
# Market-Mediated Land Use Change & Biofuel Policy Towards An Evaluation of Mitigation Options

Julie Witcover, Sonia Yeh University of California, Davis – Institute for Transportation Studies Siwa Msangi

International Food Policy Research Institute, Washington DC

IEA Bioenergy Workshop on Land Use Impacts of Bioenergy Campinas, Brazil, 20 September 2011



## Managing LUC Risk from Biofuel Policy: A Three-Pronged Approach

- Feedstock mix less reliant on land
  - promote low LUC-risk feedstocks (waste, residue, algae)
  - limit use/expansion of high LUC-risk (crop) feedstocks
- Lowered LUC risk for land-using feedstocks
  - reward feedstock-growing conditions that avert displacement or compensate for its effects
- Investments that reduce the scope for LUC
  - land productivity, environmental protection, carbon accounting

A 'Policy Menu' Approach: Cover Transition Timeframe, Both Sides of Productive Frontier

Feedstock mix less reliant on land

uroader in uses

10nger timet

- promote low LUC-risk feedstocks (waste, residue, algae)
- limit use/expansion of high LUC-risk (crop) feedstocks
  Lowered LUC risk for land-using feedstocks
  - reward feedstock-growing conditions that avert displacement or compensate for its effects
- Investments that reduce the scope for LUC
  - land productivity, environmental protection, carbon accounting (short- and long-term)

## Strategy List as Policy Design 'Menu'

#### 1. Prioritize Low-Risk LUC Feedstocks: waste, residue, algae

- create incentives for low-risk LUC feedstocks (EU-RED double counting; R&D incentives) set targets for low-LUC biofuel volumes (US-RFS2 hi volumes for 'advanced' fuels & biodiesel)

#### 2. Discourage Land-Using Feedstocks

- cap biofuel production volumes/feedstock production areas for higher risk feedstocks (US-RFS2 capped volumes for higher carbon 'renewable' fuels)
- exclude high-risk LUC feedstock pathways for meeting policy requirem'ts (regional US prop)
- create disincentives for high-risk feedstocks (via ILUC factor) (US-RFS2, CA-LCFS, 'quantitative' and 'uncertainty factor' proposals)

#### **3. Limit LUC via Controls on Feedstock Production Conditions**

- confine feedstock prod'n primarily to more 'marginal' land (little biomass or productive use) (some projections for cellulosics)
- promote use of more 'marginal' land (EU-RED CI bonus for severely degraded land, LIIB certification for 'non-provisioning' land)
- encourage 'additional' feedstock production from areas already under cultivation (LIIB • certification for 'additional' output from higher yields or integration w/ existing prod'n systems)

#### 4. Offset LUC with Credits

Alter feedstock mix , (inside supply ch<u>ain</u>)

Id-based sources

(in/out)

Investm'ts

(beyond)

Lower risk from (

Reduce LUC thru broader

- allow emissions offsets for LUC effects (link to carbon credit programs REDD, CDM)
- allow yield offsets for feedstock production (Virtual Yield Bubbles)

#### 5. Take Pressure Off the Land Base

- create incentives for higher land productivity on cleared & 'marginal' land (map/target high-risk LUC areas, support defined local property rights, R&D, extension)
- reduce agricultural supply chain losses (harvest, storage, transport)
- generate land-saving co-products (encourage coproduct development from feedstock production & processing)
- ease demand thru energy efficiency gains (extract more energy from feedstock)

#### 6. Protect Carbon Stocks/Encourage Carbon Sequestration

- target hi-carbon areas for protection (EU-RED 'no-go', US-RFS2 'go' areas, peatl'd, forests)
- promote GHG accounting in land use (EU-RED unilateral agreements)
- add carbon value for land use (carbon tax on ld, emissions tax on ld-based prod'ts, cap-&-trade for land-based emissions)
- add carbon value in all sectors (carbon tax, cap-&-trade)

Witcover et al. Campinas 2011

# Managing LUC Risk from Biofuel Policy: 'Menu' Item Promising Examples

Feedstock mix less reliant on land **Risk based** feedstocks (waste residue algae) **ILUC Factor**limit portact of high LUC-risk (crop) feedstocks

# Lowered LUC risk for land-using feedstocks

rewæge, dLowgIndirect Impact Fuels', dioffset schemes (need developm't, rigorous 10nger timeframe

Investments that reduce the scope for LUC • lance g. higher global yields, protected acareas (uncertainty on magnitude/timin payoff, scope w/in biofuel policy)

Source: Witcover & Yeh 2011 on LUC policy options for NLCFS

Largets biofueltion

proader involven

# Moving from Concepts to Policy

- Evaluation Criteria
  - effectiveness (and robustness)
  - efficiency
  - implementability
  - enforceability
  - equity
- Evaluation Tools
  - modeling, data work to assess effectiveness, efficiency of outcomes, *unintended consequences (e.g., leakage)*
  - stakeholder participation and consultation (streamlined & workable processes, proper accountability)

# Evaluation & 'Policy Menu' targets biofuel supping

- Evaluation Criteria
  - effectiveness (and robustness)
  - efficiency
  - implementability
  - enforceability
  - equity
- Evaluation Tools

modeling, data work to assess outcomes' effectiveness, efficiency, unintended consequences (e.g., leakage) as a valuable input for...

 stakeholder participation and consultation (streamlined & workable processes, proper accountability) Witcover et al. Campinas 2011

broader involvement longer timeframe

### Model-Based Evaluation of LUC *Policy Design*: An Illustration

- From collaborative research on a US National Low Carbon Fuel Standard (directed from ITS-UCDavis)
  - LCFS incentivizes alternative fuel use based on carbon intensities (v. volumetric mandates)
  - economic analysis for US (Madhu Khanna, Hayri Önal, Haixiao Huang, University of Illinois at Urbana-Champaign)
  - rest of world LUC effects (Siwa Msangi, Miroslav Batka, International Food Policy Research Institute)
- Approach 'soft' link between 2 economic (partial) equilibrium models
  - BEPAM model responds to US biofuel policies by adjusting supply & demand in US ag, energy markets → SHIFTS in exports of key commodities (U of Illinois team)
  - IMPACT model depicts RoW response to US trade changes by adjusting production/consumption & <u>crop area</u> (IFPRI team) Witcover et al. Campinas 2011

# Model-Based Evaluation of LUC Policy Design: Two Examples The Supply

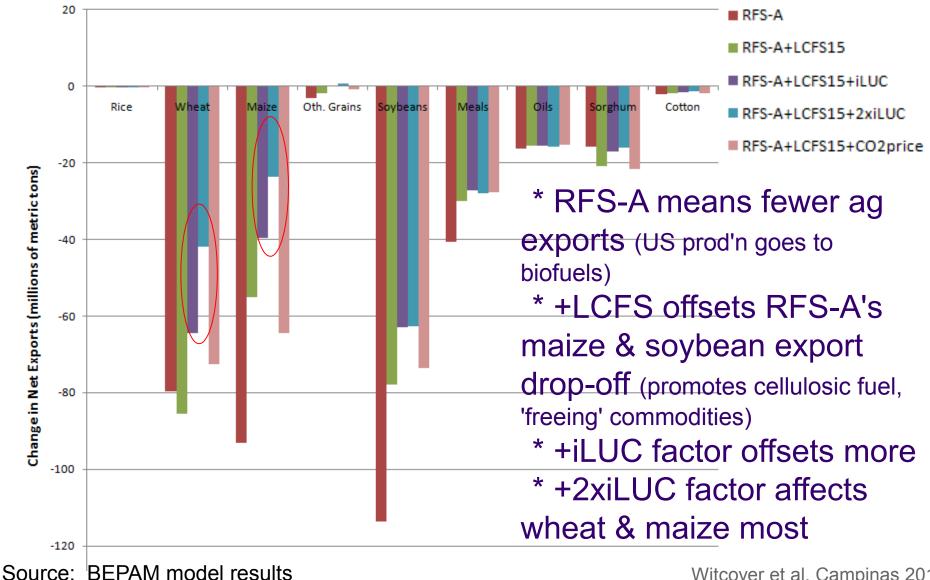
Feedstock mix less reliant on land

W action

proader involve

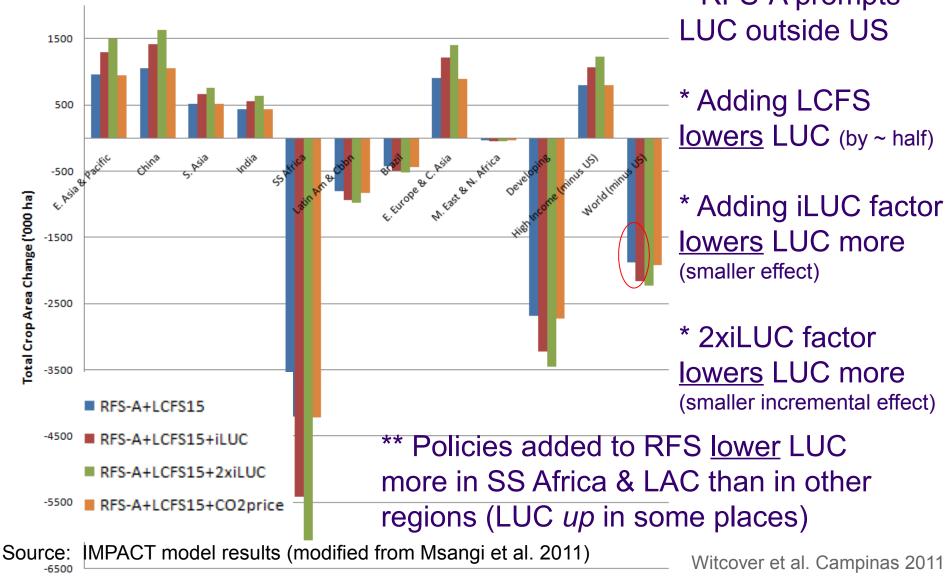
FS-rikfedrekFactorueingae) limit use/expansion of high LHC-risk (crop) feedstocks
 Lowered LUC risk for land-using feedstocks

reward feedstock-growing conditions that avert displacement or compensate for its effects


Investments that reduce the scope for LUC · 2d regional yield gains, protecting hi-Cstock areas Witcover et al. Campinas 2011

#### Modeling Example 1: US Policy Scenarios (compared to BAU, no policy, AEO-informed, to 2030\*) RFS-AEO – RFS falls short of RFS-A EISA blending goals (as per AEO 2010 outlook) RFS-A+LCFS15 **RFS-AEO + LCFS requiring** 15% decline in fuel carbon intensity RFS-A+LCFS15+iLUC RFS-AEO with LCFS15 + EPA 'international LUC' values RFS-AEO with LCFS15 + RFS-A+LCFS15+2xiLUC **2x**EPA 'international LUC' values RFS-A+LCFS15+CO2price RFS-AEO with LCFS+CO<sub>2</sub> **price** (EIA assessment of US ACES cap-&-trade)

\*details of BAU & scenarios in Khanna et al. (2011)


Witcover et al. Campinas 2011

## Ex 1: US Policies change US exports relative to BAU (2030)



Witcover et al. Campinas 2011

## Ex 1: Policies change non-US LUC relative to RFS-AEO (net, by 2030) \* RFS-A prompts

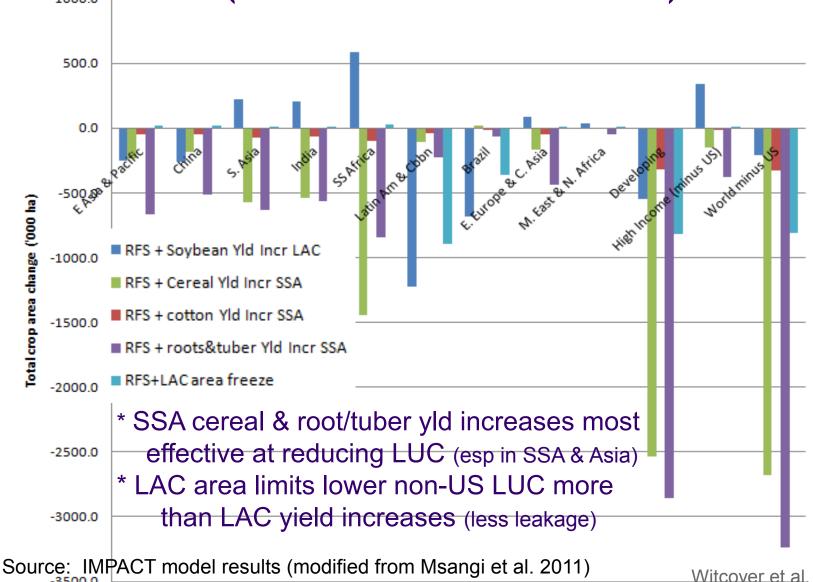


## Ex 1: US biofuel policy design matters to LUC in RoW

- Adding LCFS to RFS (encouraging lower carbon intensities in US) lowers LUC in RoW, especially SSAfrica and Latin America/Caribbean
- Adding an iLUC factor on top of an LCFS further reduces LUC in RoW, again with strongest effects in SSAfrica and LAC
- A higher iLUC factor continues to reduce LUC, but at a declining rate

## Modeling Example 2: Productivity gain scenarios for SSA & LAC

| selected crop                    | productivity gain<br>(additional percent gain<br>per year) | Target region      |
|----------------------------------|------------------------------------------------------------|--------------------|
|                                  |                                                            |                    |
| soybeans                         | 0.15 %                                                     | Latin America      |
| cereals/grains <sup>1</sup>      | 0.10 %                                                     | Sub-Saharan Africa |
| cotton                           | 0.20 %                                                     | Sub-Saharan Africa |
| roots & tuber crops <sup>2</sup> | 0.25 %                                                     | Sub-Saharan Africa |


Note: (1) including rice, wheat, maize, sorghum, millet and other coarse grains; (2) including potatoes, sweet potatoes, yams and cassava



Area Targeted for Halt on Agricultural Area Expansion

Ex 2: We also impose a halt to crop area expansion in tropical regions of LAC

### Ex 2: LUC from interventions in LAC/SSA (relative to RFS-AEO case)



# Ex 2: Effects of policies to reduce the scope for biofuel LUC vary by region

- Boosting staple yields in SSAfrica has high payoffs in lowering biofuel policy-induced LUC, with contributions from most regions ('low-hanging' fruit in terms of relatively low yields → avoided land expansion, SSA net importer → 'transmits' landsaving elsewhere)
- Limiting tropical Latin American land expansion is a better option than higher LAC yields for reducing LUC, but not as good as adjusting SSA yields (adjusting yields in exporting region → offsetting land expansion elsewhere; less leakage with land limits)
- Challenges uncertain location of LUC? enforcing land expansion limits? yield investment mechanisms & timing /magnitude of payoffs? (can biofuel policy design contribute?)
   Witcover et al. Campinas 2011

#### Recap: Strategy List & Evaluation Structure

- Three-pronged approach → fleshed out strategy list → policy menu
  - less land-reliant feedstock mix, lower risk from land-based feedstocks, broader investments to reduce the scope for LUC
  - grouping strategies by policy targets vis-à-vis biofuel supply chain highlights combinations to cover transition timeframe and both sides of productive frontier (ease of implementation/enforcement; need for greater coordination; longer timeframes; choice of evaluation tools)
- Model-based evaluation (examples)
  - LUC *outcomes* varied by region, magnitude due to policy design choices for LUC strategies from two 'prongs'
    - 'ILUC factor' (*inside* US biofuel policy) strengthens move toward cellulosics of an LCFS, reducing LUC outside US
    - yield improvements targeted toward staples in SSAfrica outperform LACdirected strategies in terms of non-US LUC reductions (difficult to incentivise within US biofuel policy)
- From here: more systematic evaluation framework, mix of qualitative & quantitative tools needed for policy design and monitoring (effective LUC policy *combinations* for 21<sup>st</sup> c. needs) Witcover et al. Campinas 2011

## Thank You!

jwitcover@ucdavis.edu slyeh@ucdavis.edu s.msangi@cgiar.org

Witcover et al. Campinas 2011