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ABSTRACT. Hydrogen is an energy carrier that has the potential to improve the sustainability of 

transportation fuels and reduce oil dependence.  This paper presents a stochastic dynamic 

programming model for sequentially building a hydrogen production and distribution system.  

The decision variables are the sequence and locations of the central production sites and the 

corresponding distribution systems from supply to demand sites.  A case study based on the 

geographic setting of Northern California is included, in which the hydrogen is produced via coal 

gasification and transported from plant to city gates (demand sites) by cryogenic liquid hydrogen 

trucks.  Future demands for hydrogen are modeled as uncertain parameters, with an assumption 

that hydrogen fuel cell vehicle (HFCV) market penetration rate increases from 1% to 25% over a 

20-year period.  This model provides multistage decision support for long term transportation 

energy planning at national and regional levels. 

 

Keywords: multistage processes, energy infrastructure system planning, stochastic dynamic 

programming, hydrogen transition 

 

INTRODUCTION 

Seeking environmentally friendly and sustainable alternative fuels for transportation is important 

for the U.S. economy from both environmental and energy security perspectives. Hydrogen, as 

one of the alternative fuels, has received considerable attention in recent years for two reasons: (1) 

hydrogen is a clean energy carrier which can significantly reduce greenhouse gas emissions, and 

(2) it can be manufactured from a variety of primary energy resources, such as natural gas, coal, 

wind, nuclear, etc (National Research Council and National Academy of Engineering 2004). 

 

Although the advantages of hydrogen have been well recognized, the success of a hydrogen-

based economy relies on its cost competitiveness relative to other fuels.  During the transition to a 

hydrogen economy, an entirely new infrastructure system would be required for producing and 

distributing gaseous fuels.  The cost of developing such an infrastructure system is a potential 

barrier to the deployment of hydrogen.  Several studies have attempted to quantify the steady-

state costs of various infrastructure components in the entire energy supply chain system (DOE 

2006; Freppaz et al. 2004; National Research Council and National Academy of Engineering 

2004; Parker 2007).  As components of the entire supply chain, hydrogen production and 
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distribution facilities have been specifically analyzed in (Ogden and Yang 2006) and (Yang and 

Ogden 2007), where several ways of reducing the cost of production and distribution were 

proposed using engineering-economic models.   

 

However, previous studies considered only steady state conditions and assumed deterministic and 

time-invariant demands, resource supplies, and other model parameters.  This treatment may not 

be appropriate for the design of a hydrogen system where infrastructure is deployed over a long 

time period (planning horizon).  In particular, there is considerable uncertainty regarding the 

growth in hydrogen demand over time.  Hence, a model with an additional dimension for 

handling uncertainties and dynamics is required.  The present paper addresses this void.   

 

The problem of gradually building a hydrogen production and distribution system falls within the 

general category of a dynamic location problem, which is one of the major research interests in 

location and logistics science.  In a recent review article by Melo et al. (2006), it was pointed out 

that few realistic models consider stochasticities and dynamics and thus more research is needed 

in this area.  Some existing studies based on multistage deterministic or stochastic programming 

(Chardaire et al. 1996; Dias et al. 2007; Kelly and Marucheck 1984; Sheppard 1974; Wesolowsky 

and Truscott 1975) have shed light onto our work, even though we approach the problem mainly 

from a dynamic programming viewpoint.  In the later part of this article, we will discuss how the 

choice among different modeling techniques may affect the computational complexity of the 

problem.   

 

In this paper, a multistage stochastic dynamic programming model (Bellman and Kalaba 1965; 

Bertsekas and Tsitsiklis 1996; Dreyfus and Law 1977) is established to optimize the process of 

building and operating hydrogen production facilities during the transition to a hydrogen-based 

transportation system.  Future demand for hydrogen is treated as the major source of uncertainty, 

and is assumed to increase over time.  The location and sequence of production facilities 

represent the basic spatial and temporal dimensions of the problem.  These are strategic planning 

decisions that are usually made over a long planning period and cannot be easily modified once 

implemented.  In addition, there are operational decisions, such as the production quantities and 

the deliveries between plants and demand centers, which are examined more frequently and can 

be adjusted according to newly acquired information.  This special feature of the problem leads to 

our choice of a stochastic dynamic programming model with a master- and sub- problem 

structure.  The master-problem model focuses on the total expected system cost over the entire 

planning horizon while the sub-problem model focuses on the single-stage operational cost.  The 

master and sub-problem models pass information between each other and are solved together 

iteratively.  The details of this model structure will be provided in the next section.   

 

A case study based on the geographic setting of Northern California is included, in which the 

hydrogen is produced via coal gasification and transported from plant to city gates (demand sites) 

by cryogenic liquid hydrogen trucks.  The demand for hydrogen is assumed to increase as the 

hydrogen fuel cell vehicle (HFCV) market penetration rate increases from 1% to 25% over a 20-

year period (Miller et al. 2005).  Sensitivity analyses were conducted to identify important model 

parameters and to analyze their impacts on the design and cost-effectiveness of hydrogen 

infrastructure systems.   



 7 

METHODOLOGY 

Problem description 

Before we formulate the problem, let us first describe the spatial and temporal dimensions of the 

problem and discuss the possible tradeoffs between different cost components of the system, 

which justify the need for a system approach.     

 

Cost components: 

The entire system cost includes the following components: 

 fixed capital cost of building production plants, which depends on the number and sizes of 

the plants, and the land values of the plant locations;   

 operational cost associated with fuel production, which is proportional to the production 

quantity;  

 operational cost associated with fuel transportation, which depends on the quantity of fuel 

and the distance that it needs to be transported between the plants and demand sites; and 

 operational cost associated with the penalty associated with the fuel shortage.  This is a 

modeling choice.  The cost may be considered as the cost of outsourcing if the penalty 

cost is chosen equivalent to the imported fuel cost, or it may be considered as a soft 

constraint for satisfying demand if the penalty cost is set high.   

The objective of the model is to minimize the total system cost over the entire 20-year horizon.   

 

Spatial dimension of the problem: 

The geographic layout of the production plants is critical to the efficiency of the entire system.  

On the one hand, building centralized production plants in remote areas may reduce cost by 

taking advantage of economies of scale and lower land values.  On the other hand, transporting 

hydrogen can be expensive because it is a low-density gaseous fuel (DOE 2006).  Therefore, 

accessing demand sites, most of which are in populated areas, from those remote and centralized 

production plants may become expensive.  The spatial dimension of the system causes tradeoffs 

between the capital cost of plants and the transportation cost of hydrogen, which need to be 

considered in the planning process.  

 

Temporal dimension of the problem: 

During the transition of the system over a long planning period, building and operational 

decisions are likely to be made sequentially.  Therefore, we divide the entire planning horizon 

into multiple decision stages to incorporate the time-dependent feature of those decisions.  Choice 

of time stage interval depends on frequency of the decisions.  In this problem, decisions are made 

annually.  Therefore, the planning horizon is divided into 20 decision stages.  Regarding the 

construction of plants, the following assumptions are made: 

 plant construction decisions are made at the beginning of each year;   

 at most one new plant can be built in each time interval; 

 construction of a new plant requires two years to complete; and 

 once opened, a plant will not be shut down during the entire planning horizon.   

Due to the 2-year construction lag, planning decisions for building new plants should only be 

made in the first 18 years of the 20-year planning period.  Operational decisions are made yearly 

for those constructed plants.  The 2-year construction lag also explains the lag in the operational 

costs associated with under-construction plants in our model formulation.  Demand is assumed to 
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be uncertain with an increasing trend over the planning period.  Given time dynamics and 

demand uncertainty, there may be tradeoffs between the current cost of building and operating 

plants and the potential future cost of a fuel shortage.  In the later part of this paper, we will use a 

case study to examine the impact of imperfect information of model parameters on system cost 

and to highlight the value of a stochastic model compared to its deterministic counterpart.  

 

Mathematical model  

Basic structure of the model: 

A k-year multistage process can be considered as a process of the first k-1 years plus the last k
th

 

year.  Given a known initial system state at the beginning of year 1, let ( )k kf s  be the minimum 

system cost as the system transits from year 1 to the state ks  in year k.  By this definition, the 

minimum system cost as the system transits from year 1 to the state 1ks   in year k-1 is 1 1( )k kf s  .  

Let kx  denote the decision variable to be made at the beginning of the k
th

 stage, which transforms 

the system state from 1ks   to ks .  Let kr  be the cost realized in the k
th

 stage, which is usually a 

function of kx  and 1ks  .  In the simplest manner, the relation between the unknown functions kf  

and 1kf   can be formulated using dynamic programming as: 

1 1 1( ) min{ ( ) ( , )}
k

k k k k k k k
x

f s f s r x s    , k = 2, 3, …, K, (1) 

where K is the entire planning horizon. The boundary condition 1 1( )f s  can be easily obtained 

based on the initial state. 

 

Now let us add a little more complication to the above equation.  Suppose there are two types of 

decision variables to be made in each stage, a planning decision denoted as kx  and an operational 

decision denoted as ky .  Equation (1) should be modified as: 

 1 1 1
,

( ) min{ ( ) ( , , )}
k k

k k k k k k k k
x y

f s f s r x y s    , k = 2, 3, …, K. (2) 

Under certain condition when ky  does not affect the transformation from 1ks   to ks , using the 

concept of projection (sometimes also known as partitioning (Geoffrion 1970)), Equation (2) can 

be decomposed to a master problem and a sub problem represented in equation (3a) and (3b), 

respectively: 

1 1 1( ) min{ ( ) ( , )}
k

k k k k k k k
x

f s f s g x s    , k = 2, 3, …, K, (3a) 

where 

1 1( , ) min{ ( , , )}
k

k k k k k k k
y

g x s r x y s  . (3b) 

Equations (3a,b) provide the basic structure of the proposed model, as illustrated in Figure 1.   

 

Decomposition can provide some computational advantages especially if the dimensions of the 

decision vectors are high.  It may not be common to have a decomposed structure in classic 

dynamic programming.  However, decomposition techniques based on the concept of projection 

are widely used for solving mixed-integer and stochastic programming problems, for example, 

the well-known Benders decomposition (Benders 1962; Geoffrion 1972) and L-shaped method 

(Van Slyke and Wets 1969).     
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Operation 

decisions 

 

 
Figure 1. Structure of the decomposed stochastic dynamic programming model 

 

Mathematical formulation: 

The basic structure of the proposed model formulation is similar to Equations (3a, b), with some 

modifications to incorporate the uncertainty in demand and the 2-year construction lag.   

 

The notations used in the master-problem model are defined as following: 

 J:  index j, set of candidate plant sites; 

 : plant construction time/lag (i.e., two years in this study); 
k

jz :  planning decision variable made in stage k.  It equals 1 if a new plant starts 

construction at location j at the beginning of time stage k; and 0 otherwise.  This new 

plant becomes operational at the beginning of stage k .  Note that the index k 

denotes the year in which plant construction decisions are made and k can only be 

valued from 1 to 18; 

JSk  :  state variable at stage k.  It is the set of all chosen plants by time stage k.  The initial 

state of the system is given as S0;  

jF :  annualized capital cost of a plant at location j; 

( )k kH S : the total capital cost of the constructed plants at time stage k , given system state 

at stage k as Sk; 

)(*

kk SO  : the minimum expected operational cost at time stage k  including production cost, 

distribution cost and penalty cost, given system state at stage k as Sk.  This value will 

be computed by the stochastic model in the sub-problem model and passed to the 

master-problem model; 

)( kk Sf :  the minimum cumulative expected total system cost from the beginning of the 

planning horizon until the end of time stage k , given system state at stage k as Sk.  

Note that under-construction plants do not impact the minimization of system 

operating costs during their construction time. 

 

The complete master-problem model is included in equations (4) to (6): 

 
)}()()({min)( 11

*




 kkkkkk

k

jj
Sj

kk SfSOSHzFSf
k



 , 18,...,3,2k  (4) 

Multistage Dynamic 

programming model 

– Master-problem model  

Single-stage stochastic model 

– Sub-problem model 

Planning 

decisions 

Operational 

decisions 

System state & 

planning decisions Operational 

decisions & cost 
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 








kk

k

k
SjifjS

jifS
S


1  (5) 

Boundary condition:  

 





1

1

*

1

*

11 )()()(
k

kk SOSHSf  (6) 

 

 
Figure 2. Recursive relations between time stage k and k-1 

 

Equation (4) defines the recursive relation between time stages k and k-1.  Figure 2 helps to 

illustrate this relation.  The double arrow 1 represents )( 11  kk Sf , the minimum expected total 

system cost from the beginning of year 1 until the end of stage k-1+  given system state at stage 

k-1 as Sk-1.  Consider a feasible decision at state k as to build a new plant at location (xk=j).  This 

decision causes three additional cost terms: 

 capital cost of this under-construction plant between the k
th

 year and the ( 1k )
th

 year 

(denoted by upward arrows Fs in Figure 2, and summed as 
k

j jF z  in Equation (4));   

 the operational cost of this new plant (denoted by arrow O in the figure and )(*

kk SO   in 

the equation), since this new plant becomes operational at stage k ; and  

 capital cost of all operational plants (denoted by arrow H in the figure and ( )k kH S  in 

the equation).   

The optimal value function )( kk Sf , represented by the double arrow 2 in Figure 2, should take 

the minimum value of the sum of the costs associated with xk and )( 11  kk Sf .  The minimization 

in Equation (4) is taken with respect to all possible   kSj , where   means that no new 

plant is introduced at time stage k.   

 

Equation (5) defines the state transition between the (k-1)
st
 stage and the k

th
 stage, which explains 

two possibilities.  If there is no new plant from stage k-1 to stage k (i.e., j ), the state variable 

does not change so that 1kS = kS .  Otherwise, the state variable at stage k (i.e., kS ) is formed by 

adding the new plant j to the existing 1kS  of stage k-1.  The boundary condition is given in 

Equation (6), which is a single-stage optimization problem.  The initial system state, S0, is 

assumed to be an empty set.  The first-year building decision is obtained from boundary condition 

(6).  This plant is assumed to be operational immediately.  

 

…… 

k-1 k k -1+  k +  

…… …… 

)( 11  kk Sf  

)( kk Sf  

H O F F F F 

  

1 

2 

Year 1 
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The complete sub-problem model is depicted in Equations (7-9), which returns the minimum 

expected operational cost O* in stage k. 

 

)(*

kk SO =  
,

min ( ) ( ) ( )
k

k k k

j ji ji ji i
q x

j S i I i I

E CP x C x q


    
  

 
   

 
     (7) 

Subject to 

)()()(  k

i

j

k

ji

k

i qxD        ,Ii  (8) 

p

j

Ii

k

ji capx 


)(                ,Jj   (9) 

 

where: 

 

I:  index i, set of demand centers; 

 :  index ,set of demand scenarios; 

jCP :  hydrogen production cost at plant j ($/tonne);  

Cji:  delivery cost between plant j and demand center i, which includes the truck 

fixed and variable cost ($/tonne); 
p

jcap :  plant production capacity at plant j (tonne); 

 :  penalty level (i.e., cost of importing hydrogen from elsewhere) ($/tonne); 

)(k

iD :  the hydrogen demand from center i at time stage k (tonne); 

)(k

jix :  the amount of hydrogen delivered from plant j to the demand center i at time 

stage k (tonne); 

)(k

iq :  the amount of hydrogen shortage at demand center i at time stage k (tonne). 

 

The decision variables include the quantity of the hydrogen shortage at each demand center 

)(k

iq  and the amount of hydrogen delivered between plants and demand centers )(k

jix at each 

stage and under each demand scenario.  The objective function (7) is to minimize the expected 

operational cost at time stage k , given that plants belonging to set kS  are operational at stage k.  

Equation (8) defines the amount of unsatisfied demand ( k

iq ) at city i at time stage k.  Constraint 

(9) imposes a hydrogen production limit based on the capacity of each plant j at time stage k.   

 

Solution procedure: 

This stochastic dynamic programming model is solved iteratively as follows:  

Step 1: Solve boundary condition (6) and obtain )( 11 Sf .  

Step 2: Repeat for each time stage k=1 to 18: 

Solve )( kk Sf  in equation (4), where )(*

kk SO   is computed using the sub problem. The 

detailed procedure for computing )( kk Sf for a given Sk is illustrated in Table 1, using 

kS ={1,2,3} as an example. 

Step 3: At the final planning stage k=18, choose the minimum )( kk Sf , and this )( kk Sf  is the 

minimum cumulative expected total system cost throughout the entire 20 years.  The 



 12 

planning decisions (i.e., the building sequence of production plants) can then be retrieved 

backward from 18S , 17S , …, to 1S . 

Note that the iteration of the algorithm is carried over system stages.  The algorithm starts from 

the boundary condition, which is a single stage problem that can be solved exactly.  Then from 

the boundary condition, every time as the algorithm moves forward, one more time period is 

added. The problem in the new stage can still be solved exactly, because the previous stage 

problem is already solved. The algorithm continues to move forward until the end of the planning 

horizon is reached.  This forward dynamic programming structure is an exact algorithm, not a 

heuristic procedure. 

 

Table 1. Computation procedure from (k-1)
st
 to k

th
 stage for a specific kS  

kS  j 
1kS  k

jj zF  )(*

kk SO   ( )k kH S  )( 11  kk Sf   )( kk Sf  

{1,2,3}   1,2,3 0 O H g1 F1= 

O+H+g1 
1

2

3

4

min

F

F

F

F

 
 
 
 
 
  

 1 2,3 C1 O H g2 F2= 

O+C1+H+g2 

2 1,3 C2 O H g3 F3= 

O+C2+H+g3 

3 1,2 C3 O H g4 F4= 

O+C3+H+g4 

*The details of the computation process are interpreted as follows.  Given kS ={1,2,3}, there are four 

possible j values (2nd column) that could transform the system from state 1kS   (3rd column) to kS .  

The three costs associated with each j are given in columns 4, 5, 6.  The value of )( 11  kk Sf  for each 

1kS  is given in the 7th column.  As a result, for each possible j, the total system cost is updated from 

stage k-1 to k in the 8th column.  The minimum value of the four Fs is )( kk Sf  (last column), and the 

corresponding j that minimizes the total system cost is an optimal planning decision for the state Sk. 

 

The iterative solution procedure in the master problem was implemented in MatLab and 

AMPL/CPLEX (Fourer et al. 2003) were used to solve the sub-problem model at each stage.  The 

complexity of this solution algorithm is dominated by the total number of stages (K) and the 

number of candidate locations (N).  There are three layers of iterations, which correspond to the 

stage index, possible states in each stage, and possible decisions at each stage.  These three layers 

result in a complexity no worse than 2K N .  Note that the sub-problem model could be solved 

for all possible states before running the master-problem model, or be called when it is needed 

during the computation procedure of the master-problem model.   

 

In general, the complexity of a dynamic programming model depends on the size of the decision 

tree, while the complexity of a stochastic programming model is dominated by the size of the 

scenario tree.  Note that three demand scenarios are assumed in each decision stage, thus forming 

a total of 3
20

 possible random scenarios to be considered in this problem.  If a stochastic 

programming framework is chosen for modeling this problem, then it has to handle 3
20

 branches 

in the scenario tree, which will cause a major numerical challenge.  In a dynamic programming 

framework, only the random scenarios in a single-stage are considered at a time, and the 
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combined possibilities of the remaining process are packaged in the unknown optimal return 

function )( kk Sf  for k = 1, 2, …, K .   

 

CASE STUDY 

Data Preparation  

This paper examines a case study in Northern California in which it is assumed that the HFCV 

market penetration rate increases from 1 to 25% over twenty years, as shown in Figure 3 (Miller 

et al. 2005).  Given a market penetration rate in each year, a demand model was used to identify 

the locations and magnitudes of demand for those areas in which there is sufficient demand to 

warrant infrastructure investment (Johnson et al. 2005).  However, under uncertain conditions, 

demand in each area is randomly chosen between three demand levels in each year as shown in 

Table 2.  Random demands at different locations are assumed to be independent of each other 

(i.e., no geographic correlation between them is considered).   

 

Table 2. Three demand levels and associated probabilities 

 Median High Low 

% difference from median  0 +25% -25% 

Probability 2/3 1/6 1/6 
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Figure 3. Market penetration growth rate 

 

The size and number of demand centers grow as the market penetration rate increases from 1% to 

25% as illustrated in Figure 4.  There are five potential locations for hydrogen production sites.  

These sites are constrained by the locations of existing large power plants within the study area 

(USEPA 2002).  A geographic information system (GIS) was used to identify the shortest path 

truck routes connecting each of the candidate production facilities to all of the demand centers.  

These routes form a candidate fuel delivery system.  The model takes these data as inputs to 

identify an optimal facility building sequence that minimizes the total expected production and 

distribution costs. 
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The plant fixed cost includes both capital and operation and maintenance (O&M) costs associated 

with the coal gasification plant, hydrogen liquefier, truck terminal, and on-site storage.  The 

production capacity of each plant is set to be 500 tonnes/day based on DOE recommendations 

(DOE 2006).  Cost modeling conducted by H2A (DOE 2006) and Kreutz et al. (Kreutz et al. 2005) 

was used to estimate plant fixed costs.  These costs were then annualized and converted to 2005 

dollars assuming a real discount rate of 10% and a plant lifetime of 40 years.  The capital cost of 

a plant was estimated to be $281 million per year.   

 

 
Figure 4. Demand centers and potential production facilities and truck routes at 1% and 25% 

market penetration rates 

 

The plant variable cost includes the coal feedstock cost, electricity cost for liquefaction, and 

revenue from co-production of electricity.  Assuming a coal-to-hydrogen efficiency of 57%, the 

amount of coal required to produce a kg of H2 is 0.198 mmBtu/kg (Chiesa et al. 2005).  This 

number is multiplied by the price of coal ($1.29/mmBtu) to calculate the feedstock cost, which is 

estimated to be $0.26/kg H2.  The electricity cost is calculated assuming that 9.25 kWh/kg H2 is 

required for liquefaction and the electricity cost is $0.05/kWh (DOE 2006).  The estimated cost of 

electricity in all cases is $0.46/kg H2.  The electricity revenue is calculated assuming that 2% of 

the coal input is converted to electricity and that the electricity is sold for $0.05/kWh (Chiesa et al. 

2005).  With these assumptions, the electricity revenue is estimated as $0.06/kg H2.  Therefore, 

the total plant variable cost after accounting for both costs and revenue is $0.66/kg H2. 

 

For hydrogen distribution via liquid trucks, it is assumed that the truck capital cost is $104,792 

per year and truck capacity is 9,000 kg.  The truck variable cost ($/km) is a function of fuel, labor, 

and fixed O&M costs.  Assuming that the trucks are diesel-operated and achieve a fuel economy 

of 10 km per gallon, the fuel cost is calculated by dividing the fuel price ($2/gallon) by the fuel 

economy.  As a result, the fuel cost is estimated as $0.20/km/truck.  The labor cost is calculated 
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by identifying the time it takes to travel one km (assuming an average truck speed of 60 km per 

hour) and multiplying this quantity by the wage ($20/hour).  In addition, overhead is assumed to 

be 50% of labor.  Therefore, the labor cost (including overhead) is estimated to be $0.50/km/truck.  

The fixed O&M cost includes truck maintenance and is given as $0.18/km/truck (DOE 2006).  

Therefore, the total distribution variable cost is $0.88/km/truck.   

 

A transport cost matrix was developed for the shortest paths between potential production 

facilities and all demand centers at 25% market penetration.  Since the number of trucks required 

along each route will differ at each market penetration level, the desired cost metric is dollars per 

truck.  The shortest distances provided by the GIS were converted to costs by multiplying each 

one-way distance by two to get a roundtrip distance and then multiplying these distances by the 

fuel delivery variable cost.  Since the delivery variable cost is in $/km/truck, the units of the 

resulting transport cost matrix is $/truck. 

 

Results and Sensitivity analyses  

In this section, the results of the case study are summarized and discussed.  First, the results under 

baseline assumptions are reviewed.  Then, sensitivity analyses are conducted in which key 

parameters are varied in order to see how changes in these parameters impact the system layout 

and costs.   

Baseline case 

The baseline scenario is defined as follows: 

 all hydrogen plants have a maximum capacity of 500 tonnes H2/day even though the 

actual production quantity is determined by the model; 

 plant capital cost varies depending on location (Table 3) (e.g., plants near the San 

Francisco Bay Area are assumed to be 20% more expensive to build due to higher land 

and labor costs); and 

 the penalty cost for demand shortages is $10/kg H2, which is set significantly high to 

ensure sufficient instate hydrogen production. 

 

Table 3. Plant capital costs (M$/year) 

Plant Location Capital Cost  

(500 tonnes/day) 

Plant 1 Kern County  $  281.3  

Plant 2 (+20%) San Jose  $  337.6  

Plant 3 (+10%) Moss Landing  $  309.5 

Plant 4 (+20%) Pittsburg  $  337.6  

Plant 5 Yuba City  $  281.3  

 

The complete results of the baseline scenario are summarized in Table 4.  The first column 

contains the planning years and year zero denotes the time stage before the beginning of the first 

year.  At the beginning of year 1, the plant building decision is determined by the boundary 

condition.  The plant location pattern in each year is represented in the second column.  For 

example, a plant at Yuba city (location ID 5) is built at the beginning of year 1 and this location 

pattern remains the same until the end of year 10 (or the beginning of year 11), when a new plant 

in Kern County (location ID 1) is built.  Since it then takes two years to complete construction of 
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a new plant, the second plant will become operational at the beginning of year 13.  During 

construction, the model assumes that capital payments begin on the new plant even though it is 

not yet operational.  These additional capital costs are recorded in the third column.  The fourth 

column contains the capital costs of the operational plants.  The annual operational costs, the 

expected hydrogen production quantity, and expected demand shortage are summarized in 

columns five, six and seven, respectively.  The annual expected total system cost is stored in 

column eight, which is the summation of plant capital costs (including both under-construction 

and operational plants), operational costs, and shortage costs.  The average cost of hydrogen ($/kg) 

is identified in column nine and is computed by dividing the total annual cost by the quantities of 

annual production and shortage together.  Column ten records the percentage of the total system 

cost that results from penalties.   
 

Table 4 indicates that the plant capital cost is significantly larger relative to the O&M costs.  

Since we vary the capital costs by location, the model minimizes the total system cost by 

choosing the plants with the lowest capital cost first.  In fact, these low cost plants are selected 

even though they are distant from the demand centers (as shown in Figure 5), which indicates that 

delivery costs are less important compared to plant capital costs.  For example, a single plant at 

Yuba City is operational from year 1 to 10.  As shown in column 9 of Table 4, this plant is 

underutilized at the beginning, resulting in high average hydrogen costs of $24.48/kg and 

$12.88/kg in the first two years.  However, as hydrogen demand increases and the plant becomes 

better utilized, the average cost decreases to $2.77/kg in year 10.  The model chooses to build an 

additional plant at Kern County in year 11 because the penalty cost on fuel shortage outweighs 

plant capital and fuel delivery costs by year 13.  In the base model, capital costs are the main 

drivers in selecting plant locations and determining hydrogen costs. 

 

The sequence of building the hydrogen infrastructure system is illustrated in Figure 5, with 

results aggregated into four 5-year periods to save space.  Although the choice of plants is the 

same in Figure 5(a) and (b), additional truck routes are needed to support the delivery of fuel to 

more demand centers.   
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Table 4. Baseline results summary 

Year 

New plant 

location 

(plant ID) 

Capital cost of 

under-construction 

plants  

(2005$ million/yea

r) 

Capital cost of 

operational 

plants  

(2005$ million

/year) 

Operating  

cost  

(2005$ millio

n/year) 

Production 

(tonnes/year) 

Shortage 

(tonnes/year) 

Annual total 

system cost 

(2005$ million/

year) 

Average H2 cost  

(2005$/kg) 

penalty 

cost (%) 

1 5*   $281  $    9  11,864    $   290   $  24.48   

2    $281   $  18  23,217    $   299   $  12.88   

3    $281   $  21  27,148    $   302   $  11.13   

4    $281   $  30  39,350    $   311   $    7.91   

5    $281   $  34  44,486    $   315   $    7.09   

6    $281   $  44  57,798    $   326   $    5.63   

7    $281   $  58  75,395    $   339   $    4.49   

8    $281   $  73  96,187    $   355   $    3.69   

9    $281   $  92  120,103    $   373   $    3.11   

10    $281   $107  140,506    $   389   $    2.77   

11 1&5  $281  $281   $145  155,957  2,620  $   708   $    4.37  4% 

12   $281  $281   $214  174,964  8,073  $   777   $    3.98  10% 

13    $563   $168  221,216    $   731   $    3.30   

14    $563   $199  261,142    $   762   $    2.92   

15    $563   $213  279,883    $   776   $    2.77   

16 1,3 &5  $310  $563   $289  311,329  5,089  $1,161   $    3.57  4% 

17   $310  $563   $464  350,416  19,578  $1,336   $    3.26  15% 

18    $872   $304  404,575    $1,176   $    2.91   

19    $872   $350  444,073  1,597  $1,222   $    2.72  1% 

20    $872   $450  473,273  9,285  $1,322   $    2.74  7% 
Note: * Plant ID can be referred to Table 3 for its corresponding plant location. 
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5a (Year 1-5) 

 
5b (Year 6-10) 

 
5c (Year 11-15) 

 
5d (Year 16-20) 

 

Figure 5. Hydrogen production and delivery system design during four 5-year periods 

 

In an uncertain-decision environment, a stochastic modeling method that considers the entire 

range of possible random scenarios often produces a more reliable solution than its deterministic 

counterpart that considers the expected value of random parameters.  For comparison, solutions 
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are obtained from a stochastic model and a deterministic model that use only the expected 

demands of the 20-year period.  These two different solutions are then evaluated under an 

identical set of 1000 samples of demand scenarios randomly generated using Monte Carlo 

simulation based on the probability distribution given in Table 2.  Figure 6 shows the 

performance of the two solutions generated from stochastic and deterministic models under the 

1000 demand scenarios.  The two curves indicate the cumulative probabilities of not exceeding a 

certain system cost, resulting from the stochastic (pink curve) and the deterministic (blue curve) 

solutions, respectively.  For example, one may read that the probability of not exceeding a total 

system cost of 2005$14 billion is 90% following the stochastic solution and about 80% following 

the deterministic solution.  It is clear that the stochastic solution provides better reliability on the 

higher end of cost thresholds, which is usually favored by risk-averse system planners especially 

if the system is large-scale and expensive.  The stochastic solution also provides a better 

robustness in the worst case, with 2005$15.25 billion following the stochastic solution and 

2005$16.25 billion following the deterministic solution.   
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Figure 6. Comparison between stochastic and deterministic methods 

 

Sensitivity analyses 

Two sensitivity analyses are conducted to evaluate the impacts of basic energy feedstock 

(electricity, coal, and diesel) prices and the penalty cost on the system layout and the total system 

costs.   

 

(1) Impact of feedstock prices 

The cost of hydrogen production and distribution is dependent on the costs of several energy 

feedstock types that are used in the process.  This section analyzes the impact of changes in these 

feedstock costs on the model results.  Three feedstock types are examined: electricity, coal and 

diesel fuel.  Coal is gasified to produce hydrogen while significant electricity is required to 

liquefy hydrogen for truck transport.  Finally, diesel is used to fuel the trucks that transport the 
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hydrogen to demand centers.  The impacts of changes in the prices of these feedstocks on 

hydrogen system costs (capital and operational) are summarized in Table 5.   

 

The results suggest that changes in feedstock prices do not affect the system capital cost.  

However, the system operational cost is sensitive to changes in feedstock prices.  For instance, 

doubling the electricity cost results in about a 50% increase in the operational cost and a 12% 

increase in the total system cost.  Compared to the electricity price, the changes in coal and diesel 

fuel prices have negligible impacts on the total system cost.  

 

Table 5. System costs when feedstock costs are varied 
Scenarios Total system cost 

(2005$ billion) 

Capital cost  

(2005$ billion) 

Operating cost  

(2005$ billion) 

Electricity price 

(2005$kWh) increase 

from 0.05 to 0.10 (100%) 

$14.85 

(+12%) 

$9.99 

(0%) 

$4.86 

(+48%) 

Coal price 

(2005$/mmbtu) increases 

from 1.29 to 1.50 (16%) 

$13.43 

(+1%) 

$9.99 

(0%) 

$3.44 

(+5%) 

Diesel fuel price 

(2005$/gal) from 2.00 to 

4.00 (100%) 

$13.30 

(+0%) 

$9.99 

(0%) 

$3.31 

(+1%) 

Baseline scenario $13.27  $9.99 $3.28 

 

(2) Impact of penalty cost  

The penalty cost (i.e., imported hydrogen cost) was varied from $10 to $2 per kg of H2 to 

examine its impact on the quantity of imported hydrogen to meet demand shortages..  It was 

found that if the imported fuel can be obtained for less than $2/kg, then all the demand over the 

20-year planning horizon should be served by imported hydrogen.  As the imported hydrogen 

cost increases to $4/kg, in-state production increases to 60% of the in-state demand.  When the 

imported cost exceeds $8, it is most efficient to have all the demand satisfied by in-state 

production. 

 

CONCLUSIONS AND FUTURE WORK 

This paper presents a stochastic dynamic programming model to optimize the sequence of 

building hydrogen production facilities and simultaneously determine optimal production and 

delivery decisions in each time stage, under demand uncertainty. The proposed model integrates 

dynamic programming and stochastic programming methods to improve the effectiveness and 

flexibility of planning and operational decisions.  This problem could also be formulated as a 

multistage stochastic programming model, as in several previous studies on the dynamic location 

problem mentioned in the introduction.  However, the proposed model may provide some 

modeling flexibility such as integrating a computer simulation in the single-stage sub-problem 

model.  It may also have computational advantages when the size of the scenario tree is the main 

cause for numerical difficulties.   

 

A case study based on the geographic setting in Northern California was also examined in this 

paper.  Numerical experiments show a clear advantage for stochastic modeling techniques in 

producing more reliable and robust design solutions under a highly uncertain decision 
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environment.  Based on the case study results and sensitivity analyses, some important policy 

implications have been identified.  In general, we found that the capital cost was the major cost 

driver of the total system cost and varying the electricity price could change the operational cost 

significantly.  Sensitivity analyses on the penalty cost revealed that optimal in-state production 

levels correspond to different hydrogen import costs.  California is currently implementing low-

carbon standards that may mandate certain levels of clean fuel to be produced within the state.  

Results from this study can provide information to support the formation of such policy. 

 

An immediate extension of this work would be to consider plant capacity as a planning decision 

variable.  The dimension of planning decisions would be increased to three: location, time, and 

size.  Also, intermediate storage facilities can be introduced into the system to store excess 

produced hydrogen in order to mitigate fluctuations in production cost due to changes in the 

supply and prices of feedstocks.  These modifications would have an impact on the complexity of 

the problem.  Developing an efficient solution algorithm for the extended work is the focus of our 

ongoing efforts.  
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