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ABSTRACT 
The use of carsharing vehicles over a period of 16 months in 2006-07 was compared to built 
environment and demographic factors in this GIS-based multivariate regression study of an 
urban U.S. carsharing operator. Carsharing is a relatively new transportation industry in which 
companies provide members with short-term vehicle access from distributed neighborhood 
locations. The number of registered carsharing members in North America has doubled every 
year or two to a current level of approximately 320,000. Researchers have long supposed that 
public transit access is a key factor driving demand for carsharing. The results of this study, 
however, find an ambiguous relationship between the activity at carsharing locations and public 
transit access. Light rail availability is found to have a significant and positive relationship to 
carsharing demand. Regional rail availability is found to be weakly and negatively associated 
with carsharing demand, although limitations in the available data make it impossible to ascribe 
the observed difference to user demand, random variation, or other factors specific to the 
industry. 
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INTRODUCTION 
Carsharing, a relatively new industry in the United States, has taken root in many urban settings 
around the country. One question that has been asked since the beginning of the industry, and 
answered only with partial success, is, “What neighborhood features make for a good carsharing 
location?” Recent studies have attempted to answer this question using one of two 
methodologies: surveys of actual users or Geographic Information System (GIS)-based studies of 
carsharing supply combined with Census data. These methods have consistently found 
demographic, behavioral, and built environment (BE) factors, such as member age or proximity 
to transit, to play an important role in carsharing (generally from univariate analyses), although 
neither method has been able to identify BE factors that interact strongly with demand for 
carsharing.  

This paper uses GIS to model the impact of both Census and specifically collected BE 
data on carsharing use, as measured by the actual number of user hours each location reports in a 
typical month. The carsharing usage data are from a single U.S. carsharing operator (CSO), who 
generously agreed to supply detailed longitudinal data. The participating CSO also requested that 
their identity remain confidential, and therefore any identifying information has been removed. 
The data are from a single large metropolitan area. 

FROM THE LITERATURE 

Defining Carsharing 
The term “carsharing” refers to a distinct business process wherein CSOs typically provide their 
members with short-term vehicle access from a network of unstaffed and distributed 
neighborhood locations. Members pay a flat hourly and/or per-mile fee that include fuel and 
insurance costs. These characteristics make carsharing distinct from car rental, where vehicles 
are rented under a negotiated contract with the customer for longer periods of time, and from 
centralized, staffed locations. Carsharing comes in many flavors, and to add confusion, the term 
“carsharing” has also been used to describe both shared-use vehicles and what is now known as 
ridesharing or carpooling.  This paper uses the framework developed by Barth and Shaheen [1] 
that describes the spectrum of carsharing services from station cars (transit-linked vehicles) to 
the short-term vehicle use that has become popular worldwide.  The rest of this paper will use the 
term “carsharing” to refer to a “classic” CSO that distributes cars from neighborhood locations 
on a very short term basis, typically a few hours at a time.  In addition, the paper will use the 
industry term, “pod,” to refer to a carsharing parking location that can house one or more 
vehicles at the same time.  

Carsharing Background 
Carsharing has been popular in Europe for decades but has only taken a firm hold in North 
American cities in the last dozen years [2].  In Europe, Sefage, which is the earliest known 
carsharing organization, circa 1940,  provided a way for people who could not otherwise own a 
car to access one [3]. Now far from its humble origins, carsharing in much of North America and 
Europe has evolved into a profitable business with appeal to drivers of choice as well as 
necessity; Zipcar, which is the largest North American carsharing company, boasts 180,000 
members as of April 2008 and serves many customers with luxury vehicles (www.zipcar.com).  
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The total current U.S. membership in all CSOs is estimated to be nearly 280,000 (Shaheen and 
Cohen, 2008, unpublished data). 

Carsharing is somewhat paradoxical since it is a driving mode, yet it is associated most 
closely among researchers and industry members with use of what this paper terms “high 
density” modes (a term that refers to the density of people in each vehicle, as well as the density 
of the BE that is most associated with each mode) such as walking, bicycling, carpooling, or 
public transit [4, 5].  Since consumption of carsharing is believed to grow with consumption of 
high density modes, carsharing could be called, in economic terms, a complementary good to 
high density travel. The most basic rationale behind the general belief that carsharing and high 
density auto modes are complementary is that most people can benefit from vehicle access, but 
only people who rarely need that access because of a lifestyle or a BE context favorable to high 
density modes will elect not to own a vehicle, and will therefore be more likely to find utility in 
carsharing. From a strictly financial perspective, carsharing is thought to complement high 
density modes because of its unique financial proposition. In contrast to auto ownership, which is 
defined by large fixed payments and then very low and mostly hidden per-mile costs, carsharing 
organizations instead charge a small or nonexistent monthly fee, and then rely on all inclusive 
per-hour and/or per-mile fees to generate revenue. By selling a mobility service, rather than a 
product, carsharing organizations can lower transportation costs (in comparison to private 
vehicle ownership) for users that drive less than approximately 6000 miles per year (this number 
is as high as high as 10,000 miles by some estimates) depending on local costs [6, 7]. 

Researchers have also hypothesized that adding carsharing to the suite of available 
transportation options in a given region could lead to a reduction in overall vehicle ownership 
levels and vehicle miles travelled (VMT) as vehicle owners first find that they can save money 
by relying on a mix of high density modes and carsharing, and then begin to reduce their total 
VMT due to the new economic structure. These predicted reductions in vehicle ownership and 
VMT are well documented in user populations, although the observed effect on VMT has 
generally been statistically insignificant [5, 8, 9]. It is possible that the ambiguous results are due 
to another effect of the carsharing financial structure that tends to increase VMT for low-income 
groups [4, 8-10].  

Carsharing Demand, Supply, and Use 
Microeconomic theory states that the optimal price and amount of carsharing in a competitive 
environment can be predicted by the intersection of the supply and demand curves for the service 
(Figure 1). However, there are two particularities in the carsharing industry:  

 The ability to meet demand is “chunky” since CSOs can only add or subtract 
whole cars (shown by the lightly shaded triangles in Figure 1, each triangle 
representing the capacity of one car to meet demand); 

 CSOs often offer the same rates regardless of pod location (P in Figure 1). This 
means that for each location, the only variable that the CSO will adjust to meet 
demand is to add or remove supply in the form of vehicles.   

Using this simple economic model, a researcher can measure the impact of BE and 
demographic factors on the level of demand by regressing those factors against usage data, since 
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the different levels of demand theoretically result in different equilibrium rates of use. In areas 
with high demand for carsharing, the entire demand curve will be higher, resulting in a higher 
equilibrium point, and therefore in greater supply and more observed activity. In areas of low 
demand, observed use (and likely supply, due to CSO management) will be low. Although 
simple, this methodology presents a challenge for carsharing research for a number of reasons. 
The most important of these are: it has been challenging for researchers to directly measure use, 
since use data is often considered proprietary [9]; it is unclear if the industry is mature enough to 
have reached that supply/demand equilibrium, especially given the diverse nature of the different 
neighborhoods and locations in which they place vehicles; and finally, as an emerging industry, 
CSOs may not be able meet demand for reasons associated with cash-flow or investment. 

Previous studies of carsharing and the BE have defined a measure of supply called the 
carsharing LOS measure, that was presented in the Transportation Research Board’s (TRB) 
Transit Cooperative Research Program (TCRP) report 108 [9, 11]. Although the LOS is a 
measure of supply (literally the number of carsharing vehicles in a half-mile radius from a given 
location), it is used as a proxy of carsharing demand; the theory being that the carsharing 
company will adjust supply of vehicles to best match demand, and the number of vehicles in a 
given area should therefore be a good approximation of demand. The greatest strength of this 
method is that vehicle locations and the number of vehicles at each location are available on the 
Internet for many different CSOs. However, the basic problem with this method is that 
carsharing companies can only add supply in increments of whole vehicles, and that supply may 
not be a close match to the actual use and therefore actual demand.  

An alternative method, which is the basis of this paper, is to measure carsharing use 
directly by requesting raw activity data from CSOs. The strength of this method is that the use 
data is not an approximation. However, it is much more difficult to get the data for obvious 
reasons, and this study was therefore based upon a dataset from a single CSO. Also, this method 
relies to a certain extent on the same assumption that underlies the LOS measure: CSOs will 
respond to high demand by placing extra vehicles in or near an existing pod.  This is important 
because the equilibrium usage (given by the supply and demand intersection in Figure 1) can 
easily exceed the possible capacity of carsharing given by a single vehicle or location, and if the 
carsharing operator does not add another vehicle at or near that location, the optimal amount of 
carsharing service at that location will remain unmet (Figure 1). That said, the advantage of a 
direct measure in this case is that for any situation in which the supply and demand equilibrium 
does not exceed the capacity for service, the activity data will give a finer measure of demand 
than a supply-based approximation such as the LOS measure.  In any case where the supply and 
demand equilibrium exceeds the capacity, both methods will give a poor measure of demand. 
Since the success of either of these measures depends on the CSO’s ability to place extra 
vehicles in areas of high demand, any restriction on that ability could have an effect on the model 
results. 

The Effect of the Built Environment on Carsharing Demand 
Since its inception in the United States, carsharing success has been linked by researchers to BE, 
as well as demographic factors. Of particular interest to this study, is just this relationship of 
carsharing to BE factors, which are defined here to include both traditional BE measures, such as 
building, sidewalk, or road characteristics, and transit services that are slow to change, such as 
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bus routes. Although carsharing has received much attention in the literature because of its 
theoretically complementary relationship to public transit and other high density modes, very 
few studies have attempted to quantify that relationship. Partly due to the nature of a young 
industry and the dynamics of an early-adopter membership, and partly due to a scarcity of 
publicly available usage data, most carsharing studies have focused on user surveys, and have 
repeatedly demonstrated that, for instance, many carsharing members are frequent public transit 
users and live in medium to high density areas [4, 5, 12].  

User traits of current user populations (such as transit use) are often interpreted as 
evidence that carsharing companies will be most successful in areas providing facilities to serve 
those traits, such as high transit accessibility. This logical jump is clearly stated in the TCRP 
report [9]: 

“Findings of this research, which included a survey of current car-share members, conclude that the 
communities most conducive to successful carsharing programs include the following characteristics: 

Good transit 

Walkability 

Lower than average vehicle ownership . . .” 

However, the average traits of current members show only that many current carsharing 
users also, for instance, use public transit, not that pods are necessarily most successful in areas 
of high public transit accessibility. In fact, although the BE is usually referred to in the 
carsharing literature as correlated or causal factors in carsharing adoption, as shown in the quote 
above, to the authors’ knowledge only one multivariate study has attempted to quantify the 
relationship for the U.S. carsharing market [11].  One previous bivariate study of carsharing in 
North America found that transit accessibility is correlated with carsharing LOS [9]. However, 
this correlation was not borne out in a multivariate context, where the best reported model 
(adjusted R2 of about 0.5) only included only measures of vehicle ownership and the number of 
people walking to work in the area [11].  

The connection between the BE and carsharing is often deeper than a simple factor 
related to demand, since transit connectivity is in many cases an integral part of the carsharing 
business model, even to the extent of full integration of carsharing and public transit locations 
and payment mechanisms [13]. This close relationship between carsharing locations and transit 
locations raises the possibility that previous studies of carsharing have been to some extent 
biased by a self-selected member population; since most carsharing members live near the 
carsharing vehicles they access, vehicles near public transit will tend to serve a population that 
has chosen to live within close range of that public transit line, and may therefore contain a self-
selected group of transit users. Adding to this tricky research issue is that carsharing may be in a 
unique position as one of the most heavily researched modes relative to its market share (a back-
of-the envelope calculation based on the number of North American carsharing research authors 
yields approximately one researcher for every 32 carsharing vehicles as of 2005). It is easy to 
wonder if the sheer amount, as well as the early timing of research in comparison to industry 
growth, has had an impact on many CSOs’ vehicle placement strategies. In fact, some carsharing 
locations were actually begun by researchers, only later to be adopted by private or non-profit 
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operators; the CarLink II study in Stanford, California, transitioned to ownership by Flexcar at 
the terminus of the research project [14].  

Another challenge to studying demand for carsharing is that the public transit industry is 
not always positive about the potential for carsharing to be a complementary good to public 
transit. An example of this attitude was the reluctance of the Philadelphia area transit agency 
SEPTA to work with a for-profit CSO, due to concerns about competition [9]. Since transit 
agencies often own well-placed parking lots to bring in park-and-ride customers, lack of 
cooperation between transit agencies and CSOs could result in serious parking restrictions near 
transit, and could therefore also result in a biased measure of demand and inaccurate study 
outcomes, not to mention potentially slowing the growth of the carsharing industry as a whole. 

Common BE and Demographic Factors 
From the papers reviewed for this study, there are a few common BE and demographic variables 
that have been found in multiple studies to have a statistically significant relationship (from 
either univariate or multivariate studies)  to carsharing, vehicle miles travelled (VMT), or related 
travel behavior such as walking. In particular the age of residents and the average number of 
vehicles owned by each household each appeared in numerous studies. Less frequently found as 
significant were the gender mix, the number of children in each household, household income, 
the proportion of drive-alone commuters, and the proportion of households in pre-1940 
structures. A number of other variables were significant only in a single study, such as sidewalk 
width, which is of particular interest to this study. A list of all of the factors that went into the 
analysis, along with information about the spatial scale of the factor (described in the following 
section) and the sources originally presenting the factors is available in Table 1. 

DATA SOURCES  

Carsharing Data 
The carsharing data were received from the carsharing operator in two parts: the first part was a 
detailed compilation of all carsharing reservations that had occurred between January 1, 2006 
and the date of the data request, which was in June 2007.  The second dataset was a compilation 
of the vehicles rented from each pod since the beginning of operations.  The datasets were linked 
by a unique reservation number, and no personal information about the drivers of the vehicles 
was transmitted. For the purposes of this study, a “reservation” is defined to begin at the pre-
arranged reserved time (reservation times are usually restricted to 15-minute or similar 
increments), even if the vehicle was not picked up by the user at that time, and to end either 
when the vehicle is returned to the location, or at the end of the reservation, whichever is later. 

The final carsharing dataset was temporally aggregated to the average month for each 
pod, then spatially aggregated into clusters, as discussed in a following section entitled, “Pod 
Clustering.” There were an average of 16 months of data included in each pod-level average 
(range 6 to 18). The statistical analysis methodology of multivariate regression, as described in 
the “Regression Model Development” section, was chosen for this dataset due in part to the large 
amount of inter-cluster variation in comparison to intra-cluster monthly variation. Over 80% of 
the variation in the observed data was between, rather than within clusters. 
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Small-Scale Built Environment Measures 
A contribution of this study to the carsharing literature is that it makes use of a relatively new 
resource, Google Maps (and Google Earth)-based satellite imagery and retail information, to take 
specific measures of the BE around each carsharing location. The measures recorded for this 
study include the number of off-street parking and retail locations within a one-mile radius of 
each pod, the amount of available on-street parking, and the widths of the sidewalks and streets 
at or nearest the intersection closest to the pod location. The street and sidewalk widths and on-
street parking availability were recorded directly from satellite photos. 

Explanation of Selected BE Variables 
As indicated earlier and as shown in Table 1, a suite of BE factors were recorded for each 
carsharing location using satellite imagery and data provided by Google Maps and Google Earth. 
Below are detailed explanations of the two variables that appear in the final model. 

Sidewalk Width  
This variable is equal to the average width of the sidewalks on the approaches to the intersection 
nearest to a given pod location. Measures were taken using the Google Earth “Distance” tool, 
and all measures were taken in feet. This variable is expected to be positively related to 
carsharing, as sidewalk width may be indicative of pedestrian and mixed-use activity. 

Transit Lines 
Also included were indicators of the transit network within a buffer zone from each pod or 
cluster of pods. Bus and rail routes were obtained from the FTA and BTS, respectively. Service 
metrics were obtained by overlaying the GIS transit data onto carsharing location buffers, and 
then recording the individual transit lines or rail stops inside each buffer.  The measurement was 
performed separately for bus, light rail, subway, and regional rail.  Amtrak data were not 
included in the analysis. The number of rail lines was included as a rail measure, and the 
frequency of bus service was included as a bus measure. In addition, numerous other nominal 
transit indicators were tested, such as the nominal availability of surface and separated rail 
service. The variable found to be the best predictor of carsharing activity was a four-level 
nominal variable (as described in Table 1) referred to henceforth as the Rail Service Measure. 

The Rail Service Measure measures only the availability of the different services, not their 
respective levels of service at each location. Bus service was available within a 400 meter 
(approximately ¼-mile) radius from all of the carsharing locations, and is not explicitly included 
in the Rail Service Measure.  

MODELS AND METHODS 

Data Analysis Tools 
The initial analysis of the carsharing and Decennial Census data was performed in Microsoft 
Access, using the query capability to aggregate, filter, or perform calculations on data.  The 
spatial analysis was performed in structured query language (SQL) using the PostgreSQL 
PostGIS spatial database system, and the results were mapped using the PostGIS database-driven 
uDIG map server for visual inspection.  Statistical analysis was performed using the SAS 
institute JMP statistical analysis software package.   
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Census Data Treatment 
Census data were obtained from the Year 2000 Decennial Census, Summary File 3 at the tract 
level (see Table 1). Using GIS, buffer zones around each carsharing location (or group of 
locations as described in the Pod Clustering section) were generated and intersected with 
underlying Census tracts in order to take area- and population-weighted averages of the 
overlapping Census tract values that could represent the specific circumstances of each location. 

Pod Clustering 
Pods were aggregated into groups using a clustering method that could represent the cumulative 
demand in a given area. Using visual inspection and the 400 meter radius pod buffer map as a 
heuristic, it was decided to use 400 meters as a cutoff distance, as this clustering method 
happened to remove the majority of overlap, but didn’t increase the grain of the analysis much, 
as shown in Figure 2. This clustering radius was chosen in part to retain a reasonably large 
number of discrete clusters, since the number of clusters is critical for multivariate analysis. In 
addition, the smaller the cluster size, the more the model can reflect local effects that may be 
important for carsharing operators.  The downside of using smaller clusters is that as the level of 
aggregation is smaller, the proportion of unexplained variance is probably larger, and the model 
fit may appear to be worse.  In addition, a poor choice of cluster diameter could inadvertently 
skew results by effectively weighting some areas more than others. Hierarchical clustering was 
used with the “complete linkages” method in order to generate compact, circular clusters that 
most closely resemble the typical walking radius buffers used in public transit analysis.  

Spatial Integration of the Data Sources 
The study used GIS to integrate the three separate spatial levels of Census data, carsharing 
cluster level data, and carsharing pod level data (see Table 1 for the factors relevant to each 
level) into a single statistical analysis, as shown in Figure 3. On the lowest level are BE data and 
actual recorded vehicle usage collected for each specific carsharing location. At the highest level 
are all of the Census factors. At the cluster level is combined: directly recorded transit measures 
via GIS, aggregated carsharing demand measures and BE measures, and the population weighted 
tract level SF3 data.  

Regression Model Development 
A least squares regression model was determined using the complete set of factors shown in 
Table 1, with feedback from the model residuals, variable collinearity, and the development of 
new calculated measures, such as the various transit LOS measures used in this study. Since the 
pool of candidate explanatory variables was already chosen using conceptual considerations, the 
process of selecting the variables for the final model was guided mainly by statistical 
considerations. The exhaustive method used in this study was to run over 2 million distinct 
models, and then pick the best model from each level of parameters using the R2 criterion.  The 
models were then tested to determine the one with the highest adj. R2.  Finally, non-significant 
terms were provisionally removed if they didn’t overly impact the rest of the model; if the 
interpretation (such as negative or positive sign, general strength of relationship) of other 
variables changed, the insignificant variable was retained. The final model was checked for 
acceptable collinearity, homoscedasticity, and various corrections were made, as explained 
below. 
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Transformation of Demand 
The demand variable (hours of usage per month) was transformed by taking its natural logarithm 
to yield more homogeneous variances in the model residuals. This step was taken in response to 
observed residual variance growth in numerous residual vs. predicted plots of regression models 
developed for this study.  

RESULTS 

The best model for this dataset (Adj. R2 of 0.52) is shown in Figure 4 and includes street width, a 
nominal rail LOS measure, the percentage of drive-solo commuters, the percentage of 
households with one vehicle, and the average age of the pods that constitute the cluster. The adj. 
R2 of 0.52 is slightly higher than the value of 0.50 published in the recent TCRP report, and is 
considered good for datasets like this one, involving fairly disaggregate cross-sectional data. All 
variables in the model are significant to the 5% level with the exception of parts of the Rail 
Service Measure, which were significant to the 10% level.  

Discussion 
The results of this study confirm previous findings that neither density nor strictly demographic 
factors play an overt role in the success of carsharing locations [11]; however, this study also 
adds numerous findings to the existing carsharing literature. The variables that were best at 
explaining the level of carsharing demand were all to be expected given previous studies [8, 9, 
11], with the notable exception of the public transit variable. 

The proportion of commuters that drive alone is negatively related to carsharing, which 
makes sense, and is expected given that these people would generally already be vehicle owners, 
and in addition, high levels of vehicle commuting tend to signify a neighborhood that has poor 
public transit or other high density mode amenities. This result indirectly supports the notion that 
high density auto travel and carsharing act as economic complements. 

The proportion of single vehicle households is positively related to carsharing.  This makes 
sense because with only a single vehicle in the household, there may be occasional need for a 
second vehicle. This result also indicates that carsharing could be a compliment to high density 
auto travel, since it indicates that areas with households that already share vehicles have higher 
demand for carsharing. 

The age of the carsharing cluster is positively related to usage.  Although to the knowledge 
of the authors, this variable has not been included in previous studies, it is reasonable to assume 
that the market for carsharing in a specific area will grow over time as people find out about the 
service and make lifestyle adjustments to best make use of the service. 

This is the first study of carsharing to the authors’ knowledge to use direct BE measures, 
therefore street width does not have much of a history as a metric.  It is significantly and 
negatively related to carsharing, however.  The authors postulate that street width may be an 
indicator of both the pedestrian environment in particular (where narrow streets are more 
pedestrian friendly and wide streets are less pedestrian friendly), and the land use type in general, 
as narrow streets tend to denote older residential or mixed-use development, and wide streets 
tend to denote post WWII construction.  In this case, the negative relationship between increased 
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street width and carsharing makes sense from the framework, especially given the close 
relationship between carsharing and walking behavior that has been observed in other studies  [4, 
8, 11]. 

 One interesting and new result in this study is the interaction between the nominal rail 
transit indicator (Rail Service Measure) and carsharing.  The measure has four nominal levels, 
the coefficients of which are interpreted directly (The coefficients are centered around their mean 
of 0, rather than an arbitrary coefficient. See the JMP handbook for a detailed explanation): 

The model indicates that there is a positive relationship between light rail availability and 
carsharing (the Light Rail Only level has a positive coefficient), but a negative relationship 
between carsharing and regional rail (the Regional Only level) availability. This finding is 
surprising, but appears to be stable in the model, notwithstanding the marginal significance of the 
Regional Rail Only level coefficient (p=0.055), which may be a function of the limited sample 
size of twelve clusters.  

This model outcome is likely the result of one or two different general mechanisms: the 
underlying data are biased away from showing the true demand near regional rail, or there is an 
actual difference in demand, rather than simply observed use, between regional rail and light rail 
locations. 

Numerous operational factors that could result in fewer carsharing vehicles near regional 
rail than a CSO would prefer, possibly biasing the results of the study and resulting in the 
negative Regional Rail Only coefficient. Some reasons for this could include: lack of contracts 
that would allow parking in public transit parking lots, very high price of parking in these dense 
areas, or other restrictions that could have to do with a competitor’s behavior. A knowledgeable 
source inside the study CSO told the authors that the CSO was unable to park as many vehicles 
near regional rail stations as they wanted to, due to the first and third aforementioned reasons. 
Previously reviewed evidence that rail transit operators do not always view carsharing in an 
entirely uncompetitive light also support this explanation. 

If the vehicle placement bias does not completely explain the results, the model would 
indicate that carsharing and local transit are in fact economic complements, as hypothesized, but 
carsharing and regional transit could act in part as substitutes. Under this explanation, regional 
public transit accessibility could make carsharing less desirable to residents, since it would 
reduce their need for other long distance travel. This hypothesis may also be supported by 
previous research that has designated carsharing as a “missing link” mode between high density 
modes and private-auto transportation, indicating that the service will have the most success 
where such a link is in highest demand [9].  

An alternative hypothesis has to do with residential self-selection: people who live near 
rapid rail transit may have chosen to do so specifically so that they wouldn’t need to drive, and 
therefore may make less intensive use of carsharing than people without a preexisting aversion to 
driving. 

Also, as mentioned previously in this paper, carsharing is a young industry (particularly 
in comparison to existing major transportation modes) and the results of this study could be 



Transportation Research Record Pre‐Print, No. 2110, pp. 27‐34. 

    10 

 

biased due to either immature or uneven vehicle placement, or a user population that is not 
representative of the possible future membership.  

Next Steps 
The transit interaction is interesting, and has realistic explanations in both parking availability 
and  in urban accessibility, but clearly needs to be verified using another method. To help resolve 
the vehicle placement restriction bias, the demand could be modeled using a truncated model that 
would account for at least some of the “lost” activity due to parking restrictions. At the very 
least, a model including information about vehicle placement restrictions could shed light on any 
relationship between parking restrictions and lack of observed carsharing activity near regional 
rail locations. 

There is a large difference between the 2007 TCRP national model results [11] and the 
same model using this dataset, where the model consists of the dependent carsharing level of 
service measure, and two explanatory variables: walk commuters and average vehicles per 
household. The Adj. R2 for this dataset is 0.07 and neither coefficient is statistically significant, 
whereas the Adj. R2 for the national dataset used in the TCRP report was approximately 0.5. The 
difference indicates that either the difference between the block level scaling method used in that 
study and the tract level averaging method used in this study, or the difference in samples, may 
be having a large effect on results. A useful future study would be to perform an analysis of 
those factors to find the source of the difference.  
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FIGURE 1  Theoretical Carsharing Supply and Demand Curves. P represents the price per 

hour of carsharing, and Q represents the supply of vehicle-hours. Q* represents the 
optimal supply for a profit maximizing business. 
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FIGURE 3  Data Integration. 
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Dependent variable: log (Average monthly hours of use) 
Summary of Fit 

R2 0.60 

R2 Adj 0.52 

Root Mean Square Error 0.52 

Observations  44 
 
Estimates 
Nominal factors expanded to all levels 
 
Term Estimate Std Error t Ratio Prob>|t| 

Intercept 6.78 0.51 13.35 <.0001 

Carsharing pod age (Months) 0.0119 0.00453 2.63 0.0124 

Commuters that drive alone (%) -4.48 1.11 -4.02 0.0003 

Street width (Feet) -0.0243 0.00830 -2.93 0.0059 

Households with one vehicle (%) 4.39 1.38 3.18 0.0030 

Rail Service Measure [Regional Rail Only] -0.28 0.14 -1.98 0.0549 

Rail Service Measure [Combined Rail Service] 0.38 0.20 1.88 0.0678 

Rail Service Measure [Light Rail Only] 0.37 0.16 2.39 0.0221 

Rail Service Measure [No Rail Service] -0.47 0.14 -3.29 0.0023 

 

FIGURE 4  Best Carsharing Demand Model. 
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TABLE 1  Variables tested in the analysis. 

 

Variable Description 

(All variables are proportions unless 
otherwise noted) 

Hypothesized 
Relationship 
to Demand 

Spatial Level Mean Value 
(mean value 
for spatial 

units used in 
the analysis) 

Source(s) 
Showing 

Significance in 
Same or 
Similar 

Variable 

1 person households  + tract average 0.45 [9, 15] 

2 person households  - tract average 0.31  

Female  + tract average 0.48 [16-18] 

White householders  + tract average 0.59 [15] 

Households with children  - tract average 0.10 [8, 16] 

Population between the ages of 22 and 24 + tract average 0.06 

Population between the ages of 25 and 29 + tract average 0.13 

Population between the ages of 30 and 34 + tract average 0.12 

[8, 16-19] 

Households earning more than 100k + tract average 0.18 [9] 

Average household income + tract average $65,000 [15-17] D
em

og
ra

ph
ic

s 
R

el
at

ed
 F

ac
to

rs
 

Population with at least bachelor’s degree + tract average 0.48 [17] 

Average age of carsharing pods in cluster + pod average -  

Households with no car + tract average 0.34 

Households with 1 car + tract average 0.43 

Households with 2 cars - tract average 0.18 

Average vehicles available per household - tract average 0.96 

[8, 9, 11, 16, 
18] 

Commuters that commute by walking + tract average 0.15 [9] 

Commuters that commute by driving alone - tract average 0.35 [8, 9] 

Commuters that commute by public transit + tract average 0.30 [9] 

Total number of walk commuters + tract average 1100 [11] 

T
ra

ns
po

rt
at

io
n 

R
el

at
ed

 F
ac

to
rs

 

Average commute time - tract average 27 [15] 

On-street parking metric (0-16) - pod 6.6 [16] 

Retail stores within 1 mile radius + pod 79  

Parking garages or lots within 1 mile 
radius 

+ pod 44 [16] 

Average sidewalk widths near the pod (ft) + pod 11 [16] 

Width of the streets near the pods (ft) - pod 38  

Peak-hour bus frequency (busses/hour) + pod cluster 54.8 

Off-peak bus frequency (busses/hour) + pod cluster 24.2 

Street-level rail lines in the cluster (#) + pod cluster 1.5 

Availability of street rail service (0-1) + pod cluster 0.34 

Number of subway or elevated rail lines + pod cluster 3.4 

Availability of separated rail service (0-1) + pod cluster 0.95 

B
ui

lt 
E

nv
ir

on
m

en
t R

el
at

ed
 F

ac
to

rs
 

Rail service measure (Calculated Nominal 
Variable: No Rail, Light Rail Only, Heavy 
Rail Only, Combined Service ) 

increasing 
from first to 
last factor 

pod cluster NA 

[15, 16, 18] 
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TABLE 1  Variables tested in the analysis. 

 

Variable Description 

(All variables are proportions unless 
otherwise noted) 

Hypothesized 
Relationship 
to Demand 

Spatial Level Mean Value 
(mean value 
for spatial 

units used in 
the analysis) 

Source(s) 
Showing 

Significance in 
Same or 
Similar 

Variable 

Household density (households per acre) + tract average 18.75 [9, 18] 

Housing units built before 1940 + tract average 0.51 [9, 16, 18] 
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TABLE 2  Rail Service Measure Coefficients. Dependent Variable : log(Average 
monthly hours of use). 
Rail Service Measure Factor Level Estimate N 
Regional Rail Only -0.28 12 
Combined Rail 0.38 9 
Light Rail Only 0.37 6 
No Rail Service -0.47 17 

 


