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LEARNING AN OPPONENT’S STRATEGY IN COURNOT COMPETITION 
 

C.-Y. Cynthia Lin, University of California at Davis, Davis, USA 
 

ABSTRACT 
 
This paper analyzes the dynamics of learning to compete strategically in a Cournot duopoly.  The learning 
in games model used is logistic smooth fictitious play.  I develop novel software that can be used to 
confirm and visualize existing analytic results, to generate ideas for future analytic proofs, to analyze 
games for which analytic solutions are difficult to derive, and to aid in the teaching of learning in games in 
a graduate game theory, business strategy, or business economics course.  One key result is that there is 
an overconfidence premium: the worse off a player initially expects her opponent to be, the better off she 
herself will eventually be.   
 
Keywords:  stochastic fictitious play, learning in games 
 
1. INTRODUCTION 

 
Although most work in non-cooperative game theory has traditionally focused on equilibrium concepts 
such as Nash equilibrium and their refinements such as perfection, models of learning in games are 
important for several reasons.  The first reason why learning models are important is that mere 
introspection is an insufficient explanation for when and why one might expect the observed play in a 
game to correspond to an equilibrium.  For example, experimental studies show that human subjects 
often do not play equilibrium strategies the first time they play a game, nor does their play necessarily 
converge to the Nash equilibrium even after repeatedly playing the same game (see e.g., Erev & Roth, 
1998).  In contrast to traditional models of equilibrium, learning models appear to be more consistent with 
experimental evidence (Fudenberg & Levine, 1999).  These models, which explain equilibrium as the 
long-run outcome of a process in which less than fully rational players grope for optimality over time, are 
thus potentially more accurate depictions of actual real-world strategic behavior.  By incorporating 
exogenous common shocks, this paper brings these learning theories even closer to reality. 
 
In addition to better explaining actual strategic behavior, the second reason why learning models are 
important is that they can be useful for simplifying computations in empirical work.  Even if they are 
played, equilibria can be difficult to derive analytically and computationally in real-world games.  For 
cases in which the learning dynamics converge to an equilibrium, deriving the equilibrium from the 
learning model may be computationally less burdensome than attempting to solve for the equilibrium 
directly.  Indeed, the fictitious play learning model was first introduced as a method of computing Nash 
equilibria (Hofbauer & Sandholm, 2001).  More recently, Pakes and McGuire (2001) use a model of 
reinforcement learning to reduce the computational burden of calculating a single-agent value function in 
their algorithm for computing symmetric Markov perfect equilibria.  As will be explained below, the work 
presented in this paper further enhances the applicability of these learning models to empirical work. 
 
In this paper, I use one commonly used learning model: stochastic fictitious play.  I analyze the dynamics 
of a particular form of stochastic fictitious play—logistic smooth fictitious play—and apply my analysis to a 
Cournot duopoly.  I analyze the following issues, among others: 

 
(i) Trajectories:  What do the trajectories for strategies, assessments, and payoffs look like?  
(ii) Convergence:  Do the trajectories converge?  Do they converge to the Nash equilibrium?  

How long does convergence take? 
(iii) Welfare:  How do payoffs from stochastic fictitious play compare with those from the 

Nash equilibrium?  When do players do better?  Worse? 
(iv) Priors:  How do the answers to (i)-(iii) vary when the priors are varied? 
 

I develop novel software that can be used to confirm and visualize existing analytic results, to generate 
ideas for future analytic proofs, to analyze games for which analytic solutions are difficult to derive, and to 
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aid in the teaching of learning in games in a graduate game theory, business strategy, or business 
economics course. 
 
My analyses yield several central results.  First, varying the priors affects the distribution of production 
and of payoffs between the two firms, but not either the weighted sum of expected quantity produced nor 
the weighted sum of payoff achieved.  Second, there is an overconfidence premium: the worse off a 
player initially expects her opponent to be, the better off she herself will eventually be.   
 
The balance of this paper proceeds as follows.  I describe my model in Section 2.  I outline my methods 
and describe my software in Section 3.  In Section 4, I analyze the Cournot duopoly dynamics in the 
benchmark case without Nature.    Section 5 concludes.  
 
2. MODEL 

 
2.1  Cournot duopoly 
The game analyzed in this paper is a static homogeneous-good Cournot duopoly.  I choose a Cournot 
model because it is one of the widely used concepts in applied industrial organization (Huck, Normann & 
Oeschssler, 1999); Although the particular game I analyze in this paper is a Cournot duopoly, my 
software can be used to analyze any static normal-form two-player game.I focus on two firms only so that 
the phase diagrams for the best response dynamics can be displayed graphically. Although my software 
can only generate phase diagrams for two-player games, it can be easily modified to generate other 
graphics for games with more than two players.   
 
In a one-shot Cournot game, each player i chooses a quantity qi to produce in order to maximize her one-
period profit (or payoff): 

1( , ) ( ) ( )i i j i j i i iq q D q q q C q     

where 1( )D   is the inverse market demand function and ( )i iC q is the cost to firm i of producing qi.  

Each firm i’s profit-maximization problem yields the best-response function: 

( ) arg max ( , )
i

i j i i j
q

BR q q q  

 
I assume that the market demand ( )D  for the homogeneous good as a function of price p  is linear and 

is given by: 
( )D p a bp   

where a  0 and b  0.  I assume that the cost ( )iC  to each firm i of producing qi is quadratic and is 

given by: 
2( )i i i iC q c q  

where ci  0.   With these assumptions, the one-period payoff to each player i is given by: 

2( , )   ,i j
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the best-response function for each player i is given by:   
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and the Nash equilibrium quantity  for each player i is given by: 
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Throughout the simulations, I set a = 20, b = 1. With these parameters, the maximum total production q , 

corresponding to p = 0, is 20q  .  The pure-strategy space Si for each player i is thus the set of integer 

quantities from 0 to 20q  .  I examine two cases in terms of cost functions.  In the symmetric case, I set 

c1 = c2 = 1/2;  in the asymmetric case, the higher-cost player 1 has c1 = 4/3, while the lower-cost player 2 

has c2 = 5/12.   The Nash equilibrium quantities are thus 1
NEq  = 5, 2

NEq  = 5 in the symmetric case and 

1
NEq  = 3, 2

NEq  = 6 in the asymmetric case.  These correspond to payoffs of 1
NE  = 37.5, 2

NE = 37.5 in 

the symmetric case and 1
NE  = 21, 2

NE  = 51 in the asymmetric case.  The monopoly profit or, 

equivalently, the maximum joint profit that could be achieved if the firms cooperated, is m  = 80 in the 

symmetric case and m =75.67 in the asymmetric case. 
 
As a robustness check, I also run all the simulations under an alternative set of cost parameters.  The 
alternative set of parameters in the symmetric cost case are c1 = c2 = 0, which yields a Nash equilibrium 

quantity of 
1

NEq = 
2

NEq  = 5  and a Nash equilibrium payoff of 
1

NE  = 
2

NE = 37.5.  The alternative set of 

parameters in the asymmetric cost case are c1 = 0.5, c2 = 0, which yields Nash equilibrium quantities of 

1

NEq = 4, 
2

NEq  = 8 and Nash equilibrium payoffs of 
1

NE  = 24, 
2

NE = 64.  Except where noted, the results 

across the two sets of parameters have similar qualitative features.   
 
 
2.2  Logistic smooth fictitious play 
The one-shot Cournot game described above is played repeatedly and the players attempt to learn about 
their opponents over time.  The learning model I implement is that of stochastic fictitious play.  In fictitious 
play, agents behave as if they are facing a stationary but unknown distribution of their opponents’ 
strategies; in stochastic fictitious play, players randomize when they are nearly indifferent between 
several choices (Fudenberg & Levine, 1999).  The particular stochastic play procedure I implement is that 
of logistic smooth fictitious play.   
 
Although the one-shot Cournot game is played repeatedly, I assume, as is standard in learning models, 
that current play does not influence future play, and therefore ignore collusion and other repeated game 
considerations.  As a consequence, the players regard each period-t game as an independent one-shot 
Cournot game.  There are several possible stories for why it might be reasonable to abstract from 
repeated play considerations in this duopoly setting.  One oft-used justification is that each period there is 
an anonymous random matching of the firms from a large population of firms (Fudenberg & Levine, 
1999).  This matching process might represent, for example, random entry and/or exit behavior of firms.  
It might also depict a series of one-time markets, such as auctions, the participants of which differ 
randomly market by market.  A second possible story is that legal and regulatory factors may preclude 
collusion.   
 
For my model of logistic smooth fictitious play, I use notation similar to that used in Fudenberg and Levine 
(1999).  As explained above, the pure-strategy space Si for each player i is the set of integer quantities 

from 0 to 20q  .  A pure strategy iq  is thus an element of this set: i
iq S .  The per-period payoff to 

each player i is simply the profit function ( , )i i jq q .   

 

At each period t, each player i has an assessment ( )i
t jq of the probability that his opponent will play jq .  

This assessment is given by  
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where the weight function ( )i
t jq  is given by: 

1 , 1( ) ( ) + I{ } i i
t j t j j t jq q q q      

with exogenous initial weight function 0 ( ) :i j
jq S  .  Thus, for all periods t, i

t , i
t  and 0

i  are all 

1 q  vectors.  For my various simulations, I hold the length of the fictitious history, 
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q

q
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)( , constant 

at 1 21q    and vary the distribution of the initial weights. 

 

In logistic smooth fictitious play, at each period t, given her assessment ( )i
t jq  of her opponent’s play, 

each player i chooses a mixed strategy i  so as to maximize her perturbed utility function: 
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iv   is an admissible perturbation of the following form: 
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With these functional form assumptions, the best-response distribution iBR  is given by 
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The mixed strategy i
t  played by player i at time t is therefore given by: 

( )  .i i i
t tBR   

The pure action qit  actually played by player i at time t is drawn for player i’s mixed strategy: 

.~ i
titq   

Because each of the stories of learning in static duopoly I outlined above suggest that each firm only 
observes the play of its opponent and not the plays of other firms of the opponent’s “type” in identical and 
simultaneous markets, I assume that each firm only observes the actual pure-strategy action qit played by 

its one opponent and not the mixed strategy i
t  from which that play was drawn. 

 
I choose the logistic model of stochastic fictitious play because of its computational simplicity and 
because it corresponds to the logit decision model widely used in empirical work (Fudenberg & Levine, 
1999).  For the simulations, I set 1 . 
 
3. METHODS AND SOFTWARE 
 
To analyze the dynamics of logistic smooth fictitious play, novel software is developed that enables one to 
analyze the following. 
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(i)  Trajectories 

For each player i, I examine the trajectories over time for the mixed strategies i
t  chosen, the actual pure 

actions qit played and payoffs it achieved.  I also examine, for each player i, the trajectories for the per-
period mean quantity of each player’s mixed strategy: 

[ | ]ii tq       (1) 

as well as the trajectories for the per-period mean quantity of his opponent’s assessment of his strategy: 

[ | ]ji tq  .     (2) 

 
I also examine three measures of the players’ payoffs.  I examine the payoffs (or, equivalently, profits) 
instead of the perturbed utility so that I can compare the payoff from stochastic fictitious play with the 
payoffs from equilibrium play.  First, I examine the ex ante payoffs, which I define to be the payoffs a 
player expects to achieve before her pure-strategy action has been drawn from her mixed strategy 
distribution:  

, [ ( , ) | , ]
i j

i i
q q i i j t tq q   .   (3) 

The second form of payoffs are the interim payoffs, which I define to be the payoffs a player expects to 
achieve after she knows which particular pure-strategy action qit has been drawn from her mixed strategy 
distribution, but before her opponent has played:  

[ ( , ) | ]
j

i
q i it j tq q      (4)  

The third measure of payoffs I analyze is the actual realized payoff ( , )i it jtq q . 

 
(ii)  Convergence   
The metric I use to examine convergence is the Euclidean norm ( )d  .  Using the notion of a Cauchy 

sequence and the result that in finite-dimensional Euclidean space, every Cauchy sequence converges 
(Rudin, 1976), I say that a vector-valued trajectory {Xt} has converged at time  if for all ,m n   the 

Euclidean distance between its value at periods m and n, ),( nm XXd , falls below some threshold value 

d . In practice, I set 0.01d   and require that dXXd nm ),( ],[, Tnm  , where T=1000.  I 

examine the convergence of two trajectories: the mixed strategies{ }it  and ex ante payoffs 

,{ [ ( , ) | , ]}
i j

i i
q q i i j t tq q   .    

 
In addition to analyzing whether or not either the mixed strategies or the ex ante payoffs converge, I also 
examine whether or not they converge to the Nash equilibrium strategy and payoffs, respectively.  I say 
that a vector-valued trajectory {Xt} has converged to the Nash equilibrium at time  if the Euclidean 

distance between its value at and that of the Nash equilibrium analog, ( , )NE
td X X , falls below some 

threshold value d  for all periods after .  In practice, I set 01.d  and require that 

( , )    [ , ]NE
td X X d t T   , where T=1000.  

 
(iii)  Welfare 
The results above are compared to non-cooperative Nash equilibrium as well as the cooperative outcome 
that would arise if the firms acted to maximize joint profits.  The cooperative outcome corresponds to the 
monopoly outcome. 
 
(iv)  Priors 

Finally, I examine the effect of varying both the mean and spread of players’ priors 0 , the above results.  

These priors reflect the initial beliefs each player has about his opponent prior to the start of play. 
 

                   INTERNATIONAL JOURNAL OF STRATEGIC MANAGEMENT, Volume 11, Number 1, 2011                98



The software developed for analyzing the dynamics of logistic smooth fictitious play can be used for 
several important purposes.  First, this software enables one to confirm and visualize existing analytic 
results.  For example, for classes of games for which convergence results have already been proven, my 
software enables one not only to confirm the convergence, but also to visualize the transitional dynamics.  
I demonstrate such a use of the software in my analysis of a Cournot duopoly. 
 
A second way in which my software can be used is to generate ideas for future analytic proofs.  Patterns 
gleaned from computer simulations can suggest results that might then be proven analytically.  For 
example, one candidate for an analytic proof is the result that, when costs are asymmetric and priors are 
uniformly weighted, the higher-cost player does better under stochastic fictitious play than she would 
under the Nash equilibrium.  Another candidate is the result is what I term the overconfidence premium: 
the worse off a player initially expects her opponent to be, the better off she herself will eventually be. 
 
A third way in which of my software can be used is to analyze games for which analytic solutions are 
difficult to derive.   
 
A fourth potential use for my software is pedagogical.  The software can supplement standard texts and 
papers as a learning or teaching tool in any course covering learning dynamics and stochastic fictitious 
play. 
 
I apply the software to analyze the stochastic fictitious play dynamics of the Cournot duopoly.  Although 
the entire software was run for two sets of parameters, I present the results from only one.  Unless 
otherwise indicated, qualitative results are robust across the two sets of parameters. 
 
4. RESULTS 

 
I analyze the stochastic fictitious play dynamics of the Cournot duopoly game.  Because my game is a 
2X2 game that has a unique strict Nash equilibrium, the unique intersection of the smoothed best 
response functions is a global attractor (Fudenberg & Levine, 1999).  Since my Cournot duopoly game 
with linear demand therefore falls into a class of games for which theorems about convergence have 
already been proven, a presentation of my results enables one not only to confirm the previous proven 
analytic results, but also to assess how my numerical results may provide additional information and 
intuition previously inaccessible to analytic analysis alone.   
 
First, I present results that arise when each player initially believes that the other plays each possible 
pure strategy with equal probability.  In this case, each player’s prior puts uniform weight on all the 

possible pure strategies: 0
i =(1,1, …, 1) i.  I call this form of prior a uniformly weighted prior.  When a 

player has a uniformly weighted prior, he will expect his opponent to produce quantity 10 on average, 

which is higher than the symmetric Nash equilibrium quantity of 1
NEq = 2

NEq  = 5 in the symmetric cost 

case and also higher than both quantities 1
NEq  = 3, 2

NEq  = 6 that arise in the Nash equilibrium of the 

asymmetric cost case.     
 

Figure 1 presents the trajectories of each player i’s mixed strategy i
t  over time when each player has a 

uniformly weighted prior.  Each color in the figure represents a pure strategy (quantity) and the height of 
the band represents the probability of playing that strategy.  As expected, in the symmetric case, the 
players end up playing identical mixed strategies.  In the asymmetric case, player 1, whose costs are 
higher, produces smaller quantities than player 2.  In both cases the players converge to a fixed mixed 
strategy, with most of the change occurring in the first 100 time steps.  It seems that convergence takes 
longer in the case of asymmetric costs than in the case of symmetric costs.  Note that the strategies that 
eventually dominate each player’s mixed strategy initially have very low probabilities.  The explanation for 
this is that with uniformly weighted priors, each player is grossly overestimating how much the other will 
produce.  Each player expects the other to produce quantities between 0 and 20 with equal probabilities, 
and thus has a mean prior of quantity 10.  As a consequence, each firm initially produces much less the 
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Nash equilibrium quantity to avoid flooding the market.  In subsequent periods, the players will update 
their assessments with these lower quantities and change their strategies accordingly. 
 
 

FIGURE 1 
 

    
   (a)      (b) 
Dynamics of players’ mixed strategies with (a) symmetric and (b) asymmetric costs as a function of time.  

As a benchmark, the Nash equilibrium quantities are (5,5)NEq   in the symmetric cost case and 

(3, 6)NEq   in the asymmetric cost case.  Each player has a uniformly weighted prior. 

 
 
Figure 2 presents the trajectories for the actual payoffs it achieved by each player i at each time period t.  
Once again, I assume that each player has a uniformly weighted prior.  The large variation from period to 
period is a result of players’ randomly selecting one strategy to play from their mixed strategy vectors.   In 
the symmetric case, each player i’s per-period payoff hovers close to the symmetric Nash equilibrium 

payoff of NE
i  = 37.5.  On average, however, both players do slightly worse than the Nash equilibrium, 

both averaging payoffs of 37.3 (s.d. = 2.96 for player 1 and s.d. = 2.87 for player 2).  The average and 
standard deviation for the payoffs are calculated as follows: means and standard deviations are first taken 
for all T=1000 time periods for one simulation, and then the values of the means and standard deviations 
are averaged over 20 simulations.  In the asymmetric case, the vector of players’ per-period payoffs is 

once again close to the Nash equilibrium payoff vector NE   = (21, 51).  However, player 1 slightly 
outperforms her Nash equilibrium, averaging a payoff of 21.16 (s.d. = 2.16), while player 2 
underperforms, averaging a payoff of 50.34 (s.d. = 2.59).  Thus, when costs are asymmetric, the high-
cost firm does better on average under logistic smooth fictitious play than in the Nash equilibrium, while 
the low-cost firm does worse on average.  This qualitative result is robust across the two sets of cost 
parameters I analyzed. 
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FIGURE 2 
 

    
(a) (b) 

Actual payoffs achieved by each player as a function of time in the (a) symmetric and (b) asymmetric 
cases.  Each player has a uniformly weighted prior. 
 
 
Much of the variation in the achieved payoff arises from the fact at each time t, each player i randomly 

selects one strategy qit to play from his time-t mixed strategy vector i
t .  By taking the mean over these 

vectors at each time t, I can eliminate this variation and gain a clearer picture of the dynamics of each 
player’s strategy.  Figure 3 presents the evolution of the expected per-period quantities, where 
expectations are taken at each time t either over players’ mixed strategies or over opponents’ 
assessments at time t, values corresponding to expressions (1) and (2), respectively.  As before, each 
player has a uniformly weighted prior.  Figures 3(a) and 3(b) present the both mean of player 1’s mixed 

strategy (i.e., 1
1[ | ]tq  ) and the mean of player 2’s assessment of what player 1 will play (i.e., 

[ | ]ji tq  ) for the symmetric- and asymmetric-cost cases, respectively.  Figure 3(c) gives the mean of 

player 2’s mixed strategy and the mean of player 1’s assessment of player 2 in the asymmetric case.  
 
For both the symmetric and asymmetric cost cases, the mean of player 2’s assessment is initially very 
high and asymptotically approaches the Nash equilibrium.  As explained above, this is a result of the 
uniformly weighted prior.  Initially, player 2 expects player 1 to play an average strategy of 10.  Similarly, 
player 1 expects player 2 to play an average strategy of 10, and consequently player 1’s mixed strategy 
initially has a very low mean, which rises asymptotically to the Nash equilibrium.  It is interesting to note 
that in the asymmetric case, the mean over player 1’s chosen mixed strategy slightly overshoots the Nash 
equilibrium and then trends back down towards it.  Figure 3 also provides standard deviations over player 
1’s mixed strategy and player 2’s assessment.  Note that the standard deviation of player 2’s assessment 
is much higher than the standard deviation of player 1’s mixed strategy, indicating player 2’s relative 
uncertainty about what player 1 is doing. Although the results presented in these figures are the outcome 
of one particular simulation, in general the variation in the values for the expected quantities across 
simulations is small. 
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FIGURE 3 
 

    
(a) (b) 

                                    
      (c) 
Means and variances of quantities, as taken over players’ time-t mixed strategies and opponent’s time-t 
assessments in the (a) symmetric case and the asymmetric case for (b) the higher-cost player 1 and (c) 
the lower-cost player 2 as a function of time.  Each player has a uniformly weighted prior. 
 
 
Just as an examination of the expected per-period quantity instead of the mixed strategy vector can 
elucidate some of the dynamics underlying play, analyzing expected payoffs can similarly eliminate some 
of the variation present in the trajectories of players’ achieved payoffs in Figure 2.  Figure 4 presents the 
evolutions of players’ ex ante and interim expected payoffs, corresponding to expressions (3) and (4), 
respectively.  Figures 4(a) and 4(b) depict these quantities for player 1.  The interim payoff has a large 
variance from period to period because it is calculated after player 1 has randomly selected a strategy 
from his mixed strategy.  In the symmetric case, depicted in Figure 4(a), both the ex ante and interim 
expected payoffs asymptote to the Nash equilibrium payoff, but remain slightly below it.  In the 
asymmetric cost case, the high-cost player 1 eventually does better than she would have in Nash 
equilibrium while the low-cost player 2 eventually achieves approximately his Nash equilibrium payoff.   In 
the alternative set of cost parameters I tried, the high-cost player 1 eventually achieves approximately her 
Nash equilibrium payoff in the long run while the low-cost player 2 does worse than his Nash equilibrium 
payoff.  For all cases, on average, the interim expected payoff is below the ex ante expected payoff.  
Figure 4 also presents standard deviations for the ex ante and interim expected payoffs; in general they 
seem roughly equal.  As before, although the results presented in these figures are the outcome of one 
particular simulation, in general the variation in the values for the ex ante and interim payoffs across 
simulations is small.  Thus, while players in the symmetric cost case do slightly worse than in Nash 
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equilibrium in the long run, the high-cost player 1 in the asymmetric cost case does better in the long run 
under stochastic fictitious play than she would in Nash equilibrium. 
 
 

FIGURE 4 
 

 

    
(a) (b) 

 
(c)  

Means and variances of ex ante and interim payoff in the (a) symmetric case and the asymmetric case for 
(b) the higher-cost player 1 and (c) the lower-cost player 2 as a function of time.  Each player has a 
uniformly weighted prior. 

 
 

Having shown that expected quantity and expected payoff seem to converge to the Nash equilibrium, I 
now test whether this is indeed the case.  First, I examine whether or not the mixed strategies do 
converge and the speed at which they converge.  Figure 5 gives a measure of the convergence of 
smooth fictitious play when priors are uniformly weighted.  As explained above, I define how close to 
steady-state player i is at time t as the maximum Euclidean distance between player i’s mixed strategy 

vector i
t  at times m, n ≥ t.  Indeed, the mixed strategies do converge: the Euclidean distance 

asymptotes to zero.  In the symmetric case, Figure 5(a), both players converge at approximately the 
same rate.  In the asymmetric case, Figure 5(b), the player with higher costs, player 1, appears to 
converge more quickly.   
 
Now that I have established that the mixed strategies do indeed converge, the next question I hope to 
answer is whether they converge to the Nash equilibrium.  Figures 5(c) and 5(d) depict the Euclidean 
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distance between player i’s mixed strategy vector i
t  and the Nash equilibrium.  In the symmetric case, 

both players converge at about the same rate, but neither gets very close to the Nash equilibrium.  In the 
asymmetric case, player 1 again stabilizes more quickly.  Furthermore, player 1 comes much closer to the 
Nash equilibrium than player 2 does.  With uniformly-weighted priors, it is never the case that 

( , )NE
td X X d , where 0.01d  ; thus neither player converges to the Nash equilibrium.  At time 

T=1000, the distance to the Nash equilibrium is 0.21 in the symmetric case.  In the asymmetric case, the 
distance to Nash equilibrium is 0.39 for the higher cost player and 0.53 for the lower cost player. 
 
 

FIGURE 5 
 

     
   (a)      (b) 

      
   (c)       (d) 

Maximum Euclidean distance between player i’s mixed strategy vector i

t  in periods m, n ≥ t in the (a) 

symmetric and (b) asymmetric cases as a function of time. Distance between player i’s mixed strategy 
vector and the Nash equilibrium in the (c) symmetric and (b) asymmetric cases.  Each player has a 
uniformly weighted prior. 
 
 
Because the players’ prior beliefs are responsible for much of the behavior observed in the early rounds 
of play, I now examine how the mean and the spread of the priors affect the convergence properties.  
First, I examine how my results may change if instead of a uniformly weighted prior, each player i’s had a 

prior that concentrated all the weight on a single strategy: 0
i = (0, 0, …, 21, 0, 0, …, 0).  I call such a prior 

a concentrated prior.     
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Figure 6 repeats the analyses in Figure 5, but with concentrated priors that place all the weight on 
quantity 9.  The figures show that in both the symmetric and asymmetric cases, the form of the prior 
affects the speed of convergence but not its asymptotic behavior.  Even with concentrated priors, each 
player’s play still converges to a steady state mixed strategy vector. With concentrated priors, just as with 
uniformly weighted priors, the distance to the Nash equilibrium converges to 0.21 in the symmetric case 
and 0.39 and 0.53 in the asymmetric case. 
 
 

FIGURE 6 
 

 

     
(a) (b) 

     
  (c)      (d) 

Maximum Euclidean distance between player i’s mixed strategy vector i

t  in periods m, n ≥ t in the (a) 

symmetric and (b) asymmetric cases as a function of time. Distance between player i’s mixed strategy 
vector and the Nash equilibrium in the (c) symmetric and (b) asymmetric cases.  Each player i has a 
concentrated prior that places all the weight on the strategy qj = 9.  
 
 
I now examine the effect of varying the means of the concentrated priors on the mean quantity 

[ | ]ii tq  of each player i’s mixed strategy.  For each player, I allow the strategy with the entire weight of 

21 to be either 4, 8, 12, or 16.  Thus, I have 16 different combinations of initial priors.  The phase portraits 
in Figure 7 are produced as follows.  For each of these combinations of priors, I calculate each player i’s 

expected quantity over their mixed strategies 1
1[ | ]tq   and plot this as an ordered pair for each time t.  
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Each trajectory thus corresponds to a different specification of the priors, and displays the evolution of the 
mixed strategy over T=1000 periods.  The figure shows that in both cases, no matter what the prior, the 
players converge to a point close to the Nash equilibrium.  In fact, the endpoints, corresponding to 
T=1000, appear to fall on a line.  It is also interesting to note that many of the trajectories are not straight 
lines, indicating that players are not taking the most direct route to their endpoints.  Notice that in the 
asymmetric case player 2’s quantity never gets very far above her Nash equilibrium quantity. 
 

FIGURE 7 
 

     
   (a)      (b) 
Phase portraits of expected quantity show the effect of varying (concentrated) priors in the (a) symmetric 
and (b) asymmetric cases. 

 
While Figure 7 shows phase portraits of expected quantity, Figure 8 shows phase portraits of ex ante 
expected payoff.  For comparison, the payoffs from the Nash and cooperative equilibria are plotted as 
benchmarks.  Once again, no matter the initial prior, the payoffs converge close to the Nash equilibrium 
payoffs in both cases. Again, the endpoints, corresponding to T=1000, appear to fall on a line.  In this 
case, however, the Nash equilibrium appears to be slightly above the line.  Thus, in the steady-state 
outcome of logistic smooth fictitious play, the players are worse off than they would be in a Nash 
equilibrium. 

FIGURE 8 
 

     
   (a)      (b) 
Phase portraits of ex ante expected payoff in the (a) symmetric and (b) asymmetric cases. 
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As noted above, the final points of the trajectories of expected quantity shown in Figure 7 seem to form a 
line, as do the final points of the trajectories of ex anted expected payoffs in Figure 8. Figure 9 shows only 
these final points and their best-fit line for both the expected quantity and for the ex ante expected payoff.  
As seen in Figure 6, each of the final points represents the long-run steady state reached by the players.   
 
Several features of the results in Figure 9 should be noted.  The first feature is the linear pattern of the 
final points.  In the symmetric case, the slope of the best-fit line, which lies below the Nash equilibrium, is 
approximately -1.01 (s.e. = 3e-6).  Thus, varying the prior appears only to affect the distribution of 
production between the two firms, but not the total expected quantity produced, and this total expected 
quantity is weakly less than that which arises in the Nash equilibrium.  In the asymmetric case, the slope 
of the line, which again lies below the Nash equilibrium, is -1.58 (s.e. = 3e-6).   
 
Thus, a weighted sum of the expected quantities, where the higher cost player 1 is given a greater 
weight, is relatively constant across different priors.  Similar statements can be made about the payoffs as 
well: that is, the sum of the payoffs is robust to the priors but lower than the sum of the Nash equilibrium 
payoffs in the symmetric cost case, and a weighted sum of the payoffs is robust to the priors but lower 
than the weighted sum of the Nash equilibrium payoffs in the asymmetric cost case. A second feature of 
Figure 9 to note regards how each player performs relative to his Nash equilibrium across different priors.  
In the symmetric case, the final points are distributed fairly evenly about the Nash equilibrium along the 
best-fit line.   
 
This implies that the number of priors for which player 1 does better than the Nash equilibrium is 
approximately equal to the number of priors for which player 2 does better than the Nash equilibrium.  In 
the asymmetric case, on the other hand, most of the endpoints lie below the Nash equilibrium, implying 
that the number of priors for which player 1 does better than the Nash equilibrium is larger than the 
number of priors for which player 2 does better than the Nash equilibrium.   
 
This seems to confirm the earlier observation that the higher cost player usually outperforms her Nash 
equilibrium in the asymmetric case.  A third important feature of Figure.9 regards convergence.  Note that 
Figures 9(a) and .9(b) show that there are several combinations of priors ( (4,4), (8,8), (12, 12), and (16, 
16) in the symmetric case, and (8,4), (12, 8) and (16,12) in the asymmetric case) that lead to steady state 
expected quantities very close to the Nash equilibrium (within a Euclidean distance of 0.01). However, 
convergence as earlier defined requires that the players’ mixed strategy vectors, not the expectations 
over these vectors, come within a Euclidean distance of 0.01 of the Nash equilibrium. This does not 
happen for any set of priors; under no combination of priors do the players mixed strategy vectors 
converge to the Nash equilibrium.  
 
A fourth important feature of Figure 9 regards the effects of a player’s prior on his long-run quantity and 
payoff.  According to Figure 9, when the opponent’s prior is held fixed, the lower the prior a player has 
over her opponent (i.e., the less she expects the other to produce), the more she will produce and the 
higher her per-period profit in the long run.  There thus appears to be what I term the overconfidence 
premium: the worse off a player initially expects her opponent to be, the better off she herself will 
eventually be. 
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FIGURE 9 
 

 

 

     
   (a)      (b) 

      
   (c)      (d) 
Best fit lines of the endpoints of the trajectories of expected quantity shown in Figure 7 in the (a) 
symmetric and (b) asymmetric cases. Plots (c) and (d) give similar best fit lines for the trajectories of ex 
ante expected payoff shown in Figure 8. 
 
Having seen the effect of varying the mean of each player’s prior on the learning dynamics, I now fix the 
mean and vary the spread.  Figure 10 shows the effect of spread in the prior.  I fix player 2’s prior, with all 

weight on one strategy ( 1q  = 10).  Thus, player 2’s prior looks like 2
0 = (0, …, 0,  21, 0, … , 0). I chose to 

concentrate the prior on the mean pure strategy in the strategy set both because it did not correspond to 
any Nash equilibrium, thus ensuring that the results would be non-trivial, and also so that varying the 
spread would be straightforward.  I vary player 1’s prior, keeping its mean the same (also producing a 
quantity of 10), but spreading its weight over 1, 3, or 7 strategies.  Thus, player 1’s prior looks like one of 

1
0 = (0, …, 0, 21, 0, …, 0),  (0, …, 0, 7, 7, 7, 0, …0), or (0,…, 0, 3, 3, 3, 3, 3, 3, 3, 0, …, 0).  As I see in 

Figure 10, spreading the prior in this manner does affect the trajectory of expected quantities but does not 
alter the initial or final points in either the symmetric or asymmetric case.  Each trajectory has the exact 
same starting point, while their final points vary just slightly.  This variation decreases as the number of 
time steps increases.  The same result arises if I plot phase portraits of the ex ante payoffs.  
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FIGURE 10 
 

     
(a) (b) 

     
   (c)       (d) 

The effects of varying the spread of player 1’s prior around the same mean ( 2q = 10) on the trajectories of 

expected quantity in the (a) symmetric and (b) asymmetric cases, and on the trajectories of ex ante payoff 
in the (c) symmetric and (d) asymmetric cases. 
 
 
I next examine the effect of varying each player’s prior on the rate of convergence. Figure 11 shows the 
effect of different priors on the speed of convergence of the mixed strategy for player 1.  I hold player 2’s 

prior fixed, with all weight on player 1’s Nash equilibrium strategy (i.e., 1q = 1
NEq = 5 for the symmetric cost 

case and 1q = 1
NEq = 3 for the asymmetric cost case).  I then vary player 1’s prior, keeping all weight on 

one strategy, but varying that strategy between 2, 4, 6, 8, 10, 12, 14, 16, and 18.  Player 2’s Nash 
equilibrium strategy is indicated by the  vertical dashed line.  In both cases, the time to convergence is 

minimized when player 1’s prior puts all the weight on 2q = 6.  This is not surprising in the asymmetric 

casE because NEq  = (3, 6) is the Nash equilibrium for that case.  In the symmetric case, when player 1’s 

prior puts all the weight on 2q = 6, this is very close to player 2’s Nash equilibrium quantity of 2
NEq = 5.  

For the asymmetric cost case, one can also generate an analogous plot as a function of player 2’s prior, 
holding player 1’s prior constant at player 2’s Nash equilibrium strategy. 
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FIGURE 11 
 

      
   (a)      (b) 
The number of time steps until convergence in the (a) symmetric and (b) asymmetric cases.  Player 1 has 
a concentrated prior.  Player 2’s Nash equilibrium strategy is indicated by the dashed line. 
  
 
I now examine the effect of varying each player’s prior on convergence to the Nash equilibrium.  Figure 
12 shows the effect of different priors on the final distance to the Nash equilibrium.   Again, I hold player 
2’s prior fixed with all weight on player 1’s Nash equilibrium strategy.  I then vary player 1’s prior as 
before.  Player 2’s Nash equilibrium strategy is again shown by a dotted vertical line. The distance 
between player 1’s mixed strategy vector and his Nash equilibrium quantity at time T=1000 is smallest 
when player 1’s prior is concentrated at a value close to player 2’s Nash equilibrium quantity.  The 
distance grows as player 1’s prior gets further away from the Nash equilibrium quantity.  For the 
asymmetric cost case, one can also generate an analogous plot as a function of player 2’s prior, holding 
player 1’s prior constant at player 2’s Nash equilibrium strategy. 
 

FIGURE 12 

     
   (a)      (b) 
Distance between player 1’s mixed strategy vector and the Nash equilibrium at time T=1000 as a function 
of player 1’s (concentrated) prior in the (a) symmetric and (b) asymmetric cases.  Player 2’s Nash 
equilibrium strategy is indicated by the dashed line. 
 
 
Finally, I examine the effect of varying each player’s prior on final-period ex ante payoff, as compared to 
the Nash equilibrium. Figure 13 shows the effect of different priors on the final ex ante payoff minus the 
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Nash equilibrium payoff.   Again, I hold player 2’s prior fixed with all weight on player 1’s Nash equilibrium 
strategy.  I then vary player 1’s prior as before.  Player 2’s Nash equilibrium strategy is indicated by a 
dotted vertical line.  The difference between player 1’s ex ante payoff and the Nash equilibrium payoff at 
time T=1000 is largest when player 1’s prior is smallest.  The difference declines (and becomes negative) 
as player 1’s prior grows.  When player 1’s prior is smallest, he believes that player 2 will produce a small 
quantity.  Thus, he will produce a large quantity, and reap the benefits of a larger payoff.  This result 
confirms the overconfidence premium results from Figure 9: the worse off a player initially expects his 
opponent to be, the better off he himself will eventually be.  For the asymmetric cost case, one can also 
generate an analogous plot as a function of player 2’s prior, holding player 1’s prior constant at player 2’s 
Nash equilibrium strategy. 
  

FIGURE 13 
 

     
   (a)      (b) 
Difference between player 1’s final-period ex ante payoff and the Nash equilibrium payoff at time T=1000 
as a function of player 1’s concentrated prior in the (a) symmetric and (b) asymmetric cases.  Player 2’s 
Nash equilibrium strategy is indicated by the dashed line. 
 
 
In summary, the main results, which are robust across the two sets of cost parameters analyzed, are: 
 1) In the symmetric case with uniformly weighted priors, players on average achieve a 
slightly smaller payoff than the Nash equilibrium payoff, both on average and in the long run. 
 2)  In the asymmetric case with uniformly weighted priors, the higher cost player outperforms 
her Nash equilibrium payoff both on average and in the long run, while the lower cost player 
underperforms his on average. 
 3) With either uniformly weighted priors or concentrated priors, both players’ mixed strategy 
vectors converge to a steady state, but neither player’s mixed strategy converges to the Nash equilibrium. 
 4) In the asymmetric case with uniformly weighted priors, the higher cost player’s mixed 
strategy vector converges to steady state faster than that of the lower cost player.   Furthermore, the 
higher cost player gets closer to the Nash equilibrium. 

5)     In the symmetric cost case, varying the priors affects the distribution of production and of 
payoffs between the two firms, but not either the total expected quantity produced nor the total payoff 
achieved, and both the total quantity and the total payoff are lower than they would be in equilibrium.   

6)     In the asymmetric cost case, varying the priors affects the distribution of production and of 
payoffs between the two firms, but not either the weighted sum of expected quantity produced nor the 
weighted sum of payoff achieved, and both the weighted sum quantity and the weighted sum payoff are 
lower than they would be in equilibrium.   

7) Varying the spread of each player’s prior while holding the mean fixed does not affect the 
long-run dynamics of play. 
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8)  The distance between player 1’s mixed strategy vector and his Nash equilibrium quantity 
at time T=1000 inversely related to the difference between the quantity at which player 1’s prior is 
concentrated and player 2’s Nash equilibrium quantity.   

9)   There is an overconfidence premium: the worse off a player initially expects her opponent 
to be, the better off she herself will eventually be. 
These qualitative results are robust across the two sets of cost parameters analyzed. 
 
5. CONCLUSION 
 
In this paper, I investigate a stochastic fictitious play model of learning in a static Cournot duopoly game.  
Novel software is developed that enables one to analyze the trajectories and convergence properties of 
strategies, assessments, and payoffs in logistic smooth fictitious play, and to compare the welfare from 
logistic smooth fictitious play with that from equilibrium play.   
 
My analyses yield several central results.  First, varying the priors affects the distribution of production 
and of payoffs between the two firms, but not either the weighted sum of expected quantity produced nor 
the weighted sum of payoff achieved.  Second, there is an overconfidence premium: the worse off a 
player initially expects her opponent to be, the better off she herself will eventually be.  Initial beliefs about 
the distribution of production and of payoffs can be self-fulfilling.   
 
One key innovation of the work presented in this paper is the novel software, which can be used to 
confirm and visualize existing analytic results, to generate ideas for future analytic proofs, to analyze 
games for which analytic solutions are difficult to derive, and to aid in the teaching of stochastic fictitious 
play in a graduate game theory, business strategy, or business economics course. 
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