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views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do 

not necessarily reflect the official views or policies of the State of California or the Federal Highway 

Administration. This publication does not constitute a standard, specification or regulation. This report does not 

constitute an endorsement by the Department of any product described herein. 

 

For individuals with sensory disabilities, this document is available in Braille, large print, audiocassette, or 

compact disk. To obtain a copy of this document in one of these alternate formats, please contact: the Division 

of Research and Innovation, MS-83, California Department of Transportation, P.O. Box 942873, Sacramento, 

CA 94273-0001. 

 

PROJECT OBJECTIVES 

1. In order to prevent potential legal issues arising from a recent bridge retrofit project conducted by the 

California Department of Transportation (Caltrans), provide a quality assurance (QA) solution that 

requires determination of an appropriate number of samples and a corresponding scheme to ensure 

95 percent compliance with specification requirements. 

2. For each bridge, provide a selected sample size and a representative sampling scheme that is random 

and unbiased, and which uses uniform design as a sampling strategy. 

3. Recommend final acceptance criteria/specifications for each bridge based on the hypothesis testing 

results with the normal approximation of a binomial distribution. 
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EXECUTIVE SUMMARY 

A multibridge retrofit project was recently conducted by the California Department of Transportation (Caltrans) 

to increase the horizontal shear resistance of the decks. This required drilling and bonding #5 rebar as dowels in 

6 inch-deep holes along the center line of the existing girders of eight bridges. The contractor performing the 

work was required to completely fill the area around the dowels with epoxy in order to provide sufficient 

bonding to meet the specification. Unfortunately, an inspection of limited sample size performed after 

completion of the dowel installation process revealed that many had been improperly grouted. This resulted in 

rejection of the work on seven of the eight bridges and a request from Caltrans that the contractor repair the 

rejected sections. In addition, in order to prevent the possibility of legal issues, Caltrans decided to establish a 

testing procedure that would statistically determine the reliability of the work, and asked the University of 

California Pavement Research Center (UCPRC) to undertake the task. 

 
Providing the solution requires determination of an appropriate number of samples (sample size) with a 

corresponding sampling scheme to ensure 95 percent compliance with the specification requirement that dowels 

be either fully bonded or not, with none partially bonded. Essentially, this becomes a case of 0 (failure) or 1 

(success) with an inherent population (or contractor) proportion p. The approach selected was to assume each 

sampled dowel is a Bernoulli random variable and each dowel inspection is a Bernoulli trial. The count of 

successes/failures from n Bernoulli trials (i.e., sample size = n) is designated as a binomial random variable (X). 

The probability associated with a specific outcome xX   is given by a binomial density function expressed as 

follows: 

      xnx pp
x

n
xfxXP 








 1 .  

 
The research objectives described in this report are: (1) to determine the appropriate sample size, recognizing 

the practical considerations of cost, time, statistical simulation results, and the normal approximation of a 

binomial distribution; (2) to develop the most representative sampling scheme with the specified sample size; 

and, (3) to provide performance specifications (or acceptance criteria) for each bridge. To obtain a solution, the 

associated sample size determination, hypothesis testing, and performance specification were developed based 

on binomial distribution theory and the normal approximation of a binominal distribution.  

 
Determination of sample size for quality assurance (QA) is based primarily on an acceptable error level 

0ˆ ppE   for a performance parameter specified by the agency. It is necessary to have the sample size “large 

enough” so that the sampling error will be within a reasonable level of accuracy. If the sample size is too small, 

it is not worthwhile gathering data; the results will tend to be too imprecise to be of value. To investigate the 

sample size effect, a binomial sampling simulation was conducted. The binomial population was randomly 

generated based on the quality of the contractor (proportion) and the assumption of 8 dowels for each of 642 
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locations, i.e., a binomial population with 5,136 dowels. Results of this extensive statistical simulation suggest 

that there is a critical point of diminishing returns (probably around 100 ~ 200, which is the “large enough” 

sample size range for the binomial distribution) where increasing sample size provides little benefit. 

 
It is not uncommon for agencies to base QA on three samples. However, a discussion using binomial 

distribution is presented showing why it is inappropriate to take only this number of samples for quality 

assurance. For example, basing a large project on only three samples provides the agency with insufficient 

power to reject the null hypothesis—given that this hypothesis is false unless a project delivered is of such poor 

quality that the agency is confident it can reject it. 

 
For this project, considering the time and cost that the agency may be willing to spend, it is recommended that 

one-tenth of the number of dowels for each bridge should be sampled; that is, the quality assurance is based on 

each bridge rather than based on the whole project. The sample size of each bridge is summarized as follows: 

 

Bridge Name 
# of Dowels per 

Bridge 
# of Samples per 

Bridge 
Van Winkle Wash Bridges  

(Left [Lt.] and Right [Rt.]) 
534 50 

Haller Wash Bridges (Lt. and Rt.) 282 30 

Rojo Wash Bridges (Lt. and Rt.) 318 30 

Clipper Valley Wash Bridges (Lt. and Rt.) 993 100 

 
With the selection of sample size for each bridge, a representative sampling scheme that is random and unbiased 

was developed. This made use of uniform design (UD) as sampling strategy to ensure that the most 

representative sampling scheme can be achieved and applied to each bridge; for example, the sampling scheme 

for the Van Winkle Wash Bridge (Rt.) is illustrated in the following figure. 
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For this sampling scheme, the following recommendations should be adhered to: 

1. The contractor must follow the specified sampling scheme; if it is determined that changes to the 

sampling scheme are necessary, the agency (Caltrans) must grant permission for them to be made. 

2. The dowel (or dowels) sampled per location must be randomly selected with the approval of the agency 

(Caltrans). 

3. The agency (Caltrans) is responsible for inspecting whether the dowels are fully bonded or not fully 

bonded. 

 
The recommended acceptance criteria are based on hypothesis testing results with the normal approximation of 

a binomial distribution. The hypothesis testing of the null hypothesis 95.0:0 pH  and an alternative 

hypothesis 95.0:1 pH  with the conventional α value of 0.05 is utilized to develop the acceptance criteria at 

various sample sizes (n = 30, 50, 100). The conventional power level 0.8, where power is defined as the 

probability to correctly reject 0H  if 0H  is not true, is specified to establish the acceptance criteria. 

Accordingly, the acceptance criterion, Y ≤ m, is established for each bridge, where Y is the count of failures and 

m is the specified upper bound with sample size n. If Y > m, then the project is rejected and a power level at least 

0.8 is guaranteed for the agency; otherwise, if Y ≤ m, then the project is not going to be rejected. The acceptance 

criteria for each bridge are summarized as follows: 

 

Bridge 
Name 

No. of 
Locations

No. of 
Dowels

Sample
Size 

Acceptance 
Criterion 

Proportion 
Count of 
Failures 

Van Winkle Wash Bridges 
(Rt. And Lt.) 72 534 50 P ≥ 0.858 Y ≤ 7 

Haller Wash Bridges 
(Rt. And Lt.) 42 282 30 P ≥ 0.826 Y ≤ 5 

Rojo Wash Bridges 
(Rt. And Lt.) 45 318 30 P ≥ 0.826 Y ≤ 5 

Clipper Valley Wash Bridges 
(Rt. and Lt.) 162 993 100 P ≥ 0.888 Y ≤ 11 
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1 INTRODUCTION 

1.1 Problem Statement 

A multibridge retrofit project was recently conducted by the California Department of Transportation (Caltrans) 

to increase the horizontal shear resistance of the decks. The retrofit required drilling and bonding #5 rebar 

dowels in 6-inch deep holes along the center line of the existing girders of eight bridges. The contractor 

performing the work was required to completely fill the area around the dowels with epoxy in order to provide 

sufficient bonding to meet the specification. Unfortunately, an inspection of limited sample size performed after 

completion of the dowel installation process revealed that many had been improperly grouted. This resulted in 

rejection of the work on seven of the eight bridges and a request from Caltrans that the contractor repair the 

rejected sections. In addition, in order to prevent the possibility of legal issues, Caltrans decided to establish a 

testing procedure that would statistically determine the reliability of the work, and asked the University of 

California Pavement Research Center (UCPRC) to undertake the task. 

 
The problem lies in determining an appropriate number of samples (sample size) with a corresponding sampling 

scheme in order to ensure 95 percent compliance with the specification requirement that dowels be completely 

bonded, i.e., the dowels should be either fully bonded or unbonded, and not partially bonded. 

 
1.2 Objectives 

The research objectives described in this report are: (1) to determine the appropriate sample size, recognizing 

the practical considerations of cost, time, statistical simulation results, and the normal approximation of a 

binomial distribution; (2) to develop the most representative sampling scheme with the specified sample size; 

and, (3) to provide performance specifications (or acceptance criteria) for each bridge.  

 
1.3 Background 

The eight box-girder bridges to be retrofitted were located on Interstate Highway 40 (I-40, three lanes in each 

direction) in San Bernardino County (Caltrans District 8) from 7.0 miles east of the Kelbaker Road 

undercrossing to the Clipper Valley Wash Bridge (Figure D.1). The bridges included were the Van Winkle 

Wash (Right [Rt.] and Left [Lt.], Figure D.2), Haller Wash (Rt. and Lt., Figure D.3), Rojo Wash (Rt. And Lt., 

Figure D.4), and Clipper Valley Wash (Rt. and Lt., Figure D.5) bridges. 

 
The main purpose of the dowel bar retrofit project was to increase horizontal shear resistance at the deck girder 

joint of these eight box-girder bridges by drilling and bonding #5 rebar dowels through the joint between the 

deck and girder. The dowel bars had to be fully epoxy-encased, and no partially epoxy-encased dowels were 

permitted.  
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Each bridge has three girders that required retrofitting, which was accomplished by following this sequence of 

tasks: (1) removal of alternating 8 ft.-by-16 in. wide pieces of the deck (also designated as locations in this 

report) of the deck within the work area (an enclosure of two lanes), (2) drilling and bonding the dowels, and 

(3) replacement of the deck concrete. Construction staging included two stages (Figure 1.1), each of which 

consisted of two phases. For each stage, the work area enclosed two lanes. Stage 1A started with the inner two 

girders and followed a zigzag construction pattern; Stage 1B fixed the rest of the alternating pieces (locations) of 

the inner two girders, also following a zigzag construction pattern. Retrofit of the outermost girder included 

Stages 2A and 2B, following the alternating pattern also shown in Figure 1.1 and Figure D.8. Appendix D shows 

details of the girder repairs (Figure D.6 and Figure D.7) and the temporary deck access opening (Figure D.9). 

Table 1.1 contains a summary of the bridge locations and the number of dowel bars placed in the various 

construction stages for each bridge. 

 

 

Figure 1.1: Typical bridge construction staging.
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Table 1.1:  Summary of Bridge Locations and Number of Dowels at Various Construction Stages 

Bridge Name Stage # Span # Girder # # of Locations # of Dowels 

Van Winkle Wash Bridge 
(Rt.) 

(with polyester overlay) 

1A 1,2,3,4 2,3 24 178 

1B 1,2,3,4 2,3 24 178 

2A 1,2,3,4 4 12 
178 

2B 1,2,3,4 4 12 

Σ 72 534 

Van Winkle Wash Bridge 
(Lt.) 

(with polyester overlay) 

1A 1,2,3,4 3,4 24 178 

1B 1,2,3,4 3,4 24 178 

2A 1,2,3,4 2 12 
178 

2B 1,2,3,4 2 12 

Σ 72 534 

Haller Wash Bridge (Rt.) 
(without polyester overlay) 

1A 1,2 2,3 14 94 

1B 1,2 2,3 14 94 

2A 1,2 4 7 
94 

2B 1,2 4 7 

Σ 42 282 

Haller Wash Bridge (Lt.) 
(without polyester overlay) 

1A 1,2 2,3 14 94 

1B 1,2 2,3 14 94 

2A 1,2 4 7 
94 

2B 1,2 4 7 

Σ 42 282 

Rojo Wash Bridge (Rt.) 
(with polyester overlay) 

1A 1,2 2,3 15 106 

1B 1,2 2,3 15 106 

2A 1,2 4 8 
106 

2B 1,2 4 7 

Σ 45 318 

Rojo Wash Bridge (Lt.) 
(with polyester overlay) 

1A 1,2 4,3 15 106 

1B 1,2 4,3 15 106 

2A 1,2 2 8 
106 

2B 1,2 2 7 

Σ 45 318 

Clipper Valley Wash Bridge 
(Rt.) 

(with polyester overlay) 

1A 1,2,3,4,5,6,7,8,9 2,3 54 331 

1B 1,2,3,4,5,6,7,8,9 2,3 54 331 

2A 1,2,3,4,5,6,7,8,9 4 27 
331 

2B 1,2,3,4,5,6,7,8,9 4 27 

Σ 162 993 

Clipper Valley Wash Bridge 
(Lt.) 

(with polyester overlay) 

1A 1,2,3,4,5,6,7,8,9 4,3 54 331 

1B 1,2,3,4,5,6,7,8,9 4,3 54 331 

2A 1,2,3,4,5,6,7,8,9 2 27 
331 

2B 1,2,3,4,5,6,7,8,9 2 27 

Σ 162 993 

Total 642 4,254 
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2 SAMPLE SIZE, SAMPLING SCHEME, AND ACCEPTANCE CRITERIA 
OF A QA PROCESS 

2.1 Construction of Statistical Hypothesis Testing 

For each dowel retrofit, the agency required that each dowel be fully bonded and that none be partially bonded, 

i.e., a case of 0 (failure) or 1 (success) with an inherent population (or contractor) proportion p. Each sampled 

dowel is termed a Bernoulli random variable and each dowel inspection is termed a Bernoulli trial. The count of 

successes/failures from n Bernoulli trials (i.e., sample size = n) is designated as a binomial random variable (X). 

The probability associated with a specific outcome xX   is given by a binomial density function 

      xnx pp
x

n
xfxXP 








 1  (see Appendix A.1).  

 

The agency required the contractor to ensure 95 percent compliance with the specification requirements that 

dowels be completely bonded and none be partially bonded. The equivalent of a statistical statement of 

hypothesis testing based on the binomial distribution with parameters n (sample size) and p (proportion) is then 

the null hypothesis 95.0:0 pH  (see Appendix A.2). In this case, the use of alternative hypothesis 

95.0:1 pH  to establish the performance specification of a quality assurance (QA) process seems to be more 

appropriate than the other two alternative hypotheses: 95.0:1 pH  and 95.0:1 pH .  

 

A QA process using binomial distribution established for the agency should include the following steps: 

1. Determination of sample size, 

2. Development of a sampling scheme, and 

3. Determination of the acceptance criteria for a QA process. 

 

2.2 Determination of Sample Size 

The determination of sample size for QA is primarily based on an acceptable error level 0ˆ ppE   for a 

performance parameter specified by the agency, as illustrated in Appendix A. In general, the larger the sample 

size n, the smaller the sampling error 0ˆ ppE  tends to be. It is therefore necessary to have the sample size 

“large enough” so that the sampling error will tend to be at a reasonable level of accuracy. If the sample size is 

too small, there is not much point in gathering the data because the results will tend to be too imprecise to be 

of use. 
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A binomial sampling simulation was conducted to investigate the effects of the quality of contractor 

(proportion), samples per location, number of locations, and number of total sample size (as shown in 

Appendix B). The binomial population was randomly generated based on the quality of contractor (proportion) 

and the assumption of 8 rebar dowels for each of 642 locations, i.e., a binomial population with 5,136 rebar 

dowels. The factors and their corresponding factor levels in the experimental design of this sampling simulation 

include: (1) factor Contractor, i.e., quality of contractor, with four proportion levels: 0.85, 0.90, 0.95, and 0.98; 

(2) factor SamplesPerLocation with four levels: 1, 2, 3, and 4; and (3) factor Locations with 7 levels: 10, 20, 

50, 100, 200, 500, and 642. Each of the 112 cases (4 × 4 × 7) was simulated 500 times. For each simulation, the 

proportion was calculated; hence, the proportion distribution was generated after 500 simulations. The standard 

deviation S was used to characterize the dispersion of the proportion distribution. Figure 2.1 (also shown in 

Appendix B.1, Figure B.2d) illustrates the simulation results, in terms of box plots, of the standard deviation S 

versus TotalSamples, which is the product of the two factors Locations and SamplePerLocation. It is apparent 

that there is a critical point of diminishing return (probably around 100 ~ 200, which is the “large enough” 

sample size range for the binomial distribution) where increasing sample size provides little benefit. 
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Figure 2.1: Sampling simulation results of standard deviation S versus total sample size. 

 

The normal approximation for a discrete binomial distribution was applied in developing the acceptance criteria 

of a QA process. A frequently used rule of thumb (1) is that the approximation is reasonable when 5np  and 

  51  pn , which is especially appropriate for large values of n. Accordingly, if p = 0.95, then n has to be 100 

to fulfill the rule of thumb (Appendix A.2.1). 
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It is not uncommon for agencies to base QA on three samples. However, a discussion using binomial 

distribution is presented in Appendix B.2 to show why it is inappropriate to take only this number of samples for 

quality assurance. For example, basing a large project on only three samples provides the agency with 

insufficient power to reject the null hypothesis—given that this hypothesis is false unless a project delivered is 

of such poor quality that the agency is confident it can reject it. 

 
A sample size of 100 was determined to be a reasonable minimum based on the foregoing discussion. However, 

100 samples is more than one-third of the number of dowels of the Haller Wash Bridges (Lt. and Rt.; each 

bridge has 282 dowels) and about one-tenth of the number of dowels of the Clipper Valley Wash Bridges (Lt. 

and Rt.; each bridge has 993 dowels). In consideration of the time and cost to the agency, it is suggested that 

one-tenth of the number of dowels for each bridge should be sampled. 

 
Based on the previous discussion, the following recommendations are made for sample size determination: 

Recommendations 

1. Sample size should be determined for each bridge rather than on the 

whole project. 

2. Approximately one-tenth of the number of dowels of each bridge 

should be obtained for quality assurance. Accordingly, the sample 

size for each bridge is summarized as follows: 

 

Bridge Name 
# of Dowels 
per Bridge 

# of Samples 
per Bridge 

Van Winkle Wash Bridges (Lt. and Rt.) 534 50 
Haller Wash Bridges (Lt. and Rt.) 282 30 
Rojo Wash Bridges (Lt. and Rt.) 318 30 

Clipper Valley Wash Bridges (Lt. and Rt.) 993 100 
 

 
2.3 Development of a Sampling Scheme 

After the sample size for each bridge was determined, the next step was to develop the most representative 

random and unbiased sampling scheme. Thus Uniform Design (UD)—which ensures that the most 

representative sampling scheme can be achieved—was applied as a sampling strategy to each bridge (see 

Appendix C).  

 

Generally speaking, uniform design is a space-filling experimental design that allocates experimental points 

uniformly scattered in the domain. The fundamental concept of UD is to choose a set of experimental points 

with the smallest discrepancy among all the possible designs for a given number of factors and experimental 

runs (2,3,4). 
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Given that the strength of UD is that it provides a series of uniformly scattered experimental points over the 

domain, this homogeneity in two factors has physically become the spatial uniformity of sampling from a bridge 

section in x and y directions. The application of uniform design to this multibridge retrofit project resulted in the 

generation of sampling scheme with a UD table for each bridge consisting of pairs of (x, y) coordinates. The unit 

of the x-axis is the number of locations and the unit of the y-axis is the number of girders. 

 

A prospective bridge was divided into n(X) (x-direction) × n(Y) (y-direction) cells (or locations). The n(X) 

represents the number of locations in the x-direction and the n(Y) is the number of girders in the y-direction. 

N points (sample size) were then assigned to these n(X) × n(Y) cells. Hence, a sampling scheme was defined by 

n(X), n(Y), and N. For instance, x24y3n50 (as illustrated in Figure 2.2 and Figure C.1) represents 50 samples that 

were assigned to 50 cells of the 24 × 3 cells. It should be noted that it is possible to assign more than one sample 

per sampled location.  
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Figure 2.2: Sampling scheme for the Van Winkle Wash Bridge (Rt.) (x24y3n50). 

 

The UD table not only provides the most representative sampling scheme but it also provides the agency an 

unbiased and random sampling scheme that the contractor can follow in the quality assurance process. The 

bridge sampling schemes generated by UD tables are plotted in Appendix C.2. In addition to the specified 

sampling scheme for each bridge, the following recommendations are made in formulating the sampling 

scheme:
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Recommendations 

1. The specified sampling scheme must be followed by contractor; if it is 

determined that changes to the sampling scheme are necessary, the 

agency (Caltrans) must grant permission for them to be made.  

2. The dowel (or dowels) sampled per location must be randomly 

selected with the approval of the agency (Caltrans). 

3. The agency (Caltrans) is responsible for the inspecting whether or not 

the dowel bars are fully bonded. 

 

2.4 Acceptance Criteria of a QA Process 

Once the sample size and sampling scheme are determined, development of the acceptance criteria for the QA 

process is needed to ensure that the acceptance level is obtained. The acceptance criteria are based on the 

hypothesis testing results with the normal approximation of a binomial distribution. For the sample sizes 

selected for this project (n = 30, 50, and 100), it is demonstrated in Appendix C.3 (Figure C.9) that the normal 

approximation of a binomial distribution seems to be rational, and the normal approximation is more apparent as 

the sample size increases. The hypothesis testing of 95.0:0 pH  and 95.0:1 pH  was utilized to develop the 

acceptance criteria. Figure 2.3 plots the relationship of power versus estimated proportion at various sample 

sizes (n = 30, 50, 100) under the hypothesis testing 95.0:0 pH  and 95.0:1 pH , and α = 0.05. 

 
To establish the acceptance criterion, the agency first has to determine the power level in order to be confident 

enough to correctly reject 0H  if 0H  is not true. It is recommended that power = 0.8 be specified to establish 

the acceptance criteria. Let p̂  be the estimated proportion and Y the count of failures based on the sampling 

result of a QA process from the specified bridge sampling scheme. For example, the interpretation of Figure 2.3 

under the hypothesis testing 95.0:0 pH  and 95.0:1 pH  at n = 30 and power = 0.8 is that the agency 

will have at least 0.8 power to reject the null hypothesis 95.0:0 pH and favor the alternative hypothesis 

95.0:1 pH  if p̂  < 0.826 (i.e., Y > 5); otherwise, if p ≥ 0.826 (i.e., Y ≤ 5), then the agency will have 

insufficient power to reject the null hypothesis. Therefore, the acceptance criterion is specified such that if there 

are more than 5 failures, then the agency has a power greater than 0.8 to reject 95.0:0 pH  and favors 

95.0:1 pH . The acceptance criteria for each bridge are summarized in Table 2.1. As for the acceptance 

criteria, the following recommendations are made: 
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Recommendations 

1. It is recommended that power = 0.8 be specified to establish the 

acceptance criterion.  

2. The acceptance criterion: Y ≤ m, where Y is the count of failures and m 

is the specified lower bound with sample size n. If Y > m, then the 

project should be rejected; however, if Y ≤ m, then the project need not 

be rejected. 
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Figure 2.3:  The relationship of power versus estimated proportion at various sample sizes (n = 30, 50, and 100) 

under the hypothesis testing 95.0:0 pH  and 95.0:1 pH  with α = 0.05. 
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Table 2.1:  Acceptance Criteria at Various Power Levels for Each Bridge 
(also shown in Table C.1) 

Bridge 
Name 

No. of 
Locations 

No. of 
Dowels 

Sample 
Size 

Sampling 
Scheme 

Power 
Level 

Acceptance 
Criterion 

Proportion Count of Failures 

Van Winkle Bridge (Rt.) 
(with polyester overlay) 72 534 50 Figure C.1 

0.5 P ≥ 0.899 Y ≤ 5 

0.6 P ≥ 0.888 Y ≤ 5 

0.7 P ≥ 0.875 Y ≤ 6 

0.8 P ≥ 0.858 Y ≤ 7 

0.9 P ≥ 0.831 Y ≤ 8 

Van Winkle Bridge (Lt.) 
(with polyester overlay) 72 534 50 Figure C.2 

0.5 P ≥ 0.899 Y ≤ 5 

0.6 P ≥ 0.888 Y ≤ 5 

0.7 P ≥ 0.875 Y ≤ 6 

0.8 P ≥ 0.858 Y ≤ 7 

0.9 P ≥ 0.831 Y ≤ 8 

Haller Bridge (Rt.) 
(without polyester overlay) 42 282 30 Figure C.3 

0.5 P ≥ 0.885 Y ≤ 3 

0.6 P ≥ 0.869 Y ≤ 3 

0.7 P ≥ 0.850 Y ≤ 4 

0.8 P ≥ 0.826 Y ≤ 5 

0.9 P ≥ 0.789 Y ≤ 6 

Haller Bridge (Lt.) 
(without polyester overlay) 42 282 30 Figure C.4 

0.5 P ≥ 0.885 Y ≤ 3 

0.6 P ≥ 0.869 Y ≤ 3 

0.7 P ≥ 0.850 Y ≤ 4 

0.8 P ≥ 0.826 Y ≤ 5 

0.9 P ≥ 0.789 Y ≤ 6 

Rojo Bridge (Rt.) 
(with polyester overlay) 45 318 30 Figure C.5 

0.5 P ≥ 0.885 Y ≤ 3 

0.6 P ≥ 0.869 Y ≤ 3 

0.7 P ≥ 0.850 Y ≤ 4 

0.8 P ≥ 0.826 Y ≤ 5 

0.9 P ≥ 0.789 Y ≤ 6 

Rojo Bridge (Lt.) 
(with polyester overlay) 45 318 30 Figure C.6 

0.5 P ≥ 0.885 Y ≤ 3 

0.6 P ≥ 0.869 Y ≤ 3 

0.7 P ≥ 0.850 Y ≤ 4 

0.8 P ≥ 0.826 Y ≤ 5 

0.9 P ≥ 0.789 Y ≤ 6 

Clipper Valley Bridge (Rt.) 
(with polyester overlay) 162 993 100 Figure C.7 

0.5 P ≥ 0.914 Y ≤ 8 

0.6 P ≥ 0.907 Y ≤ 9 

0.7 P ≥ 0.898 Y ≤ 10 

0.8 P ≥ 0.888 Y ≤ 11 

0.9 P ≥ 0.871 Y ≤ 12 

Clipper Valley Bridge (Lt.) 
(with polyester overlay) 162 993 100 Figure C.8 

0.5 P ≥ 0.914 Y ≤ 8 

0.6 P ≥ 0.907 Y ≤ 9 

0.7 P ≥ 0.898 Y ≤ 10 

0.8 P ≥ 0.888 Y ≤ 11 

0.9 P ≥ 0.871 Y ≤ 12 
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APPENDIX A: FUNDAMENTAL STATISTICS 

A.1 Bernoulli Random Variable and Binomial Distribution 

 

A.1.1 Bernoulli Random Variables 

The random variable iX  is called a Bernoulli random variable if the random variable iX  follows the following 

probability function 

 








0,1

1,

i

i

X p

X p
xp  (A.1) 

 

That is, iX  takes on value 1 with probability p and value 0 with probability p1 . The realization of this 

random variable is called a Bernoulli trial. The sequence of Bernoulli trials ,, 21 X X , is a Bernoulli process. 

The outcome 1iX  is often referred to “success” or “conforming,” and 0iX  is often called “failure” or 

“nonconforming.” Suppose that a random sample of n observations, nX X X ,,, 21  , is taken from a Bernoulli 

process with constant probability of success p. Then the sum of the sample observations nXXXX  21  

follows a binomial distribution with parameters n and p.  

 

A.1.2 Binomial Distribution 

If a random experiment consists of n Bernoulli trials ( iX ) such that, 

1. Each iX  is statistically independent, 

2. Each iX  is either 1 or 0 with probability p or 1 – p respectively, and 

3. The probability of success p is the same of all iX  values, 

then, a binomial random variable nXXXX  21  is defined as the sum of n iX  values, i.e., X 

represents the number of trials that result in a success. The probability associated with a specific outcome 

xX   is given by       xnx pp
x

n
xfxXP 








 1 . 








x

n
 stands for the total number of different 

sequences of Bernoulli trials that contain x successes and n – x failures. The name of the distribution is obtained 

from the binomial expression; for constants a and b, the binomial expression is   knk
n

k

n ba
k

n
ba 


 










0

. 

According to Equation A.1, the mean and the variance of each iX  can be easily derived as follows: 
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      pppxxfXE i   101  (A.2) 

       
     
 pp

pppp

xfxXEXVar ii




 

1

101 22

22

 (A.3) 

Thus, we have 

        npXEXEXEXE n  21  

         pnpXVarXVarXVarXVar n  121   

 

A.1.3 An Example of Binomial Distribution 

As an example, a fair coin is tossed 5 times and the total number of heads is observed. The probability of a fair 

coin to have a head (H; value 1) or a tail (T; value 0) is 0.5. The sequence of Bernoulli trials {H, T, H, H, T} is 

called a Bernoulli process. The probability associated with a specific outcome X = x, where x is the count of 

heads x = 0, 1, 2, 3, 4, and 5, is listed in Table A.1; as a result, the binomial density function can be plotted in 

Figure A.1. 

 

Table A.1: Probabilities Resulting from Tossing a Fair Coin Five Times 

Number of Head 
Counts 

Outcome Set Probability 

X = 0 T, T, T, T, T    
32

1
5.015.0

0

5
0 050 








 XP  

X = 1 H, T, T, T, T    
32

5
5.015.0

1

5
1 151 








 XP  

X = 2 H, H, T, T, T    
32

10
5.015.0

2

5
2 252 








 XP  

X = 3 H, H, H, T, T    
32

10
5.015.0

3

5
3 353 








 XP  

X = 4 H, H, H, H, T    
32

5
5.015.0

4

5
4 454 








 XP  

X = 5 H, H, H, H, H    
32

1
5.015.0

5

5
5 555 








 XP  
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Figure A.1:  Probability density function resulting from tossing a fair coin five times (binomial distribution with 
parameters n = 5 and p = 0.5) 

 

A.2 Large-Sample Confidence Interval of a Population Proportion 

 

A.2.1 Normal Approximation for a Binomial Proportion 

The central limit theorem can be described as follows: 

 

Central Limit Theorem 

If nx x x ,,, 21   are independent random variables with mean i  and variance 2
i , and if 

nxxxy  21 , then the distribution 













n

i
i

n

i
iy

1

2

1  

approaches the  1,0N  distribution as n approaches infinity. 

 

It is recognized that the binomial random variable X (≡ y) is the sum of independent Bernoulli random variables 

iX s with i  = p and 2
i  = p(1- p) for each iX  (Equations A.2 and A.3); hence, its distribution can be 

approximated by a normal distribution, that is, 
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Normal Approximation for a Binomial Proportion 

If n is larger, the distribution of 
 

   
n

pp

pp

pnp

npX
Z










1

ˆ

1
 

 
is approximately standard normal, where nXp ˆ . 

 

A frequently used rule of thumb is that the approximation is reasonable when np > 5 and n(1-p) > 5, which is 

especially appropriate for large values of n. Accordingly, if p = 0.95, then n has to be 100 to fulfill the rule of 

thumb. The following discussion assumes that a binomial proportion can be approximated by the standard 

normal distribution. 

 

A.2.2 Approximate Confidence Interval on a Binomial Proportion 

If p̂ is the conforming proportion (proportion of “success”) of observations in a random sample of size n, then 

an approximate  1100  percent confidence interval on the conforming proportion p  of the population is  

   
n

pp
zpp

n

pp
zp

ˆ1ˆ
ˆ

ˆ1ˆ
ˆ 22





   (A.4) 

 

Thus, a 95% two-sided confidence interval (α = 0.05) for the true proportion p can be computed from Equation 

A.4 with 96.1025.02  zz . 

 

Figure A.2 and Figure A.3 plot respectively the 95% and 90% confidence intervals versus conforming 

proportions at various sample sizes. Table A.2 lists the associated upper and lower bounds at various sample 

sizes and conforming proportions for both 95% and 90% confidence intervals. Several observations of 

confidence interval can be addressed as follows: 

1. From Equation A.4, it is apparent that pp ˆ  when n ; therefore, from Figure A.2 and 

Figure A.3, it is apparent that the upper and lower bounds of the confidence intervals are symmetrical to 

pp ˆ  line. 

2. For a specified sample size, the bandwidth (the distance between upper and lower limits) increases as 

the conforming (or estimated) proportion decreases. 

3. For any conforming proportion, the larger the sample size the narrower the bandwidth. 
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4. The 90% bandwidth is smaller than the 95% bandwidth at a given conforming proportion and sample 

size. As an example, the 90% confidence interval is (0.914, 0.986) at 95.0ˆ p  and n = 100 compared 

with the 95% confidence interval (0.907, 0.993). 

0.75

0.8

0.85

0.9

0.95

1

0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99

Estimated Proportion

95
%

 C
I 

o
f 

T
ru

e 
P

ro
p

o
rt

io
n

0.993, n = 100
0.967, n = 642
0.963, n = 1000
0.962, n = 1284

0.938, n = 1284
0.937, n = 1000
0.933, n = 642
0.907, n = 100

N = 50

100

N = 10

100

200

20

500

1000

2000

5000

50

200

500
1000

2000

5000

0.75

0.8

0.85

0.9

0.95

1

0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99

Estimated Proportion

95
%

 C
I 

o
f 

T
ru

e 
P

ro
p

o
rt

io
n

0.993, n = 100
0.967, n = 642
0.963, n = 1000
0.962, n = 1284

0.938, n = 1284
0.937, n = 1000
0.933, n = 642
0.907, n = 100

0.75

0.8

0.85

0.9

0.95

1

0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99

Estimated Proportion

95
%

 C
I 

o
f 

T
ru

e 
P

ro
p

o
rt

io
n

0.993, n = 100
0.967, n = 642
0.963, n = 1000
0.962, n = 1284

0.938, n = 1284
0.937, n = 1000
0.933, n = 642
0.907, n = 100

0.993, n = 100
0.967, n = 642
0.963, n = 1000
0.962, n = 1284

0.938, n = 1284
0.937, n = 1000
0.933, n = 642
0.907, n = 100

N = 50

100

N = 10

100

200

20

500

1000

2000

5000

50

200

500
1000

2000

5000

 

Figure A.2:  95% confidence interval as a function of proportion and sample size. 
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Figure A.3:  90% confidence interval as a function of proportion and sample size.



 

UCPRC-RR-2011-01 17

Table A.2: Lower and Upper Bounds of 95% and 90% Confidence Intervals at Various Proportions 
and Sample Sizes 

Proportion n 
95% CI 90% CI 

Proportion n 
95% CI 90% CI 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper
Bound

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

0.98 

3 0.8216 1.1384 0.8470 1.1130 

0.93 

3 0.6413 1.2187 0.6877 1.1723 
5 0.8573 1.1027 0.8770 1.0830 5 0.7064 1.1536 0.7423 1.1177 

10 0.8932 1.0668 0.9072 1.0528 10 0.7719 1.0881 0.7973 1.0627 
20 0.9186 1.0414 0.9285 1.0315 20 0.8182 1.0418 0.8362 1.0238 
50 0.9412 1.0188 0.9474 1.0126 50 0.8593 1.0007 0.8706 0.9894 
100 0.9526 1.0074 0.9570 1.0030 100 0.8800 0.9800 0.8880 0.9720 
200 0.9606 0.9994 0.9637 0.9963 200 0.8946 0.9654 0.9003 0.9597 
500 0.9677 0.9923 0.9697 0.9903 500 0.9076 0.9524 0.9112 0.9488 
642 0.9692 0.9908 0.9709 0.9891 642 0.9103 0.9497 0.9134 0.9466 
1000 0.9713 0.9887 0.9727 0.9873 1000 0.9142 0.9458 0.9167 0.9433 
1284 0.9723 0.9877 0.9736 0.9864 1284 0.9160 0.9440 0.9183 0.9417 
2000 0.9739 0.9861 0.9749 0.9851 2000 0.9188 0.9412 0.9206 0.9394 
5000 0.9761 0.9839 0.9767 0.9833 5000 0.9229 0.9371 0.9241 0.9359 

0.97 

3 0.7770 1.1630 0.8080 1.1320 

0.92 

3 0.6130 1.2270 0.6624 1.1766 
5 0.8205 1.1195 0.8445 1.0955 5 0.6822 1.1578 0.7204 1.1196 

10 0.8643 1.0757 0.8813 1.0587 10 0.7519 1.0881 0.7789 1.0611 
20 0.8952 1.0448 0.9073 1.0327 20 0.8011 1.0389 0.8202 1.0198 
50 0.9227 1.0173 0.9303 1.0097 50 0.8448 0.9952 0.8569 0.9831 
100 0.9366 1.0034 0.9419 0.9981 100 0.8668 0.9732 0.8754 0.9646 
200 0.9464 0.9936 0.9502 0.9898 200 0.8824 0.9576 0.8884 0.9516 
500 0.9550 0.9850 0.9575 0.9825 500 0.8962 0.9438 0.9000 0.9400 
642 0.9568 0.9832 0.9589 0.9811 642 0.8990 0.9410 0.9024 0.9376 
1000 0.9594 0.9806 0.9611 0.9789 1000 0.9032 0.9368 0.9059 0.9341 
1284 0.9607 0.9793 0.9622 0.9778 1284 0.9052 0.9348 0.9075 0.9325 
2000 0.9625 0.9775 0.9637 0.9763 2000 0.9081 0.9319 0.9100 0.9300 
5000 0.9653 0.9747 0.9660 0.9740 5000 0.9125 0.9275 0.9137 0.9263 

0.96 

3 0.7383 1.1817 0.7739 1.1461 

0.91 

3 0.5862 1.2338 0.6382 1.1818 
5 0.7882 1.1318 0.8159 1.1041 5 0.6592 1.1608 0.6995 1.1205 

10 0.8385 1.0815 0.8581 1.0619 10 0.7326 1.0874 0.7611 1.0589 
20 0.8741 1.0459 0.8879 1.0321 20 0.7846 1.0354 0.8047 1.0153 
50 0.9057 1.0143 0.9144 1.0056 50 0.8307 0.9893 0.8434 0.9766 
100 0.9216 0.9984 0.9278 0.9922 100 0.8539 0.9661 0.8629 0.9571 
200 0.9328 0.9872 0.9372 0.9828 200 0.8703 0.9497 0.8767 0.9433 
500 0.9428 0.9772 0.9456 0.9744 500 0.8849 0.9351 0.8889 0.9311 
642 0.9448 0.9752 0.9473 0.9727 642 0.8879 0.9321 0.8914 0.9286 
1000 0.9479 0.9721 0.9498 0.9702 1000 0.8923 0.9277 0.8951 0.9249 
1284 0.9493 0.9707 0.9510 0.9690 1284 0.8943 0.9257 0.8969 0.9231 
2000 0.9514 0.9686 0.9528 0.9672 2000 0.8975 0.9225 0.8995 0.9205 
5000 0.9546 0.9654 0.9554 0.9646 5000 0.9021 0.9179 0.9033 0.9167 

0.95 

3 0.7034 1.1966 0.7430 1.1570 

0.90 

3 0.5605 1.2395 0.6151 1.1849 
5 0.7590 1.1410 0.7897 1.1103 5 0.6370 1.1630 0.6793 1.1207 

10 0.8149 1.0851 0.8366 1.0634 10 0.7141 1.0859 0.7440 1.0560 
20 0.8545 1.0455 0.8698 1.0302 20 0.7685 1.0315 0.7897 1.0103 
50 0.8896 1.0104 0.8993 1.0007 50 0.8168 0.9832 0.8302 0.9698 
100 0.9073 0.9927 0.9142 0.9858 100 0.8412 0.9588 0.8507 0.9493 
200 0.9198 0.9802 0.9247 0.9753 200 0.8584 0.9416 0.8651 0.9349 
500 0.9309 0.9691 0.9340 0.9660 500 0.8737 0.9263 0.8779 0.9221 
642 0.9331 0.9669 0.9359 0.9641 642 0.8768 0.9232 0.8805 0.9195 
1000 0.9365 0.9635 0.9387 0.9613 1000 0.8814 0.9186 0.8844 0.9156 
1284 0.9381 0.9619 0.9400 0.9600 1284 0.8836 0.9164 0.8862 0.9138 
2000 0.9404 0.9596 0.9420 0.9580 2000 0.8869 0.9131 0.8890 0.9110 
5000 0.9440 0.9560 0.9449 0.9551 5000 0.8917 0.9083 0.8930 0.9070 

0.94 

3 0.6713 1.2087 0.7145 1.1655 

0.89 

3 0.5359 1.2441 0.5929 1.1871 
5 0.7318 1.1482 0.7653 1.1147 5 0.6157 1.1643 0.6598 1.1202 

10 0.7928 1.0872 0.8165 1.0635 10 0.6961 1.0839 0.7273 1.0527 
20 0.8359 1.0441 0.8527 1.0273 20 0.7529 1.0271 0.7749 1.0051 
50 0.8742 1.0058 0.8848 0.9952 50 0.8033 0.9767 0.8172 0.9628 
100 0.8935 0.9865 0.9009 0.9791 100 0.8287 0.9513 0.8385 0.9415 
200 0.9071 0.9729 0.9124 0.9676 200 0.8466 0.9334 0.8536 0.9264 
500 0.9192 0.9608 0.9225 0.9575 500 0.8626 0.9174 0.8670 0.9130 
642 0.9216 0.9584 0.9246 0.9554 642 0.8658 0.9142 0.8697 0.9103 
1000 0.9253 0.9547 0.9276 0.9524 1000 0.8706 0.9094 0.8737 0.9063 
1284 0.9270 0.9530 0.9291 0.9509 1284 0.8729 0.9071 0.8756 0.9044 
2000 0.9296 0.9504 0.9313 0.9487 2000 0.8763 0.9037 0.8785 0.9015 
5000 0.9334 0.9466 0.9345 0.9455 5000 0.8813 0.8987 0.8827 0.8973 
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A.3 Large-Sample Test on a Proportion 

 

A.3.1 Test on Binomial Proportion 

Let X be the number of observations in a random sample of size n that belongs to the class associated with 

proportion p (in this case, the success rate) of a binomial distribution. Then, if the null hypothesis 00 : ppH   

is true, the distribution is approximately   000 1,~ pnpnpNX  . It should be noted that this approximation 

procedure will be valid as long as p is not extremely close to zero or one, and if the sample size is relatively 

larger. To test a two-sided hypothesis 00 : ppH   and 01 : ppH  , where 0p  is the true proportion, the test 

statistic based on the normal approximation to the binomial is then, 

 00

0
0

1 pnp

npnp
Z




  

 

The null hypothesis 00 : ppH   is rejected if 20 ZZ  , where 2Z  is the percentile of the  1,0  N  

distribution such that   22  ZzP . 

 

For testing a one-sided hypothesis 00 : ppH   and 01 : ppH  , the 0H  is rejected if the value of 0Z  is too 

small. Thus, 0H , if  ZZ 0 , would be rejected in favor of 01 : ppH  . 

 

For testing a one-sided hypothesis 00 : ppH   and 01 : ppH  , the 0H  is rejected if the value of 0Z  is too 

large. Thus 0H , if  ZZ 0 , would be rejected in favor of 01 : ppH  . 

 

Table A.3 summarizes various testing hypotheses on a binomial proportion and schematically illustrates the 

rejection criteria for fixed-level tests. 
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Table A.3:  Testing Hypotheses on a Binomial Proportion 

Testing Hypotheses P-Value 
Rejection Criterion 

For Fixed-Level Tests 








01

00

:

:

ppH

ppH
 

Probability above |Z0| and 
Probability below -|Z0| 

 
P-value = 2[1-Φ(Z0)] 

2z2 z

Critical region Critical region

0Z

22

 1 ,0N

Acceptance
region

2z2 z

Critical region Critical region

0Z

22

 1 ,0N

2z2 z 2z2 z

Critical region Critical region

0Z

22

 1 ,0N

Acceptance
region

 
The 0H  is rejected if the value of 0Z  is in the 

critical regions. 








01

00

:

:

ppH

ppH
 

Probability above Z0 
 

P-value = 1 - Φ(Z0) 

z

Critical region

0Z



 1 ,0N

Acceptance
region

zz

Critical region

0Z



 1 ,0N

Acceptance
region

 
The 0H  is rejected if the value of 0Z  is too large.








01

00

:

:

ppH

ppH
 

Probability below Z0 
 

P-value = Φ(Z0) 

z

Critical region

0Z



 1 ,0N

Acceptance
region

z z

Critical region

0Z



 1 ,0N

Acceptance
region

 
The 0H  is rejected if the value of 0Z  is too 

small. 
 

A.3.2 Probability of Type II Error  on the Mean 

The acceptance or rejection of the null hypothesis 0H  is referred to as a decision. Therefore, a correct decision 

is made in situations in which (1) 0H  is correctly accepted if 0H  is true and (2) 0H  is correctly rejected if 0H  

is not true. As shown in Table A.4 for a decision based on a sample, when the null hypothesis is valid, the 

probability α of erroneously rejecting it is designated as the Type I error (or seller’s risk); when the null 

hypothesis is not true, the probability  of erroneously accepting it is named the Type II error (or buyer’s risk).  

 



 

UCPRC-RR-2011-01 20

Table A.4:  Decision-Making in Hypothesis Testing 

 
Truth about the population 

0H  True 0H  Not True 

Reject 0H  Type I error (α) Correct decision 

Accept 0H  Correct decision Type II error () 

 

Power is defined as the probability 1 – β of correctly rejecting 0H  if 0H  is not true. Therefore, the definitions 

of Type I error, Type II error, and Power can be summarized as in the following table:  

Type I Error, Type II Error, and Power 

Seller’s Risk: α = P{Type I error} = P{reject 0H | 0H  is true} 

Buyer’s Risk: β = P{Type II error} = P{fail to reject 0H  | 0H  is false} 

Power = 1 – β = P{reject 0H  | 0H  is false} 

 

In general, the contractor and the agency benefit by keeping the Type I error (α) and Type II error () low, 

respectively. From the viewpoint of the agency (the buyer), it is necessary to have the power as high as possible. 

Conventionally, the Type I error must be kept at or below 0.05 and the statistical power (1 – β) must be kept 

correspondingly high. To detect a reasonable departure from the null hypothesis, the power should be ideally at 

least 0.80.  

 

In the following sections, the power calculation and the relationship of power versus sample size versus 

proportion will be discussed for a two-sided hypothesis and two one-sided hypotheses of proportion. 

 

A.3.2.1 Two-Sided Hypothesis ( 00 : ppH   and 01 : ppH  ) 

At first, consider the two-sided hypothesis, 00 : H  and 01 : H , then suppose that the null hypothesis 

is false and that the true value of the mean (or the proportion) is  0  where 0 , the test statistic is 

then  

 




















n

n

X

n

X

n

X
Z 000

0  

 

That is, the distribution of 0Z  when 1H  is true follows 











1,~0

n
NZ . Figure A.4 illustrates the 

distribution of 0Z  under both the null hypothesis and an alternative hypothesis. Based on the definition of 
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Type II error: P{fail to reject 0H  | 0H  is false}, a Type II error is made only if 202   zZz  where 













1,~0

n
NZ . Hence, we have the probability of Type II error (1) 

























 
n

z
n

z 22  (A.5) 

where Φ is the distribution function of a standard normal distribution. Note that from Figure A.4 the Type II 

error β is going to increase (that is, the power is to be reduced) as the value of   decreases. 

 

2z2 z

 1,0  N 











1, 
n

N

00 : H 01 : H

0Z


 n



0 2z2 z

 1,0  N 











1, 
n

N

00 : H 01 : H

0Z


 n



0

 

Figure A.4: The distribution of 0Z  under 00 : H  and 01 : H . 

 

Now consider the case of a binomial population proportion. If X is the number of observations in a random 

sample of size n that belongs to a class of interest, then nXp ˆ  is the sample proportion that belongs to that 

class and the distribution of X is approximately   000 1,~ pnpnpNX  ; hence, nXp ˆ  has the distribution 

  000 1,~ pppNnX  . Then the test statistic for a binomial proportion is, 

      npp

pp

npp

pnX

pnp

npX
Z

00

0

00

0

00

0
0

1

ˆ

11 












  

 

Therefore, the  of Equation A.5 can be converted as follows for the two-sided hypothesis 00 : ppH   and 

01 : ppH  . 

 
 

 
  




































 

npp

nppzpp

npp

nppzpp

1

1

1

1 00200020
 (A.6) 
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According to Equation A.6, Figure A.5 through Figure A.7 plot the power (1 - ) as a function of proportion p, 

p0, and sample size n at various α levels (seller’s risks). Several findings can be addressed from these figures as 

follows, 

1. At first, the interpretation of Figure A.5 under the hypothesis testing 00 : ppH   and 01 : ppH   is 

that, for example at n = 642 and power = 0.90, the agency will have at least 0.90 power to reject the null 

hypothesis 95.0:0 pH  if p ≤ 0.916 (lower bound) or p ≥ 0.978 (upper bound); however, if 

0.916 < p < 0.978, then the agency will have insufficient power to reject the null hypothesis. 

2. The lower and upper bounds at various power and α levels are listed in Table A.5. 

3. As expected, at a specified power level, the distance between lower and upper bounds decreases, i.e., the 

lower and upper bounds will approach p = 0.95 as the sample size increases. 

4. For a specified power level and sample size, the larger the α level or the higher the seller’s risk, the 

closer the lower and upper bounds. In other words, for a given sample size and estimated proportion, the 

power of the agency is increased due to the increase of seller’s risk.  
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Figure A.5:  The relationship of power versus proportion with various sample sizes ( 00 : ppH   and 

01 : ppH  ; 95.00 p ; α = 0.02).
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Figure A.6 : The relationship of power versus proportion with various sample sizes ( 00 : ppH   and 

01 : ppH  ; 95.00 p ; α = 0.05). 
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Figure A.7:  The relationship of power versus proportion with various sample sizes ( 00 : ppH   and 

01 : ppH  ; 95.00 p ; α = 0.10). 
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Table A.5: The Lower and Upper Bounds of Two-Sided Hypothesis Testing at Various  
Powers, α Levels, and Sample Sizes ( 00 : ppH   and 01 : ppH  ; 95.00 p ) 

Power 

α = 0.02 α = 0.05 α = 0.10 

N 
Lower 
Bound 

Upper 
Bound 

N 
Lower 
Bound 

Upper 
Bound 

N 
Lower 
Bound 

Upper 
Bound 

0.95 

50   50   50   

100   100   100 0.857  

200 0.876  200 0.882  200 0.888 0.988 

500 0.906 0.982 500 0.910 0.980 500 0.913 0.977 

642 0.912 0.979 642 0.915 0.977 642 0.918 0.974 

1000 0.920 0.974 1000 0.923 0.972 1000 0.925 0.970 

1284 0.924 0.972 1284 0.926 0.970 1284 0.928 0.968 

2000 0.929 0.968 2000 0.931 0.966 2000 0.933 0.965 

0.90 

50   50   50   

100 0.854  100 0.863  100 0.871  

200 0.885  200 0.892 0.989 200 0.897 0.986 

500 0.911 0.981 500 0.915 0.978 500 0.918 0.975 

642 0.916 0.978 642 0.919 0.975 642 0.922 0.972 

1000 0.923 0.973 1000 0.926 0.970 1000 0.928 0.968 

1284 0.927 0.970 1284 0.929 0.968 1284 0.931 0.966 

2000 0.931 0.966 2000 0.933 0.965 2000 0.935 0.963 

0.80 

50   50   50 0.858  

100 0.871  100 0.880  100 0.888  

200 0.895  200 0.902 0.987 200 0.907 0.983 

500 0.917 0.978 500 0.921 0.975 500 0.924 0.972 

642 0.921 0.975 642 0.924 0.972 642 0.927 0.970 

1000 0.927 0.971 1000 0.930 0.968 1000 0.932 0.966 

1284 0.930 0.968 1284 0.932 0.966 1284 0.934 0.964 

2000 0.934 0.965 2000 0.936 0.963 2000 0.937 0.962 

0.50 

50 0.878  50 0.890  50 0.900  

100 0.899  100 0.907  100 0.915 0.986 

200 0.914 0.986 200 0.920 0.980 200 0.925 0.975 

500 0.927 0.973 500 0.931 0.969 500 0.934 0.966 

642 0.930 0.970 642 0.933 0.967 642 0.936 0.964 

1000 0.934 0.966 1000 0.936 0.964 1000 0.939 0.961 

1284 0.936 0.964 1284 0.938 0.962 1284 0.940 0.960 

2000 0.937 0.961 2000 0.940 0.960 2000 0.942 0.958 

0.30 

50 0.901  50 0.911  50 0.921  

100 0.914  100 0.922 0.987 100 0.929 0.978 

200 0.924 0.981 200 0.929 0.974 200 0.934 0.969 

500 0.933 0.969 500 0.937 0.965 500 0.940 0.962 

642 0.935 0.966 642 0.938 0.963 642 0.941 0.960 

1000 0.938 0.963 1000 0.940 0.960 1000 0.943 0.958 

1284 0.939 0.961 1284 0.942 0.959 1284 0.943 0.957 

2000 0.941 0.959 2000 0.943 0.957 2000 0.945 0.956 
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A.3.2.2 One-Sided Hypothesis ( 00 : ppH   and 01 : ppH  ) 

The same argument that is applied in Section A.3.2.1 regarding power calculation can be applied to the one-

sided hypothesis 00 : ppH   and 01 : ppH  . Based on the definition of Type II error, P{fail to reject 0H  | 

0H  is false}, a Type II error is made only if  zZ 0  where 





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

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n
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Figure A.8. 
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Figure A.8:  The distribution of 0Z  under 00 : H  and 01 : H . 
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According to Equation A.7, Figure A.9 through Figure A.11 plot the power (1 - ) as a function of proportion p, 

p0, and sample size n at various α levels (seller’s risks). Several findings can be concluded from these figures as 

follows: 

1. The interpretation of Figure A.9 under the hypothesis testing 00 : ppH   and 01 : ppH   at n = 642 

and power = 0.90 is that the agency will have at least 0.90 power to reject the null hypothesis 

00 : ppH   and favor the alternative hypothesis 01 : ppH   if p ≥ 0.975 (lower bound); otherwise, if 

p ≤ 0.975, then the agency will have insufficient power to reject the null hypothesis. 

2. The corresponding lower bounds at various power and α levels are listed in Table A.6. 

3. As expected, the lower bound will approach p = 0.95 as the sample size increases. 

4. For a specified power level and sample size, the larger the α level or the higher the seller’s risk, the 

closer the lower bounds to p = 0.95. That is to say, for a given sample size and estimated proportion, the 

power of the agency is increased due to the increase of seller’s risk.  
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Figure A.9:  The relationship of power versus proportion with various sample sizes ( 00 : ppH   and 01 : ppH  ; 

95.00 p ; α = 0.02). 
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Figure A.10:  The relationship of power versus proportion with various sample sizes ( 00 : ppH   and 01 : ppH  ; 

95.00 p ; α = 0.05).
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Figure A.11:  The relationship of power versus proportion with various sample sizes ( 00 : ppH   and 01 : ppH  ; 

95.00 p ; α = 0.10). 
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Figure A.12 The distribution of 0Z  under 00 : H  and 01 : H .
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Table A.6:  The Lower Bounds of a One-Sided Hypothesis Test at Various Powers, α Levels, 
and Sample Sizes ( 00 : ppH   and 01 : ppH  ; 95.00 p ) 

Power 

α = 0.02 α = 0.05 α = 0.10 

N 
Lower 
Bound 

Upper 
Bound 

N 
Lower 
Bound 

Upper 
Bound 

N 
Lower 
Bound 

Upper 
Bound 

0.95 

50   50   50   

100   100   100   

200   200 0.988  200 0.984  

500 0.980  500 0.977  500 0.974  

642 0.977  642 0.974  642 0.972  

1000 0.973  1000 0.970  1000 0.968  

1284 0.970  1284 0.968  1284 0.966  

2000 0.967  2000 0.965  2000 0.963  

0.90 

50   50   50   

100   100   100   

200   200 0.986  200 0.982  

500 0.978  500 0.975  500 0.972  

642 0.975  642 0.972  642 0.970  

1000 0.971  1000 0.968  1000 0.966  

1284 0.969  1284 0.966  1284 0.964  

2000 0.965  2000 0.963  2000 0.962  

0.80 

50   50   50   

100   100   100 0.987  

200 0.988  200 0.983  200 0.978  

500 0.976  500 0.972  500 0.969  

642 0.973  642 0.970  642 0.967  

1000 0.969  1000 0.966  1000 0.964  

1284 0.967  1284 0.964  1284 0.962  

2000 0.964  2000 0.962  2000 0.960  

0.50 

50   50   50 0.989  

100   100 0.986  100 0.978  

200 0.982  200 0.975  200 0.970  

500 0.970  500 0.966  500 0.962  

642 0.968  642 0.964  642 0.961  

1000 0.964  1000 0.961  1000 0.959  

1284 0.962  1284 0.960  1284 0.958  

2000 0.960  2000 0.958  2000 0.956  

0.30 

50   50   50 0.979  

100 0.989  100 0.978  100 0.969  

200 0.976  200 0.969  200 0.963  

500 0.966  500 0.962  500 0.958  

642 0.964  642 0.960  642 0.957  

1000 0.961  1000 0.958  1000 0.955  

1284 0.960  1284 0.957  1284 0.955  

2000 0.958  2000 0.956  2000 0.954  
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According to Equation A.8, Figure A.13 through Figure A.15 plot the power (1 - ) as a function of proportion 

p, p0, and sample size n at various α levels (seller’s risks). Several findings can be concluded from these figures, 

as follows: 

1. The interpretation of Figure A.13 under the hypothesis testing 00 : ppH   and 01 : ppH   at n = 642 

and power = 0.90 is that the agency will have at least 0.90 power to reject the null hypothesis 

00 : ppH  and favor the alternative hypothesis 01 : ppH   if p ≤ 0.914 (upper bound); otherwise, if 

p ≥ 0.914, then the agency will not have enough power to reject the null hypothesis. 

2. The corresponding upper bounds at various power and α levels are listed in Table A.7. 

3. As expected, the upper bound will approach p = 0.95 as the sample size increases. 

4. For a specified power level and sample size, the larger the α level or the higher the seller’s risk, the 

larger the upper bounds. That is to say, for a given sample size and estimated proportion, the power of 

the agency is increased due to the increase of seller’s risk.  

 
It is recognized that a minimum population proportion of 0.95 is required by the agency in this bridge project. It 

is then in the agency’s best interest to test the hypotheses 00 : ppH   and 01 : ppH   rather than 

00 : H  and 01 : H  or 00 : ppH   and 01 : ppH  . Therefore, the hypothesis testing of 

00 : ppH   and 01 : ppH   will be used for the development of the acceptance criteria for a quality assurance 

process. 

 
For a given α level and a specified  risk (or power level), Equations A.6, A.7, and A.8 can be solved to find the 

approximate sample size. Hence, the approximate sample size equation for a two-sided test on a binomial 

proportion is 
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The approximate sample size equation for a one-sided test on a binomial proportion is  
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Figure A.13: The relationship of power versus proportion with various sample sizes ( 00 : ppH   and 01 : ppH  ; 

95.00 p ; α = 0.02). 
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Figure A.14: The relationship of power versus proportion with various sample sizes ( 00 : ppH   and 

01 : ppH  ; 95.00 p ; α = 0.05).
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Figure A.15: The relationship of power versus proportion with various sample sizes ( 00 : ppH   and 

01 : ppH  ; 95.00 p ; α = 0.10). 
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Table A.7:  Upper Bounds of a One-Sided Hypothesis Test at Various Powers, α Levels, and Sample Sizes 
(

00 : ppH   and 
01 : ppH  ; 95.00 p ) 

Power 

α = 0.02 α = 0.05 α = 0.10 

N 
Lower 
Bound 

Upper 
Bound 

N 
Lower 
Bound 

Upper 
Bound 

N 
Lower 
Bound 

Upper 
Bound 

0.95 

50   50   50   

100   100  0.856 100  0.866 

200  0.881 200  0.888 200  0.895 

500  0.909 500  0.913 500  0.917 

642  0.914 642  0.918 642  0.922 

1000  0.922 1000  0.925 1000  0.928 

1284  0.925 1284  0.928 1284  0.931 

2000  0.931 2000  0.933 2000  0.935 

0.90 

50   50   50   

100  0.861 100  0.871 100  0.880 

200  0.890 200  0.897 200  0.903 

500  0.914 500  0.918 500  0.922 

642  0.918 642  0.922 642  0.926 

1000  0.925 1000  0.928 1000  0.931 

1284  0.928 1284  0.931 1284  0.933 

2000  0.933 2000  0.935 2000  0.937 

0.80 

50   50  0.858 50  0.871 

100  0.878 100  0.888 100  0.896 

200  0.901 200  0.907 200  0.914 

500  0.920 500  0.924 500  0.928 

642  0.924 642  0.927 642  0.931 

1000  0.929 1000  0.932 1000  0.935 

1284  0.932 1284  0.934 1284  0.936 

2000  0.935 2000  0.937 2000  0.939 

0.50 

50  0.887 50  0.899 50  0.910 

100  0.905 100  0.914 100  0.922 

200  0.918 200  0.925 200  0.930 

500  0.930 500  0.934 500  0.938 

642  0.932 642  0.936 642  0.939 

1000  0.934 1000  0.939 1000  0.941 

1284  0.938 1284  0.940 1284  0.942 

2000  0.940 2000  0.942 2000  0.944 

0.30 

50  0.908 50  0.919 50  0.929 

100  0.920 100  0.928 100  0.935 

200  0.928 200  0.934 200  0.939 

500  0.936 500  0.940 500  0.943 

642  0.937 642  0.941 642  0.944 

1000  0.940 1000  0.943 1000  0.945 

1284  0.941 1284  0.943 1284  0.946 

2000  0.943 2000  0.945 2000  0.946 
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APPENDIX B: SAMPLE SIZE DETERMINATION 

B.1 Statistical Sampling Simulation 

The purpose of this sampling simulation is to investigate the effects of the quality of contractor (proportion), 

samples per location, number of locations, and total number in the sample. In Table B.1, there are 642 locations 

containing a total of 4,254 rebar dowels for all the bridges. For this sampling simulation, the binomial 

population was randomly generated based on the quality of contractor (proportion) and the assumption of 8 

rebar dowels for each of the 642 locations, i.e., a binomial population with 5,136 rebar dowels. The factors and 

their corresponding factor levels in the experimental design of the sampling simulation are as follows: 

 Factor Contractor, i.e., quality of contractor, with four proportion levels: 0.85, 0.90, 0.95, 0.98; 

 Factor SamplesPerLocation with four levels: 1, 2, 3, 4; and 

 Factor Locations with seven levels: 10, 20, 50, 100, 200, 500, 642. 

 

Each of the 112 cases (4 × 4 × 7) was simulated 500 times. The proportion was calculated for each simulation, 

hence the proportion distribution was generated after 500 simulations. The standard deviation S was used to 

characterize the proportion distribution dispersion, and the design plot in Figure B.1 shows the main effects of 

the factors on the standard deviation. In the figure, the horizontal line represents the grand mean of the response 

variable (i.e., the standard deviation S) and the vertical line with short sticks indicates the means of factor levels 

for a specific factor. Therefore, the farther apart the marked factor levels on the vertical line are, the more 

significant the effect of the factor on the response variable. It should be noted that the factor TotalSamples is 

the product of two factors, Locations and SamplePerLocation.  

 

In addition to the design plot, the factor plots shown in Figure B.2 display the effects of factor levels to the 

response variable in terms of box plots. The box plot illustrates a measure of location (the median [white strip]), 

a measure of dispersion (the interquartile range IQR [lower quartile: bottom-edge of box; upper quartile: top-

edge of box]), and the possible outliers (data points with a horizontal line outside the 1.5IQR distance from the 

edges of box; the most extreme data points within 1.5 IQR distance are marked with a bracket), and also gives 

an indication of the symmetry or skewness of the distribution. 

 

Several findings from Figure B.1 and Figure B.2 can be addressed in the following: 

1. The higher the values of quality of contractor (proportion), samples per location, number of locations, 

and sample size, the lower the standard deviation S. 

2. It seems that sample size has the most significant effect on standard deviation S. 

3. From Figure B.2(d), it is apparent that there is a critical point of diminishing returns (probably around 

100 ~ 200) where increasing sample size provides little benefit. It is necessary to have the sample size 

“large enough” so that sampling error will tend to be on a reasonable level of accuracy. Otherwise, if the 
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sample size is too small, there is no point in gathering the data because the results will tend to be too 

imprecise to be of use. 
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Figure B.1:  Design plot of the main effects of the sampling simulation results. 
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Figure B.2: Factor plots of sampling simulation results. 
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B.2 Why is it inappropriate to take only three samples? 

The statistical simulation indicates that the sample size drawn from a binomial population has to be large 

enough to produce a reasonable level of accuracy, and that making the sample larger simply wastes time and 

money. It is not uncommon for agencies to base quality assurance on three samples. The discussion of binomial 

distribution presented here shows why it is inappropriate to only take this number of samples for quality 

assurance. The performance index obtained from these three samples could be calculated by taking their average 

or could be counted by the number of successes/failures, as in the binomial distribution presented in Figure B.3 

and Figure B.4. The performance index would then be compared to the performance specification to statistically 

accept or reject the project through hypothesis testing. The question raised then is, how confident will the 

agency be by relying on such tiny fraction of samples? 

 
To answer the question, two major factors considered in the following binomial example are the statistical 

power of hypothesis testing and the performance specification. Recall that power is defined as the probability of 

correctly rejecting the null hypothesis given that the null hypothesis is wrong, i.e., P{reject 0H  | 0H  is false}. 

Recall too that the two parameters for determining the binomial distribution are sample size n and population 

proportion p. The event Y ≥ 2 with three samples will be inspected under the one-sided hypothesis 








01

00

:

:

ppH

ppH
, where 0p  is 0.95. Figure B.3 and Figure B.4, respectively, plot the binomial probability 

distributions in terms of X (count of success) and Y (count of failures) with n = 3 and various population 

proportions.  

 
Table B.1 lists not only the probabilities of counts of failure/success but also the cumulative probabilities of the 

event Y ≥ 2 in a binomial distribution with n = 3 and various proportions. 

 

Several findings can be addressed from the binomial distributions with parameters n = 3 and various proportions 

as presented in Figure B.3 through Figure B.4, and Table B.1. 

1. The probability of being correct on all three trials P(X = 3) or P(Y = 0) decreases as the proportion 

decreases. Note that even when p = 0.80 (which is far from H0: p = 0.95) the probability of being correct 

on all three trials is still 0.51. 

2. As Figure B.3 and Figure B.4 show, the binomial distributions with parameters n = 3 cannot be 

approximated by a normal distribution. 

3. The paired binomial distributions of [P(X = 1), P(X = 2)] and [P(X = 3), P(X = 0)] are symmetrical at 

p = 0.5 (Figure B.3). 

4. As noted in Figure B.5, the binomial probability distributions of P(X = 3) and P(X = 0) are 

monotonically increasing and decreasing as p increases; however, there are peak values or modes for 

P(X = 2) or P(X = 1) that occurred roughly at p = 0.68 and p = 0.32 separately. 
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Figure B.3:  Binomial distributions with various population proportions and n = 3. 
(X stands for number of successes). 
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Figure B.4: Binomial distributions with various population proportions and n = 3. 
(Y stands for number of failures). 
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Table B.1:  Probabilities of a Binomial Distribution with n = 3 and Various Proportions 

P0 1 - P0 

Probability of Count of Failure/Success Cumulative Probability 

P(Y = 0) 
or 

P(X = 3) 

P(Y = 1) 
or 

P(X = 2) 

P(Y = 2) 
or 

P(X = 1) 

P(Y = 3) 
or 

P (X = 0)

P(Y ≥ 2) 
Or 

P(X ≤ 1) 

0.98 0.02 0.9412 0.0576 0.0012 0.0000 0.0012 

0.95 0.05 0.8574 0.1354 0.0071 0.0001 0.0072 

0.90 0.10 0.7290 0.2430 0.0270 0.0010 0.0280 

0.85 0.15 0.6141 0.3251 0.0574 0.0034 0.0574 

0.80 0.20 0.5120 0.3840 0.0960 0.0080 0.1040 

0.75 0.25 0.4219 0.4219 0.1406 0.0156 0.1562 

0.70 0.30 0.3430 0.4410 0.1890 0.0270 0.2160 

0.65 0.35 0.2746 0.4436 0.2389 0.0429 0.2818 

0.60 0.40 0.2160 0.4320 0.2880 0.0640 0.3520 

0.55 0.45 0.1664 0.4084 0.3341 0.0911 0.4252 

0.50 0.50 0.1250 0.3750 0.3750 0.1250 0.5000 

0.45 0.55 0.0911 0.3341 0.4084 0.1664 0.5748 

0.40 0.60 0.0640 0.2880 0.4320 0.2160 0.6480 

0.35 0.65 0.0429 0.2389 0.4436 0.2746 0.7182 

0.30 0.70 0.0270 0.1890 0.4410 0.3430 0.7840 

0.25 0.75 0.0156 0.1406 0.4219 0.4219 0.8438 

0.20 0.80 0.0080 0.0960 0.3840 0.5120 0.8960 

0.15 0.85 0.0034 0.0574 0.3251 0.6141 0.9392 

0.10 0.90 0.0010 0.0270 0.2430 0.7290 0.9720 

0.05 0.95 0.0001 0.0071 0.1354 0.8574 0.9928 

 

A one-tailed hypothesis test 







95.0:

95.0:

1

0

pH

pH
 was conducted at a 5% significance level. If the p-value is less 

than 5%, then the null hypothesis will be rejected in favor of alternative hypothesis H1; otherwise, the null 

hypothesis will not be rejected due to the lack of strong evidence.  

 

According to the binomial distribution with parameters n =3 and p = 0.95 (as plotted in Figure B.4), the 

probability of failing one or more trials, P(Y ≥ 1) = P(Y = 1) + P(Y = 2) + P(Y = 3) or P(X ≤ 2), is 0.1426, which 

is larger than the 5% significance level. Thus, in order to conduct the hypothesis testing 







95.0:

95.0:

1

0

pH

pH
 at 5% 

significance level, the event Y ≥ 2 was used to establish the critical region. The probability of failing on 2 or 

more counts P(Y ≥ 2) (Figure B.4)—which is equivalent to the statement that the probability of being correct on 

1 or fewer trials (P(X ≤ 1) (Figure B.3), given that the null hypothesis, H0: p = 0.95—is true is less than 0.01. 
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Recall that power is defined as the probability of correctly rejecting H0: p = 0.95 given that H0 is false, i.e., 

power = P{reject 0H  | 0H  is false}. As an example, considering the binomial distribution with n = 3 and p = 

0.85, it is apparent that H0 is now false; hence, the power = P(Y ≥ 2 | p = 0.85) = 0.0574 (Table B.1), i.e., the 

probability of Y ≥ 2 given that p = 0.85 is 0.0574. 
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Figure B.5:  Probability/power versus proportion of a binomial distribution with n = 3. 

 
Accordingly, the relationship of power versus proportion can be presented as in Figure B.5. The power is 

monotonically increasing as the proportion decreases. Conventionally, the acceptable power level ranges from 

0.8 through 0.9. The corresponding proportions are 0.287 for power 0.8 and 0.195 for power 0.9. That is to say, 

if the agency wants to achieve a power level of 0.8, the sampling proportion value of contractor must be smaller 

than 0.287 so that the agency has enough power to reject the null hypothesis H0: p = 0.95 and thus favor 

H1: p < 0.95. 

 
In sum, by taking only three samples out of a project, the agency will have insufficient power to reject 

H0: p = 0.95 given that H0 is false unless the quality of the project delivered by the contractor is so poor that the 

agency is confident enough to reject the project. 
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APPENDIX C: ACCEPTANCE CRITERIA IN A QA PROCESS 

The binomial distribution quality assurance (QA) procedure established should include the following steps: 

1. Determination of sample size, 

2. Development of a sampling scheme, and 

3. Determination of QA process acceptance criteria 

 

C.1 Determination of Sample Size 

The determination of sample size is compromised by the following considerations: 

1. The determination of sample size for quality assurance (QA) of hot-mix asphalt (HMA) construction is 

primarily based on an acceptable error level 0ˆ ppE   for an HMA parameter specified by the 

agency, as illustrated in Appendix A.3.2. 

2. As noted in the discussions of statistical simulations, the “large enough” sample size for the binomial 

distribution is in the range of approximately 100 ~ 200 (Appendix B.1: Figure B.2[d]).  

3. The cost and time that the agency is willing to spend will be the primary considerations. 

4. As proven in Appendix B.2, by taking only three samples of a project, the agency will have insufficient 

power to reject H0: p = 0.95 given that H0 is false unless the quality of project produced from the 

contractor is so poor that the agency is confident enough to reject the project.  

5. A frequently used rule of thumb is that the approximation is reasonable when 5np  and   51  pn , 

especially for large values of n. Accordingly, if p = 0.95, then n has to be 100 to fulfill the rule of 

thumb. (Appendix A.2.1) 

6. From the above discussions, it seems that sample size 100 is the most compromised size. However, 100 

samples is more than one-third the number of dowels of the Haller Wash Bridges (Lt. and Rt.; each 

bridge has 282 dowels) and about one-tenth of the number of dowels of the Clipper Valley Wash 

Bridges (Lt. and Rt.; each bridge has 993 dowels). 

 

Accordingly, the decision on sample size is made as follows: 

1. The sample size determination is based on each bridge rather than on the whole project. 

2. Approximately, one-tenth of the number of dowels of each bridge will be taken for the purpose of 

quality assurance. The sample size of each bridge is summarized in the following (based on Table B.1): 

Bridge Name 
# of Dowels 
per Bridge 

# of Samples 
per Bridge 

Van Winkle Wash Bridges (Lt. and Rt.) 534 50 
Haller Wash Bridges (Lt. and Rt.) 282 30 
Rojo Wash Bridges (Lt. and Rt.) 318 30 

Clipper Valley Wash Bridges (Lt. and Rt.) 993 100 
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After the sample size for each bridge is determined, the next step is to develop the most representative sampling 

scheme that is random and unbiased. The use of uniform design (UD) as sampling strategy to ensure that the 

most representative sampling scheme can be achieved is demonstrated in the following sections. 

 

C.2 Development of a Sampling Scheme 

 

C.2.1 Uniform Experimental Design 

Statisticians have developed a variety of experimental design methods for different purposes, with the 

expectation that use of these methods will result in increased yields from experiments, quality improvements, 

and reduced development time or overall costs. Popular experimental design methods include full factorial 

designs, fractional factorial designs, block designs, orthogonal arrays, Latin squares, supersaturated designs, etc. 

One relatively new design method is called Uniform Design (UD). Since it was proposed by Fang and Wang in 

the 1980s (2, 3), UD has been successfully used in various fields, such as chemistry and chemical engineering, 

quality and system engineering, computer sciences, survey design, pharmaceuticals, and the natural sciences, 

etc. 

 

Generally speaking, uniform design is a space-filling experimental design that allocates experimental points 

uniformly scattered in the domain. The fundamental concept of UD is to choose a set of experimental points 

with the smallest discrepancy among all the possible designs for a given number of factors and experimental 

runs (4). For a given measure of uniformity M, a uniform design has the smallest M-value over all fractional 

factorial designs with n runs and m q-level factors. There are several methods to construct uniform designs such 

as the good lattice, Latin square method, expending orthogonal design, optimization searching method, etc. 

 

One of the most noteworthy advantages of uniform design is that it allows an experiment strategy to be 

conducted in a relatively small number of runs. It is very useful when the levels of the factors are large, 

especially in some situations in which the number of runs is strictly limited to circumstances when factorial 

designs and orthogonal arrays cannot be realized in practice. 

 

Given that the strength of uniform design is that it provides a series of uniformly scattered experimental points 

over the domain, this homogeneity in two factors has physically become the spatial uniformity of sampling from 

a bridge section in x and y directions. The application of uniform design to this multibridge retrofit project 

resulted in the generation of sampling scheme with a UD table for each bridge consisting of pairs of (x, y) 

coordinates. The unit of the x-axis is the number of locations and the unit of the y-axis is the number of girders. 
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C.2.2 Bridge Sampling Schemes 

The prospective bridge was divided into n(X) (x-direction) × n(Y) (y-direction) cells (or locations). The n(X) 

represents the number of locations in the x-direction and the n(Y) is the number of girders in the y-direction. 

N points (sample size) were then assigned to these n(X) × n(Y) cells according to the table generated by the UD 

design software. Hence, a sampling scheme was defined by n(X), n(Y), and N. For instance, x24y3n50 represents 

50 samples that were assigned to 50 cells of the 24 × 3 cells. It should be noted that it is possible to assign more 

than one sample per sampled location. Note: The dowel (or dowels) sampled per location must be randomly 

selected with the approval of the agency (Caltrans).  

 

The UD table not only issues the most representative sampling scheme, but it also gives the agency a more 

unbiased and random sampling scheme that can be followed in the quality assurance process. The bridge 

sampling schemes generated by UD tables are plotted in the following: 

 Van Winkle Wash Bridge (Rt.): Figure C.1 (x24y3n50) 

 Van Winkle Wash Bridge (Lt.): Figure C.2(x24y3n50) 

 Haller Wash Bridge (Rt.): Figure C.3 (x14y3n30) 

 Haller Wash Bridge (Lt.): Figure C.4 (x14y3n30) 

 Rojo Wash Bridge (Rt.): Figure C.5 (x15y3n30) 

 Rojo Wash Bridge (Lt.): Figure C.6 (x15y3n30) 

 Clipper Valley Wash Bridge (Rt.): Figure C.7 (x54y3n100) 

 Clipper Valley Wash Bridge (Lt.): Figure C.8 (x54y3n100) 

 

Note: The agency is responsible for inspecting whether the dowel bars are or are not fully bonded. 
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Figure C.1:  Sampling scheme for the Van Winkle Wash Bridge (Rt.) (x24y3n50). 
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Figure C.2:  Sampling scheme for the Van Winkle Wash Bridge (Lt.) (x24y3n50). 
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Figure C.3:  Sampling scheme for the Haller Wash Bridge (Rt.) (x14y3n30). 
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Figure C.4:  Sampling scheme for the Haller Wash Bridge (Lt.) (x14y3n30). 
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Figure C.5:  Sampling scheme for the Rojo Wash Bridge (Rt.) (x15y3n30). 
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Figure C.6:  Sampling scheme for the Rojo Wash Bridge (Lt.) (x15y3n30). 
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Figure C.7:  Sampling scheme for the Clipper Valley Wash Bridge (Rt.) (x54y3n100). 
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Figure C.8:  Sampling scheme for the Clipper Valley Wash Bridge (Lt.) (x54y3n100). 
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C.3 Acceptance Criteria for a QA Process 

Once the sampling scheme is determined, the acceptance criteria for a QA process is needed to ensure that the 

acceptance level is obtained.  

 

Figure C.9 presents the binomial distributions (in terms of count of failures) with various sample sizes (n = 30, 

50, and 100) and various proportions (0.95, 0.9, 0.8, and 0.7). As can be seen, the figure indicates that the 

normal approximation of a binomial distribution seems to be rational and the normal approximation is more 

apparent as the sample size increases. As mentioned in Section 2.3.2, the use of hypothesis testing of 

95.0:0 pH  and 95.0:1 pH  to establish the performance specification is more appropriate than use of 

the other two hypotheses: 95.0:0 H  and 95.0:1 H  or 95.0:0 pH  and 95.0:1 pH . It is 

recognized that the acceptance criterion is determined by null and alternative hypotheses, power level, 

proportion, sample size, and α level. Figure C.10 plots the relationship of power versus estimated proportion at 

various sample sizes (n = 30, 50, 100) under the hypothesis testing 95.0:0 pH  and 95.0:1 pH  and 

α = 0.05.  

 

To establish the acceptance criterion, first the agency has to determine the power level that it is confident 

enough to correctly reject 0H  if 0H  is not true. It is recommended that power = 0.8 be specified to establish 

the acceptance criterion. Let p̂  be the estimated proportion and Y the count of failures based on the sampling 

result of a QA process from the specified bridge sampling scheme. For example, the interpretation of 

Figure C.10 under the hypothesis testing 95.0:0 pH  and 95.0:1 pH  at n = 30 and power = 0.8 is that 

the agency will have at least 0.8 power to reject the null hypothesis 95.0:0 pH and favor the alternative 

hypothesis 95.0:1 pH  if p̂  < 0.826 (i.e., Y > 5); otherwise, if p ≥ 0.826, then the agency will have 

insufficient power to reject the null hypothesis. Therefore, the acceptance criterion is specified such that if there 

are more than five failures, then the agency has more power than 0.8 to reject 95.0:0 pH  and favor 

95.0:1 pH . The acceptance criteria for each bridge are summarized in Table C.1. 
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Figure C.9:  Binomial distributions with various sample sizes (n = 30, 50, and 100) and proportions (0.95, 0.9, 0.8, 
and 0.7). 
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Figure C.10:  The relationship of power versus estimated proportion at various sample sizes (n = 30, 50, and 100) 

under the hypothesis testing 95.0:0 pH  and 95.0:1 pH  with α = 0.05. 
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Table C.1:  Acceptance Criteria at Various Power Levels for Each Bridge 

Bridge 
Name 

No. of 
Locations 

No. of 
Dowels 

Sample 
Size 

Sampling 
Strategy 

Power 
Level 

Acceptance 
Criterion 

Proportion Count of failures 

Van Winkle Wash Bridge 
(Rt.) 

(with polyester overlay) 
72 534 50 Figure C.1 

0.5 P ≥ 0.899 Y ≤ 5 

0.6 P ≥ 0.888 Y ≤ 5 

0.7 P ≥ 0.875 Y ≤ 6 

0.8 P ≥ 0.858 Y ≤ 7 

0.9 P ≥ 0.831 Y ≤ 8 

Van Winkle Wash Bridge 
(Lt.) 

(with polyester overlay) 
72 534 50 Figure C.2 

0.5 P ≥ 0.899 Y ≤ 5 

0.6 P ≥0.888 Y ≤ 5 

0.7 P ≥ 0.875 Y ≤ 6 

0.8 P ≥ 0.858 Y ≤ 7 

0.9 P ≥ 0.831 Y ≤ 8 

Haller Wash Bridge (Rt.) 
(without polyester overlay) 42 282 30 Figure C.3 

0.5 P ≥ 0.885 Y ≤ 3 

0.6 P ≥ 0.869 Y ≤ 3 

0.7 P ≥ 0.850 Y ≤ 4 

0.8 P ≥ 0.826 Y ≤ 5 

0.9 P ≥ 0.789 Y ≤ 6 

Haller Wash Bridge (Lt.) 
(without polyester overlay) 42 282 30 Figure C.4 

0.5 P ≥ 0.885 Y ≤ 3 

0.6 P ≥ 0.869 Y ≤ 3 

0.7 P ≥ 0.850 Y ≤ 4 

0.8 P ≥ 0.826 Y ≤ 5 

0.9 P ≥ 0.789 Y ≤ 6 

Rojo Wash Bridge (Rt.) 
(with polyester overlay) 45 318 30 Figure C.5 

0.5 P ≥ 0.885 Y ≤ 3 

0.6 P ≥ 0.869 Y ≤ 3 

0.7 P ≥ 0.850 Y ≤ 4 

0.8 P ≥ 0.826 Y ≤ 5 

0.9 P ≥ 0.789 Y ≤ 6 

Rojo Wash Bridge (Lt.) 
(with polyester overlay) 45 318 30 Figure C.6 

0.5 P ≥ 0.885 Y ≤ 3 

0.6 P ≥ 0.869 Y ≤ 3 

0.7 P ≥ 0.850 Y ≤ 4 

0.8 P ≥ 0.826 Y ≤ 5 

0.9 P ≥ 0.789 Y ≤ 6 

Clipper Valley Wash 
Bridge (Rt.) 

(with polyester overlay) 
162 993 100 Figure C.7 

0.5 P ≥ 0.914 Y ≤ 8 

0.6 P ≥ 0.907 Y ≤ 9 

0.7 P ≥ 0.898 Y ≤ 10 

0.8 P ≥ 0.888 Y ≤ 11 

0.9 P ≥ 0.871 Y ≤ 12 

Clipper Valley Wash 
Bridge (Lt.) 

(with polyester overlay) 
162 993 100 Figure C.8 

0.5 P ≥ 0.914 Y ≤ 8 

0.6 P ≥ 0.907 Y ≤ 9 

0.7 P ≥ 0.898 Y ≤ 10 

0.8 P ≥ 0.888 Y ≤ 11 

0.9 P ≥ 0.871 Y ≤ 12 
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APPENDIX D: CALTRANS BRIDGE SHEAR RETROFIT PROJECTS 

Figure D.1: Project plans for the Caltrans bridge shear retrofit projects in San Bernardino County from 7.0 miles 

east of the Kelbaker Road undercrossing to the Clipper Valley Wash Bridge. 

Figure D.2: Typical section and plan for the Van Winkle Wash Bridges (Rt. and Lt.). 

Figure D.3: Typical section and plan for the Haller Wash Bridges (Rt. and Lt.). 

Figure D.4: Typical section and plan for the Rojo Wash Bridges (Rt. and Lt.). 

Figure D.5: Typical section and plan for the Clipper Valley Wash Bridges (Rt. and Lt.). 

Figure D.6: Girder repair details (No. 1). 

Figure D.7: Girder repair details (No. 2). 

Figure D.8: Typical construction staging. 

Figure D.9: Temporary deck access opening details.  
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Figure D.1:  Project plans for the Caltrans bridge shear retrofit projects in San Bernardino County from 7.0 miles east of the Kelbaker Road undercrossing to 
the Clipper Valley Wash Bridge. 
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Figure D.2:  Typical section and plan for the Van Winkel Wash Bridges (Rt. and Lt.). 
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Figure D.3:  Typical section and plan for the Haller Wash Bridges (Rt. and Lt.). 
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Figure D.4:  Typical section and plan for the Rojo Wash Bridges (Rt. and Lt.). 
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Figure D.5:  Typical section and plan for the Clipper Valley Wash Bridges (Rt. and Lt.). 
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Figure D.6:  Girder repair details (No. 1). 
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Figure D.7:  Girder repair details (No. 2). 
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Figure D.8:  Typical construction staging. 
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Figure D.9:  Temporary deck access opening details. 

 


