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On the morning commute problem in a

corridor network with multiple bottlenecks:

its system-optimal traffic flow patterns and the realizing tolling scheme

Wei Shen , H. M. Zhang ∗

Department of Civil and Environmental Engineering, University of California,
Davis, CA 95616, USA

Abstract

There have been numerous studies of the morning commute problem in a network
with a single route or parallel routes with a single bottleneck on each route. Most
congested networks, however, often contain more than one congestion spot along
each route. In such networks, it is usually difficult to derive analytically their system
optimal traffic patterns and the tolls that realize them. In this paper, we study
the morning commute problem in such a network with certain special topological
features—a freeway with multiple entry/exit ramps and a surface street grid with
large capacities. For this type of networks, we investigated the basic characteristics
of their optimal dynamic traffic patterns and the corresponding tolling scheme,
for which a graphical solution procedure was also developed. In this network, we
found that at system optimum 1) the aggregate traffic flow on the freeway has a
staircase temporal profile, and piecewise linear dynamic tolls can be imposed on a
subset of ramps to achieve it; 2) among all the off-ramps in use, the ones closer
to the destination are being tolled longer with higher maximum toll charges than
the ones farther away from the destination; 3) among all the on-ramps in use,
the ones with larger cumulative volume-to-capacity ratios are being tolled longer
with higher maximum toll charges. Some practical implications of these findings to
corridor traffic management were also discussed.

Key words: morning commute, system optimum, dynamic congestion pricing,
corridor control
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1 Introduction

It is well known that the existence of congestion externality often leads to inefficient use

of public roads and this can be remedied by marginal cost pricing. By internalizing the

congestion externality, i.e., charging each traveler a toll equal to the additional congestion

cost she imposed on all other travelers, the system optimal traffic flow pattern is realized

as a Wardroppian user equilibrium state in terms of the internalized travel cost(Beckmann,

1965).

The congestion pricing problem has been extensively studied in the context of static

transportation networks (i.e., networks with time invariant traffic flow conditions) (e.g.,

Dafermos and Sparrow, 1971; Netter, 1971; Yang and Huang, 1998). The pricing scheme

that realizes a system-optimal state under user-optimal (or selfish) routing decisions can

be derived based on a link traffic model capturing the average congestion effect. Unfor-

tunately, such a static analysis is often inappropriate and inadequate when applied to

networks with fluctuating traffic demand over time. First, using the average congestion

effect to calculate externality is somewhat questionable. As shown by Carey and Srini-

vasan (1993), congestion externality depends not only on the intensity of congestion, but

also on the direction of its change. In networks with fluctuating traffic flow, the externality

derived with a static method, averaging out the effect of queue formation and dissipation,

can substantially deviate from the true externality. Furthermore, the inefficient temporal

distribution of traffic is often much more critical than the inefficient spatial distribution of

traffic in these networks with a limited number of alternative routes (Arnott et al., 1990).

A static pricing scheme, without distinguishing the difference of congestion externality in

different time periods, cannot influence travelers’ departure time choice.

The aforementioned limitations of static congestion pricing schemes call for a time-

dependent modeling framework. Unfortunately, deriving the optimal dynamic tolls in a

general network is much more challenging than obtaining tolls in the corresponding sta-

tic network. This is mainly because its underlying problem, the system optimal dynamic

traffic assignment (SO-DTA) problem, is difficult to solve due to the complexities in mod-

eling dynamic traffic flow in a road network. One of the pioneer studies to address the

dynamic congestion pricing problem in general networks is due to Carey and Srinivasan

∗ Corresponding author. Also,CKS Professor, School of Transportation Engineering, Tongji Uni-
versity, Shanghai, China. Tel.: +1 530 754 9203; fax: +1 530 752 7872

Email address: hmzhang@ucdavis.edu (H. M. Zhang).
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(1993). In that work, the SO-DTA problem with given time-dependent travel demands

was formulated as a link-based convex mathematical program based on a relaxed 1 exit

flow function from the works of Merchant and Nemhauser (1978a,b). The relationship

between the externalities and the dual variables of the constraints was identified by an-

alyzing the optimality conditions of the mathematical program. Wie and Tobin (1998)

later carried out a similar study with a new traffic flow model in which traffic on each

link first travels to the end of the link at free-flow speed, then queues up at the end of

the link and discharges according to rates given by the exit flow function, thereby allevi-

ating the instantaneous flow transition 2 problem in the initial formulation of Merchant

and Nemhauser (1978a,b). Chang et al. (1988) and Yang and Meng (1998) transformed

the SO-DTA problem into a static system optimal traffic assignment problem, using a

space-time expansion network(STEN) to endogenously represent the bottleneck model of

Vickrey (1969). However, this type of STEN gives rise to some new problems, one of which

is the high computational overhead associated with network expansions. Ziliaskopoulos

(2000) formulated an SO-DTA model as a link-based linear program based on the relaxed

cell transmission model (Daganzo, 1994, 1995) to consider link interactions. The connec-

tions between the system marginal cost and the dual variables of the constraints were also

explored in that paper. A critical issue concerning all these link-based formulations of the

SO-DTA problem is that to derive the optimal traffic pattern and the realizing tolls, they

require to solve a large-scale mathematical program or optimal control problem which can

easily involve millions of variables and constraints in real-sized applications. To overcome

this drawback, some scholars (e.g., Ghali and Smith, 1995; Peeta and Mahmassani, 1995)

suggested to use a path-based formulation, which allows the usage of a traffic simula-

tor to 1) construct the mapping between path flow and path travel cost, and 2) evaluate

marginal cost approximately. However, as shown by Shen et al. (2007), due to the the non-

additivity property of and the discontinuity in path marginal cost, deriving a link-based

tolling scheme from a path-based formulation is tricky.

As our review indicates, existing SO-DTA formulations and their congestion pricing analy-

ses have a number of deficiencies when applied to general networks. This, however, does

not mean that it is not possible to obtain in a precise and efficient manner the optimal

dynamic traffic pattern and its corresponding tolling scheme for some specific networks.

1 Relaxed in the sense that the equality defining the relationship between the flow that will
actually exit a link and the flow that can exit a the link is replaced by an inequality. This
relaxation makes the model convex, but may also cause flows to be artificially held at links.
2 This refers to the anomaly that vehicles entering the link tail can instantaneously affect the
outflow at the link head.
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In practice, many corridor networks, where a freeway and a few alternative arterial routes

provide the infrastructure for commuting from suburbs to downtown, share certain com-

mon topological characteristics that can be exploited to overcome the difficulties faced in

the study of general road networks. This type of network-specific analysis can be traced

back to the seminal work of Vickrey (1969) and Hendrickson and Kocur (1981), in which

the morning commute problem with departure time choice was studied in a single route

with one bottleneck. Among this class of work, Newell (1987) considered heterogeneous

travelers in the same network setting; Arnott et al. (1990) generalized the analysis to

networks with parallel routes; and recently, Munoz and Laval (2006) proposed a graphical

solution method to obtain the optimal route diversion strategies for a corridor network

consisting of a freeway and a surface street grid for given time-dependent demand. All of

these network-specific analyses provide valuable insights to the design of time-dependent

congestion pricing schemes in practice, but are all limited to the case where only one

bottleneck is present on each route. This restriction makes their results not applicable to

corridor networks commonly found in practice where travelers experience more than one

congestion spot on their way to the destination.

In this paper, we study the morning commute problem in a corridor network with multiple

bottlenecks along the routes by characterizing its system-optimal traffic pattern and the

tolling scheme that realizes it. Our analysis considers both departure time and route

choices with a similar network used in Munoz and Laval (2006), with the following key

differences:

• Unlike in Munoz and Laval (2006), our study considers capacity constraints on both on-

and off-ramps. This is more realistic since queues often form at ramps due to metering

at on-ramps or traffic signals at the downstream end of off-ramps.

• Unlike in Munoz and Laval (2006), our study considers both departure time and route

choices. Consequently, the tolling scheme derived in this study is particularly use-

ful for spreading the peak during the morning commute time period to avoid over-

concentration of travel demand in any particular time period.

To the best of our knowledge, our study provides the first analytical results on the dy-

namic system-optimal traffic flow pattern and the corresponding tolling scheme in a net-

work with multiple bottlenecks along each route. Although Kuwahara (1990) and Arnott

et al. (1993) performed a network-specific equilibrium queuing analysis considering tan-

dem bottlenecks, their studies focused on dynamic user equilibrium traffic flow patterns

with no congestion pricing, and employed substantially different techniques from ours.
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Moreover, our analysis reveals that the system-optimal traffic flow pattern in the stud-

ied corridor network exhibits some interesting topological characteristics that lead to a

graphical solution procedure. With this procedure, we can design a tolling scheme that

charges time-dependent tolls on a subset of on- and off-ramps to realize the system-optimal

dynamic traffic flow pattern.

The rest of the paper is organized as follows. The next section lays out the problem and

describes the notations used throughout the paper. Section 3 constructs the optimality

conditions, based on which the the basic features of the optimal traffic and toll patterns

are identified. These features lead to the development of a graphical solution procedure

for obtaining the optimal traffic and toll patterns in Section 4. Finally, Section 5 concludes

the paper with a summary of key findings and their implications to congestion pricing in

practice.

2 The morning commute problem in a corridor with multiple bottlenecks

We consider a corridor network consisting of a freeway with n on-ramps, m off-ramps, a

single destination at the end of the freeway, and a surface street grid directly connecting

each on-ramp (here we assume trips originated from the tail node of an on-ramp link) and

each off-ramp to the destination (CBD) (Fig. 1). For the purpose of exposition, both on-

ramps and off-ramps are arranged in an ascending order starting from the one closest to

the destination, and the freeway link incident to the destination is regarded as a special

off-ramp, and indexed as 1. A bottleneck with capacity c1 is located on the freeway

just before reaching the destination. The capacity of other off-ramps j = 2, . . . , m are

assumed to be cj, respectively. The capacity of on-ramps i = 1, . . . , n are assumed to be

si, respectively. It is also assumed the surface streets have sufficient capacity so that traffic

experiences no congestion on them. Without loss of generality, the sum of the capacities

of any subset of the on-ramps is assumed to not equal the sum of capacities of any subset

of the off-ramps. Evidently, in practice ramp capacities can always be perturbed slightly

to meet this requirement. The travel time from on-ramp i taking the surface street to

the destination is denoted as Di, and the travel time from off-ramp j taking the surface

street to the destination is denoted as Tj. In accord with the network topology, the travel

time on a surface street connecting a ramp closer to the destination is assumed to be

shorter than the travel time on a surface street connecting a ramp farther away from the

destination. Compared to the travel times spent on surface streets, the travel times spent
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on the freeway mainline is assumed to be negligible. 3

As mentioned earlier, each origin is connected by a single on-ramp where travelers start

their trips. During the morning peak period, the total number of travelers from origin i is

Ni, i = 1, . . . , n. All the travelers are assumed to have the same desired arrival time at the

destination, which is taken as t = 0. Travel costs consist of two parts: travel time cost and

schedule delay cost: arriving at the destination earlier or later than desired. For simplicity,

the same assumption used in Arnott et al. (1993)– that late arrival is not permitted– is

adopted in this study. For any arrival time t ≤ 0 at the destination, the schedule delay

cost (converted into travel time units) is assumed to be linearly decreasing in the rate of

α < 1. Namely, a traveler’s total cost is

Total travel cost =





travel time + α[0− arrival time tick] If arrival time tick ≤ 0

∞ Otherwise

It is noted that no late arrival makes it easy to present the analytical results, but do

not change the fundamental nature of the problem. A similar analysis incorporating both

early and late arrivals can easily be carried out following the steps outlined in this paper.

…

…

Fig. 1. The study network

Throughout the paper, the following definition is used to facilitate the discussion.

3 It is noted that zero free-flow freeway travel times do not affect the solution in terms of flow
distribution.

6



Definition 1 The subnetwork made up of 1) all the on-ramps, 2) the freeway mainline, 3)

all the off-ramps, and 4) the surface streets connecting the off-ramps with the destination

is defined as the freeway system (Fig 1).

A traveler can choose the surface street or freeway system to reach her destination, but

once she enters a surface street, we assume that she does not go back to travel on the

freeway.

By this definition, each traveler’s decision process can be split into two stages:

• First, at the origin, she decides whether to take the surface street directly leading to

the destination or to enter the freeway system.

• Second, if the freeway system is taken, she chooses the departure time and determine

which off-ramp to exit. Note that since surface streets are assumed to be always free

of congestion, travelers choosing a surface street at the first stage always choose a

departure time which can guarantee punctual arrival at the destination.

Moreover, we introduce the following notations to be used in the rest of this paper.

I The index of the first on-ramp that has flows during the morning peak

J ′ The index of the last off-ramp that has flows during the morning peak

J The index of the last off-ramp downstream of on-ramp I

vij(t) Number of travelers departing at time t and taking on-ramp i and off-ramp j

vi•(t) Number of travelers departing at time t and taking on-ramp i, vi•(t) =
∑m

j=1 vij(t)

v•j(t) Number of travelers departing at time t and desiring to take off-ramp j, v•j(t) =
∑n

i=1 vij(t)

v•(t) Total number of travelers departing at time t, v•(t) =
∑n

i=1

∑m
j=1 vij(t)

Vij Number of travelers taking on-ramp i and off-ramp j, Vij =
∫ 0
−∞ vij(t)dt

Vi• Number of travelers taking on-ramp i, Vi• =
∑m

j=1 Vij

V•j Number of travelers taking off-ramp j, V•j =
∑n

i=1 Vij

V• Total number of travelers using the freeway system, V• =
∑n

i=1

∑m
j=1 Vij

Note: the number of travelers is always measured at the entrance of the on-ramps

With these definitions and notations, we can then set up a mathematical program to

model the morning commute problem as in (e.g., Vickrey, 1969; Hendrickson and Kocur,

1981; Newell, 1987; Arnott et al., 1990), and derive 1) the optimal departure time and

route choice patterns, and 2) the optimal road tolls to realize the optimal traffic flow

pattern. These are the topics of the next section.
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3 The essential features of the optimal traffic and toll patterns

Corresponding to each traveler’s two-stage travel decision process, we carry out our analy-

sis in two steps:

1) At the first step, we decide for each origin i the total number of travelers Vi• using the

freeway system;

2) At the second step, for given {Vi•} we decide the optimal traffic flow distribution on

the freeway system.

Since the optimal tolling scheme primarily depends on the optimal traffic flow distribution

on the freeway system, the remainder of this section focuses on the analysis of the freeway

system, assuming {Vi•} as given. How to determine the demand split between the surface

street and the freeway system for each origin will be explained in Section 4.

3.1 Preliminaries

This subsection presents a series of propositions describing certain important properties

of the optimal traffic flow pattern of the freeway system, which will serve as the building

blocks in deriving the analytical representation of this pattern.

Proposition 1 At dynamic system optimum with departure time choice, there is no queue

within the freeway system.

Proof. It can be easily shown that if a traffic flow pattern involves queues within the

freeway system, we can always have travelers adjust their departure to later times to

eliminate the queues without increasing both schedule delay and travel time costs. 2

Proposition 2 At dynamic system optimum with departure time choice, swapping the

path flows over any two on-ramps at any time t does not change the system cost, i.e.,

if vi1j1(t) > 0, vi2j2(t) > 0 and off-ramp j1 and off-ramp j2 are both downstream of on-

ramp i1 and on-ramp i2, then the system cost does not change by a flow swapping of



vi1j1(t) = vi1j1(t)− ε

vi2j2(t) = vi2j2(t)− ε

and





vi1j2(t) = vi1j2(t) + ε

vi2j1(t) = vi2j1(t) + ε

, ε ≤ min{vi1j1(t), vi2j2(t)} (Fig. 2).
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ε

Fig. 2. An illustration of flow swapping

Proof. The path flow swapping does not change the link flow pattern and thus will not

change the system cost. 2

The possibility of flow swapping tells us that the optimal path flow pattern in the freeway

system is not unique. Consequently, we shall use link flows rather than path flows to

characterize the optimal traffic flow pattern in the freeway system.

Proposition 3 At dynamic system optimum with departure time choice, if some off-ramp

j′ has positive flow at time t, all the off-ramps downstream of off-ramp j′ have flows equal

to their bottleneck capacities, i.e., v•j′(t) > 0 =⇒ ∀j < j′, v•j(t) = sj.

Furthermore, if v•j′(t1) > 0 and v•j′(t2) = 0, then v•(t1) > v•(t2).

Proof. For a traffic flow pattern without queues in the freeway system, the total cost

for a traveler departing at time t and taking off-ramp j′ is c = Tj′ + α[0 − (t + Tj′)] =

−αt + (1 − α)Tj′ . If there is an off-ramp j < j′ with v•j(t) < sj, she can instead takes

off-ramp j and reduce the cost to c′ = −αt+(1−α)Tj < c because 1−α > 0 and Tj < Tj′ .

Given that v•j(t) < sj, no other travelers’ costs will be affected by such a flow shifting.

Therefore, the original traffic flow pattern cannot be optimal because the system cost

can be further reduced by such a flow shifting. This is equivalent to say that at dynamic

system optimum, if off-ramp j′ is being used at time t, all the off-ramps downstream of

it must be fully utilized, i.e., v•j′(t) > 0 =⇒ ∀j < j′, v•j(t) = sj.

Because of this property, given two time ticks t1 and t2, v•j′(t1) > 0 =⇒ v•(t1) >
∑

j<j′ sj

and v•j′(t2) = 0 =⇒ v•(t2) ≤ ∑
j<j′ sj. Hence, v•(t1) > v•(t2). 2

This proposition illustrates how off-ramps are utilized in the optimal state: upstream off-

ramps are used later and waned off traffic earlier than downstream off-ramps. In other

words, upstream off-ramps start to attract traffic later and have shorter duration of usage

than downstream off-ramps.
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Proposition 4 At dynamic system optimum with departure time choice, the off-ramps

in use are all at the downstream side of the utilized on-ramps. (Fig. 3.(a))

Fig. 3. Location of ramps in use at system optimum

Proof. Suppose off-ramp j′ is upstream of on-ramp i′ (Fig. 3.(b)). It suffices to show

that V•j′ > 0 =⇒ Vi′• = 0. Denote the sets of time intervals when v•j′(t) > 0 and when

v•j′(t) = 0 as P1 and P2, respectively.

Obviously, for any time t ∈ P1, vi′•(t) = 0 because otherwise the system cost can be

reduced by shifting a small amount of flow in vi′•(t) to use the surface street while letting

the same amount of flow originally on off-ramp j′ at the same time take the residual

capacity on a downstream off-ramp left by the shifting of flow in vi′•(t) to a surface street

(Fig. 4).

ε

ε

ε

ε

Fig. 4. A flow shifting strategy that reduces the system cost

For any time t ∈ P2, v•j(t) = 0, ∀t ∈ P2 and v•j(t′) > 0,∀t′ ∈ P1 imply that
∑j′

j=1 v•j(t) <
∑j′

j=1 v•j(t′) (Proposition 3). In addition, we just know that at time t′, all the on-ramps

downstream of j′ have zero flows, i.e., flows
∑j′

j=1 v•j(t′) are all from on-ramps upstream

of j′. Therefore, there must exists at least one on-ramp i upstream of off-ramp j′ such

that
∑j′

j=1 vij(t) <
∑j′

j=1 vij(t
′) ≤ si. Without loss of generality, we can assume that

vij′(t
′) > 0. (This can always be attained by swapping path flows according to Proposition

2.) Therefore, if vi′j(t) > 0 where j is an off-ramp downstream of on-ramp i′, the system

cost can be reduced by letting a small amount of flow comprising vi′j(t) use the surface

street at time t and the same amount of flow from vij′(t
′) originally departing at time t′

and taking off-ramp j′ take up the capacity slack created at time t (Fig. 5).
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Fig. 5. A flow shifting strategy that reduces the system cost

Therefore, vi′•(t) = 0,∀t, i.e., Vi′• = 0. 2

3.2 The formulation of the morning commute problem as a SO-DTA

The propositions previously derived make it possible to formulate the problem of deriving

the system-optimal traffic pattern of the freeway system in the morning commute problem

as a mathematical program.

Given {Vi•}, Proposition 4 offers a way to simplify the topology of the freeway system

subnetwork when searching for the system-optimal traffic flow distribution. That is, since

all the utilized off-ramps are downstream of all the utilized on-ramps, it suffices to derive

the optimal traffic flow pattern in an abstract network made up of n − I + 1 upstream

merging branches and J downstream parallel routes (Fig. 6), where the ramp indices I

and J can be easily determined for given {Vi•}: I = argmax{i|Vi• > 0} and J is the index

of the last off-ramp downstream of on-ramp I.

s
I

D

c
1

T
1

V
i·

s
I+1

s n

c
2

T
2

c
J

T
J

Fig. 6. The abstract network of the freeway system after simplification
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Thanks to the no queueing property of Proposition 1, it suffices to search the system-

optimal traffic flow pattern among only those without any freeway queues, which, can be

further described by the following relationships:

J∑

j=1

∫ −Tj

−∞
vij(t)dt = Vi• i = I, . . . , n (P.1)

0 ≤
J∑

j=1

vij(t) ≤ si i = I, . . . , n, t ∈ (−∞, 0) (P.2)

0 ≤
n∑

i=I

vij(t) ≤ cj j = 1, . . . , J, t ∈ (−∞, 0) (P.3)

where the first equation defines demand conservation and the other two ensure that the

traffic flow at any time does not exceed ramp capacities.

For traffic flow patterns defined by (P.1) - (P.3), the total system cost does not contain

queueing delay and thus can be represented as the sum of free-flow travel time and schedule

delay . Namely,
n∑

i=I

J∑

j=1

∫ −Tj

−∞
[Tj − α(t + Tj)]vij(t)dt (P.0)

where Tj −α(t+Tj) is the travel cost (i.e., free-flow travel time + schedule delay) experi-

enced by any traveler departing at time t and taking off-ramp j to reach the destination.

Hence,
∑n

i=I

∑J
j=1

∫−Tj

−∞ [Tj − α(t + Tj)]vij(t)dt represents the total travel cost experienced

by all the travelers taking the freeway system.

In summary, the SO-DTA problem for morning commute can be formulated as the fol-

lowing mathematical program.

FC(V) = min
n∑

i=I

J∑

j=1

∫ −Tj

−∞
[Tj − α(t + Tj)]vij(t)dt (P.0)

s.t.

(λi)
J∑

j=1

∫ −Tj

−∞
vij(t)dt = Vi• i = I, . . . , n (P.1)

(ωi(t)) 0 ≤
J∑

j=1

vij(t) ≤ si i = I, . . . , n, t ∈ (−∞, 0) (P.2)

(µj(t)) 0 ≤
n∑

i=I

vij(t) ≤ cj j = 1, . . . , J, t ∈ (−∞, 0) (P.3)

To analyze the fundamental features of the dynamic system-optimal traffic flow pattern,

we introduce the respective multipliers λi, ωi(t), µj(t) associated with (P.1), (P.2), and

12



(P.3), interpreted as the marginal cost of having one more traveler at on-ramp i, the

marginal benefit of expanding the capacity of on-ramp i at time t, and the marginal

benefit of expanding the capacity of off-ramp j at time t. The optimality conditions for

(P ) can thus be written as the feasibility constraints (P.1) - (P.3), together with

ωi(t) ≥ 0, si −
J∑

j=1

vij(t) ≥ 0 i = I, . . . , n, t ∈ (−∞, 0) (1)

µj(t) ≥ 0, cj −
n∑

i=I

vij(t) ≥ 0 j = 1, . . . , J, t ∈ (−∞, 0) (2)

vij(t) ≥ 0, −αt + (1− α)Tj + ωi(t) + µj(t)− λi ≥ 0 i = I, . . . , n, j = 1, . . . , J, t ∈ (−∞,−Tj)
(3)

and the complementary slackness conditions between the pairs of inequalities in (1) - (3).

The optimality conditions (1), (2), and (3) illustrate the relationship between travelers’

experienced costs, externality costs, and their marginal costs, and thus provide a way

to design the optimal tolling scheme. More specifically, in the inequality pairs of (3),

−αt+(1−α)Tj +ωi(t)+µj(t) can be interpreted as the marginal cost for users departing

at time t from on-ramp i to take the off-ramp j, and λi is the marginal system cost

of adding one traveler using on-ramp i. The complementary slackness condition of (3)

therefore describes the equilibrium condition in terms of marginal travel costs. Namely,

Lemma 1 At dynamic system optimum with departure time choice, for each on-ramp i,

the marginal cost of all the paths and all the departure times with positive flows are the

same and equal to marginal system cost λi, while other paths and departure times have

marginal costs no less than that.

According to Lemma 1, the optimal tolling scheme should be designed in a way such

that each traveler departing at time t using on-ramp i and off-ramp j bears the path

marginal cost −αt + (1 − α)Tj + ωi(t) + µj(t). Since a traveler’s path marginal cost

−αt + (1 − α)Tj + ωi(t) + µj(t) is made up of the travel cost −αt + (1 − α)Tj, the

externality costs ωi(t) and µj(t) that the traveler imposes on other travelers at on-ramp

i and off-ramp j, respectively, a link-based tolling scheme that brings the system to its

optimal state is simply to charge travelers a time-dependent toll ωi(t) at the on-ramp i

and a time-dependent toll µj(t) at the off-ramp j.

In addition, the optimality conditions (1) and (2) illustrate a distinct feature of the ex-

ternality for the bottleneck model. As shown, ωi(t) = 0 if
∑J

j=1 vij(t) < si and µj(t) = 0

if
∑n

i=I vij(t) < cj, meaning that externality would not arise if the bottlenecks are not
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saturated (i.e., flow on it reaches its capacity) at the time when the additional traveler

traverses it. This is because in the bottleneck model, congestion is localized.

3.3 Some essential properties of the system-optimal flow and toll patterns

We first introduce the following critical time points to aid our discussion of the salient

properties of the optimal flow and toll patterns:

tj0 The earliest time when the discharging flow on off-ramp j becomes positive;

Let tj0 = −Tj if the discharging flow is always zero.

tjs The earliest time when off-ramp j is saturated (i.e., discharging flow equals its capacity);

Let tjs = −Tj if it is always unsaturated.

τis The earliest time when the discharging flow on on-ramp i is positive and

the last off-ramp in use is unsaturated;

Let τis = −TJ ′ if all the off-ramps in use are saturated whenever the discharging

flow on on-ramp i is positive.

s(i) The index of the unsaturated off-ramp corresponding to τis;

Let s(i) = ∅ if τis = −TJ ′ .

(By this definition, τis ∈ [ts(i)0, ts(i)s) if s(i) 6= ∅)
τi0 The latest time before τis when the last off-ramp in use is unsaturated;

Let τi0 = t10 if all the off-ramps in use are saturated when there are flows on them.

(By this definition, τi0 < τis if τis = ts(i)0 and τi0 = τis if τis ∈ (ts(i)0, ts(i)s))

o(i) The index of the unsaturated off-ramp corresponding to τi0;

Let o(i) = ∅ if τi0 = t10.

(By this definition, o(i) < s(i) if τis = ts(i)0 and o(i) = s(i) if τis ∈ (ts(i)0, ts(i)s))

Given any feasible traffic flow pattern in the freeway system, all the above critical time

points can be identified accordingly. For example, suppose a freeway system with three

on-ramps and two off-ramps has a temporal traffic flow profile as shown in Fig. 7. Both

the disaggregate ramp flow (Fig. 7.(a) - 7.(e)) and aggregate flow (Fig. 7.(f)) are depicted.

ta, tb, . . . , tf are the time points when the aggregate traffic flow rate changes. According

to our definitions, for off-ramp 1, t10 = ta, t1s = tc; for off-ramp 2, t20 = td, t2s = −T2

(because the flow on it is always below c2); for on-ramp 1, τ1s = ta, s(1) = 1, τ10 = ta,

o(1) = 1; For on-ramp 2, τ2s = tb, s(2) = 1, τ20 = tb, o(2) = 1 (because τ2s ∈ (t10, t1s); For

on-ramp 3, τ3s = td, s(3) = 2, τ30 = tc, o(3) = 2 (because τ3s = t20)
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Fig. 7. A traffic flow pattern example in a freeway system with 3 on-ramps and 2 off-ramps

Based on the propositions and optimality conditions previously derived, we can identify

the following important properties of the optimal traffic flow pattern.

Theorem 1

1) For any off-ramp j used at system optimum,

1.1) the flow on it becomes positive exactly 1−α
α

(Tj − Tj−1) time units after its

downstream adjacent off-ramp’s flow becomes equal to its capacity, i.e.,

tj0 = t(j−1)s + 1−α
α

(Tj − Tj−1),∀j = 2, . . . , J ′.

In particular, for off-ramp J ′ which is the last off-ramp in use, if J ′ < J , then

−TJ ′ − tJ ′s ≤ 1−α
α

(TJ ′+1 − TJ ′).

1.2) the flow on it always ends at time −Tj, ∀j = 1, . . . , J ′;

1.3) the flow on it always equals its capacity from time tjs to time −Tj, i.e.,

v•j(t) = cj,∀t ∈ (tjs,−Tj), j = 1, . . . , J ′;

2) For any on-ramp i used at system optimum,

2.1) the flow on it always equals its capacity from time τis to time −Ts(i), i.e.,

vi•(t) = si,∀t ∈ (τis,−Ts(i))

2.2) the flow on it is zero before time τi0 and after time −To(i), i.e.,

vi•(t) = 0,∀t ∈ (−∞, τi0) ∪ (−To(i), 0)
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Proof: Theorem 1 can be proven by showing that any traffic flow pattern violating any

of the properties in Theorem 1 can be adjusted to further reduce the system cost. For

purpose of exposition, the detailed proof is shown in the Appendix.

A typical dynamic traffic flow pattern {v•(t)}, obtained by aggregating flows over all the

on-ramps, that has all the properties described in Theorem 1 is depicted in Fig. 8. As

shown, the aggregate flow rate v•(t) has a staircase shape over time, and is monotonically

increasing before time −TJ ′ and monotonically decreasing after time −TJ ′ .

 

Fig. 8. A typical optimal aggregate dynamic traffic flow pattern in the freeway system

The entire morning peak can thus be divided into two types of time periods:

Type I: (tjs, t(j+1)0) ∪ (−Tj+1,−Tj), j = 1, . . . , J ′ − 1 and (tJ ′s,−TJ ′)

During the jth Type I period, the first j off-ramps are in use, and all of them are saturated.

In particular, except for the J ′th period (tJ ′s,−TJ ′) which lasts no longer than 1−α
α

(TJ ′+1−
TJ ′), the width of any other jth period (j = 1, . . . , J ′−1) is known and equal to 1−α

α
(Tj+1−

Tj) + (Tj+1 − Tj) = Tj+1−Tj

α
.

Type II: (tj0, tjs), j = 1, . . . , J ′ (Highlighted by the gray area in Fig. 8.)

During the jth Type II period, the first j′ off-ramps are in use, and all but off-ramp j are

saturated. The width of each time interval does not have an analytical form and may be

as small as zero.

Fig. 9 shows the typical disaggregate optimal dynamic traffic flow patterns on ramps. As

shown, each on-ramp i = I, . . . , n only has positive flows within time period (τi0,−To(i)).

In particular, during time t ∈ (τis,−Ts(i)) ⊆ (τi0,−To(i)), the flow is exactly equal to

its capacity si; Similarly, each off-ramp j = 1, . . . , J ′ only has flows within time period
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t ∈ (tj0,−Tj), and during t ∈ (tjs,−Tj) ⊆ (tj0,−Tj), the flow is exactly equal to its

capacity cj.

τ τ

Fig. 9. Typical optimal disaggregate traffic flow patterns on the ramps

To further explain the basic properties of the optimal dynamic traffic flow pattern, Fig.

10 depicts the typical shapes of the optimal aggregate traffic flow patterns for two special

networks. Corresponding to Fig. 10.(a) is a simple merge network representing a freeway

system with multiple on-ramps and one off-ramp (i.e. the freeway link incident to the

destination), and corresponding to Fig. 10.(b) is a simple diverge network with parallel

routes at the downstream side representing a freeway system with multiple off-ramps and

one on-ramp.
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Fig. 10. The aggregate optimal traffic flow patterns for two special networks
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In Fig. 10.(a), the entire optimal aggregate traffic flow pattern is made up of a staircase

segment before time t1s when on-ramps with τis < t1s discharge flows at their capacities

and a constant flow segment from time t1s to time 0 when the aggregate flow equals the

off-ramp capacity c1. Depending on the total flow discharged from each on-ramp, the

duration time of either of these two segments may be zero.

In Fig. 10.(b), tj0 = tjs, ∀j = 1, . . . , J ′−1, meaning that all the off-ramps j = 1, . . . , J ′−1

always operate at their capacities whenever there are travelers traversing them. τ1s = tJ ′0,

meaning that the on-ramp operates at its capacity from time τ1s to time −TJ ′ . Since this

duration time may be zero, it is possible that the on-ramp capacity is never saturated

during the entire morning peak.

If we denote Vi• = V I
i• + V II

i• where V I
i• and V II

i• are the total flow discharged from on-

ramp i during all the Type I time periods and during all the Type II periods, respectively.

Theorem 1 also leads to the following corollary regarding the usage of on-ramps.

Corollary 1 Given two on-ramps i′ and i′′,

V II
i′• /si′ ≥ V II

i′′•/si′′ ⇐⇒ τi′s ≤ τi′′s ⇐⇒ τi′0 ≤ τi′′0

Proof: We first show that V II
i′• /si′ ≥ V II

i′′•/si′′ =⇒ τi′s ≤ τi′′s =⇒ τi′0 ≤ τi′′0. Property 2 in

Theorem 1 implies that any on-ramp i is always saturated during any Type II time period

whenever it has positive flows. Therefore, according to the definition of τis, V II
i′• /si′ ≥

V II
i′′•/si′′ =⇒ τi′s ≤ τi′′s. The definition of τi0 further implies that τi′s ≤ τi′′s =⇒ τi′0 ≤ τi′′0.

The proof for the opposite direction, i.e., V II
i′• /si′ ≥ V II

i′′•/si′′ ⇐= τi′s ≤ τi′′s ⇐= τi′0 ≤ τi′′0,

is similar since it is equivalent to V II
i′• /si′ < V II

i′′•/si′′ =⇒ τi′s > τi′′s =⇒ τi′0 > τi′′0. 2

The properties described in Theorem 1 are also sufficient for a feasible traffic flow pattern

to be optimal. Moreover, they lead a way to construct the time-dependent toll that realizes

the dynamic system-optimal traffic flow pattern.

Theorem 2 Any feasible traffic assignment pattern having the properties given in Theo-

rem 1 is an optimal flow pattern in the freeway system.

Corresponding to the critical time points {τi0}, {τis}, {tj0}, {tjs} that characterize the traf-

fic flow pattern, the marginal system cost for travelers from each origin i = I, . . . , n is

λi = −ατi0 + (1− α)To(i) (4)

and the dynamic tolls to be charged at the ramps to achieve this optimal traffic flow pattern
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are as follows (Fig. 11):

ωi(t) =





α(t− τis)− (1− α)(Tj′ − Ts(i)) t ∈ (tj′0, tj′s), j′ = s(i), . . . , J ′

α(t− τis)− (1− α)(Tj′ − Ts(i))− α(t− tj′s) t ∈ (tj′s, t(j′+1)0), j′ = s(i), . . . , J ′ − 1

α(tj′0 − τis)− (1− α)(Tj′ − Ts(i)) t ∈ (−Tj′ ,−Tj′−1), j′ = J ′, . . . , s(i) + 1

(5)

µj(t) =





(1− α)(Tj′ − Tj) t ∈ (tj′0, tj′s), j′ = j, . . . , J ′

(1− α)(Tj′ − Tj) + α(t− tj′s) t ∈ (tj′s, t(j′+1)0), j′ = j, . . . , J ′ − 1

(1− α)(Tj′ − Tj) + α(t− tj′0) t ∈ (−Tj′ ,−Tj′−1), j′ = J ′, . . . , j + 1

(6)

Proof. It suffices to show that the multipliers defined by (4), (5), and (6) satisfy the

optimality conditions (1) - (3). It is easy to see from Fig. 11 that during the time when

both on-ramp i and off-ramp j have positive flows, the sum of the externalities on them,

ωi(t) + µj(t), increases at the rate of α over time, which is exactly the decreasing rate

of the schedule delay at the destination. The reader is referred to the appendix for the

complete proof of this theorem.
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Fig. 11. The optimal dynamic toll on the ramps
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As shown in Fig. 11, the dynamic tolling patterns on both on- and off-ramps are piecewise

linear, and have two distinct segments divided by time −TJ ′ . Interestingly, when both an

on-ramp and off-ramp have positive tolls, they take turns to have an increase in the toll

at rate α. In other words, whenever the toll on the on-ramp(off-ramp) increases at the

rate of α, the toll on the off-ramp(on-ramp) remains constant.

For each on-ramp i = I, . . . , n, the toll starts from time τis and ends at time −Ts(i). During

time t ∈ (τis,−TJ ′), ωi(t) increases at the rate of α when t ∈ (tj′0, tj′s), j
′ = s(i), . . . , J ′ and

remains constant when t ∈ (tj′s, t(j′+1)0), j
′ = s(i), . . . , J ′. During time t ∈ (−TJ ′ ,−Ts(i)),

ωi(t) drops α(tj′s − tj′0) when t passes time −Tj′ , j
′ = J ′, . . . , s(i) and remain constant

otherwise.

For each off-ramp j = 1, . . . , J ′, the toll starts from time tjs and ends at time −Tj. During

time t ∈ (τis,−TJ ′), µj(t) increases at the rate of α when t ∈ (tj′s, t(j′+1)0), j
′ = j, . . . , J ′

and remains constant when t ∈ (tj′0, tj′s), j
′ = j, . . . , J ′. During time t ∈ (−TJ ′ ,−Tj),

µj(t) jumps α(tj′s − tj′0) when t passes time −Tj′ , j
′ = J ′, . . . , j + 1 and increases at the

rate of α otherwise.

Fig. 12 depicts, for the two special networks shown previously in Fig. 10, the optimal

dynamic toll profiles, from which it can be easily seen that the total toll that a traveler

pays at both the on and off ramps she accesses increases at the rate of α over time.
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Fig. 12. The optimal dynamic toll profiles for two special networks
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Finally, although the analytical formulae for the optimal time-dependent toll, (5) and (6),

are derived based on the assumption that the freeway mainline has negligible free-flow

travel time, they can be easily modified to take into account the non-zero free-flow travel

time on the freeway mainline. More specifically, suppose the free-flow travel time from

any ramp i (either on-ramp or off-ramp) to the destination is fci. It suffices to shift the

toll profile on any ramp i to the left by fci units.

Theorem 2 also leads to the following corollary regarding the marginal cost of each on-

ramp i in use at system optimum.

Corollary 2

Given any two on-ramps i′ and i′′ in use at dynamic system optimum,

λi′ ≥ λi′′ ⇐⇒ τi′0 ≤ τi′′0 ⇐⇒ Vi′•/si′ ≥ Vi′′•/si′′

Proof: We first prove for λi′′ ≥ λi′ =⇒ τi′′0 ≤ τi′0 =⇒ Vi′′•/si′′ ≥ Vi′•/si′ .

1) λi′′ ≥ λi′ =⇒ τi′′0 ≤ τi′0:

According to Theorem 2, for any on-ramp i in use at system optimum, λi = −ατi0 + (1−
α)To(i). If λi′′ ≥ λi′ , we have the following three possibilities:

i) o(i′) > o(i′′): obviously, τi′′0 < τi′0;

ii) o(i′) = o(i′′): τi′′0 ≤ τi′0, since (1− α)To(i′′) = (1− α)To(i′);

iii) o(i′) < o(i′′): this situation is impossible because otherwise based on the definitions of

τi0 and o(i), we have τi′0− τi′′0 < 1−α
α

(To(i′)− To(i′′)), i.e., λi′ > λi′′ , contradicting with the

assumption of λi′′ ≤ λi′ .

2) τi′′0 ≤ τi′0 =⇒ Vi′′•/si′′ ≥ Vi′•/si′ :

The definitions of {τis} and {τi0} imply that τi′′0 ≤ τi′0 will lead to (τi′′s,−Ts(i′′)) ⊇
(τi′0,−To(i′)). This means that whenever the flow on on-ramp i′ is positive, the flow on on-

ramp i′′ is equal to its capacity si′′ . Hence, Vi′′•
si′

≥ Vi′•
si′

. The proof for the other direction,

i.e., λi′′ ≥ λi′ ⇐= τi′′0 ≤ τi′0 ⇐= Vi′′•/si′′ ≥ Vi′•/si′ , is similar and thus omitted here. 2

4 A graphical procedure to obtain the optimal traffic flow and toll profiles

According to Theorem 1 and Theorem 2, the dynamic system-optimal traffic flow pattern

can be found by obtaining a feasible traffic flow profile satisfying all the properties of

Theorem 1. We shall show in this section that such a traffic flow profile can be constructed

through a graphical solution procedure.
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For the ease of presentation, the on-ramp indices are relabeled in the descending order

of the cumulative volume-to-capacity ratio {Vi•/si}i=I,...,n. An auxiliary function f(t) is

then constructed by drawing horizontal bars with length Vi•/si and height si for each

on-ramp i = 1, . . . , n − I + 1 and stacking them sequentially from the bottom with the

same ending point t = 0 (Fig. 13.(a)). The whole area below f(t) thus represents the

total travel demand to be distributed in the freeway system, and the area under f(t)

between y =
∑i−1

i′=1 si′ and y =
∑i

i′=1 si′ represents the travel demand discharged into the

freeway system from a specific on-ramp i. With this auxiliary function f(t), the process

of determining the total and ramp-specific travel demand discharged during a given time

period can be represented as subtracting a certain area from that below f(t). After each

subtraction operation, the remaining demand {Vi•} is updated and f(t) is reconstructed.

According to Theorem 1, the entire morning peak at dynamic system optimum can be

divided into two types of time periods: Type I periods j = 1, . . . , J ′ and Type II periods

j = 1, . . . , J ′. For every Type I period, the flow distribution at each off-ramp and the

duration time (except for the last Type I period (tJ ′s,−TJ ′)) are known, while how flows

are discharged from each on-ramp is to be determined; For every Type II period, the

flow distribution at each off-ramp is known, while both the duration time and the flow

distribution at each on-ramp are to be determined. Corresponding to such a time period

partition, our solution procedure is also presented in two steps:

Step 1: Determine both the total and the ramp-specific travel demand discharged during

every Type I period j = 1, . . . , J ′;

Step 2: Determine both the total and the ramp-specific travel demand discharged during

every Type II period j = 1, . . . , J ′.

For narrative convenience, Step 2 is described ahead of Step 1.

1) Flow distribution during Type II periods (Step 2)

Suppose the area corresponding to the travel demand discharged during all the Type I

periods have been subtracted from that below f(t). The remaining f(t) is thus constructed

based on travel demand {V II
i• } (Fig. 13.(f)). According to Corollary 1 and Corollary 2, the

sequence of {V II
i• /si} is in the same order of the sequence of {Vi•/si}, indicating that this

remaining f(t) constructed based on {V II
i• } shares a similar shape of a climbing staircase

as the original f(t).

To determine the flow distribution during every Type II period, we can first draw a series

of horizontal lines y = c1, . . . , y =
∑j

j′=1 cj′ , . . . , y =
∑J

j′=1 cj′ on the plot of the remaining

f(t) and denote the x-coordinate of the crossing point between f(t) and any horizontal
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line y =
∑j

j′=1 cj′ as xj. According to Property 2 in Theorem 1, each on-ramp i becomes

saturated during all the Type II periods once its flows become positive. This implies

that the travel demand corresponding to the area below the remaining f(t) between line

y =
∑j−1

j′=1 cj′ and line y =
∑j

j′=1 cj′ is discharged during the jth Type II period (tj0, tjs)

(Fig. 13.(f)), and |xj−1 − xj| represents the duration time |tjs − tj0| of the jth Type II

period. By this means, the total area below the remaining f(t) is partitioned into every

Type II period j = 1, . . . , J ′.

2) Determine the flow distribution during Type I periods (Step 1)

The demand discharged during every Type I period j = 1, . . . , J ′ can be determined in

an iterative way. Namely, during the jth iteration, the flow distribution for the jth Type

I period is determined by subtracting the corresponding area from that below f(t).

The following three properties can be utilized to design such an area subtraction operation:

1) The total demand discharged during the jth Type I period is equal to Tj+1−Tj

α

∑j
j′=1 cj′

(Property 1.2 and 1.3, Theorem 1).

2) Since the remaining f(t) for Step 2 has a similar shape as the original f(t), it is desirable

for the re-constructed f(t) after the jth iteration to maintain a similar shape.

3) After the jth iteration, if for a certain on-ramp i we have
∑

i′:Vi′•>0,i′≤i si′ <
∑j

j′=1 cj′

(i.e., there is remaining demand potentially to be used during a j′ < jth Type II time

period), this on-ramp i should always be saturated during the jth Type I period (Property

2.1, Theorem 1);

The area subtraction approach satisfying all the above three properties is as follows. Sup-

pose we want to determine the flow distribution during the jth time period (tjs, t(j+1)0)∪
(−Tj+1,−Tj). On the plot of f(t) constructed based on the remaining demand {Vi•} from

a previous iteration, we draw a horizontal line y =
∑j

j′=1 cj′ and move a vertical band

characterized by t1 = t∗ and t2 = t∗ + Tj+1−Tj

α
around until area I = area II(Fig. 13.(b)).

The area below f(t) between y = t1 and y = t2 is the area corresponding to the travel de-

mand to be discharged during this jth Type I time period. By this means, the subtracted

area is equal to
∑j

j′=1 cj′ × Tj+1−Tj

α
; the shape of the re-constructed f(t) based on the re-

maining demand (Fig. 13.(c)) still has the climbing staircase shape; Any on-ramp i with

positive remaining demand and satisfying
∑

i′:Vi′•>0,i′≤i si′ <
∑j

j′=1 cj′ is always saturated

during the jth Type I period.

The above area subtraction operation can be performed iteratively starting from j = 1

till one of the following conditions are satisfied. 1) The line of y =
∑j

j′=1 cj′ is above f(t)

(Fig. 13.(d.1)); 2) there is no such t∗ ≤ 0 which can make area I = area II (Fig. 13.(d.2));
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3) j = J (Fig. 13.(d.3)). Then, let J ′ = j and the flow distribution of the J ′th Type I

period (tJ ′s,−TJ ′) is determined. If termination condition 1) applies, tJ ′s = −TJ ′ since

the maximum flow rate that can be discharged from the remaining flow is below
∑J ′

j=1 cj;

If termination conditions 2) and 3) applies, the duration time | − TJ ′ − tJ ′s| and the flow

distribution is determined by moving the line t = t∗ such that area I = area II (Fig.

13.(e)) and tJ ′s = −TJ ′ + t∗.

It is easy to verify that the traffic flow pattern constructed by this procedure (Step 1

and Step 2) satisfies all the properties in Theorem 1 and hence is an optimal traffic flow

pattern. Once the optimal traffic flow pattern is obtained, the time-dependent optimal

toll profile can be constructed, according to Theorem 2, from all the characteristic time

points {tj0}, {tjs}, {τi0}, {τis}.

 

 

 

α

α

 

  

Fig. 13. A graphical illustration of the algorithm to derive the optimal traffic pattern

The above algorithm assumes that the demand Vi• for each origin i to use the freeway
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system is known. In fact, the optimal {Vi•} which leads to the minimal total cost in the

corridor network is a solution to the mathematical program optimizing the total cost in

the entire corridor network as follows:

min{
n∑

i=1

(Ni − Vi•)Di + FC(V)|Vi ≥ 0, ∀i = 1, . . . , n}

where FC(V) represents the minimal cost in the freeway system for given {Vi•}. The

optimality condition of this program reads

Vi ≥ 0, Di − ∂FC(V)

∂Vi

≥ 0, Vi[Di − ∂FC(V)

∂Vi

] = 0, i = 1, . . . , n

Note that ∂FC(V)
∂Vi

is equivalent to the multiplier λi of the program (P ).

According to this optimality condition, the split between the freeway system and the

alternative surface street route for each origin can be determined iteratively in practice.

More specifically, starting from the initial scenario in which all the demand from all the

origins will use the freeway system, we can perform the graphical procedure to obtain the

optimal dynamic traffic flow pattern for this case. Then we check sequentially from the

first on-ramp with flows on the freeway system if λi ≤ Di. If this condition is violated,

reduce Vi• by a predetermined amount and perform the graphical procedure again. This

iterative process terminates when λi ≤ Di,∀i = 1, . . . , n holds.

5 Concluding remarks

The morning commute problem, considered under the simple setting of a single route with

a single bottleneck, brings out the essential elements of traffic congestion and has been

extensively studied. Extending this problem to a general network is challenging because of

the underlying complexity of modeling traffic flow. Under certain modeling assumptions

such an analysis can still be achieved with the help of numerical approximations, which

adds realism but tends to lose much of the elegance and clarity found under the simple

network setting. For some special networks, such as a corridor network consisting of a

freeway and several parallel arterial routes commonly found in cities with a hub and

spoke type of road network (i.e., several sparsely connected freeways connecting suburbs

to a single downtown), the basic features of the solution to the morning commute problem

can still be characterized. These features often provide great insights to the nature of the

problem and lead itself to effective remedies for congestion relief. In this paper, we carried
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out such an analysis on a corridor network with multiple bottlenecks on each route, a

problem considered difficult and not addressed in the literature. We first identified the

basic properties of the optimal traffic flow pattern in this network under both time-varying

demand and route choice, then gave the formulae for a time-dependent toll to realize the

optimal traffic flow pattern in the network under user-optimal choice behavior, and finally

provided a graphical procedure to obtain both the optimal dynamic traffic flow pattern

and the corresponding toll profile.

Our analysis has revealed that at system optimum,

• The freeway has no queue throughout the entire morning peak. Although there may

exist different optimal path/link flow distributions, the total flow in the freeway system

is unique and is characterized by Theorem 1. The profile of the total flow has a staircase

form and contains a monotonically increasing time period followed by a monotonically

decreasing time period.

• All on-ramps have no queues, and the on-ramps in use are all upstream of the off-

ramps in use. Moreover, on-ramps with larger cumulative volume-to-capacity ratios

(i.e., Vi•/si) are used longer than on-ramps with smaller volume to capacity ratios, and

on-ramps in use may have a saturated period, preceded and followed by under saturated

periods.

• All off-ramps have no queues, and downstream off-ramps are more heavily utilized than

upstream off-ramps, i.e., downstream off-ramps get used earlier and longer than up-

stream off-ramps. Moreover, once an off-ramp becomes saturated, it remains saturated

till no traffic accesses this ramp;

To realize the system-optimal traffic flow pattern, it suffices to impose a piecewise linear

toll on a subset of on-ramps and off-ramps. Our analysis found that

• The tolling scheme on both the on-ramps and off-ramps have two distinct time periods

divided by the time when the flow on the last off-ramp in use runs out. During the first

period, the tolls charged at on-ramps and off-ramps take turns to increase for a certain

duration, and the rate of increase is always equal to α. During the second period, only

the tolls charged at the off-ramps continue to increase. At time −Tj′ , j
′ = J ′, . . . , 1,

there is a jump in the on-ramp tolls and a drop with the same net value in the off-ramp

tolls;

• A downstream off-ramp has a longer tolling period and a higher maximum toll than an

upstream off-ramp. The maximum toll at an off-ramp is charged at the time when the

flow on it runs out;
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• The on-ramp with a larger cumulative volume-to-capacity ratio has a longer tolling

period and a higher maximum toll than an on-ramp with a smaller ratio. The maximum

toll at an on-ramp is charged at the time when the flow on the last off-ramp in use runs

out.

Although our analysis is conducted based on some ideal assumptions(vertical queue, in-

finite capacity on the city streets and no late arrival), the effects of relaxing some of the

assumptions are not difficult to capture. Since we have identified that there will be no

queue in the freeway at optimum, the optimal solution derived in this analysis actually ap-

plies to the situation where queue spill-back is taken into account. Considering late arrival

requires minor change of the analysis framework, and is expected to result in a similar

staircase optimal traffic flow pattern with different starting/ending time and single-mode

piecewise linear ramp toll profiles with a monotonically increasing segment followed by a

monotonically decreasing segment. Assuming finite capacity of city streets could impose

difficulties for a rigorous analysis, but it can be expected that additional congestion on

the city streets is likely to lead to a higher usage of the freeway system.

Although the piecewise linear time-dependent toll may be difficult to implement in prac-

tical applications, it does provide a benchmark toll solution to achieve the best system

performance. In practice, a piecewise constant time-dependent toll approximating the

optimal toll can be used to achieve a ”second-best” system performance. How close is

the system performance given by this second-best toll to that given by the first-best toll

provided in this paper is interesting and worthy of further investigation.
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Appendix

[Proof of Theorem 1]

1.1) Suppose ∃j′ ≤ J ′, tj′0 6= t(j′−1)s + 1−α
α

(Tj′ − Tj′−1). There are two possibilities:

tj′0 > t(j′−1)s + 1−α
α

(Tj′ − Tj′−1) and tj′0 < t(j′−1)s + 1−α
α

(Tj′ − Tj′−1).

a) If tj′0 > t(j′−1)s + 1−α
α

(Tj′ − Tj′−1),

By Proposition 3, ∀t∗ ∈ (t(j′−1)s + 1−α
α

(Tj′ − Tj′−1), tj′0), v•(t∗) = v•(t(j′−1)s) =
∑j′

j=1 cj.

since the sum of the capacities of any subset of the on-ramps is not equal to the sum of ca-

pacities of any subset of the off-ramps, v•(t∗) = v•(t(j′−1)s) implies that ∃i′, vi′•(t(j′−1)s) > 0

and vi′•(t∗) < si′ .

Since v•(j′−1)(t(j′−1)s) > 0 and vi′•(t(j′−1)s) > 0, according to Proposition 2, one can always

swap the off-ramp flows such that vi′(j′−1)(t(j′−1)s) > 0.

Now shift a small amount of flow ε originated at on-ramp i′ from using off-ramp j′ − 1

at time t(j′−1)s to using off-ramp j′ at time t∗. This manipulation can reduce the total

system cost by ε[α(t∗−t(j′−1)s)−(1−α)(Tj′−Tj′−1)] > 0, contradicting with the optimum

assumption.

b) If tj′0 < t(j′−1)s + 1−α
α

(Tj′ − Tj′−1), i.e., tj′0 − 1−α
α

(Tj′ − Tj′−1) < t(j′−1)s,

by definition of t(j′−1)s, ∀t∗ ∈ (tj′0 − 1−α
α

(Tj′ − Tj′−1), t(j′−1)s), v•(j′−1)(t
∗) < cj′−1.

According to proposition 3, v•(tj′0) > v•(t∗). Hence, there exists one on-ramp i′ such that

vi′•(tj′0) > vi′•(t∗).
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Since v•j′(tj′0) > 0 and vi′•(tj′0) > 0, one can always make vi′j′(tj′0) > 0 by swapping

flows.

Now shift a small amount of flow ε originated at on-ramp i′ from using off-ramp j′ at time

tj′0 to using off-ramp j′−1 at time t∗. This manipulation can reduce the total system cost

by ε[(Tj′ − Tj′−1)− α[(tj′0 + Tj′)− (t∗ + Tj′−1)] > 0, also contradicting with the optimum

assumption.

In summary, tj′0 = t(j′−1)s + 1−α
α

(Tj′ − Tj′−1),∀j′ ≤ J ′.

For the same reason, for the last off-ramp J ′,

if −TJ ′− tJ ′s > 1−α
α

(TJ ′+1−TJ ′) and J ′ < J , then the flow on off -ramp J ′+1 will become

positive at time tJ ′s + 1−α
α

(TJ ′+1 − TJ ′), contradicting with the fact that J ′ is the last

off-ramp in use.

Hence, −TJ ′ − tJ ′s ≤ 1−α
α

(TJ ′+1 − TJ ′).

1.2) Evidently, the flow on any off-ramp j′ ≤ J ′ cannot end after time Tj′ . Now suppose

∃j′ ≤ J whose last time interval with positive flow is t∗ < −Tj′ .

By Proposition 3, v•(t∗) > v•(−Tj′). Hence, there exists one on-ramp i′ such that vi′•(t∗) >

vi′•(−Tj′).

Since vi′•(t∗) > 0 and v•j′(t∗) > 0, one can always swap flows such that vi′j′(t
∗) > 0.

Now shift a small amount of flow ε originated at on-ramp i′ using off-ramp j′ from time

t∗ to time −Tj′ . This manipulation can reduce the total system cost by εα(−Tj′− t∗) > 0,

contradicting with the optimum assumption.

In summary, ∀j′ ≤ J ′, the flow on it ends at time −Tj′ .

1.3) Suppose ∃j′ ≤ J ′, t∗ ∈ (tj′s,−Tj′) such that v•j′(t∗) < sj′ .

By Proposition 3, v•(t∗) < v•(tj′s) Hence, there exists one on-ramp i′ such that vi′•(t∗) <

vi′•(tj′s).

Since vi′•(t∗) < vi′•(tj′s) and v•j′(t∗) < v•j′(tj′s), one can always swap flows such that

vi′j′(t
∗) < vi′j′(tj′s).

Now shift a small amount of flow ε originated at on-ramp i′ using off-ramp j′ from time

tj′s to time t∗. This manipulation can reduce the total system cost by εα(t∗ − tj′s) > 0,

contradicting with the optimum assumption.

In summary, v•j(t) = sj, ∀t ∈ (tjs,−Tj), j = 1, . . . , J ′.

2.1) According to 1), (τi′s,−Ts(i′)) can be divided into two subintervals: (τi′s, ts(i′)s), [ts(i′)s,−Ts(i′)).

a) For t ∈ (τi′s, ts(i′)s),

suppose ∃t∗ ∈ (τi′s, ts(i′)s), vi′•(t∗) < si′ .

Since vi′•(τi′s) > 0 and v•s(i′)(τi′s) > 0, one can always swap flows such that vi′s(i′)(τi′s) > 0.
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Now shift a small amount of flow ε originated at on-ramp i′ using off-ramp s(i′) from time

τi′s to time t∗. This manipulation can reduce the total system cost by εα(t∗ − τi′s), con-

tradicting with the optimality assumption.

b) For t ∈ [ts(i′)s,−Ts(i′)),

suppose ∃t∗ ∈ [ts(i′)s,−Ts(i′)), vi′•(t∗) < si′ .

According to a), one can always swap flows such that vi′s(i′)(τi′s) > 0.

By Proposition 3, ∀t′ ∈ (τi′s, ts(i′)s), v•(t′) < v•(t∗). Hence, there exists one on-ramp i′′

such that vi′′•(t′) < vi′′•(t∗).

Since vi′′•(t∗) > 0 and v•s(i′)(t∗) > 0, one can always swap flows such that vi′′s(i′)(t
∗) > 0.

Now shift a small amount of flow ε originated at on-ramp i′′ using off-ramp s(i′) from

time t∗ to time t′ and the same amount of flow originated at on-ramp i′ using off-ramp

s(i) from time τi′s to time t∗. This manipulation can reduce the total system cost by

εα(t− τis), contradicting with the optimality assumption.

In summary, ∀t ∈ (τis,−Ts(i)), vi•(t) = si.

2.2) For any on-ramp i′ = I, . . . , n, the interval (−∞, τi′0)∪(To(i), 0) can be divided into the

following two categories: 1) t ∈ (to(i′), τi′0)∪j′<o(i′) (tj′0, tj′s); 2) t ∈ ∪j′<o(i′)[(tj′s, t(j′+1)0)∪
(−Tj′ ,−Tj′+1)].

a) Evidently, vi′•(t) = 0,∀t ∈ (to(i′), τi′0) ∪j′<o(i′) (tj′0, tj′s).

b) Suppose ∃t∗ ∈ (tj′s, t(j′+1)0) ∪ (−Tj′ ,−Tj′+1), j
′ < o(i′) such that vi′•(t∗) > 0.

Since vi′•(t∗) > 0 and v•j′(t∗) > 0, one can always swap flow such that vi′j′(t
∗) > 0.

By Proposition 3, ∀t′ ∈ (to(i′)0, τi0), v•(t∗) < v•(t′). Hence, there exists one on-ramp i′′

such that vi′′•(t∗) < vi′′•(t′).

Since vi′′•(t′) > 0 and v•o(i′)(t′) > 0, one can always swap flows such that vi′′o(i′)(t
′) > 0.

Now shift a small amount of flow ε originated at on-ramp i′ from using off-ramp j′ at time

t∗ to using off-ramp o(i′) at time τi′0 and at the same time shift the same amount of flow

originated at on-ramp i′′ from using off-ramp o(i′) at time t′ to using off-ramp j′ at time

t∗. This manipulation can reduce the total system cost by εα(τi0 − t′) > 0, contradicting

with the optimality assumption.

In summary, vi•(t) = 0,∀t ∈ (−∞, τi0) ∪ (−To(i), +∞). 2

[Proof of Theorem 2]

To prove Theorem 2, it suffices to show that the multipliers defined by (4), (5) and (6)

satisfy the optimality conditions (1) - (3).

As ωi(t) > 0 when t ∈ (τis,−Ts(i)) and ωi(t) = 0 when t ∈ (−∞, τis) ∪ (−Ts(i), +∞), (1)

is satisfied.

Similarly, µj(t) > 0 when t ∈ (tjs,−Tj) and µj(t) = 0 when t ∈ (−∞, tjs) ∪ (−Tj, +∞),
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(2) is also satisfied.

Suppose off-ramp j is the last off-ramp in use at time t. Notice that µj′(t) + (1− α)Tj′ =

µj(t) + (1 − α)Tj,∀j′ ≤ j and µj′(t) + (1 − α)Tj′ > µj(t) + (1 − α)Tj,∀j′ > j. Hence,

to show the satisfaction of (3), it suffices to show that if vij(t) > 0 where j is the last

off-ramp in use at time t, −αt + (1− α)Tj + ωi(t) + µj(t) = λi = −ατi0 + (1− α)To(i).

If vij(t) > 0, there are five possibilities:

1) t ∈ (tj′s, t(j′+1)0), o(i) ≤ j′ < s(i)

2) t ∈ (tj′0, tj′s), s(i) ≤ j′ ≤ J ′

3) t ∈ (tj′s, t(j′+1)0), s(i) ≤ j′ ≤ J ′

4) t ∈ (−Tj′+1,−Tj′), s(i) ≤ j′ < J ′

5) t ∈ (−Tj′+1,−Tj′), o(i) ≤ j′ < s(i).

1) t ∈ (tj′s, t(j′+1)0), o(i) ≤ j′ < s(i)

In this case, ωi(t) = 0. Hence,

−αt + (1− α)Tj + ωi(t) + µj(t) = −αt + (1− α)Tj + α(t− tjs) = −αtjs + (1− α)Tj.

2) t ∈ (tj′0, tj′s), s(i) ≤ j′ ≤ J ′

In this case, it is easy to check that ωi(t) + µj(t) = α(t− τis)− (1−α)(Tj − Ts(i)). Hence,

−αt + (1− α)Tj + ωi(t) + µj(t) = −ατis + (1− α)Ts(i)

3) t ∈ (tj′s, t(j′+1)0), s(i) ≤ j′ ≤ J ′

In this case, again it is easy to check that ωi(t) + µj(t) = α(t− τis)− (1− α)(Tj − Ts(i)).

Hence, −αt + (1− α)Tj + ωi(t) + µj(t) = −ατis + (1− α)Ts(i).

4) t ∈ (−Tj′+1,−Tj′), s(i) ≤ j′ < J ′

In this case, it is easy to check that −αt+(1−α)Tj +ωi(t)+µj(t) = −ατis +(1−α)Ts(i).

5) t ∈ (−Tj′+1,−Tj′), o(i) ≤ j′ < s(i).

In this case, ωi(t) = 0. Hence,

−αt + (1 − α)Tj + ωi(t) + µj(t) = −αt + (1 − α)Tj + (1 − α)(Tj+1 − Tj) + α(t − t(j+1)0)

= −αt(j+1)0 + (1− α)Tj+1 = −αtjs + (1− α)Tj

Finally, λi = −ατi0 + (1− α)To(i). If o(i) = s(i), evidently τi0 = τis. Hence, λi = −αtis +

(1 − α)Ts(i). If o(i) < s(i), then τi0 = to(i)s and tj′0 = tj′s,∀o(i) < j′ < s(i). Hence,

λi = −αtj′s + (1− α)Tj′ ,∀o(i) ≤ j′ < s(i).

Hence, in all the five cases shown above, −αt + (1− α)Tj + ωi(t) + µj(t) = λi.

In summary, any traffic flow pattern satisfying the properties given in Theorems 1 is an

optimal traffic flow pattern on the freeway system. 2
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