(comp, biomass_composition(feed, 

comp)*tech_eff(tech, comp)*conv_factor(tech, comp))/1000; 

conv_eff(woodyf(feed), tech, 'woody') = sum(comp, biomass_composition(feed, 

comp)*tech_eff(tech, comp)*conv_factor(tech, comp))/1000; 

 

electricity(tech, feed) = elec_eff(tech)*biomass_composition(feed, 'HHV')/1.1023/.0036/1000; 

naptha(tech, feed) = naptha_eff(tech)*biomass_composition(feed, 

'HHV')/1.1023/0.1216089/1000; 

 

x1.up(%fdstk%f, %region%, tech, class) = feed_tech_match(%fdstk%f, tech)*M(%region%, 

tech, class); 

 

*Solve @ $6/gge 

Solve USDA using MIP maximizing profit; 

 

*Save solution 

links(%fdstk%f, plot, %region%)$(p2b.l(%fdstk%f, plot, %region%) gt .1) = 1; 

locations(%region%, tech, class)$(Qb.l(%region%, tech, class)) =1; 

 

*Change fuel price 

fuel_price = 3; 

 

*Update parameters 

naptha_price = 0.86*fuel_price; 

pbcost(plot, brfn, feed) = pbcost_base(plot, brfn, feed) + (fuel_price - 

3.55*gge_conversion('fahc'))*diesel_use(plot, brfn, feed)/1000; 

 

*Solve @ $3/gge 

Solve USDA using MIP maximizing profit; 

 

*Save solution 

links(%fdstk%f, plot, %region%)$(p2b.l(%fdstk%f, plot, %region%) gt .1) = 1; 

locations(%region%, tech, class)$(Qb.l(%region%, tech, class)) =1; 
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*Convert all technologies to pessimistic scenario 

a(brfn, 'lce', class) = 1.60052; 

b(brfn, 'lce', class) = 0.0997695; 

M(brfn, 'lce', class) = 115; 

 

a(brfn, 'ft_diesel', class) = 3.016148; 

b(brfn, 'ft_diesel', class) = 0.15408036; 

M(brfn, 'ft_diesel', class) = 136; 

 

tech_eff('lce', 'hemicellulose') = 0.714; 

tech_eff('lce', 'cellulose') = 0.7; 

elec_eff('lce') = 0.05226; 

 

tech_eff('ft_diesel', 'HHV') = 0.31776; 

elec_eff('ft_diesel') = 0.1641; 

naptha_eff('ft_diesel') = 0.1254; 

 

conv_eff(herbf(feed), tech, 'herb') = sum(comp, biomass_composition(feed, 

comp)*tech_eff(tech, comp)*conv_factor(tech, comp))/1000; 

conv_eff(mswf(feed), tech, 'msw') = sum(comp, biomass_composition(feed, 

comp)*tech_eff(tech, comp)*conv_factor(tech, comp))/1000; 

conv_eff(woodyf(feed), tech, 'woody') = sum(comp, biomass_composition(feed, 

comp)*tech_eff(tech, comp)*conv_factor(tech, comp))/1000; 

electricity(tech, feed) = elec_eff(tech)*biomass_composition(feed, 'HHV')/1.1023/.0036/1000; 

naptha(tech, feed) = naptha_eff(tech)*biomass_composition(feed, 

'HHV')/1.1023/0.1216089/1000; 

 

*Change fuel price  

fuel_price = 6; 

 

*Update parameters 

naptha_price = 0.86*fuel_price; 

pbcost(plot, brfn, feed) = pbcost_base(plot, brfn, feed) + (fuel_price - 

3.55*gge_conversion('fahc'))*diesel_use(plot, brfn, feed)/1000; 

 

*Solve 

Solve USDA using MIP maximizing profit; 

 

*Save solution 

links(%fdstk%f, plot, %region%)$(p2b.l(%fdstk%f, plot, %region%) gt .1) = 1; 

locations(%region%, tech, class)$(Qb.l(%region%, tech, class)) =1; 

 

*Remove FTD from consideration 

x1.up(%fdstk%f, %region%, 'ft_diesel', class) = 0; 

 

*Solve 

Solve USDA using MIP maximizing profit; 

 

*Save solution 

links(%fdstk%f, plot, %region%)$(p2b.l(%fdstk%f, plot, %region%) gt .1) = 1; 

locations(%region%, tech, class)$(Qb.l(%region%, tech, class)) =1; 
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*Return to baseline technology characterization 

a(brfn, tech, class) = (CRF*ac(tech)*remaining_cap(brfn, class, tech) + ao(tech)); 

b(brfn, tech, class) = (CRF*bc(tech)*remaining_cap(brfn, class, tech) + bo(tech)); 

M(brfn, tech, class) = MM(tech); 

 

tech_eff('lce', 'hemicellulose') = 0.765; 

tech_eff('lce', 'cellulose') = 0.72; 

elec_eff('lce') = 0.0366; 

 

tech_eff('ft_diesel', 'HHV') = 0.387; 

elec_eff('ft_diesel') = 0.0366; 

naptha_eff('ft_diesel') = 0.072; 

 

 

 

conv_eff(herbf(feed), tech, 'herb') = sum(comp, biomass_composition(feed, 

comp)*tech_eff(tech, comp)*conv_factor(tech, comp))/1000; 

conv_eff(mswf(feed), tech, 'msw') = sum(comp, biomass_composition(feed, 

comp)*tech_eff(tech, comp)*conv_factor(tech, comp))/1000; 

conv_eff(woodyf(feed), tech, 'woody') = sum(comp, biomass_composition(feed, 

comp)*tech_eff(tech, comp)*conv_factor(tech, comp))/1000; 

 

electricity(tech, feed) = elec_eff(tech)*biomass_composition(feed, 'HHV')/1.1023/.0036/1000; 

naptha(tech, feed) = naptha_eff(tech)*biomass_composition(feed, 

'HHV')/1.1023/0.1216089/1000; 

 

*Increase pulpwood prices by 20% 

prices_feed(plev, 'pulpwood') = prices(plev)*1.2; 

 

*Solve 

Solve USDA using MIP maximizing profit; 

 

*Save solution 

links(%fdstk%f, plot, %region%)$(p2b.l(%fdstk%f, plot, %region%) gt .1) = 1; 

locations(%region%, tech, class)$(Qb.l(%region%, tech, class)) =1; 

 

*Import high forest residue supply data 

Parameter high_woody(plot, feed, plev)     / 

$ondelim 

$include 2017_BTS_forest_all.csv 

$offdelim 

/; 

 

 

*Correct units on residues, double woody msw for high scenario and make pulpwood prices 

20% less than baseline 

supply(plot, 'forest', plev) = high_woody(plot, 'forest', plev)/1000; 

supply(plot, 'msw_wood', plev) = supply(plot, 'msw_wood', plev)*2; 

supply(plot, 'msw_constr_demo', plev) = supply(plot, 'msw_constr_demo', plev)*2; 

 

prices_feed(plev, 'pulpwood') = prices(plev)*.8; 

 

*Resolve 



 

 

259 

Solve USDA using MIP maximizing profit; 

 

*Save choosen links and locations by giving the parameter a value of 1 

links(%fdstk%f, plot, %region%)$(p2b.l(%fdstk%f, plot, %region%) gt .1) = 1; 

locations(%region%, tech, class)$(Qb.l(%region%, tech, class)) =1; 

 

*correct cost to native units ($/wet ton) 

pbcost(plot, brfn, feed) = pbcost_base(plot, brfn, feed)*1000; 

 

$onend 

 

file locations_%fdstk%_%region%; 

file links_%fdstk%_%region%; 

 

locations_%fdstk%_%region%.pc=5; 

links_%fdstk%_%region%.pc=5; 

 

*Output file giving the biorefineries that were choosen 

put locations_%fdstk%_%region%; 

loop (brfn, tech, class)$(locations(brfn, tech, class) gt 0.5) do 

         put brfn.tl, tech.tl, class.tl, 1/ 

         endloop; 

 

*Output feedstock transport costs for the choosen systems  

put links_%fdstk%_%region%; 

put     "dummy", "dummy", "dummy", "total_cost", "diesel_use" /; 

loop (plot, brfn, feed)$(links(feed, plot, brfn) gt 0.1) do 

         put plot.tl, feed.tl, brfn.tl, pbcost(plot, brfn, feed), diesel_use(plot, brfn, feed)/ 

         endloop; 

 

 


