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Abstract 

 

Infrastructure systems support human activities in transportation, communication, water 

use, and energy supply.  The dissertation research focuses on critical transportation infra-

structure and renewable energy infrastructure systems.  The goal of the research efforts is 

to improve the sustainability of the infrastructure systems, with an emphasis on economic 

viability, system reliability and robustness, and environmental impacts.   

 

The research efforts in critical transportation infrastructure concern the development of 

strategic robust resource allocation strategies in an uncertain decision-making environ-

ment, considering both uncertain service availability and accessibility.  The study ex-

plores the performances of different modeling approaches (i.e., deterministic, stochastic 

programming, and robust optimization) to reflect various risk preferences.  The models 

are evaluated in a case study of Singapore and results demonstrate that stochastic model-

ing methods in general offers more robust allocation strategies compared to deterministic 

approaches in achieving high coverage to critical infrastructures under risks.  This gen-

eral modeling framework can be applied to other emergency service applications, such as, 

locating medical emergency services.  

 

The development of renewable energy infrastructure system development aims to answer 

the following key research questions: (1) is the renewable energy an economically viable 

solution? (2) what are the energy distribution and infrastructure system requirements to 

support such energy supply systems in hedging against potential risks? (3) how does the 
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energy system adapt the dynamics from evolving technology and societal needs in the 

transition into a renewable energy based society? 

 

The study of Renewable Energy System Planning with Risk Management incorporates 

risk management into its strategic planning of the supply chains.  The physical design and 

operational management are integrated as a whole in seeking mitigations against the po-

tential risks caused by feedstock seasonality and demand uncertainty. Facility spatiality, 

time variation of feedstock yields, and demand uncertainty are integrated into a two-stage 

stochastic programming (SP) framework.   

 

In the study of Transitional Energy System Modeling under Uncertainty, a multistage sto-

chastic dynamic programming is established to optimize the process of building and op-

erating fuel production facilities during the transition.  Dynamics due to the evolving 

technologies and societal changes and uncertainty due to demand fluctuations are the ma-

jor issues to be addressed.   
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Chapter 1  Introduction 

 

 

 

 

1.1. Research Background and Motivations for Sustainable Infrastructure Systems 

Civil infrastructure systems support human activities in transportation, communication, 

water use, and energy supply.  For instance, road networks support vehicle movements; 

wireless base stations transmit wireless signals; dams control floods and generate hydro-

power; energy infrastructure systems support energy production and delivery.  In general, 

these infrastructures are: (1) capital cost and time intensive, (2) difficult to change once 

implemented, and (3) vulnerable to risks.   

 

Among all these types of infrastructure systems, the dissertation research focuses on the 

critical transportation infrastructure and renewable energy infrastructure systems.  The 

goal of the research efforts is to improve the sustainability of the infrastructure systems, 

with an emphasis on economic viability, system reliability and robustness, and environ-

mental impacts.   
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1.1.1 Critical Transportation Infrastructure (CTI) Systems 

The critical transportation infrastructures (CTI) include bus terminals and interchanges, 

mass rapid transit (MRT) stations, tunnels, airports, and seaports, which as a whole is vi-

tal for maintaining normal societal functionality, especially viable for metropolitan areas.  

On the other hand, these facilities also feature high maintenance and repairing cost, con-

sidering the high labor cost in metropolitan areas and significant societal impacts.  It is 

therefore crucial to improve the efficiency and reliability of protection to the infrastruc-

tures from potential disasters and attacks through providing robust emergency service 

resource allocation strategy under stringent budget limits.   

 

1.1.2 Renewable Energy Infrastructure Systems 

Renewable energy is promoted for supplementing traditional energy sources to sustain 

future energy use.  As the two most important types of renewable energy to fuel the fu-

ture transportation, biofuel and hydrogen carry significant environmental and energy-

security benefits (European Parliament and Council, 2003; U.S. Congress, 2007).  Exten-

sive research work (De La Torre et al., 2000; National Research Council, 2004) has been 

conducted to understand their advantages in terms of greenhouse gas emissions, energy 

security, etc.   
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There is a vast collection of feedstock resources available for fuel production.  Depending 

on the types of feedstock, their life-cycle environmental impacts will be different.  Tak-

ing ethanol (a type of biofuel) as an example, the ethanol produced from the lignocellu-

losic biomass (e.g., agricultural residue, forestry residue, and municipal solid wastes) has 

significant benefits over the current corn grain based ethanol in land use, life-cycle emis-

sions, source diversity, etc (Farrell et al., 2006; Hill et al., 2006; Jenkins et al., 2007; 

Perlack et al., 2005).  Therefore, the lignocellulosic biomass based biofuel, namely, cellu-

losic biofuel, is an ideal alternative to the conventional biofuel and considered in the 

study. 

 

To improve the efficiency and reliability of the energy systems, the entire energy supply 

chain should be considered as a whole due to the interdependency between different 

components in the system.  For instance, having a large-size centralized refinery facility 

can decrease the production costs through increased economies of scale but imposes 

higher cost on feedstock procurement and fuel distribution.  In addition, the system reli-

ability is going to be incorporated into the modeling framework against potential risks 

caused by demand fluctuations, operational failures and disasters. 
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1.1.3 Challenges in Sustainable Infrastructure System Planning 

Although the critical infrastructure systems protection and renewable energy infrastruc-

ture systems planning seem distinct in context, they share commonalities in three ways: 

(1) they both seek optimal strategies in allocating limited resources to achieve system-

wide effectiveness and efficiency; (2) they both require a system modeling method for 

incorporating spatiality and temporality; and (3) both problems face a challenge of han-

dling high level of uncertainties.  In general, existing studies are concerned with achiev-

ing system-wide economic efficiency through system optimization approaches, most of 

which addressed spatial dimensions in the systems but yet considered inherent uncertain-

ties.   

 

In particular, to improve the protection strategies for CTI systems, potential unavailabil-

ity of service has been explicitly addressed in the existing research efforts by use of 

chance-constraint programs.  However, external uncertainties in service accessibility due 

to traffic congestion, as an example, can have heavy impacts on developing robust re-

source allocation strategies and will be addressed integrally with uncertain service avail-

ability in a single modeling framework.   

 

Renewable energy system planning as an emerging field of application of operations re-

search presents rich research opportunities.  Current research efforts in this field are in-
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terested in enhancing the cost competitiveness of renewable energy through improving 

the economic efficiency of part of the systems, such as, feedstock procurement, fuel pro-

duction and delivery, etc.  This dissertation research is extended to take the entire system 

into consideration in recognition of the interdependency between different system com-

ponents.  Simultaneously, system reliability against risks caused by demand fluctuations 

and natural and human-made disasters is improved through stochastic modeling methods.  

System adaptability is also considered to hedge against seasonality and dynamics caused 

by evolving technology and societal needs.  The intellectual contributions of this disserta-

tion will be discussed in more detail in Section 1.4. 

 

1.2. Research Scope 

1.2.1 CTI Protection  

One way to protect the CTIs is to improve emergency response readiness.  This requires 

sufficient amount of emergency service resources to be able to serve CTIs within accept-

able time.  This research effort focuses on optimal allocation of emergency service re-

sources to protect CTIs.  Ideally one wants to deploy as much resource as possible to pro-

tect the CTIs.  However, service resources are often limited in reality.  The question 

therefore becomes how to allocate limited resources to a set of possible service units in 

order to serve as many CTIs as possible, i.e., to maximize the service coverage to the 

CTIs.   



6 

 

 

From an operations research viewpoint, the problem addressed in this study belongs to 

the general category of facility location problems (see Chapter 2 for details of existing 

literatures in facility location problems).  In particular, a covering model is adopted to 

locate emergency service resources for two reasons: (1) in reality, acceptable service 

standards in terms of travel time are usually predetermined by emergency management 

agencies and naturally become the constraints in our model; (2) this study aims at maxi-

mizing service coverage to CTI nodes with limited emergency resources.   

 

Allocating emergency service resource is a planning problem, which heavily involves 

prediction of model parameters such as the incident rate at demand sites and the transpor-

tation network performance.  In reality, these parameters are often random.  How to 

tackle uncertainty in disaster mitigation problems has become a timely subject recently 

and motivated this study.   

 

Various stochastic modeling approaches have been used in the study to measure different 

risk-averse preferences.  In particular, stochastic programming and robust optimization 

methods are used to minimize the regrets across all possible scenarios or in the worst-

case scenario.  All models are evaluated in the case study considering Singapore’s CTIs 

and emergency service resources.   
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1.2.2 Renewable Energy Infrastructure System Planning and Management 

In optimizing the sustainable renewable energy infrastructure systems, its economic vi-

ability is one of the critical measurements, which relies on its production cost and more 

importantly the costs associated with logistics including transport and storage.  Renew-

able energy sources are intermittent in nature and must be stored to provide energy on 

demand.  Excessive feedstock procurement will raise the storage cost while fuel produc-

tion deficiency will cause penalty cost (imports from outside).  Therefore, the problem 

will be investigated in the context of considering the entire energy supply chain system, 

including feedstock procurement and delivery, energy production and storage, and energy 

distribution to end users.   

 

Strategic supply chain management aims to find the best supply chain configuration, in-

cluding location and size setup, delivery, production, storage, and distribution, to support 

efficient operations of the whole supply chain (Cordeau et al., 2006). The optimization of 

renewable energy supply system is within the general category of multi-location-layer 

supply chain management problems. Research contributions in supply chain management 

have substantially increased in recent years, which will be thoroughly discussed in next 

chapter Section 2.2.   
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The dissertation research efforts are especially concerned with improvement of system 

reliability in an uncertain decision-making environment in addition to economic viability.  

In particular, a stochastic programming model with multiple time periods is proposed to 

develop a reliable biofuel pathway, considering feedstock seasonality.  In addition, sys-

tem dynamics due to the evolving technology and societal demands are addressed in a 

multistage stochastic dynamic model for strategic planning of transitional hydrogen sys-

tems.  Both models are evaluated in California case studies, for the wide range of policies 

encouraging low-carbon fuels (such as, AB32, AB1493, Low Carbon Fuel Standard, etc).   

 

1.3. Dissertation Structure 

The dissertation is consisted of six chapters. The first chapter is a general introduction.   

Conclusions and future work are outlined in the Chapter 6. The remaining chapters are 

organized as follows: 

 

Chapter 2 reviews existing literature in facility location and supply chain design and 

management problems, with emphases on their applications in infrastructure systems.  

The chapter provides background for the various mathematical modeling techniques that 

are used in the dissertation.  In particular, a set of advanced optimization approaches are 

reviewed in section 2.3 and their own features are highlighted.  Due to the complexity of 

the model structure and the large scale of the study region, solving the models to optimal-
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ity is computationally challenging, which motivates more research efforts in developing 

efficient decomposition methods. The basics of these solution algorithms are briefly dis-

cussed in section 2.4. 

 

Chapter 3 studies the problem of allocating multiple emergency service resources to pro-

tect critical transportation infrastructures.  Different modeling approaches, including de-

terministic, stochastic programming, and robust optimization, are used to model various 

risk preferences in decision making under uncertain service availability and accessibility.  

Singapore is used as a case study for numerical experiments.  The performances of dif-

ferent models are compared in terms of allocation strategies and the reliability and ro-

bustness of the system. 

 

Chapter 4 presents research effort in improving the reliability of the biofuel system 

against potential disruptions caused by supply seasonal variations, demand fluctuations, 

and facility damages.  Storage facilities for both feedstock and fuel are included in the 

biofuel supply chain to provide self-healing functions (via smoothing and redistribution) 

against unexpected system risk.  A stochastic mixed-integer programming model that in-

tegrates feedstock seasonality, geographic variation, and demand fluctuation is developed, 

with the goal of minimizing the total expected cost of the entire supply chain of biofuel 

from biowastes to end users.  The model is evaluated using a case study considering Cali-

fornia corn stover feedstock resource.   
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Chapter 5 proposes a stochastic dynamic programming model that integrates the spatial 

and temporal dimensions for sequentially building a renewable energy production and 

distribution system under dynamics and uncertainties.  The decision variables are the se-

quence and locations of the production sites and the corresponding distribution systems 

from supply to demand sites in hedging against uncertainty.  A case study based on the 

hydrogen system in Northern California is included.   

 

1.4. Contributions 

The dissertation research intellectually contributes to the improvement of the sustainabil-

ity of infrastructure systems in economic viability, system robustness, and environmental 

acceptability.   

 

• CTI protection 

This study for the first time evaluates the performances of various modeling approaches 

in response to different risk preferences based on a real-world case study.  The results are 

informative for policy makers to deploy limited service resources to achieve effective 

system performances.  The research effort enriches the literature of developing robust 

resource allocation strategies in disaster mitigation and emergency service problems.  In 

particular, the explicit consideration of external uncertainties (e.g., traffic congestion) in-
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tegrated with uncertain service accessibility fills the void in the existing emergency ser-

vice siting problems.  In addition, this general modeling framework is applicable for oth-

er emergency service contexts, such as, locating emergency medical service.   

 

• Renewable energy infrastructure system planning and management 

This research study develops a decision support system to help design renewable energy 

systems that is profitable, reliable, and environmentally acceptable.  This research inte-

grates expertise in stochastic and dynamic system modeling, alternative fuel technologies, 

life-cycle analysis, resource allocation, and supply chain and logistics.   

 

The following key features distinguish this study from previous studies in literature:  

1. Stochastic optimization approaches are used to explicitly incorporate uncertain-

ties in feedstock supplies and fuel demand.  

2. A multistage optimization framework is established produce time-dependent re-

source allocation and infrastructure expansion strategies in order to support long-

term strategic planning of future energy system that evolves over time. 

3. Supply seasonality is investigated.  The roles of storage facilities in enhancing the 

robustness of the system against supply disruptions are investigated for the first 

time in literature.   
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This research path will lead to sustainable energy infrastructure systems that are cost-

effective, secure, and adaptive to changing and unpredictable environment.  The research 

has a potential of providing a scientific basis for renewable energy policy formulation 

and decision-making.  
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Chapter 2  Literature Review 

 

 

 

 

Summary 

The dissertation research of sustainable infrastructure system modeling is built upon the 

literature in facility location problems and supply chain design and management prob-

lems.  In short, the facility location problem is to answer the questions of where and how 

to locate facilities within a given space.  Supply chain design and management problem is 

developed from facility location problem by adding decisions on deliveries between fa-

cilities.  To improve the sustainability measured in economic viability, reliability and se-

curity, and impacts on environment and natural resources, advanced mathematical model-

ing techniques are used, in particular, stochastic programming, robust optimization, and 

dynamic programming.  Moreover, due to the complex modeling structures, even solving 

a model with moderate size to optimality is computationally challenging so that the de-

velopment of efficient algorithms becomes important.   
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In this chapter, facility location and supply chain design problems are first reviewed in 

section 2.1 and 2.2, respectively. Mathematical programming techniques that can handle 

risk and dynamics are summarized in section 2.3. Decomposition methods used to im-

prove the solution efficiency are introduced in section 2.4.   

 

2.1. Facility Location with Applications in Emergency Service Problems 

2.1.1 Summary of Facility Location Problems 

Facility location problem was first studied by Alfred Weber in 1929 to locate a single 

warehouse (Weber, 1929).  Since then, it has been applied to broad applications, such as 

healthcare facilities, plants and warehouses, post offices, landfills, etc (Daskin, 1995; 

Eiselt, 2007; Owen and Daskin, 1998).  The facility location problem is designed to make 

decisions on optimal or at least good facility locations in a quantifiable way and mathe-

matical models were designed to address a number of questions including (Daskin, 1995):  

(1) How many facilities should be sited?  

(2) Where should each facility be located?  

(3) How large should each facility be to accommodate how many service units? 

(4) How should demand for be allocated to the facilities? 

 

Based on the objectives, facility location problems can be categorized into three general 

types, which are covering problems, median problems, and center problems (Daskin, 
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1995).  A thorough review on strategic facility location problems is provided by (Owen 

and Daskin, 1998; Schilling et al., 1979b; Snyder, 2006).   

 

Covering problems locate facilities according to some pre-specified performance stan-

dards.  A demand node is deemed as served only if it is within a pre-specified distance of 

a facility.  The Location Set Covering Problem (LSCP) (Toregas and ReVelle, 1973; 

Toregas et al., 1971) is perhaps the simplest covering model.  However, one shortcoming 

associated with the set covering model is that the number of facilities that are needed to 

cover all demand nodes is likely to exceed the number that can actually be built. Fur-

thermore, the set covering model treats all demand nodes equally.  The Maximum Cover-

ing Location Problem (MCLP) was then introduced by (Church and ReVelle, 1974) to 

possibly distinguish the importance of different demand nodes.  An extension of MCLP 

was made to account for the possibility of severe congestion or being busy, which led to 

the Maximum Expected Covering Location Problem (MEXCLP) (Daskin, 1983) and 

TIMEXCLP-MEXCLP with time variation (Repede and Bernardo, 1995). 

 

Center problems locate facilities so as to minimize the maximum travel cost between any 

demand node and a facility. This problem has the same objective as the LSCP, which re-

quires all demand nodes covered.  However, instead of using an exogenously specified 

coverage distance and asking the model to minimize the number of facilities needed to 

cover all the demand nodes, the P-center problem minimizes the maximum coverage dis-
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tance such that each demand node is covered by one of the facilities.  A number of au-

thors have considered extensions to the centre problems , including (Martinich, 1988; 

Minieka, 1977). 

 

Median problems attempt to locate facilities to minimize the total weighted travel cost 

between demand locations and a facility.  All variants of covering and center problems 

assume that a demand node receives full service from a facility if it is within the coverage 

distance and no service if the distance between the demand node and the nearest facility 

exceeds the coverage distance.  In many cases, however, the level of service associated 

with a demand node-facility pair decreases gradually with the distance.  Median problems 

are to account for the relationship between the distance and associated cost between a 

demand node and a facility, which was first introduced by (Hakimi, 1964).  

 

All facility location problems are NP-hard or complete problems (Daskin, 1995). Effec-

tive algorithms are required if one wants to solve problems in a realistic size with a rea-

sonable amount of time, which will be explicitly discussed in Section 2.4. 
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2.1.2 Applications of Facility Location Problems in Disaster Mitigation and Emergency 

Service 

Typical examples of facility location problems applied in the context of emergency man-

agement include: (1) allocating Emergency Medical Services (EMS) for recurrent emer-

gency cases such as house fires, and (2) planning the location and inventory strategies for 

local staging centers to receive and redistribute medical supplies from the strategic na-

tional stockpiles (SNS) for non-recurrent emergency cases such as large-scale natural and 

human-caused disasters. 

 

TABLE 2.1 Examples of Facility Location Problems Using Different Modeling Me-

thods 

Type Objective Constraints Examples 

Maximize Coverage of 
demands (Church and 
ReVelle, 1974; Schilling 
et al., 1979a; White and 
Case, 1974)  

• Required service stan-
dards; 

• Limited resource 

• Locate EMS vehicles(Eaton, 
1979, 1980; Eaton et al., 
1985); 

• Locate rural health care work-
ers (Bennett et al., 1982); 

• Place a fixed number of engine 
and truck companies 
(Marianov and ReVelle, 1991, 
1992) 

Covering 
problem 

Set covering: minimize 
the cost of facility loca-
tion (Toregas et al., 1971)  

• Specified level of cov-
erage obtained; 

• Required service stan-
dards 

Identify EMS vehicles locations 
(Berlin and Liebman, 1971; 
Jarvis et al., 1975) 

P-Median 
problem 

Minimize the total travel 
distance/ time between 
demands and facilities 
(Hakimi, 1964) 

• Full coverage obtained  
• Limited resource 

• Ambulance position for campus 
emergency service (Carson 
and Batta, 1990); 

• Locate fire stations for emer-
gency services in Barcelona 
(Serra and Marianov, 1998) 

P-Center 
problem 

Minimize the maximum 
distance between any 
demand and its nearest 
facility  

• Full coverage obtained ; 
• Limited resource 

Locate EMS vehicles with reli-
ability requirement (ReVelle and 
Hogan, 1989) 
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The effectiveness of a decision on locating and allocating emergency service resources 

could be evaluated by total capital and operating costs, incident demand coverage, and 

incident response timeliness.  Depending on how these three considerations are modeled, 

either as an objective or a constraint, mathematical models can be categorized into three 

types: covering models, P-median models, and P-center models, which have been briefly 

introduced in Section 2.1.1.  Comprehensive reviews on mathematical formulations and 

numerical implementations of the three types of problems in the context of emergency 

service location-allocation problems have been conducted in (Jia et al., 2007).  Typical 

objective functions, constraints, and sample applications of the three types of facility lo-

cation models in emergency management are listed in TABLE 2.1.   

 

The two important performance measures in emergency service allocation problems, ser-

vice availability and accessibility, can be highly uncertain particularly following a large-

scale disaster.   

 

Unavailability of emergency services, caused by system congestion, appears frequently in 

non-recurring emergency cases when demand for emergency service spikes (Jia et al., 

2007).  Existing methods for addressing system congestion issues include providing re-

dundant or multi-layer coverage, e.g., (Hogan and ReVelle, 1986), using chance con-

straints to ensure certain level of reliability of having available service, e.g., (Daskin, 

1983; Daskin et al., 1988; Marianov and ReVelle, 1995; ReVelle and Hogan, 1989; 

ReVelle and Marianov, 1991), and explicit incorporation of queuing theory, e.g. (Larson, 
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1974; Marianov and ReVelle, 1996). Berman and Krass (2002) have provided a thorough 

discussion on facility location problems addressing service congestion issues.   

 

Uncertainty in service accessibility could be caused by daily traffic fluctuation or sudden 

disruption to transportation systems, which has been less discussed in the existing litera-

ture.  Several papers have addressed the issue of uncertainty in travel times (Daskin, 1982; 

Daskin, 1987; Daskin and Haghani, 1984; Mirchandani and Odoni, 1979). Serra and 

Marianov (1998) provided a case study to demonstrate the value of using stochastic ap-

proaches to address uncertain access time.   

 

A comprehensive review on facility location problems under uncertainty (costs, demands, 

travel times, and other possible inputs) is referred to (Snyder, 2005). 

2.2. Supply Chain Design and Management with Applications in Renewable Energy 

Infrastructure System Modeling 

2.2.1 Introduction to General Supply Chain Management 

A supply chain involves a process of moving goods from raw material sites to processing 

facilities (e.g. production plants), and finished goods will be delivered to distribution cen-

ters then to retailers or customers.  Supply chain management is to answer following 

questions: (1) where to locate plants for producing goods, and how much needs to be 

produced at each plant, (2) what amount of goods need to be held in inventory at each 

time stage and where to hold the goods, and (3) how to distribute the goods to retailers or 
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customers.  Strategic supply chain management aims at finding the best supply chain con-

figuration.  In addition to facility location decision makings, it also includes decisions on 

procurement, production, storage, and distribution, in order to support efficient operations 

of the whole supply chain (Cordeau et al., 2006). Advanced mathematical models, e.g., 

(Chardaire et al., 1996; Daskin et al., 2002; Dias et al., 2007; Geoffrion and Powers, 1995; 

Lieckens and Vandaele, 2007; Revelle and Laporte, 1996; Van Roy and Erlenkotter, 

1982) have been proposed. 

 

A typical supply chain system consists of facilities on hierarchical layers (Klose and 

Drexl, 2005). The models for supply chain management are often based on multistage 

location problems, in which facility locations are often determined in the first stage of the 

model and other decisions are made in subsequent stages.  As emphasized in (Daskin et 

al., 2005), location decisions are crucial and difficult to make, due to its intensive capital 

cost. For example, once a plant is implemented, it is unrealistic to relocate it as a result of 

changes of customer demands.  Comprehensive reviews on facility location in supply 

chain design are referred to (Daskin et al., 2005; Klose and Drexl, 2005; Melo et al., 

2007).   

 

Conventionally, routing and inventory decisions are made secondary to facility locations 

in the sense that the routing and inventory decisions are more flexible and can be modi-

fied periodically in response to the demand changes (Daskin et al., 2005).  Although em-
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pirical location decisions are isolated from routing and inventory’s decisions, an inte-

grated decision making on location, routing and inventory in a systematic manner can 

potentially improve the system performance, which invoked research on location-routing 

and location-inventory problems.   

 

Location-Routing Problems (LRPs) are often described as a combination of three distinct 

components, including facility location, allocation of users to facilities, and vehicle rout-

ing (Geoffrion and Graves, 1974; Laporte, 1988; Perl and Daskin, 1985).  The objective 

of LRPs is to minimize a linear combination of routing costs, vehicle fixed costs, and de-

pot operating costs (Laporte, 1988).  From problem modeling perspective, LRPs can be 

further classified into single-stage or two-stage problems.  The single-stage LRP is pri-

marily concerned with the locations of facilities serving customers and the establishment 

of outbound delivery routes around those facilities, and the two-stage LRP extends the 

problem to additionally consider both outbound (Fuel Delivery Temperature Study) and 

inbound (pickup) distribution processes (Min et al., 1998)Error! Reference source not 

found..   

 

The location-inventory problem is developed in recognition of inventory impacts on fa-

cility location decisions, which was first highlighted in (Baumol and Wolfe, 1958).  Tra-

ditional location problems trade off the number of facilities and travel costs, but ignore 

the inventory influence.  A non-linear model, namely, Location Model with Risk Pooling 
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(LMRP) was first introduced in (Shen et al., 2003; Shen, 2000) to solve the problem 

quantitatively.  Prior to that, there had been several joint location-inventory models, such 

as, (Barahona and Jensen, 1998; Erlebacher and Meller, 2000; Nozick and Turnquist, 

2001a, b; Teo et al., 2001).  Although merging inventory management with facility loca-

tion decisions suffers the same conceptual and computational difficulty, it is still worth-

while continuing in the area of integrated inventory-location modeling as suggested by 

(Daskin et al., 2005). 

 

2.2.2 Supply Chain Management under Risk 

The concept of supply chain, through better integration and coordination of various com-

ponents of a supply system (such as procurement, production, storage, and marketing), 

can greatly improve the system efficiency.  On the other hand, reduced redundancy and 

buffer, which improves the system efficiency under normal conditions, may present high-

er vulnerability under unexpected events such as supply shortage, demand spike, techno-

logical failure, or attacks and disasters.  Supply chain risk management is receiving in-

creasing attention in recent research efforts.  Empirical examples have demonstrated the 

vulnerability of supply chains under disturbances and disruptions.  Recent examples in-

clude 2004 flu vaccine shortage in the US because of the contamination of products by 

one of the only two suppliers (Pearson, 2004) and Ericsson’s production shutdown in 

March 2000 due to the fire of its only supplier of chips (Latour, 2001).  Following the 
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definition by (Tang, 2006), the supply chain risks are categorized into operational risks 

and disruption risks.  An operational risk refers to those recurrent risks such as supply 

and demand fluctuations that are inherent in supply chains.  A disruption risk usually re-

fers to external disruptions caused by natural and man-made disasters.   

 

The recurrent risks caused by fluctuated demands (e.g., (Aghezzaf, 2005; Chan et al., 

2001; Daskin et al., 2002; Goh et al., 2007)), uncertain travel times (Hwang, 2002), or 

both (Sabri and Beamon, 2000; Santoso et al., 2005; Snyder et al., 2007) are usually in-

herent in the supply chain. These recurrent risks are normally incorporated into the sup-

ply chain management as uncertainty (Sabri and Beamon, 2000).  Stochastic modeling 

techniques are often considered (Melo et al., 2007) to take these uncertainties as a dis-

crete set of scenarios or assume a continuous distribution function associated with uncer-

tain parameters. Nevertheless, in the existing literature, integration of stochasticity with 

location decisions in supply chain management context is still scarce, which motivates 

the recent research efforts in enriching the literature.   

 

On the other hand, a number of scholarly studies focused on supply chain management in 

the context of disruptions and risks caused by natural disasters, human attacks, unex-

pected accidents, operational difficulties, etc (Yu et al., 2009).  Those threats are rare but 

have more severe impacts on the system.  Over decades, disruption management has been 

given limited attention in comparison with the research efforts on supply chain manage-
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ment under uncertainty (Qi et al., 2004). More recently, Sheffi (2001) conceptually dis-

cussed the tradeoffs between redundancy and efficiency, centralization and dispersion, 

low cost and reliability, and collaboration and secrecy, and identified shipment visibility, 

improved collaboration and public-private partnership as means of improving the vulner-

ability of supply chains against major attacks.  A few other conceptual papers listed in 

(Chopra and Sodhi, 2004; Cranfield Management School, 2002) and categorized (Tang, 

2006) the major supply chains risks by different natures.  Quantitative studies on supply 

chain disruption management have been conducted from various aspects of supply chains, 

such as personnel scheduling (Bard et al., 2001; Clausen et al., 2010; Kohl et al., 2007), 

machine scheduling (Abumaizar and Svestka, 1997; Aytug et al., 2005; Bean et al., 1991; 

Qi et al., 2006), supply sourcing (Chopra and Sodhi, 2004; Xiao and Qi, 2008; Yu et al., 

2009), inventory (Vlachos and Tagaras, 2001), and marketing strategies (Chopra and 

Sodhi, 2004; Tang, 2006; Vlachos and Tagaras, 2001; Xiao and Qi, 2008; Xiao and Yu, 

2006; Yu et al., 2009).  These studies, though focus on different components of supply 

chains, are all from the perspective of operational management rather than planning of 

supply chains.  This is not surprising because the problems studied in those papers are for 

existing and mature production systems, which may not present a need or an opportunity 

for completely redesigning the configuration of the whole supply chain.   
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2.2.3 Applications in Renewable Energy Systems Modeling 

The supply chain design and management models have been applied in renewable energy 

systems to answer some key questions in transition to a renewable energy based society:  

• Is renewable energy (e.g., biofuel and hydrogen) an economically viable solution?  

• What are the infrastructure requirements to support such energy supply systems?  

 

The problem spans both spatial and temporal dimensions.  The spatial dimension mainly 

lies in the geographic distributions of the feedstock resources, the fuel demands, and the 

production and transportation infrastructures. The costs of feedstock, fuel production, and 

transport are interdependent. For instance, having a large-size centralized refinery facility 

can decrease the production costs through increased economies of scale but imposes 

higher cost on feedstock procurement and fuel distribution.  Hence, considering the entire 

fuel supply chain as a whole is important (Delucchi M., 2006; Farrell and Sperling, 2007; 

Kim and Dale, 2005; Turner and Plevin, 2007; Unnasch and Pont, 2007; Zah et al., 

2007).  However, such a systems approach has not been widely adopted in renewable en-

ergy planning literature.  Most of the studies only consider part of the energy pathway 

(Graham et al., 2000; Gunnarsson et al., 2004; Kaylen et al., 2000; Kumar et al., 2003; 

Tembo et al., 2003; Zhan et al., 2005).  Only limited studies considered an entire energy 

pathway, including an optimization model for forest biomass allocation (Freppaz et al., 

2004) and a study of optimizing the process of converting agricultural residues to hydro-
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gen in California (Parker, 2007b).  The temporal dimension arises in long-term system 

planning especially when system transition issue is considered.  The production and dis-

tribution infrastructure system will have to be expanded over time in response to the 

growing demand.  To achieve an overall effectiveness of the system expansion, the dy-

namics of such an evolving process needs to be taken into consideration in the system 

planning.  Hence, the conventional time-independent snapshot method, as used in previ-

ous studies, is inadequate (Fiksel, 2006).  For example, in a recent study (Lin et al., 2008), 

a dynamic programming model is proposed to identify the least-cost sequence of building 

up a hydrogen infrastructure system for Southern California.   

 

Risks arise in the supply chain system due to the unpredictable weather conditions, fluc-

tuated demands, varied supplies, etc.  Incorporating those considerations can potentially 

strengthen the performance of the entire energy system in hedging against the unexpected 

occurrences.  However, those studies are rare in the existing literature.  One of the pilot 

studies (Cundiff et al., 1997) formulated the uncertain production levels due to weather 

into a two-stage stochastic model with recourse.  Most of the studies are however deter-

ministic, in which all parameters are assumed to be known.  The simplification of model-

ing structure compromises computational difficulty.  The research efforts presented in 

this dissertation are meant to fill the void.  
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Another feature of renewable energy supply chain design and management is to possibly 

integrate engineering-economic modeling of decisions on facility locations and sizes into 

the optimization framework, with a goal of achieving a better and more realistic solution.  

This is motivated by the fact that many system parameters are tangible with the changes 

of system configurations.  Use feedstock procurement decision making as an example.  

The amount of feedstock procured depends on the price level of that feedstock so that it 

may loose some accuracy when the procurement cost is modeled as a linear function of 

procurement amount; instead a piece-wise linear function can do better but introduce ad-

ditional computational difficulty as the same time.  Some existing studies have already 

explicitly included engineering-economic models, e.g., (Johnson, 2007; Lin et al., 2008; 

Parker, 2007a) in which engineering-economic models are implemented to optimize a 

coal-based hydrogen infrastructure system in California.  In other energy supply systems, 

techno-economic models were integrated into linear programming models to take various 

factors into consideration, including economics, techniques, regulatory, and social im-

pacts (Freppaz et al., 2004; Rentizelas et al., 2009).   

 

2.3. Mathematical Programming Methods for Handling Risk and Dynamics 

2.3.1 System Optimization under Risk 

In handling possibilities of a random event, a common engineering approach is to exam-

ine each scenario separately and then to aggregate scenario-specific solutions based on 
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engineering judgment.  Another simple approach is to aggregate all scenarios to a single 

scenario (such as, expected value) and then solve the corresponding deterministic prob-

lem.  These deterministic approaches which are not capable of handling uncertainty in-

volving in random data are conceptually and computationally simple, but may be unreli-

able.  Thereby, stochastic approaches that hedge better against a wide range of possible 

scenarios is necessary. 

 

Stochastic programming (SP) and robust optimization (RO) are two major stochastic 

modeling approaches that have been widely used.  In general, SP emphasizes on the ex-

pectation of a performance measure (Birge and Louveaux, 1997), while RO tends to fo-

cus more on the worst case scenario (Kouvelis and Yu, 1997).  Criticisms against SP are 

its dependence on knowledge of complete probability distribution of random parameters 

and its lack of consideration on risk.  On the other hand, RO may be too conservative and 

may never lead to profitable results in reality.   

 

A SP model seeks a strategy that is feasible in all possible scenarios and provides the best 

system performance in an expectation sense.  The majority of SP models feature a two-

stage structure with recourse.  The basic idea is to make one decision now and minimize 

the expected costs (or utilities) of the consequences of that decision after uncertainty is 

disclosed.  The two-stage structure can be described in this way.  A number of decisions 

are made before uncertainty is revealed and these decisions are called first-stage deci-

sions.  The period when the decisions are taken is called first stage.  After the uncertainty 
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becomes known, a number of decisions will be taken and these decisions are called sec-

ond-stage decisions.  The corresponding period is called second stage.  In the contexts of 

facility location and supply chain management, the first-stage decisions are planning de-

cisions including the location and the size of facilities and the second-stage decisions are 

operational decisions, such as, the flow, production, resource allocation decisions, etc.  

The two-stage SP model can be extended to include more stages. With a multistage prob-

lem, one makes one decision now, waits for some uncertainty to be realized, and then 

makes another decision based on what has happened. The objective is to minimize the 

expected costs of all decisions taken. 

 

Probabilistic programming (or chance constrained) is another stochastic modeling ap-

proach, which is considered when the cost and benefits of second-stage decisions are dif-

ficult to assess (Birge and Louveaux, 1997).  In this case, some of the constraints or the 

objective is expressed in probabilistic statements about the first-stage decisions and sec-

ond-stage description is thus avoided.  Some typical examples in the context of emer-

gency service include (Daskin, 1983; ReVelle and Hogan, 1989; ReVelle and Marianov, 

1991; Toregas et al., 1971). 

 

RO method on the other hand emphasizes on the worst case scenario.  It is usually con-

sidered for a given problem under uncertainty with no probability information and mod-

elers tend to avoid extremely bad consequence naturally.  If the model parameters such as 
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travel time over the traffic network were known in advance, one could input their values 

to the base model and achieve the best possible coverage.  The difference between the 

best possible objective value and the realized objective value from a chosen strategy is 

called “regret” of the strategy in that realization (Daskin et al., 2005).  Some robust opti-

mization approaches deal directly with the objective values across all possible realiza-

tions.  In this case, the criterion is to find a strategy that maximizes the worst benefit 

across all possible realizations, also called absolute robustness criterion – for example, 

the location of fire stations (Serra and Marianov, 1998).  Some robust approaches use ro-

bust deviation criterion, which is to minimize the largest regret (Kouvelis and Yu, 1997).   

 

2.3.2 System Optimization under System Dynamics 

Problems of transitioning a current state to meet the growth of demand, technology im-

provement or other possible societal changes for the future fall within the general cate-

gory of dynamic location problem.  It is one of the major research trends in location and 

logistics science.  Several past studies were based on multistage deterministic or stochas-

tic programming approaches (Chardaire et al., 1996; Kelly and Marucheck, 1984; Melo 

et al., 2006; Sheppard, 1974; Wesolowsky and Truscott, 1975).  Solution efficiency is an 

inherent issue with all the models that the models may become computational challenging 

with the increase of system planning horizon, uncertainty, and change of model structure.   
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Dynamic programming (DP) is often used to solve sequential decision problems.  DP me-

thod was introduced by (Bellman and Kalaba, 1965) and thoroughly discussed in 

(Bertsekas and Tsitsiklis, 1996; Dreyfus and Law, 1977).  DP has been applied in a wide 

range of problems, including budgeting problems, assessment acquisition problems, re-

source allocation problems, shortest path problems, dynamic assignment, etc (Powell, 

2007).  A good application of DP in location problems was presented in (Wesolowsky 

and Truscott, 1975), in which a dynamic multi-period location-allocation model was pro-

posed to specify the plan for facility location and relocation as well as allocation of de-

mands to facilities.  It has also been applied in agricultural chains problems (Gigler et al., 

2002), in which a DP based model takes the appearance and quality as the two types of 

states of a product and describes quality development of a product as a function of proc-

ess conditions.  In a recent review by Melo et al., (2006), more research efforts were 

called upon to develop realistic models that consider stochasticity and dynamics.  The 

study presented in Chapter 5 has made original contribution to this research effort, in 

which a stochastic dynamic programming model is developed to sequentially expand a 

hydrogen supply chain system in Northern California.   

 

2.4. Solution Algorithms 

Most problems in facility location and supply chain management are NP-hard/complete 

(Daskin, 1995) and hence extremely difficult to solve to optimality for a realistic size.  
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Although there has been an impressive growth of powerful general-purpose mathematical 

programming software such as, CPLEX, large-scale mixed integer problems are still 

computational challenging, which motivates continuous development of new solution 

methods in both exact solution and heuristic solution. 

 

Facility location problems are suitable for applying decomposition methods (Mirchandani 

and Francis, 1990), due to the two inherent types of decisions – location decisions and 

operational decisions.  The rationale is that once the facility location decisions have been 

determined, the resulting problem only contains continuous variables, which is simpler to 

solve.  Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960) and Benders decompo-

sition (Benders, 1962) are the two decomposition methods, which are mainly used for 

decomposing linear deterministic mixed-integer problems in the early stage.   

 

The Benders decomposition method was then extended to stochastic programming prob-

lems to handle feasibility questions and is known as L-shaped method (Van Slyke and 

Wets, 1969).  The basic idea of L-shaped method is to approximate the nonlinear term 

(the recourse function) in the objective of the problems by building a master problem on-

ly in first-stage decisions, and evaluate the recourse function exactly as a subproblem.  Its 

procedures and proof have been elaborated in (Birge and Louveaux, 1997).   
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However, the performance of L-shaped method in solving large-scale or mixed integer 

problems strongly relies on tuning of certain parameters, which makes the implementa-

tion of the method sometimes extremely difficult and unsuccessful.  Based on previous 

research experience and numerical experiments, the Progressive Hedging (PH), method 

is also well suitable for the problems in the research.  PH algorithm is a scenario-based 

decomposition technique originally proposed by (Rockafellar and Wets, 1991b), and has 

been successfully implemented and further popularized in subsequent works including 

(Mulvey and Vladimirou, 1991; Watson et al., 2008).  The PH method decomposes a 

problem across scenarios to form manageable subproblems (Fan and Liu, 2007), which is 

distinctive from the cutting-plane based L-shaped method.  The details of solving proce-

dures of PH method can be found in (Watson et al., 2008).  The PH has been imple-

mented in solving the storage problem in Chapter 4 Section 4.4.  Significant reduction in 

solution time has been observed and high solution quality remains. 
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Chapter 3  Strategic Resource Allocation for Critical 

Transportation Infrastructure Protection 

 

 

 

 

Summary 

Optimal deployment of limited emergency resources in a large-scale area to sustain the 

protection to critical infrastructures is the focus of this study and of interests to public 

agencies at all levels.  In this chapter, the problem of allocating multiple emergency ser-

vice resources to protect critical transportation infrastructures is studied.  Different mod-

eling approaches, including deterministic, stochastic programming, and robust optimiza-

tion, are used to model various risk preferences in decision making under uncertain ser-

vice availability and accessibility.  Singapore is used as a case study for numerical ex-

periments.  The performances of different models are compared in terms of allocation 

strategies and the reliability and robustness of the system.  
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3.1. Introduction 

Emergency preparedness is essential for maintaining a safe and sustainable society.  One 

important element for emergency preparedness is the ability of sending emergency ser-

vices and relief goods to incident locations in a timely manner.  Both availability and ac-

cessibility of emergency services play important roles in emergency response.  Availabil-

ity depends on the relationship between supplies of emergency resources and incident 

demands; while accessibility is measured by the transportation costs between service lo-

cations and incident sites.  Therefore, an essential question in emergency service planning 

is: how many emergency resources are needed and where should these resources be lo-

cated?  This question falls within the general category of facility location problems which 

have been comprehensively reviewed in Chapter 2. 

 

The two important performance measures in emergency service allocation problems, ser-

vice availability and accessibility, can be highly uncertain particularly following a large-

scale disaster.  Most existing studies address availability and accessibility issues sepa-

rately.  In this research, the uncertainties of both measures are captured, through a sto-

chastic modeling framework that explicitly models random scenarios of accessibility 

costs, with built-in reliability constraints on service availability.   

 

Stochastic programming (SP) and Robust Optimization (RO) methods are the two major 

stochastic modeling methods (see literature review on SP and RO methods in Chapter 2).  
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Considering the advantages and limitations of the two methods, this chapter investigates, 

in a real-world application, on how different modeling techniques may impact the effec-

tiveness of emergency service resources allocation.  In addition, uncertainties inherent in 

service availability and accessibility will be addressed in an integrated modeling frame-

work, which has not been studied in the exiting literature.  To avoid abstractness, discus-

sions will be cast in a specific context, where multiple types of emergency services (e.g., 

fire trucks, fire engines, and ambulances) are required to maximize the protection cover-

age for critical transportation infrastructure (e.g., transit stations, ports, airports, etc).   

 

The rest of the chapter is organized as follows.  In Section 3.2, formulations will be pro-

vided for different risk preferences in emergency service location problems.  A case study 

based on geographical settings of Singapore is included in Section 3.3, demonstrating the 

effects of different risk preferences and data qualities on system performance.  Conclu-

sions are made and future research is outlined in Section 3.4. 

 

3.2 Mathematical Formulations 

Given demands for emergency services at critical transportation infrastructure (CTI) 

nodes, our goal is to find an optimal strategy to allocate limited number of fire engines, 

fire trucks, and ambulances to a set of pre-defined candidate fire stations so as to maxi-

mize the coverage of the CTIs.  A CTI node is considered “covered” when it is served by 

at least one fire engine, one fire truck, and one ambulance simultaneously within their 

respective service time standards.  Service availability is considered through incorpora-

tion of chance constraints, requiring that the probability of at least one vehicle of each 
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type being available at any time be no less than a given service reliability level α  

(Marianov and ReVelle, 1995).   

 

Additional modeling assumptions are:  

(1) Each fire station has a capacity restriction of having no more than four vehicles of 

each type.   

(2) Incident occurrence rates at CTI nodes are estimated based on historic data. 

(3) Service availability and travel times of emergency service vehicles are uncertain. 

 

TABLE 3.1 Notation Table 

Constant Parameters 

I: index i, set of demand nodes (CTI nodes); 
J: index j, set of candidate fire stations; 
H: index h, set of vehicle types, i.e., fire engine, fire truck, and ambulance; 

jit : the travel time between station j and demand node i; 

hS : the service standard in terms of travel time for vehicle type Hh∈ ; 
h

iN ={ }HhStj h

ji ∈≤ ,| , the set of fire stations located within hS of demand node i; 

h

ir : the minimum number of vehicles of type h that must be located within hS of node i, 

to ensure that node i is covered with the predefined reliability level α , which needs 
to be determined before it is used as model input; 

P
h: the total number of available vehicles of type h; 
h

jB : the maximum number of vehicles of each type h that can be accommodated by each 

station, which equals four in this study.   

Decision Variables 

iy = 1 if demand node i is covered by h

ir  vehicles of type h (all three types of vehicles); 

otherwise, iy =0; 
h

jx : integer variable, number of vehicles of type h located at fire station j; 

 

First, let us formulate the maximum covering problem without considering random ac-

cess time.  This model is similar in spirit to the proFLEET model in (ReVelle and 
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Marianov, 1991).  Notations used in this model are defined in TABLE 3.1 below.  Later 

this model will be extended to incorporate stochastic travel times.   

 

The minimum number of vehicles of type h required at demand node i ( h

ir ) is obtained 

through two steps: estimating the local busy fraction ( )hiq  and solving the chance con-

straint that the probability of having at least one vehicle of each type available within its 

service standard of node i when node i is requesting service is no less than a given reli-

ability level α .  The local busy fraction was first introduced in (Marianov and ReVelle, 

1995) and quantitatively defined in (ReVelle and Hogan, 1989) as the fraction of required 

service time in the service region around demand node i out of the total available service 

time in that region. The chance constraint is then mathematically expressed as,  

 

[ ] α≥−
h
irh

iq1  for each node i and for each type Hh∈ , 

 

assuming that the probability of one or more servers being busy follows binomial distri-

bution.  The detailed procedure of obtaining h

ir  is described in details in (Huang et al., 

2008).    

 

A complete formulation is given in (3.1)-(3.4). 

Maximize ∑
∈Ii

iy   (3.1) 

Subject to 



39 

 

 i

h

i

Nj

h

j yrx
h
i

≥∑
∈

 HhIi ∈∈∀ ,  (3.2) 

 h

Jj

h

j Px ≤∑
∈

 Hh∈∀  (3.3) 

 h

j

h

j Bx ≤≤0  Jj∈∀ , Hh∈∀  (3.4) 

 1,0=iy  Ii∈∀   

 h

jx = nonnegative integer HhIi ∈∈∀ ,  

 

The objective maximizes the total number of covered CTIs.  Note that other variants of 

this objective function may be considered, such as a weighted sum of the coverage of the 

CTIs based on their importance levels. Adoption of a weighted sum of the coverage 

would not change the structure of the problem.  Constraint (3.2) states that for each de-

mand node i, the number of emergency service vehicles of type h located at fire stations 

within hS  of node i cannot be less than the minimum number of vehicles needed at node i 

in order to meet the reliability requirement.  Inequality (3.3) constrains the maximum 

number of vehicles for each type.  The capacity constraint at each fire station is imposed 

in inequality (3.4).   

 

3.2.1 A Stochastic Programming Model for the Maximum Coverage Problem 

In addition to the service availability chance constraints, which are usually required by 

emergency planning agencies to account for service congestion, the random accessibility 

(transportation costs) is now incorporated into a stochastic programming framework.  The 

objective is to find an optimal solution that maximizes the expected coverage of CTI 
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nodes.  It is noted that the minimum number of vehicles of each type of emergency ser-

vice fleet is scenario dependent.  For a fixed required response time window, different 

travel times translate to different service areas, leading to different estimations of the lo-

cal busy fraction )( h

iq  and service availability ( h

ir ). Additional notations used in the 

model are defined in TABLE 3.2. 

 

TABLE 3.2. Additional Notations Used in Stochastic Programming Model 

Ω : index ω , set of possible scenarios; 

)(ωp : the probability of scenario ω  occurred; 

)(ωjit : the travel time between i and j in scenario ω ; 

)(ωh

iN ={ }HhStj h

ji ∈≤ ,)(| ω : the sets of stations located within hS of demand node i in 

scenario ω ; 

)(ωh

ir : h

ir  in scenario ω ; 

)(ωiy : binary variable, the coverage of node i, iy , in scenario ω . 

 

A stochastic programming formulation is given below. 

Maximize )()( ωω
ω

∑∑
∈ Ω∈Ii

iyp   (3.5) 

Subject to 

 )()(
)(

ωω
ω

i

h

i

Nj

h

j yrx
h
i

≥∑
∈

  Ω∈∈∈∀ ω,, HhIi  (3.6) 

 1,0)( =ωiy                   Ω∈∈∀ ω,Ii  

 including constraints (3.3)-(3.4). 

 

The objective function (3.5) is to maximize the expected coverage over all possible sce-

narios.  Inequality (3.6) is similar to constraint (3.2), but requires that the reliability con-

straint be satisfied for all scenarios. 
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3.2.2 A Robust Optimization Model for the Maximum Coverage Problem  

Robust optimization emphasizes on the worst situation (Kouvelis and Yu, 1997), thus 

suits the preference of more risk-averse decision makers.  Note that a planning decision is 

usually made before the realization of a random event, while the results of the decision 

are often judged ex post of an incident when random data are already realized.  If one 

knows perfectly which scenario will actually happen, one could make an optimal plan to 

achieve the best coverage accordingly, which is also called “wait-sand-see” solution.  

Any other solutions would result in a worse coverage in this particular scenario.  The gap 

between the actual coverage and the best possible coverage is called “regret” in this sce-

nario.  Let sZ be the actual coverage in scenario s.  Let *

sZ  be the best possible coverage 

as a result of the “wait-and-see” solution of scenario s, which can be obtained separately 

by solving the deterministic model for scenario s.  The regret rs in scenario s can be ma-

thematically defined as rs = Zs

* − Zs .  For decision makers who have a strong desire of 

avoiding extremely bad public blame, a robust optimization approach that minimizes the 

worst possible regret across all scenarios, also called deviation robust criterion, may be 

preferable.  Additional notations used in this formulation are defined in TABLE 3.3. 

 

TABLE 3.3. Additional Notations Used in Robust Optimization Model 

)(ωz : parameter, the optimal objective value in scenario ω , which is obtained externally 

by solving the scenario-specific deterministic model for scenario ω ; 
R: integer variable, the worst regret between the realized coverage and the optimal cover-

age across over all scenarios. 

 

A robust optimization model focusing on deviation robust criterion is given below: 
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Minimize R   

Subject to 

 )()(
)(

ωω
ω

i

h

i

Nj

h

j yrx
h
i

≥∑
∈

  Ω∈∈∈∀ ω,, HhIi   

 Ryz
Ii

i ≤−∑
∈

)()( ωω     Ω∈∀ω  (3.7) 

 1,0)( =ωiy                   Ω∈∈∀ ω,Ii  

 R= nonnegative integer, plus constraints (3)-(4) 

 

The objective is to minimize the worst regret across all scenarios. The worst regret R is 

defined in constraint (3.7) as the largest regret across all scenarios. 

 

3.3 Case Study of Singapore 

3.3.1 Background 

Singapore is chosen for the case study, considering its representation of high population 

density and also the availability of data.     
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FIGURE 3.1. Map of Singapore with Candidate Fire Stations and CTI Nodes 

 

The map in FIGURE 3.1 shows the locations of 15 candidate fire stations and 151 CTIs 

in Singapore Island.  The CTIs include mass rapid transit stations, transit and/or bus in-

terchanges, bus terminals, expressway tunnels and interchanges, seaport and airport ter-

minals. 

 

Singapore Civil Defense Force (SCDF) is the government agency responsible for provid-

ing emergency response services.  SCDF operated a total of 15 fire engines and 15 fire 

trucks as well as a fleet of 30 ambulances.  The three types of vehicles are all based at fire 

stations, which are responsible for all fire and medical emergency response.  Recent pub-

lished service standard of SCDF was 8 minutes for fire engines and fire trucks, and 11 

minutes for ambulances to reach an incident site (SCDF, 2003).  The average service 

times for fire engines, fire trucks and ambulances were set to be 2, 2, and 1.5 hours re-

spectively, which were adopted from ReVelle and Marianov (1991).  A total of 3912 fire 

cases during year 2003 reported by SCDF were used as historic data to estimate the local 
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busy fraction q and the minimum number of vehicles r at each fire station.  As a result, 

the two vectors, q and r, are model inputs, each having 151 elements.  The service reli-

ability required by SCDF was 90% (i.e., α =90%).   

 

Emergency vehicles have right of way and can travel at free flow speed if situation al-

lows.  However, traffic congestion or physical damage to road segments may cause un-

certain travel times for emergency vehicles.  In this case study, random travel time was 

set to be t(1+n) (i.e., t multiplies (1+n)), where t is the free flow travel time on each seg-

ment, and n is a random noise between 0 and 1 following a discrete probability distribu-

tion given in TABLE 3.4.  The four discrete values of n were chosen to reflect different 

levels of congestion, measured by Level of Service (LOS) in traffic engineering (Khisty 

and Lall, 2003).  A low value of n is associated with a less congested condition.  For ex-

ample, the scenario with n=0 represents a traffic condition of LOS A (free flow condi-

tion), n =0.2 represents a traffic condition between LOS B and C (lighted reduced speed 

but still within the range of stable flow), n=0.5 represents a traffic condition between 

LOS D and E (approaching unstable flow), and n=1 represents a traffic condition between 

LOS E and F (unstable flow).  Please note that varying travel time based on varying lev-

els of congestion will result in different demand node covering set h

iN . 

 

TABLE 3.4. Probabilities Associated with Four Congestion Levels as Model Inputs 

 n = 0 n = 0.2 n = 0.5 n = 1 

Discrete probability 30% 50% 15% 5% 



45 

 

3.3.2 Results and Findings 

3.3.2.1 Model solutions  

Three different models (deterministic, stochastic programming, and robust optimization) 

are solved using AMPL-CPLEX software package (Fourer et al., 2003).  In the determi-

nistic model, the travel times are set to be t(1+ n ) (i.e., t multiplies (1+ n )), where n  is 

the expected value of n (i.e., n  equals 0.225).  The expected-value solution is the solution 

to the deterministic model (i.e. formulation (1)-(4)).  For stochastic programming (SP) 

and robust optimization (RO) methods, there are four discrete scenarios as summarized in 

TABLE 3.4.  

 

TABLE 3.5. Vehicle Allocation Strategies by Different Models (Solution Set 1) 

 
Methods Fire Engine Fire Truck Ambulance 

Cost  
(US$ mil-
lion) 

Expected-
value solu-
tion 

1, 22*, 3, 4, 5, 
6, 7, 8, 9, 10, 
11, 12, 13, 14 

1, 22, 3, 4, 5, 
6, 7, 8, 9, 10, 
11, 12, 13, 14 

12, 22, 32, 4, 52, 
62, 72, 82, 9, 
102, 11, 12, 13, 
15 

19.8 

Stochastic 
programming 
solution 

12, 2, 3, 4, 52, 
6, 7, 8, 9, 10, 
11, 13, 14 

12, 2, 3, 4, 52, 
6, 7, 8, 9, 10, 
11, 13, 14 

12, 22, 32, 42, 
52, 62, 72, 82, 
92, 102, 11, 12, 
13, 14, 15 

20.4 Solutions  

Robust opti-
mization so-
lution 

12, 2, 3, 4, 52, 
62, 7, 8, 9, 10, 
11, 13 

12, 2, 3, 4, 52, 
62, 7, 8, 9, 10, 
11, 13 

12, 22, 32, 42, 
52, 62, 72, 82, 
92, 102, 11, 13, 
14, 15 

20.4 

*Note: ij denotes that j fire engines are allocated to fire station #i. 

 

Solutions to the three models are summarized in TABLE 3.5.  Columns 3 to 5 contain 

resource allocation strategies in terms of where and how many vehicles to be allocated.  

The last column shows the total monetary cost of the allocated resources, given unit pric-
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es of fire engine, fire truck, and ambulance reported by SCDF as 325, 700 and 200 (in 

thousand US dollars), respectively.   

 

3.3.2.2 Performance of model solutions in simulated conditions 

In this section, the reliability and robustness of different model solutions are evaluated in 

simulated traffic conditions.  Using Monte Carlo simulation, 500 scenarios are randomly 

generated to simulate the varied traffic conditions by randomizing the travel times of ser-

vice vehicles, following the two steps: (1) randomly select one of the three noise ranges 

based on the associated probability distributions in TABLE 3.6;  (2) within each noise 

range generate random scenarios (i.e., travel times) with a uniform distribution.  Note that 

the two conditions used for model evaluation are intentionally set to be different from the 

original model inputs, reflecting possible imperfect prediction of random parameter dis-

tribution. Apparently, condition B deviates more from the original model inputs, and it 

represents a more congested situation than condition A.   

 

TABLE 3.6. Probabilities Associated with Noise Ranges in Monte Carlo Simulation 

for Model Evaluation 

n 
Simulations 

[0, 0.2] [0.2, 0.5] [0.5, 1] 

Traffic condition A 50% 30% 20% 
Traffic condition B 20% 30% 50% 

 

The performances (average, minimum, and maximum coverage and regret) of the ex-

pected-value, SP, and RO solutions across the 500 simulated scenarios in both traffic 

conditions are summarized in TABLE 3.7.  Columns 2-4 report coverage information.  

For example, the second column contains the coverage results following the expected-
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value solution.  Use traffic condition A as an example, the average coverage is 107, and 

the highest and lowest coverage are 58 and 122, respectively.  Performances of different 

model solutions in terms of regret are reported in columns 5-7.  Readers are referred to 

the section of mathematical models for the definition of regret.     

 

TABLE 3.7. Evaluation Results of Model Solution Set 1 

Coverage Regret 

Expected-
value 

Stochastic Robust 
Expected-
value 

Stochastic Robust  

Traffic Condition A 

Average 107 113.5 112.3 7.51 1.02 2.23 
Min 58 81 81 0 0 0 
Max 122 123 123 24 3 4 

 Traffic Condition B 

Average 93.1 105.1 104.4 12.88 0.84 1.58 
Min 58 81 81 0 0 0 
Max 122 123 123 24 3 4 

 

In general, as the congestion level increases from condition A to B, the coverage de-

creases because it becomes more difficult for emergency services to reach incidents 

within their required service time windows.  The stochastic models including both SP and 

RO models have substantially smaller gaps between the minimum and maximum cover-

age and regret than the counterparts by the expected-value solution.  For example, the 

coverage gap is 64 (=122-58) following the expected-value solution while it is 42 (=123-

81) following the stochastic models.  Similar observations can be made for regret gaps.  It 

is also observed that overall SP solution has a better performance compared to the other 

two solutions.  As shown in TABLE 3.7, SP solution achieves the highest average cover-

age (113.5 in condition A and 105.1 in condition B) and the lowest average regret (1 in 

both conditions A and B).  Moreover, SP solution also performances well in the worst-
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case scenario (min coverage is 81, and max regret is 3).  Note that the RO solution is 

supposed to give the lowest regret in the worst-case scenario, if the results are evaluated 

in exactly the same condition as the model inputs.  In this case study, the RO solution 

does not provide the best regret in the presence of prediction error of random parameter 

distribution.   

 

3.3.2.3 Sensitivity of solutions to model input  

In this section, the sensitivity of different model solutions to changes of uncertain pa-

rameter settings is evaluated.  The knowledge of uncertain parameters at the time of 

model construction may not be accurate.  If a small change in parameters results in a sig-

nificant change in optimal strategies, then the model is considered to be sensitive to data 

input.  A sensitive model heavily relies on the accuracy of model input in order to pro-

duce meaningful results, thus is less preferable in an uncertain decision environment.    

 

The three models (expected-value, SP, and RO) are solved with the same set of four noise 

levels but associated with a different probability distribution as shown in TABLE 3.8. 

This new dataset presents a more congested traffic situation for modeling, which would 

result in a more “conservative” solution set. 

 

TABLE 3.8. Second Set of Probabilities Associated with the Four Congestion Levels 

as Model Inputs (Dataset 2) 

 n = 0 n = 0.2 n = 0.5 n = 1 

Discrete probability 5% 15% 30% 50% 
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TABLE 3.9. Vehicle Allocation Strategies by Different Methods  

(Solution to Dataset 2) 

 
Methods Fire Engine Fire Truck Ambulance 

Cost  
(US$ mil-
lion) 

Expected-
value solu-
tion 

1, 2, 3, 4, 52, 6, 
7, 8, 9, 10, 11, 
13 

1, 2, 3, 4, 52, 
6, 7, 8, 9, 10, 
11, 13 

12, 22, 3, 4, 52, 
6, 7, 82, 9, 102, 
11, 13 

16.7 

Stochastic 
programming 
solution 

12, 2, 3, 4, 52, 
6, 7, 8, 9, 102, 
11, 13 

12, 2, 3, 4, 52, 
6, 7, 8, 9, 102, 
11, 13 

12, 22, 32, 42, 
52, 62, 72, 82, 
92, 102, 11, 12, 
13, 14, 15 

20.4 Solution 
set 2 

Robust opti-
mization so-
lution 

12, 2, 3, 4, 52, 
62, 7, 8, 9, 10, 
11, 13 

12, 2, 3, 4, 52, 
62, 7, 8, 9, 10, 
11, 13 

12, 22, 32, 42, 
52, 62, 72, 82, 
92, 102, 11, 12, 
13, 14, 15 

20.4 

 

The location-allocation strategies from this sensitivity analysis are summarized in 

TABLE 3.9.  Compared to solution from dataset 1 (see TABLE 3.7), one may notice that 

the expected-value solution is most sensitive to model input (total cost changes from 

$19.8M to $16.7M), while the stochastic solutions are less sensitive (total cost remains at 

$20.4M).  The reduction of the total cost (from $19.8M to $16.7M) is due to the change 

of the location strategy - three fire stations at locations 12, 14, and 15 that are included in 

solution set 1 are eliminated in the optimal solution for dataset 2.  This is because when 

traffic becomes more congested, service vehicles face more difficulty in reaching the CTI 

nodes within the required service time widows, leading to less CTI nodes being covered 

and less total mitigation resources needed.   

 

In contrast, stochastic solutions yield more stable strategies in response to external model 

inputs.  For instance, the SP solution in dataset 2 allocates the same total number of vehi-

cles of each type as in dataset 1, with a slight modification of the allocation strategy – 
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location 14 is eliminated from solution set 2 and the emergency vehicles are moved from 

location 14 to location 10.  The RO solution remains unchanged.  This is because chang-

ing probability distribution of the set of scenarios does not affect the RO model, as long 

as the set of scenarios is the same. 

 

TABLE 3.10 Evaluation Results of Model Solution Set 2 

Coverage Regret 

Expected-
value 

Stochastic Robust 
Expected-
value 

Stochastic Robust  

Traffic Condition A 

Average 108.6 112.8 112.3 5.90 1.73 2.23 
Min 81 82 81 0 0 0 
Max 119 122 123 12 4 4 

 Traffic Condition B 

Average 102.2 105.2 104.4 3.75 0.78 1.58 
Min 81 82 81 0 0 0 
Max 119 122 123 12 4 4 

 

The solution to dataset 2 was evaluated in the same way as solution set 1.  The simulated 

results summarized in TABLE 3.10 support the following observations: 

• Stochastic solutions (both SP and RO) perform better than expected-value solu-

tion in terms of the average and maximum coverage and regret;   

• SP solution performs better than RO solution in terms of the average coverage 

and regret in both traffic conditions A and B;  

• Smaller discrepancy between model inputs and the simulated condition leads to 

less regret. This can be observed by comparing the average regret in traffic con-

ditions B and A. Note that traffic condition B matches data set 2 better than 

condition A does.   
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• The simulated coverage results are worse in traffic condition B than that in traf-

fic condition A.  This is due to the heavier congestion level in condition B that 

affects the overall accessibility of the emergency service, despite of the choice 

of modeling approaches. 

 

The above observations are consistent with those from solution set 1.  Overall, the sto-

chastic models are less sensitive to imperfect information about uncertain parameters.  

This is an important virtue for planning under uncertainties.  A planning decision usually 

needs to be made before the exact values of the uncertain parameters are known.  This 

feature of planning decisions is known as non-anticipativity (Rockafellar and Wets, 

1991a).  Once a planning decision is in place, it may not be easily or instantly adjustable 

thus involving a penalty in modifying the decision.  A modeling approach that requires 

significant modification of planning decisions (such as, relocating fire stations and emer-

gency resources) depending on the actual realization of uncertain parameters is impracti-

cal.  In addition, a solution that is sensitive to the knowledge of uncertain parameters (in-

cluding the set of scenarios and their associated probabilities) is considered less robust, 

because perfect information about the range and distribution of uncertain parameters is 

almost impossible in reality. 

 



52 

 

3.4 Conclusions and Discussions 

In this chapter, modeling approaches have been discussed for addressing emergency ser-

vice allocation problems when service availability and transportation costs are uncertain.  

The discussion is cast in a specific context of locating emergency vehicles to fire stations, 

but the methods can be extended to other resource allocation applications such as location 

of emergency medical services and relief goods distribution centers.   

 

In terms of modeling emergency resource location problems, the contribution is on com-

bining chance constraints and stochastic programming or robust optimization to address 

uncertainties in both service availability and transportation accessibility.  In terms of de-

cision making under uncertainties, the study has explored how different risk preferences 

and stochastic modeling approaches perform in uncertain environments using a real-

world case study.  Even though stochastic modeling approaches are more computational 

challenging, the case study clearly demonstrates the value of stochastic models through 

an improved reliability and robustness of system performance.  Sensitivity analyses show 

that stochastic solutions are less sensitive to errors in prediction of random parameters. 

 

The above conclusions are drawn based on our limited numerical experiments. Future 

research includes comparison between stochastic models of different risk measures and 

conducting more case studies in regions of different spatial characteristics.  In the case 

study here, only existing fire stations as candidate locations are considered.  This may 

limit the efficiency of the solution compared to the alternative of allowing new locations.  

On the other hand, since Singapore has a well developed emergency response system and 
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many fire stations are already in place, completely reconfiguring the whole system may 

not be reasonable.  One may take an incremental step by allowing a few new locations 

added to the pool of existing stations to form a candidate set.  An extended pool of candi-

date locations will not change the structure of the problem, but will increase the computa-

tional complexity.  Each modeling method has its own emphasis of objective and differ-

ent data and computational needs. Therefore, how to compare and evaluate solutions 

from different models is arguable.  Till now, there is no definite answer to this question.  

Considering a broad range of performance measures and possible data errors could be a 

fair way to go in evaluating alternative solutions.   
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Chapter 4  Renewable Energy System Planning with 

Risk Management 

 

 

 

 

Summary  

A biofuel supply chain consists of various components that are interdependent on each 

other.  In the process of seeking the least-cost infrastructure system, a crucial question is 

how to improve the reliability of the biofuel system against potential disruptions caused 

by supply seasonal variations, demand fluctuations, and facility damages.  In this chapter, 

storage facilities for both feedstock and fuel are included in the biofuel supply chain to 

provide self-healing functions (via smoothing and redistribution) against unexpected sys-

tem risk.  A stochastic mixed-integer programming model that integrates feedstock sea-

sonality, geographic variation, and demand fluctuation is developed, with the goal of mi-

nimizing the total expected cost of the entire supply chain of biofuel from biowastes to 

end users.  The model is evaluated using a case study considering California corn stover 

feedstock resource.  It was found that corn stover alone can support ethanol production 

up to 45 million gallons per year in California, with a cost of delivered fuel ranging from 

$2.03 to $2.75 per gallon depending on the demand.  The case study also demonstrates 
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the role of storage facilities in smoothing the negative impact of supply seasonality and 

demand fluctuation on the biofuel supply chain system. 

 

4.1 Introduction  

The goal of this study is to establish a reliable and efficient biofuel supply chain system 

against potential supply and demand fluctuations, by integrating the design of storage fa-

cilities into the planning of the entire supply chain.  The concept of supply chain, through 

better integration and coordination of various components of a supply system (such as 

procurement, production, storage, and marketing), can greatly improve the system effi-

ciency.  On the other hand, reduced redundancy and buffer, which improves the system 

efficiency under normal conditions, may present higher vulnerability under unexpected 

events such as supply shortage, demand spike, technological failure, or attacks and disas-

ters.  Following the definition by Tang (2006), the supply chain risks are categorized into 

operational risks and disruption risks. An operational risk refers to those recurrent risks 

such as supply and demand fluctuations that are inherent in supply chains.  A disruption 

risk usually refers to external disruptions caused by natural and man-made disasters.  By 

this definition, the types of risks we are addressing, supply seasonality and demand fluc-

tuation, belong to the category of recurrent operational risks. 
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In this study, the potential disruptions caused by feedstock seasonality and demand un-

certainty of biofuel supply chains will be addressed from a strategic supply chain plan-

ning viewpoint.  Biofuel supply chain planning is of importance for the following reasons: 

1. Cellulosic biofuel has a great potential of reducing greenhouse gas emission 

and diversifying transportation fuel. 

2. Studies have shown the interdependence of various components of biofuel 

supply chains and the importance of planning the system as a whole.  How-

ever, system approaches have not been widely adopted in biofuel supply chain 

planning. 

3. Most production and delivery infrastructures of this emerging system are not 

in place yet, which presents an opportunity for incorporating risk management 

directly into its strategic planning of the supply chains. 

 

The key feature distinguishing this study from most existing work is the integration of 

physical design and operational management as a whole in seeking mitigations against 

the above mentioned recurrent risks.  Additional physical layers of feedstock and fuel 

storage are introduced into the supply chain for two reasons: (1) the storage function pro-

vides “buffer” for the system to adjust to the feedstock seasonal variation and demand 

fluctuation; and (2) the redistribution function of storage facilities over time and space 

increases the self-reorganization of the system hedging against potential disruptions.  Fa-

cility spatiality, time variation of feedstock yields, and demand uncertainty are integrated 
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into a two-stage stochastic programming framework where the first-stage is devoted to 

planning decisions while the second-stage addresses the recourse of operational deci-

sions.  Optimal strategies on biofuel production, feedstock and fuel storage, and delivery 

are sought simultaneously to achieve the least expected total system cost.  The proposed 

model is used to evaluate the economic potential and system effectiveness of converting 

corn stover to ethanol in California.  In addition to the conceptual design of the supply 

chain under operational risks, the real-world case study provides a realistic model incor-

porating both system dynamics and uncertainties, identified as lacking in the literature by 

(Melo et al., 2007). 

 

This chapter is organized as follows. In section 4.2, the model formulation will be pre-

sented.  The input data for the case study will be first reviewed in section 4.3, following 

by the results and analysis. Decomposition methods are discussed and numerical results 

are summarized in section 4.4.  Conclusion and discussions are presented in section 4.5. 

 

4.2. Model Formulation 

FIGURE 4.1 represents a biofuel supply chain system from waste resources to end users, 

including feedstock storage, fuel production, and fuel storage in between.  The arrows in 

FIGURE 4.1 denote flow (feedstock or fuel) directions.  Note that the supply chain ends 

at city gates and that further fuel dispensing to individual refueling stations is omitted in 
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this study.  The strategic planning of this supply chain includes designing of the physical 

configuration of the supply chain system such as the locations and the sizes of the pro-

duction and storage facilities, as well as making corresponding operational decisions such 

as the procurement strategy of the feedstock, the production and storage amount, and the 

flow transported between different layers of the supply chain.   

 

 
FIGURE 4.1 A Complete Biofuel Pathway 

 

This problem spans over both spatial and temporal dimensions.  The spatial di-

mension comes from the geographical distribution of the feedstock supply, facility loca-

tions, and demand sites.  The temporal dimension is mainly caused by the seasonality of 

the feedstock supply.  Design for such a complex system is not trivial due to the existence 

of several tradeoffs in the system.  For example, a centralized facility takes the advantage 

of economy of scale, but may result in higher transport cost. Storage of feedstock and 

fuel may impose an extra cost to the system, but may lower the risk of future supply 

shortage.  With the integration of the physical design of infrastructure systems and the 
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system operation management, this study aims to balance the tradeoffs in both temporal 

and spatial dimensions.   

In addition to the seasonality of feedstock supply, handling demand uncertainty imposes 

another modeling challenge.  Planning decisions such as the locations and sizes of facili-

ties (i.e., feedstock storages, refineries, and fuel storages) are usually made before the un-

certain demand is known.  Once these decisions are implemented, they cannot be easily 

modified.  Operational decisions such as the production and storage quantities can be ad-

justed based on the actual realization of the uncertain demand.  These decisions are also 

called recourse decisions.  This feature fits well in a two-stage stochastic programming 

(SP) framework (Birge and Louveaux, 1997; Louveaux, 1986), which distinguishes plan-

ning and operating decisions.  In this study, fuel demand is assumed to take a discrete set 

of possible scenarios with associated probabilities.  A mixed integer SP model is devel-

oped with a goal of minimizing the expected total system cost across all possible scenar-

ios.  To reflect the temporal dimension of the problem, all recourse decision variables are 

time (season) dependent.  The decision variables to be determined by the model include: 

• locations and sizes of refineries and the storages of feedstock and fuel,  

• feedstock procurements, 

• feedstock storages and deliveries, and  

• ethanol productions, storages and distributions. 

 

Notations used for decision variables and model parameters are defined in TABLE 4.1. 
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TABLE 4.1 Notation Table 

Model Parameters 

T: index t, set of four seasons; 

I: index i, set of feedstock fields; index 'i , set of feedstock storages, Ii∈' ; 
J: index j, set of ethanol refineries; 
K: index k, set of ethanol storages (terminals); 
M: index m, set of demand cities; 

Ω : index ω , set of uncertain scenarios; 
p: procurement cost ($/dry ton); 
c: ethanol production cost ($/gallon); 
p
f: unit feedstock storage cost ($/dry ton); 
F

jf : refinery fixed capital cost ($) at location j, e.g., land price; 

V

jf : refinery variable capital cost ($) at location j, linear function of refinery size, e.g., 

fixed O&M cost; 
S

kF : capital cost ($) of ethanol storage at location k, which is fixed at a given size; 

v: the average truck traveling speed (mile/hr); 
dij: distance (mile) between node i and j; 
d

bt :distance dependent transportation cost ($/mile/truckload) of bulk solids, i.e., the cost 

of traveling one mile per truckload, including truck fuel, insurance, maintenance, and 
permitting expenses; 

t

bt : travel time dependent transportation cost ($/hr/truckload) of bulk solids, i.e., the cost 

of traveling one hour per truckload, including labor and capital costs; 

bcap : truck capacity (wet ton) of bulk solids; 

lub: truck loading and unloading cost of bulk solids ($/wet ton); 
d

lqt :distance dependent transportation cost ($/mile/truckload) of liquids; 

t

lqt : travel time dependent transportation cost ($/hr/truckload) of liquids; 

lqcap : truck capacity (gallon) of liquids; 

lulq: truck loading and unloading cost of liquids ($/gallon); 

η : conversion rate (gallon/dry ton), i.e., amount of ethanol converted from one dry ton of 

feedstock; 
M

jcap : the maximum allowable refinery capacity (gallon) at location j; 

t

iyield : the maximum amount (dry ton) of feedstock available for harvesting at field i in 

season t; 
td : degradation factor, accounting for the loss of feedstock in storage over season t; 

)(ωt

mD : ethanol demand (gallon) at city m in season t under scenario ω ; 

pl : the unit penalty cost ($/gallon) of demand shortage (i.e., imports from other states); 

Decision Variables 

jz := 1 if an ethanol refinery is built at location j; =0 otherwise; 

f

iz ' := 1 if a feedstock storage facility is built at location 'i ; =0 otherwise; 
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S

kz := 1 if an ethanol storage facility is placed at location k; =0 otherwise; 

capj: the size of refinery (gallon) at location j; 
t

iY : the amount of feedstock procured from location i during season t; 

)(ωt

ijx : generic notation for quantity of goods (i.e. feedstock or fuel) transported from 

node i to node j in season t under scenario ω ; 

)(' ω
t

iFSQ : the amount of feedstock available at in the feedstock storage 'i  at the begin-

ning of season t under scenario ω ; 

)(ωt

kFQ : the quantity of ethanol available in the fuel storage k at the beginning of season 

t under scenario ω ; 

)(ωt

jyin : the total amount of feedstock delivered to refinery j in season t under scenario 

ω ; 

)(ωt

jpr : the amount of ethanol produced at refinery j in season t under scenario ω ; 

)(ωt

mq : unsatisfied demand (shortage) of city m in season t under scenario ω . 

 

The complete model formulation is presented by (4.1)-(4.26): 
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The objective function (4.1) minimizes the expected total system cost, a sum of the plan-

ning costs and the expectation of the recourse costs.  The planning costs, including the 

facility (feedstock storage, refinery, and fuel storage) capital costs and the initial feed-

stock procurement cost, do not depend on the scenarios.  The recourse costs are scenario 

dependent, which include feedstock delivery (Tfeedstock), ethanol distribution (Tfuel), feed-

stock storage, ethanol production, penalty, and the feedstock procurement cost for the 

remaining seasons.  Note that the feedstock procurement is considered as a planning deci-

sion (made at one season ahead of time) – the procurement decision for the first season is 

made at the end of the 0th stage when the actual random demand of the first season is not 

known yet.  This is why in the recourse cost term, the feedstock procurement cost only 

occurs in the first three seasons.  The feedstock delivery and fuel distribution costs are 

defined in (4.1a) and (4.1b), respectively.  Use feedstock delivery cost (Tfeedstock) as an 

example to illustrate the cost structure.  The supply chain involves three types of delivery: 

from field to refinery (denoted as ij), from field to feedstock storage (denoted as ii’), and 

from feedstock storage to refinery (denoted as i’j).  In all the deliver trips, the transport 

cost is estimated by distance (td)- and time (tt)- dependent costs, and loading/unloading 

cost.  Delivery quantity is divided by truck capacity to be converted to number of truck-

loads, based on which the distance- and time-dependent costs are calculated.  The load-

ing/unloading cost is linear to the delivery quantity.   

 

Constraints on ethanol refineries: 
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Equation (4.2) states that the feedstock used for fuel production can be from fields and/or 

storages.  Equation (4.3) is a flow conservation constraint, meaning that the amount of 

produced ethanol equals the total outflow to fuel storage.  The refinery size ( jcap ) is de-

fined in Equation (4.4), which equals the maximum total production among all possible 

scenarios.  Inequality (4.5) restricts the refinery size within the maximum allowable ca-

pacity.  Equation (4.6) computes the energy conversion from feedstock to ethanol.  Con-

straint (4.7) is a logic constraint, where M  is a large positive number, enforcing that no 

ethanol is produced at location j unless a refinery operates at that location.   

 

Constraints on feedstock sites: 

t

i

t
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As constrained by inequality (4.8), the feedstock procurement cannot exceed the total 

available yields at field i.  Equation (4.9) ensures that procured feedstock is delivered to 

feedstock storages for inventory and/or directly to refineries for production.   

 

Constraints on feedstock storages: 
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Equation (4.10) is a flow conservation constraint at feedstock storage in both spatial and 

temporal dimensions.  The feedstock inventory at the beginning of season t+1 (denoted 

as 1

'

+t
iFSQ ) equals the discounted feedstock inventory of season t (i.e., t

iFSQ '  multiplies 

the degradation factor td ), plus the amount of feedstock delivered to feedstock storage 

(∑
∈Ii

t

iix
'

' ), and subtracted by the amount of feedstock outflow to refineries (∑
∈Jj

t

jix ' ).  Ine-

quality (4.11) and (4.12) are two logic constraints on feedstock storages, which can be 

similarly explained as for constraint (4.7).   

 

Constraints on ethanol storages: 
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S

k

t
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Constraint (4.13) is the flow conservation constraint at ethanol storage, which can be si-

milarly explained as for constraint (4.10) except that there is no need to discount the fuel 

inventory over time.  Inequality (4.14) imposes a fuel storage capacity.  Inequalities (4.15) 

and (4.16) are logic constraints at fuel storages.   

 

Constraints on demand centers: 
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Equation (4.17) computes the recourse for the amount of demand unsatisfied by in-state 

production.  The recourse may be considered as imported fuel from other states.   

 

Integer and nonnegativity constraints: 
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0)(' ≥ωt

iFSQ  Ω∈∈∈∀ ω,,' TtIi   (4.23) 

0)( ≥ωt

kFQ  Ω∈∈∈∀ ω,, TtKk   (4.24) 

0)( ≥ωt

jyin  Ω∈∈∈∀ ω,, TtJj   (4.25) 

0)( ≥ωt

jpr  Ω∈∈∈∀ ω,, TtJj  (4.26) 

M  is a big positive number 

 

4.3. Case Study 

4.3.1 Input data 

Geographical Data 

Different types of feedstock have different specific harvesting time period.  Corn stover 

being a typical agriculture residue for ethanol production is considered in this study as a 

proof of concept.  As shown in FIGURE 4.2, corn stover is unevenly distributed in Cali-

fornia, mainly clustered in the central valley areas. The locations and the annual yields of 

corn stover are aggregated at centroids of counties or cities in Geographic Information 

System (GIS), in order to integrate the feedstock resources with transportation network.   
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(a) Feedstock field and storage (b) Ethanol refinery 

(c) Ethanol storage (d) Demand city 

FIGURE 4.2 Facility Geographical Distribution 
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.Totally there are 27 corn stover sites, 28 potential refinery sites, 57 ethanol storage sites, 

and 143 demand clusters.  Candidate refinery and storage sites include existing facilities 

and potential sites within a close proximity to water, labor, and major freeways.  Demand 

clusters include cities with population larger than 50,000.  The details of facility location 

criteria are available in the Western Government Association report (Parker et al., 2007). 

 

Feedstock Data 

The total corn stover yield is 562,667 dry ton per year and its harvesting period is be-

tween September 1st and December 1st (National Agricultural Statistics Service, 1997).  

Theoretically, the total amount of available corn stover can produce 45.3 million gallon 

per year (MGY) of ethanol, given a conversion rate of 80.6 gallon/dry ton1(Parker et al., 

2007). The moisture content is about 15% (Parker et al., 2007), which will affect the de-

livery cost. 

 

Corn stover harvesting needs to go through a sequence of procedures: shredding, baling, 

and stacking.  Its procurement cost is $13.1/dry ton (Sokhansanj et al., 2002).   

 

The storage operating cost is $8/dry ton.  The facility capital cost is negligible when the 

uncovered or tarped storage types are adopted (Sokhansanj et al., 2002).   

 

                                                 
1 One dry ton of corn stover can produce 80.6 gallons of ethanol. 
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Conversion Technology, Refinery, and Ethanol Storage Data 

The LignoCellulosics Ethanol (LCE) via hydrolysis and fermentation conversion tech-

nology with specific Dilute Acid pretreatment process was used (Parker et al., 2007) for 

its low cellulose enzyme cost and reasonably high conversion rate.  According to the re-

cent report (Office of the Biomass Program, 2009), producing ethanol involves pretreat-

ment, production, and recovery processes, and approximately costs $0.92 per gallon. 

 

The refinery cost includes fixed capital cost (facility setup cost) and variable capital cost 

(facility size-dependent cost), The fixed capital cost was annualized assuming a real dis-

count rate of 10% and lifetime of 20 years, based on the 2015-year technology perform-

ance. The fixed capital cost is $6.157m and the variable capital cost is $0.314 per gallon 

for the whole study area. The size of the refinery is determined by the model subject to 

the constraint of maximum refinery capacity as 100MGY.   

 

For fuel storage, single-size tank with a capacity of 100 thousand barrels (equivalent, 4.2 

million gallons) was considered. The total capital cost is $1.57m, which consists of the 

tank cost of $1.26m, the blending system cost of $0.3m, and the cost of $10,000 for 

product receipt by truck (Downstream Alternatives Inc., 2000).  

 

Transportation Cost 

For in-state production, trucking is considered as the only transportation mode.  The max-
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imum load is set to be 25 wet tons for bulk solids and 8,000 gallons for liquid.  Consider-

ing the combined effects of local and highway traffics, the average travel speed is as-

sumed to be 40 mile/hr.  In a California road network (containing local, rural, urban roads, 

and major highways), shortest paths (paths with minimum cost) are calculated and as-

sumed to be the shipping routes.  The transportation cost has three parts: load-

ing/unloading cost, time dependent travel cost, and distance dependent travel cost (see 

TABLE 4.2) (Parker et al., 2007).  Time dependent cost includes labor and capital cost of 

trucks, while distance dependent cost includes fuel, insurance, maintenance, and permit-

ting cost.  The truck is fueled by diesel with a cost of $2.50 per gallon.   

 

TABLE 4.2 Trucking Cost 

 Liquids Bulk solids 

Loading/unloading $0.02/gallon $5/wet ton 
Time dependent $32/hr/truckload $29/hr/truckload 

Distance dependent $1.30/mile/truckload $1.20/mile/truckload 
Truck Capacity 8,000 gallons 25 wet tons 

 

Demand Scenarios 

Three possible demand scenarios (for in-state corn stover based ethanol) are considered 

with equal probability: median, high, and low (see TABLE 4.3).  The average demand is 

set to 6.75 million gallon per year reported in (Downstream Alternatives Inc., 2000).  The 

seasonal demand distribution is 24.4%, 25.5%, 25.3%, and 24.8% (over four seasons), 

estimated based on the Energy Information Administration’s historical ethanol consump-
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tion data.  The state-wide fuel consumption is distributed to demand clusters proportion-

ally to their populations.     

 

TABLE 4.3 Three Demand Levels 

 Median High Low 

% difference from median 0 +2% -2% 

Probability 1/3 1/3 1/3 

 

4.3.2 Results and Analysis  

Results of Baseline Case Study  

The penalty cost of fuel shortage is set high at $5 per gallon to encourage in-state produc-

tion. The optimal solution suggests a centralized system pattern - one feedstock storage, 

one refinery, and one fuel storage in the central valley area, as shown in FIGURE 4.3.  

The system configuration is summarized in TABLE 4.4.   
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FIGURE 4.3 An Optimal System Layout in the Baseline Case Study 

 

TABLE 4.4 The Optimal System Configuration of Baseline Scenario 

 Quantity Location1 Size  

Feedstock storage 1 #18 14,709 (dry ton) 
Ethanol refinery 1 #22 6,885,000 (gallons) 
Ethanol storage 1 #22 4,200,000 (gallons)2 

1: Location ID number are from GIS map. 
2: The size of ethanol storage is predefined. 
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FIGURE 4.4 Breakdown of Total System Cost 

 

The expected cost of delivered ethanol is $2.75 per gallon.  The cost breakdown of the six 

cost components - feedstock procurement cost, refinery capital cost, production cost, 

transport cost, and feedstock and fuel storage costs, is given in FIGURE 4.4.  The refin-

ery capital cost is identified as the major cost driver, taking almost half of the total sys-

tem cost.  This high percentage is largely because of the low economy of scale as a result 

of low demand.  The feedstock storage contributes least to the total cost (only 1%).  

However, together with fuel storage, it smoothens out the supply-demand discrepancy 

over seasons, as illustrated in FIGURE 4.5 by using the low-demand scenario as an ex-

ample. 
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FIGURE 4.5 System Operations in Low-Demand Scenario 

 

Sensitivity Analysis 

1. Critical role of feedstock storage 

Feedstock storage, different from fuel storage, is optional to the system.  However, it was 

chosen as part of the optimal solution.  A sensitivity analysis is carried out to test the im-

pact of feedstock storage on the total system cost.  FIGURE 4.6 shows the benefit of hav-

ing feedstock storage (saving total system cost by about 3% to 7%) under a range of pen-

alty cost between $2.5 and $5 per gallon.  The penalty cost may be considered as the 

price of imported biofuel.  The light-color bars in the figure represent the expected total 

system cost of having both types of storages; the dark-color bars represent the total sys-

tem cost when feedstock storage is excluded.  It is clear that inclusion of feedstock stor-

age is more cost-effective.  Moreover, feedstock storage also reduces the sensitivity of 
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the system toward the change of penalty cost, indicated by the flatly distributed light-

color bars.  By contrast, the total system cost could fluctuate up to 5% in the case without 

feedstock storage.  These observations clearly indicate the critical roles of feedstock stor-

age in reducing the risk caused by supply/demand fluctuation.     
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FIGURE 4.6 Feedstock Storage Functionality in Improving System Reliability 

 

2. Variations of Uncertain Parameter Settings  

In this section, we test the sensitivity of the model against different settings of uncertain 

parameters.  In general, a solution that is sensitive to the knowledge of uncertain parame-

ters (including the set of scenarios and their associated probabilities) is considered less 

robust, because perfect information about the distribution of uncertain parameters is al-

most impossible in reality.  Two parameter settings are separately tested: 
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• unevenly distributed demand scenarios: a different distribution of uncertain de-

mand scenarios (1/6, 2/3, and 1/6 for low, median, and high demand levels, re-

spectively) is tested, rather than the even distribution assumed in the baseline case;   

• Higher demand variation: we increase the demand fluctuation (i.e., relative dif-

ference in comparison with median-level demand) from 2% to 10% to understand 

how demand variation might influence the system decisions.   

 

The results of all the sensitivity analyses are summarized in TABLE 4.5.  The following 

observations are made:  

• The planning decisions (facility locations and sizes) are not sensitive to the 

changes of uncertain parameter setting.  This is an important virtue for planning 

under uncertainties.  A planning decision usually needs to be made before the ex-

act values of the uncertain parameters are known.  This feature of planning deci-

sions is known as non-anticipativity (Rockafellar and Wets, 1991a).  Once a plan-

ning decision is in place, it may not be easily or instantly adjustable thus involv-

ing a penalty in modifying the decision.  Therefore, a model that requires signifi-

cant modification of planning decisions depending on the actual realization of un-

certain parameters is impractical.   

• Higher risk/uncertainty level directly results in a higher total system cost.  For ex-

ample, the total system cost resulted from the uneven distribution, which is less 
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uncertain (entropy = 0.377), is smaller than the total system cost resulted from the 

even distribution (entropy = 0.477) assumed in the baseline scenario.  

 

TABLE 4.5 Sensitivity Analyses for Some Model Parameters 

Uneven demand distribution Higher demand fluctuation Cost compo-
nents 

Baseline sce-

nario  absolute 
value 

rate of change 
compared to 
baseline  

absolute 
value 

rate of change 
compared to 
baseline  

Feedstock Pro-
curement  

$1,137,226  $1,113,440  -2.09% $1,232,369  8.37% 

Feedstock stor-
age  

$149,835  $105,786  -29.40% $349,650  133.36% 

Ethanol Produc-
tion  

$6,210,000  $6,189,804  -0.33% $6,210,000  0.00% 

Refinery Capi-
tal  

$8,319,590  $8,278,233  -0.50% $8,489,150  2.04% 

Fuel storage  $1,570,000  $1,570,000  0.00% $1,570,000  0.00% 

Penalty cost $0  $109,762   $0   

Transportation* $1,198,347  $1,185,800  -1.05% $1,229,214  2.58% 

Feedstock field to 
feedstock storage 

$60,779  $53,062  -12.70% $91,646  50.79% 

Feedstock field  to 
refinery 

$333,195  $333,195  0.00% $333,195  0.00% 

Feedstock storage to 
refinery 

$51,634  $50,383  -2.42% $51,634  0.00% 

Refinery to fuel 
storage 

$135,000  $134,561  -0.33% $135,000  0.00% 

Fuel storage to city $617,740  $614,600  -0.51% $617,740  0.00% 

Total system 
cost 

$18,584,999  $18,552,825  -0.17% $19,080,383  2.67% 

Delivered cost 
($/gallon) 

$2.75  2.75   $2.83    

Refinery loca-
tion 

#22 #22   #22   

Feedstock stor-
age location 

#18 #18   #18   

Fuel storage 
location 

#22 #22   #22   

Refinery size 
(million gallon) 

6.885 6.885   6.885   

*note: the total transportation cost is further broken down to five segments.  
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3. Demand increase 

The total available corn stover in the state can theoretically produce up to 45MGY of 

ethanol.  A set of sensitivity analyses (see FIGURE 4.7) were conducted to identify the 

impacts of demand changes on delivered ethanol cost and costs of system components.   
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FIGURE 4.7 Cost Components and Average Delivered ethanol Cost 

under Different Demands 

 

The results clearly indicate that higher demand leads to a reduced delivered cost from 

$2.75 to $2.03 per gallon due to the improved economy of scale.  The capital cost per-

centage decreases from 45% to 33%.  However, the fuel production cost weights more, 

which in turn raises the costs in transporting and procuring more feedstock from remote 

areas.   
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4.4. Computational Challenges: Decomposition Method 

Solving SP model plainly by AMPL-CPLEX is computationally challenging, especially 

for large-scale problems with complex modeling structure, which motivates additional 

research endeavor in developing an efficient decomposition method.  The Progressive 

Hedging (PH) method is considered to partition the SP model across scenarios as a means 

of reducing computing difficulty (Watson et al., 2008), which was invented by Rockafel-

lar and Wets (1991a).   

 

The basic scheme of PH method is described blow by using a generic mathematical 

model in an Extensive Form (4.27) and (4.28):   

 Minimize: ( xc ⋅ ) + )( ss

Ss

s ytP ⋅∑
∈

      (4.27) 

 Subject to: ss Fyx ∈),(   ∀s ∈ S     (4.28) 

where S is the set of possible scenarios, and s ( s S∈ ) denotes an individual scenario for 

future demand, x denotes the first-stage decisions (non-distinguishable across scenarios) 

with a cost coefficient vectors c, and ys represents the second-stage decisions with associ-

ated cost coefficient vectors ts. For each scenario s S∈ , the probability of the occurrence 

is denoted as Ps.  The objective is to minimize the total expected cost as described in 

(4.27).   The decisions are subject to the constraints defined by the feasibility set Fs for 

each scenario s as described in constraint (4.28).  In this study, the decisions (x) are refin-
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ery locations and sizes, feedstock and fuel storage locations, and feedstock procurement 

decisions, and the decisions (Sheehan et al.)are operational decisions on the second stage. 

 

The model defined by Eqs (4.27) and (4.28) can be partitioned to scenario dependent sub-

problems.  Solving the scenario sub-problems for all s ( s S∈ ) will result in different s-

dependent first-stage solutions, denoted as xs for each s S∈ .  However, these solutions 

cannot be directly implemented, because at the time when the location decision solutions 

are implemented, one does not know yet which scenario is going to happen.  In order to 

consolidate the s-dependent solutions to an implementable solution, one must impose a 

non-anticipativity constraint defined in (Rockafellar and Wets, 1991a): 

0=− zxs    ∀s ∈ S     (4.29) 

where z is a vector of free variables.  This condition states that a reasonable policy should 

not require different actions relative to different scenarios if the scenarios are not distin-

guishable at the time when the actions are taken. The SP model can be reformulated as: 

 Minimize  ( sxc ⋅ ) + )( ss

Ss

s ytP ⋅∑
∈

      (4.30) 

 Subject to: sss Fyx ∈),(   ∀s ∈ S     (4.31) 

0=− zxs    ∀s ∈ S     (4.29) 

 

The PH method decomposes a stochastic problem across scenarios and partitions the 

problem into manageable sub-problems.  Define  
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2'

2

1
)()(),(),,,( zxzxwyxQPWzYXL ssssss

Ss

sr −+−⋅+=∑
∈

γ   (4.32) 

as the augmented Lagrangian, where W is the vector of dual variables for the constraints 

in (4.29), and 0>γ  is a penalty parameter associated with violation of the non-

anticipativity constraints.  Function ),( sss yxQ  is the total first- and second- stage cost in 

a given scenario s, which depends on the decisions xs and ys.  Therefore, the augmented 

Lagrangian integrates the non-anticipativity constraint with the original objective func-

tion.   The stochastic problem becomes 

Minimize ),,,( WzYXLr  for all sss Fyx ∈),( . (4.33) 

 

PH algorithm procedure is described as follows:  

Step 1   

Set the iteration index k = 0.  

Solve for each scenario sub-problem and then obtain Ssyx ss ∈∀),,(
)0()0(

.  

Initialize 
)0()0( : s

Ss

s xPz ∑
∈

=  and )(: )0()0()0(
zxw ss −= γ  

If Sszxs ∈∀= ,)0()0(
 then the optimal solution is found; otherwise continue with step 

2. 

Step 2   

k = k+1 

Solve for each scenario Ss∈∀   
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sss

k

ss

k

ssssx

k

s Fyxzxxwytcxx ∈−++⋅+= −−
),(:)

2
(minarg:

2
11)( γ

 

Update 
)()( :

k

s

Ss

s

k xPz ∑
∈

=  and Sszxww kk

s

k

s

k

s ∈∀−+= −
),(: )()()1()( γ  

Step 3  

Stop, if 0][ 2/1
2

)()(
2

)1()( ≈−+−= ∑
∈

−

Ss

kk

s

kk zxPzzε  is reached; otherwise, go to step 2. 

 

The performances of the PH method are evaluated on three cases derived from the study 

and descriptions are given in TABLE 4.6, in which the number of potential facility loca-

tions is set to be different.  All numerical experiments were executed on 3.06GHz dual 

Intel Xeon running Windows XP, with 4GB of RAM.   

 

TABLE 4.6 Descriptions of Three Cases 

 # of candidate 
feedstock storage 
locations 

# of candidate 
refinery loca-
tions 

# of candidate 
fuel storage 
locations 

# of cities 

Case 1 – test size 12 5 10 8 
Case 2 – median size 20 20 20 40 
Case 3 – full size 27 28 57 143 

 

The performances of PH algorithm against the plain solution on CPLEX 11.0 are summa-

rized in TABLE 4.7.  It is obvious that the PH algorithm significantly reduces the run 

time without scarifying the solution quality (with negligible difference).  The benefits 

become more noticeable with the increase of problem size.  For the full-size problem, PH 

yields the identical objective value but reduce the run time by 90%.   
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TABLE 4.7 The Performances of Solution Methods in the Three Cases 

Case 1 – test size Case 2 – median size Case 3 – full size Solution 

methods Obj. ($) T. (min) Obj. ($) T. (min) Obj. ($) T. (min) 

CPLEX 8,221,853 0.10 10,159,171 25.52 18,584,999 1505.77 
PH 8,225,807 0.27 10,178,996 5.90 18,584,999 184.10 

For each algorithm, the total expected system cost (Obj. labeled columns) and run time (T. labeled columns) 

are reported.   

 

4.5. Conclusions and Discussions  

The study demonstrated the critical role of storage facility in risk management of biofuel 

supply chain.  It smoothens out the impacts of the seasonality of feedstock supply and 

demand fluctuation to gain a better system economic and efficiency.  A mixed-integer 

stochastic program that integrates feedstock seasonality, geographic variation, and de-

mand fluctuation has been proposed to optimize the entire supply chain, aiming at achiev-

ing the least total system cost.  The model has been used to assess the economic potential 

of corn stover based ethanol in California.  The optimal results suggest that both feed-

stock and fuel storages should be included in the supply chain and that excluding the 

feedstock storage will result in an increase of the total system cost in a range of 3%-7%.  

The overall delivered cost falls between $2.03 and $2.75 per gallon, depending on the 

scale of the overall state demand.  From modeling perspective, the planning solution is 

identified to be reliable in hedging against demand uncertainties.  

 



84 

 

The delivered cost in this study is higher than the $2.19 per gallon provided in the previ-

ous WGA assessment study (Parker et al., 2007) for two main reasons: (1) it considers 

additional storage facility layers in the supply chain for feedstock and fuel inventory; (2) 

through stochastic modeling, the study introduces redundancy in terms of feedstock and 

fuel to achieve better reliability against demand uncertainties. 

 

An immediate extension to this study is to diversify the feedstock supply to consider a set 

of multiple types of lingocellulosic biomass.  Although this addition will not impose ad-

ditional challenge on modeling, it requests extra research efforts on data acquisition (in-

cluding the feedstock and technology parameters) and improvement of solution efficiency 

for enlarged model scale. From risk management perspective, the non-recurrent disrup-

tions, featuring low probability but severe consequences on energy supply chain, should 

be addressed in a system modeling framework, which may however require different risk 

management approaches from this study.     
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Chapter 5 Transitional Energy System Planning Under 

Uncertainty 

 

 

 

 

Summary  

Transforming to renewable energy based society involves transitional processes. Dynam-

ics due to the evolving technologies and societal changes are the major issues.  In addi-

tion, considerable uncertainty from resource supply and demand market is inevitable over 

the transition, which however has not been given sufficient attention in the existing re-

search literature.  The research work presented in this chapter seeks to fill this void.   

 

A stochastic dynamic programming model that integrates the spatial and temporal dimen-

sions is proposed for sequentially building a renewable energy production and distribu-

tion system under dynamics and uncertainties.  The decision variables are the sequence 

and locations of the production sites and the corresponding distribution systems from 

supply to demand sites in hedging against uncertainty.  A case study based on the hydro-

gen system in Northern California is included, in which the hydrogen is produced via 

coal gasification and transported from plant to city gates (demand sites) by cryogenic liq-
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uid hydrogen trucks.  Future demands for hydrogen are modeled as uncertain parameters, 

with an assumption that hydrogen fuel cell vehicle (HFCV) market penetration rate in-

creases from 1% to 25% over a 20-year period.  Although coal to hydrogen via gasifica-

tion is not a renewable pathway, this model provides multistage decision support for long 

term transportation energy planning at national and regional levels, which can be adapted 

for renewable pathways, such as, biomass to hydrogen. 

 

5.1 Introduction 

Predicted growth in energy demand calls for additional sources of energy, especially re-

newable energy, to supplement traditional energy sources.  Transforming to the renew-

able energy based society is a long-term planning process and the system will be built 

and expanded incrementally over time. Dynamics due to the evolving technologies and 

societal changes are the major issue, which however has not been studied in the existing 

literature.  The research work presented in this chapter seeks to fill this void. 

 

This study focuses on incorporating system dynamics into a long-term strategic planning 

of renewable energy systems.  The problem involves both spatial and temporal dimen-

sions.  The spatial dimension mainly lies in the geographic distributions of the feedstock 

sources, the fuel demands, and the production and transportation infrastructures.  The 

costs of feedstock, fuel production, and transport are interdependent.  The temporal di-
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mension arises in system planning with a goal of serving the long-term societal needs.  

The production and distribution infrastructure system will have to be expanded over time 

in response to the growing demand.  To achieve an overall effectiveness of the system 

expansion, the dynamics of such an evolving process needs to be taken into consideration 

in the system planning.  Thereby, the conventional time-independent snapshot method, as 

used in previous studies, is inadequate (Fiksel, 2006; Johnson, 2007).   

 

In a recent study, a multistage mathematical model that integrates facility spatiality and 

time variation of demands was introduced for a strategic planning for the future bioetha-

nol supply chain systems (Huang et al., In press).  In this deterministic model, the best 

sequence of opening and expanding biorefineries over time is determined and the optimal 

bioethanol production and distribution system as a whole is sought for a given planning 

horizon.  Lin et al. (2008) did a study of developing hydrogen supply system in Southern 

California in a dynamic programming Framework, but without considerations of uncer-

tainty.  

 

In addition, there is considerable uncertainty regarding the growth in demand over time, 

which requires an additional dimension in the model for handling uncertainties.  The re-

search study presented in Chapter 4 addressed uncertainties in a stochastic modeling 

framework but only for a span of one year.  For a long-run planning, a more sophisticated 

modeling approach, namely multistage stochastic dynamic programming, will be used 
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with an aimof optimizing the process of building and operating the system over the tran-

sition.   

 

Future demand is treated as the major source of uncertainty, and is assumed to increase 

over time.  The location and sequence of production facilities are strategic planning deci-

sions that are usually made over a long planning period and cannot be easily modified 

once implemented.  In addition, there are operational decisions, such as the production 

quantities and the deliveries between plants and demand centers, which are examined 

more frequently and can be adjusted according to newly acquired information.  This 

problem feature leads to the choice of master- and sub- problem structure.  The master-

problem model focuses on the total expected system cost over the entire planning horizon 

while the sub-problem model focuses on the single-stage operational cost.  The master 

and sub-problem models pass information between each other and are solved together 

iteratively.  The details of this model structure will be provided in the next section. 

 

A case study based on hydrogen system in Northern California is included, in which the 

hydrogen is produced via coal gasification and transported from plant to city gates (de-

mand sites) by cryogenic liquid hydrogen trucks (Johnson, 2007).  The demand for hy-

drogen is assumed to increase as hydrogen fuel cell vehicle (HFCV) market penetration 

rate increases from 1% to 25% of vehicles on the road over a 20-year period (Miller et al., 

2005).  Sensitivity analyses were conducted to identify important model parameters and 
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to analyze their impacts on the design and cost-effectiveness of hydrogen infrastructure 

systems.  It is noted that although coal to hydrogen via gasification is not a renewable 

pathway, this model provides multistage decision support for long term transportation 

energy planning at national and regional levels, which can be adapted for renewable en-

ergy pathways, such as, biomass to hydrogen (Parker, 2007a). 

 

This chapter is organized as followings. In section 5.2, details of the problem description 

are given and the multistage stochastic dynamic programming model is presented.  The 

case study of hydrogen system in Northern California is demonstrated in section 5.3.  

Section 5.4 briefly concludes the research work and outlines future research. 

 

5.2 Methodology 

5.2.1 Problem Description 

Before the problem is formulated, the spatial and temporal dimensions of the problem are 

described and the possible tradeoffs between different cost components of the system are 

discussed, which justify the need for a system approach.   

 

Cost components: 

The entire system cost includes the following components: 
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• fixed capital cost of building production plants, which depends on the number and 

sizes of the plants, and the land values of the plant locations;   

• operational cost associated with fuel production, which is proportional to the pro-

duction quantity;  

• operational cost associated with fuel transportation, which depends on the quan-

tity of fuel and the distance that it needs to be transported between the plants and 

demand sites; and 

• operational cost associated with the penalty associated with the fuel shortage.  

This is a modeling choice.  The cost may be considered as the cost of outsourcing 

if the penalty cost is chosen equivalent to the imported fuel cost, or it may be con-

sidered as a soft constraint for satisfying demand if the penalty cost is set high.   

The objective of the model is to minimize the total system cost over the entire 20-year 

horizon.   

 

Spatial dimension of the problem: 

The geographic layout of the production plants is critical to the efficiency of the entire 

system.  On one hand, building centralized production plants may reduce cost by taking 

advantage of economy of scale and lower land value.  On the other hand, transporting 

hydrogen can be expensive because it is a low-density gaseous fuel that must be com-

pressed or liquefied for transport (Hamelinck and Faaij, 2002; Larson et al., 2005; Lau et 

al., 2003; Spath et al., 2003; Yang and Ogden, 2007).  Therefore, accessing demand sites, 
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most of which are in populated areas, may become expensive from those remote and cen-

tralized production plants.  The spatial dimension of the system causes the tradeoffs be-

tween capital cost of plants and transportation cost of hydrogen, which need to be consid-

ered in the planning of process.     

 

Temporal dimension of the problem: 

During the transition of the system over a long planning period, building and operational 

decisions are likely to be made sequentially.  Therefore, the entire planning horizon is 

divided into multiple decision stages to incorporate the time-dependent feature of those 

decisions.  Choice of time stage interval depends on frequency of the decisions.  In this 

problem, decisions are made annually so that the planning horizon is divided into 20 de-

cision stages.  Regarding the construction of plants, the following assumptions are made: 

• Plant construction decisions are made at the beginning of each year;   

• At most one new plant can be built in each time interval; 

• Construction of a new plant requires two years to complete; and 

• Once opened, a plant will not be shut down during the entire planning horizon.   

 

Due to the 2-year construction lag, planning decisions for building new plants should on-

ly be made in the first 18 years of the 20-year planning period.  Operational decisions are 

made yearly for those constructed plants.  The 2-year construction lag also explains the 

lag in the operational costs associated with under-construction plants in our model formu-
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lation.  Demand is assumed to be uncertain with an increasing trend over the planning 

period.  Given time dynamics and demand uncertainty, there may be tradeoffs between 

the current cost of building and operating plants and the potential future cost of a fuel 

shortage.  In the later part of this chapter, a case study will be used to examine the impact 

of imperfect information of model parameters on system cost and to highlight the value 

of a stochastic model compared to its deterministic counterpart.  

 

5.2.2 Mathematical model  

Basic structure of the model: 

A k-year multistage process can be considered as a process of the first k-1 years plus the 

last kth year.  Given a known initial system state at the beginning of year 1, let ( )k kf s  be 

the minimum system cost as the system transits from year 1 to the state ks  in year k.  By 

this definition, the minimum system cost as the system transits from year 1 to the state 

1ks −  in year k-1 is 1 1( )k kf s− − .  Let kx  denote the decision variable to be made at the be-

ginning of the kth stage, which transforms the system state from 1ks −  to ks .  Let kr  be the 

cost realized in the kth stage, which is usually a function of kx  and 1ks − .  In the simplest 

manner, the relation between the unknown functions kf  and 1kf −  can be formulated us-

ing dynamic programming as: 

 

1 1 1( ) min{ ( ) ( , )}
k

k k k k k k k
x

f s f s r x s− − −= + , k = 2, 3, …, K, (5.1) 
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where K is the entire planning horizon. The boundary condition 1 1( )f s  can be easily ob-

tained based on the initial state. 

 

Now let us add a little more complication to the above equation.  Suppose there are two 

types of decision variables to be made in each stage, a planning decision denoted as kx  

and an operational decision denoted as ky .  Equation (5.1) should be modified as: 

1 1 1
,

( ) min{ ( ) ( , , )}
k k

k k k k k k k k
x y

f s f s r x y s− − −= + , k = 2, 3, …, K. (5.2) 

 

Under certain condition when ky  does not affect the transformation from 1ks −  to ks , us-

ing the concept of projection (sometimes also known as partitioning (Geoffrion, 1970)), 

Equation (5.2) can be decomposed to a master problem and a sub problem represented in 

equation (5.3a) and (5.3b), respectively.   

 

1 1 1( ) min{ ( ) ( , )}
k

k k k k k k k
x

f s f s g x s− − −= + , k = 2, 3, …, K, (5.3a) 

where 

1 1( , ) min{ ( , , )}
k

k k k k k k k
y

g x s r x y s− −= . (5.3b) 

 

Equations (5.3a,b) provide the basic structure of the proposed model in FIGURE 5.1.   
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FIGURE 5.1 Structure of the Decomposed Stochastic Dynamic Programming Model 

 

Decomposition can provide some computational advantages especially if the dimensions 

of decision vectors are high.  It may not be common to have decomposed structure in 

classic dynamic programming.  However, decomposition techniques based on the concept 

of projection are widely used for solving mixed-integer and stochastic programming 

problems, which has been reviewed in Chapter 2.     

 

Mathematical formulation: 

The basic structure of the proposed model formulation is similar to Equations (5.3a, b), 

with some modifications to incorporate the uncertainty in demand and the 2-year con-

struction lag.   

 

The notations used in the upper-level model are defined as following: 

J:  index j, set of candidate plant sites; 

λ : plant construction time/lag (i.e., two years in this study); 

Multistage Dynamic pro-

gramming model 

– Master-problem model  

Single-stage stochastic model 

– Sub-problem model 

Planning 

decisions 

Operational 

decisions 

System state & plan-

ning decisions 
Operational deci-

sions & cost 
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k

jz :  planning decision variable made in stage k.  It equals 1 if a new plant starts 

construction at location j at the beginning of time stage k; and 0 otherwise.  

This new plant becomes operational at the beginning of stage λ+k .  Note 

that the index k denotes the year in which plant construction decisions are 

made and k can only be valued from 1 to 18; 

JS k ⊆ :  state variable at stage k.  It is the set of all chosen plants by time stage k.  The 

initial state of the system is given as S0;  

jF :  annualized capital cost of a plant under construction at location j; 

( )k kH Sλ+ : the total annualized capital cost of the constructed plants at time stage λ+k , 

given system state at stage k as Sk; 

)(*

kk SO λ+ : the minimum expected operational cost at time stage λ+k  including produc-

tion cost, distribution cost and penalty cost, given system state at stage k as Sk.  

This value will be computed by the stochastic model in the sub-problem mod-

el and passed to the master-problem model; 

)( kk Sf :  the minimum cumulative expected total system cost from the beginning of the 

planning horizon until the end of time stage λ+k , given system state at stage 

k as Sk.  Note that under-construction plants do not impact the minimization of 

system operating costs during their construction time. 

 

The complete master-problem model is included in equations (5.4) to (5.6): 
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Boundary condition:  

( )∑
=

+=
λ

1

1

*

1

*

11 )()()(
k

kk SOSHSf  (5.6) 

 

FIGURE 5.2 Recursive Relations between Time Stage k and k-1 

 

Equation (5.4) defines the recursive relation between time stages k and k-1.  FIGURE 5.2 

helps to illustrate this relation.  The double arrow 1 represents )( 11 −− kk Sf , the minimum 

expected total system cost from the beginning of year 1 until the end of stage k-1+λ  giv-

en system state at stage k-1 as Sk-1.  Consider a feasible decision at state k as to build a 

new plant at location (xk=j).  This decision causes three additional cost terms: 

• capital cost of this under-construction plant between the kth year and the 

( λ+−1k )th year (denoted by upward arrows Fs in FIGURE 5.2, and summed as 

k

j jF zλ  in Equation (5.4));   

…… 

k-1 k k -1+λ  k +λ  

…… …… 

)( 11 −− kk Sf  

)( kk Sf  

H O F F F F 

λ  

1 

2 

Year 1 
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• the operational cost of this new plant (denoted by arrow O in the figure and 

)(*

kk SO λ+  in the equation), since this new plant becomes operational at stage 

λ+k ; and  

• capital cost of all operational plants (denoted by arrow H in the figure and 

( )k kH Sλ+  in the equation).   

 

The optimal value function )( kk Sf , represented by the double arrow 2 in FIGURE 5.2, 

should take the minimum value of the sum of the costs associated with xk and )( 11 −− kk Sf .  

The minimization in Equation (5.4) is taken with respect to all possible { }φ∪∈ kSj , 

where φ  means that no new plant is introduced at time stage k. 

 

Equation (5.5) defines the state transition between the (k-1)st stage and the kth stage, 

which explains two possibilities.  If there is no new plant from stage k-1 to stage k (i.e., 

φ∈j ), the state variable does not change so that 1−kS = kS .  Otherwise, the state variable 

at stage k, kS , is formed by adding the new plant j to the existing 1−kS  of stage k-1.  The 

boundary condition is given in equation (5.6), which is a single-stage optimization prob-

lem.  The initial system state, S0, is assumed to be an empty set.  The first-year building 

decision is obtained from boundary condition (5.6).  This plant is assumed to be opera-

tional immediately.  
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The complete sub-problem model is depicted in Equations (5.7-5.9), which returns the 

minimum expected operating cost O* in stage k. 

 

)(*

λ−kk SO = ( )
,

min ( ) ( ) ( )
k

k k k

j ji ji ji i
q x

j S i I i I

E CP x C x q
λ

ω ω ω α ω
−∈ ∈ ∈

 
+ +  

 
∑ ∑ ∑   (5.7) 

Subject to 

)()()( ωωω k

i

j

k

ji

k

i qxD =−∑      Ω∈∈∀ ω,Ii  (5.8) 

p

j

Ii

k

ji capx ≤∑
∈

)(ω               Ω∈∈∀ ω,Jj   (5.9) 

 

where: 

 

I:  index i, set of demand centers; 

Ω :  indexω ,set of demand randomness; 

jCP :  hydrogen production cost at plant j ($/tonne);  

Cji:  delivery cost between plant j and demand center i, which includes 

the truck fixed and variable cost ($/tonne); 

p

jcap :  plant production capacity at plant j (tonne); 

α :  penalty level (i.e., cost of importing hydrogen from elsewhere) 

($/tonne); 

)(ωk

iD :  the hydrogen demand from center i at time stage k (tonne); 

)(ωk

jix :  the amount of hydrogen delivered from plant j to the demand center i 

at time stage k (tonne); 



99 

 

)(ωk

iq :  the amount of hydrogen shortage at demand center i at time stage k 

(tonne). 

 

The decision variables include the quantity of the hydrogen shortage at each demand cen-

ter )(ωk

iq  and the amount of hydrogen delivered between plants and demand cen-

ters )(ωk

jix at each stage and under each demand scenario.  The objective function (5.7) is 

to minimize the expected operational cost at time stage k , given that plants belonging to 

set λ−kS  are operational at stage k.  Equation (5.8) defines the amount of unsatisfied de-

mand ( k

iq ) at city i at time stage k.  Constraint (5.9) imposes a hydrogen production limit 

based on the capacity of each plant j at time stage k.    

 

This stochastic dynamic programming model is solved iteratively as follows:  

Step 1: Solve boundary condition (5.6) and obtain )( 11 Sf .  

Step 2: Repeat for each time stage k=1 to 18: 

Solve )( kk Sf  in equation (5.4), where )(*

kk SO λ+  is computed using the sub prob-

lem. The detailed procedure for computing )( kk Sf for a given Sk is illustrated in 

TABLE 5.1, using kS ={1,2,3} as an example. 

Step 3: At the final planning stage k=18, choose the minimum )( kk Sf , and this )( kk Sf  is 

the minimum cumulative expected total system cost throughout the entire 20 

years.  The planning decisions (i.e., the building sequence of production plants) 

can then be retrieved backward from 18S , 17S , …, to 1S . 
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Note that the iteration of the algorithm is carried over system stages.  The algorithm starts 

from the boundary condition, which is a single stage problem that can be solved exactly.  

Then from the boundary condition, every time as the algorithm moves forward, one more 

time period is added.  The problem in the new stage can still be solved exactly, because 

the previous stage problem is already solved. The algorithm continues to move forward 

until the end of the planning horizon is reached.  This forward dynamic programming 

structure is an exact algorithm, not a heuristic procedure. 

 

TABLE 5.1 Computation Procedure From (k-1)st to kth Stage 

kS  j 
1−kS  k

jj zF  )(*

kk SO λ+  ( )k kH Sλ+  )( 11 −− kk Sf   )( kk Sf  

φ  1,2,3 0 O H g1 F1= 

O+H+g1 

1 2,3 C1 O H g2 F2= 

O+C1+H+g2 

2 1,3 C2 O H g3 F3= 

O+C2+H+g3 

{1,2,3} 

3 1,2 C3 O H g4 F4= 

O+C3+H+g4 

1

2

3

4

min

F

F

F

F

 
 
 
 
 
  

 

*The details of the computation process are interpreted as follows.  Given kS ={1,2,3}, there are four 

possible j values (2nd column) that could transform the system from state 1kS −  (3rd column) to kS .  

The three costs associated with each j are given in columns 4, 5, 6.  The value of )( 11 −− kk Sf  for each 

1−kS  is given in the 7th column.  As a result, for each possible j, the total system cost is updated from 

stage k-1 to k in the 8th column.  The minimum value of the four Fs is )( kk Sf  (last column), and the 

corresponding j that minimizes the total system cost is an optimal planning decision for the state Sk. 
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The iterative solution procedure in the master problem was implemented in MatLab and 

AMPL/CPLEX (Fourer et al., 2003) were used to solve the sub-problem model at each 

stage.  The complexity of this solution algorithm is dominated by the total number of 

stages (K) and the number of candidate locations (N).  There are three layers of iterations, 

which correspond to the stage index, possible states in each stage, and possible decisions 

at each stage.  These three layers result in a complexity no worse than 2K N× .  Note that 

the sub-problem model could be solved for all possible states before running the master-

problem model, or be called when it is needed during the computation procedure of the 

master-problem model.  

 

In general, the complexity of a dynamic programming model depends on the size of the 

decision tree, while the complexity of a stochastic programming model is dominated by 

the size of the scenario tree.  Note that three demand scenarios are assumed in each deci-

sion stage, thus forming a total of 320 possible random scenarios to be considered in this 

problem.  If a stochastic programming framework is chosen for modeling this problem, 

then it has to handle 320 branches in the scenario tree, which will cause a major numerical 

challenge. In a dynamic programming framework, only the random scenarios in a single-

stage are considered at a time, and the combined possibilities of the remaining process 

are packaged in the unknown optimal return function )( kk Sf  for k = 1, 2,…, K.   
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5.3 Case Study: Hydrogen System in Northern California  

5.3.1 Data Preparation 

It is assumed that HFCV market penetration rate increases from 1 to 25% of vehicles on 

the road over twenty years, as shown in Error! Reference source not found. (Miller et 

al., 2005).  Given a market penetration rate in each year, a demand model was used to 

identify the locations and magnitudes of demand for those areas in which there is suffi-

cient demand to warrant infrastructure investment (Johnson et al., 2005).  However, un-

der uncertain conditions, demand in each area is randomly chosen between three demand 

levels in each year as shown in TABLE 5.2.  Random demands at different locations are 

assumed to be independent of each other, no geographic correlation between them is con-

sidered.   

 

TABLE 5.2 Three Demand Levels and Associated Probabilities 

 Median High Low 

% difference from median  0 +25% -25% 

Probability 2/3 1/6 1/6 
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FIGURE 5.3 Market Penetration Growth Rate 

The size of demand centers grows as market penetration rate increases from 1% to 25%, 

illustrated in FIGURE 5.4.  There are five potential locations for hydrogen production 

sites.  These sites are constrained by the locations of existing large power plants greater 

than 500 MW in size within the study area (USEPA, 2002).  Geographic Information 

System (GIS) was used to identify the shortest path truck routes connecting each of the 

candidate production facilities to all of the demand centers.  These routes form a candi-

date fuel delivery system.  The model takes these data as inputs to identify an optimal 

facility building sequence that minimizes the total expected production and distribution 

costs. 
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FIGURE 5.4 Demand Centers and Potential Production Facilities and Truck Routes 

at 1% and 25% Market Penetration Rates (Huang et al., 2009) 

 

The plant fixed cost includes both capital and operations and maintenance (O&M) costs 

associated with the coal gasification plant, hydrogen liquefier, truck terminal, and on-site 

storage.  The production capacity of each plant is set to be 500 tonnes/day based on DOE 

recommendations (DOE, 2006).  Cost modeling conducted by DOE (2006) and Kreutz et 

al. (2005) was used to estimate plant fixed costs.  These costs were then annualized and 

converted to 2005 dollar value assuming a real discount rate of 10% and a plant lifetime 

of 40 years.  The capital cost of a plant was estimated to be $0.28 Billion for an annual-

ized cost.   
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The plant variable cost includes the coal feedstock cost, electricity cost for liquefaction, 

and revenue from co-production of electricity.  Assuming a coal-to-hydrogen efficiency 

of 57%, the amount of coal required to produce a kg of H2 is 0.198 mmBtu/kg (Chiesa et 

al., 2005).  This number is multiplied by the price of coal ($1.29/mmBtu) to calculate the 

feedstock cost, which is estimated to be $0.26/kg H2.  The electricity cost is calculated 

assuming that 9.25 kWh/kg H2 are required for liquefaction and an electricity cost of 

$0.05/kWh (DOE, 2006).  The estimated cost of electricity in all cases is $0.46/kg H2.  

The electricity revenue is calculated assuming that 2% of the coal input is converted to 

electricity and that the electricity is sold for $0.05/kWh (Chiesa et al., 2005).  With these 

assumptions, the electricity revenue is estimated as $0.06/kg H2.  Therefore, the total 

plant variable cost after accounting for both costs and revenue is $0.66/kg H2. 

 

For hydrogen distribution via liquid trucks, it is assumed that the truck capital cost is 

$104,792 per year and truck capacity is 9,000 kg (DOE, 2006).  The truck variable cost 

($/km) is a function of fuel, labor, and fixed O&M costs.  Assuming that the trucks are 

diesel-operated and achieve a fuel economy of 10 km per gallon, the fuel cost is calcu-

lated by dividing the fuel price ($2/gallon) by the fuel economy.  As a result, the fuel cost 

is estimated as $0.20/km/truck.  The labor cost is calculated by identifying the time it 

takes to travel one km (assuming an average truck speed of 60 km per hour) and multi-

plying this quantity by the wage ($20/hour).  In addition, overhead is assumed to be 50% 

of labor.  Therefore, the labor cost (including overhead) is estimated to be $0.50/km/truck.  



106 

 

The fixed O&M cost includes truck maintenance and is given as $0.18/km/truck (DOE, 

2006).  The total distribution variable cost is $0.88/km/truck.   

 

A transport cost matrix was developed for the shortest paths between potential production 

facilities and all demand centers at 25% market penetration rate.  Since the number of 

trucks required along each route will differ at each market penetration level, the desired 

cost metric is dollars per truck.  The shortest distances provided by the GIS were con-

verted to costs by multiplying each one-way distance by two to get a roundtrip distance 

and then multiplying these distances by the fuel delivery variable cost.  Since the delivery 

variable cost is $/km/truck, the units of the resulting transport cost matrix is $/truck. 

 

5.3.2 Baseline Results 

The baseline scenario is defined as follows: 

• all hydrogen plants have a maximum capacity of 500 tonnes H2/day even though 

the actual production quantity is determined by the model; 

• plant capital cost varies depending on locations (TABLE 5.3) (e.g., plants near the 

San Francisco Bay Area are assumed to be 20% more expensive to build due to 

higher land and labor costs); and 

• the penalty cost for demand shortages is $10/kg H2, which is set significantly high 

to ensure sufficient instate hydrogen production. 
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TABLE 5.3 Annualized Plant Capital Costs (Million $/year) 

Plant Location Annualized Capital Cost  
(500 tonnes/day) 

Plant 1 Kern County  $  281.3  
Plant 2 (+20%) San Jose  $  337.6  
Plant 3 (+10%) Moss Landing  $  309.5 
Plant 4 (+20%) Pittsburg  $  337.6  
Plant 5 Yuba City  $  281.3  

 

The complete results of the baseline scenario are summarized in TABLE 5.4.  The first 

column contains the planning years and year zero denotes the time stage before the be-

ginning of the first year.  At the beginning of year 1, the plant building decision is deter-

mined by the boundary condition.  The plant location pattern in each year is represented 

in the second column.  For example, a plant at Yuba city (location ID 5) is built at the 

beginning of year 1 and this location pattern remains the same until the end of year 10 (or 

the beginning of year 11), when a new plant in Kern County (location ID 1) is built.  

Since it then takes two years to complete construction of a new plant, plant #1 will be-

come operational at the beginning of year 13.  During construction, the model assumes 

that capital payments begin on the new plant even though it is not yet operating.  These 

additional capital costs are recorded in the third column.  The fourth column contains the 

capital costs of the operational plants.  The annual operation costs, expected hydrogen 

production quantity, and expected demand shortage are summarized in columns five, six 

and seven, respectively.  The annual expected total system cost is stored in column eight, 

which is the summation of plant capital costs (including both under-construction and op-

erational plants) and operational costs.  The average cost of hydrogen ($/kg) is identified 
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in column nine and is computed by dividing the total annual cost by the quantities of an-

nual production and shortage together.  Column ten records the percentage of the total 

system cost that results from penalties.   

 

TABLE 5.4 indicates that the plant capital cost is significantly larger relative to the O&M 

costs.  Since the capital costs vary by location, the model minimizes the total system cost 

by choosing the plants with the lowest capital cost first.  In fact, these low cost plants are 

selected even though they are distant from the demand centers (as shown in FIGURE 5.5), 

which indicates that delivery costs are less important compared to plant capital costs.  For 

example, a single plant at Yuba City is operational from year 1 to 10.  As shown in col-

umn 9 of TABLE 5.4, this plant is underutilized at the beginning, resulting in high aver-

age hydrogen costs of $24.48/kg and $12.88/kg in the first two years.  However, as hy-

drogen demand increases and the plant becomes better utilized, the average cost de-

creases to $2.77/kg in year 10.  The model chooses to build an additional plant at Kern 

County in year 11 because the penalty cost on fuel shortage over weighs plant capital and 

fuel delivery costs by year 13.  In the base model, capital cost is the main driver in select-

ing plant locations and determining hydrogen costs. 
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TABLE 5.4 Baseline Results Summary 
Year New plant 

location 
(plant ID) 

Capital cost of 
under-construction 
plants  
(M$/year, in 2005 
$) 

Capital cost of 
operational 
plants  
(M$/year, in 
2005$) 

Operating  
cost  
(M$/year, in 
2005 $) 

Production 
(tonnes/year) 

Shortage (ton-
nes/year) 

Annual total 
system cost 
(M$/year, 
in 2005 $) 

Average H2 cost  
($/kg, in 2005$ ) 

penalty 
cost (%) 

1 5*   $281  $9  11,864    $290   $24.48   

2    $281   $18  23,217    $299   $12.88   

3    $281   $21  27,148    $302   $11.13   

4    $281   $30  39,350    $311   $7.91   

5    $281   $34  44,486    $315   $7.09   

6    $281   $44  57,798    $326   $5.63   

7    $281   $58  75,395    $339   $4.49   

8    $281   $73  96,187    $355   $3.69   

9    $281   $92  120,103    $373   $3.11   

10    $281   $107  140,506    $389   $2.77   

11 1&5  $281  $281   $145  155,957  2,620  $708   $4.37  4% 

12   $281  $281   $214  174,964  8,073  $777   $3.98  10% 

13    $563   $168  221,216    $731   $3.30   

14    $563   $199  261,142    $762   $2.92   

15    $563   $213  279,883    $776   $2.77   

16 1,3 &5  $310  $563   $289  311,329  5,089  $1,161   $3.57  4% 

17   $310  $563   $464  350,416  19,578  $1,336   $3.26  15% 

18    $872   $304  404,575    $1,176   $2.91   

19    $872   $350  444,073  1,597  $1,222   $2.72  1% 

20    $872   $450  473,273  9,285  $1,322   $2.74  7% 

Note: * Plant ID can be referred to Table 5.3 for its corresponding plant location. 
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a (Year 1-5) 

 
b (Year 6-10) 

 
c (Year 11-15) 

 
d (Year 16-20) 

FIGURE 5.5 Hydrogen Production and Delivery System Design during Four 5-Year 

Periods 
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The sequence of building hydrogen infrastructure system is illustrated in FIGURE 5.5, 

with results aggregated into four 5-year periods to save space.  Although the choice of 

plants is the same in FIGURE 5.5(a) and (b), it is noticeable that additional truck routes 

are needed to support the delivery of fuel to more demand centers.   

 

In an uncertain-decision environment, a stochastic modeling method that considers the 

entire range of possible random scenarios often produces more reliable solution than its 

deterministic counterpart that considers only the expected value of random parameters.  

For comparison, solutions are obtained from the stochastic model and a deterministic 

model that uses only the expected demands of the 20-year period.  These two different 

solutions are then evaluated under an identical set of 1000 samples of demand scenarios 

randomly generated using Monte Carlo simulation based on the probability distribution 

given in TABLE 5.2.  FIGURE 5.6 shows the performance of the two solutions generated 

from stochastic and deterministic models under these 1000 demand scenarios.  The two 

curves tell the cumulative probabilities of not exceeding a certain system cost, resulting 

from the stochastic (pink curve) and deterministic (blue curve) solutions respectively.  

For example, one may read that the probability of not exceeding a total system cost of 

2005$14 billion is 90% following the stochastic solution and about 80% following the 

deterministic solution.  It is clear that the stochastic solution provides better reliability on 

the higher end of cost thresholds, which is usually favored by risk-averse system planners 

especially if the system is large-scale and expensive.  The stochastic solution also pro-

vides a better robustness in the worst case, with 2005$15.25 billion following the sto-

chastic solution and 2005$16.25 billion following the deterministic solution.   
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FIGURE 5.6 Comparison between Stochastic and Deterministic Methods 

 

5.3.3 Sensitivity Analyses 

Two sensitivity analyses are conducted to evaluate the impacts of basic energy feedstock 

(electricity, coal, and diesel) prices and the penalty cost on system layout and the total 

system costs.   

 

(1) Impact of feedstock prices 

The cost of hydrogen production and distribution is dependent on the costs of several en-

ergy feedstock types that are used in the process.  This section analyzes the impact of 

changes in these feedstock costs on the model results.  Three feedstock types are exam-

ined: electricity, coal and diesel fuel.  Coal is gasified to produce hydrogen while signifi-

cant electricity is required to liquefy hydrogen for truck transport.  Finally, diesel is used 

to fuel the trucks that transport the hydrogen to demand centers.  The impacts of changes 
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in the prices of these feedstocks on hydrogen system costs (capital and operational) are 

summarized in TABLE 5.5.   

 

TABLE 5.5 System Costs when Feedstock Costs are Varied 
Scenarios Total system cost 

(2005$ billion) 

Capital cost  

(2005$ billion) 

Operating cost  

(2005$ billion) 

Electricity price 
(2005$kWh) increase from 
0.05 to 0.10 (100%) 

$14.85 
(+12%) 

$9.99 
(0%) 

$4.86 
(+48%) 

Coal price (2005$/mmbtu) 
increases from 1.29 to 1.50 
(16%) 

$13.43 
(+1%) 

$9.99 
(0%) 

$3.44 
(+5%) 

Diesel fuel price 
(2005$/gal) from 2.00 to 
4.00 (100%) 

$13.30 
(+0%) 

$9.99 
(0%) 

$3.31 
(+1%) 

Baseline scenario $13.27   $9.99 $3.28 

 

The results suggest that changes in feedstock prices do not affect the system capital cost.  

However, the system operational cost is sensitive to changes in feedstock prices.  For in-

stance, doubling the electricity cost results in about a 50% increase in the operational cost 

and a 12% increase in the total system cost.  Compared to the electricity price, the 

changes in coal and diesel fuel prices have negligible impacts on the total system cost. 

 

(2) Impact of penalty cost  

The penalty cost (i.e., imported hydrogen cost) was varied from $10 to $2 per kg of H2 to 

examine in theory its impact on the quantity of imported hydrogen to meet demand short-

ages, although based on the current hydrogen cost assessments in (National Research 

Council, 2008; Ogden and Yang, 2009) it is unlikely the delivered hydrogen cost will be 

below $3.5 per kg.  It was found that if the imported fuel can be obtained for less than 

$2/kg, then all the demand over the 20-year planning horizon should be served by im-

ported hydrogen.  As the imported hydrogen cost increases to $4/kg, in-state production 
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increases to 60% of the in-state demand.  When the imported cost exceeds $8, it is most 

efficient to have all the demand satisfied by in-state production. 

 

5.4 Conclusions and Discussions  

This chapter presents a stochastic dynamic programming model to optimize the sequence 

of gradually building an energy system and simultaneously determine optimal production 

and delivery decisions in each time stage, under demand uncertainty. The proposed mod-

el integrates dynamic programming and stochastic programming methods to improve the 

effectiveness and flexibility of planning and operational decisions.  This problem could 

also be formulated as a multistage stochastic programming model, as in several previous 

studies on the dynamic location problem mentioned in the introduction.  However, the 

proposed model may provide some modeling flexibility such as integrating a computer 

simulation in the single-stage sub-problem model.  It may also have computational ad-

vantages when the size of the scenario tree is the main cause for numerical difficulties.   

 

A case study based on hydrogen system in Northern California was also examined in this 

paper. Numerical experiments show a clear advantage for stochastic modeling techniques 

in producing more reliable and robust design solutions under a highly uncertain decision 

environment.  Based on the case study results and sensitivity analyses, some important 

policy implications have been identified.  In general, it was found that the capital cost 

was the major cost driver of the total system cost and varying the electricity price could 

change the operational cost significantly.  Sensitivity analyses on the penalty cost re-
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vealed that optimal in-state production levels correspond to different hydrogen import 

costs.   

 

An immediate extension of this work would be to consider plant capacity as a planning 

decision variable.  The dimension of planning decisions would be increased to three: lo-

cation, time, and size.  Also, intermediate storage facilities can be introduced into the sys-

tem to store excess produced hydrogen in order to mitigate fluctuations in production cost 

due to changes in the supply and prices of feedstocks.  Other extensions are considering 

more than one hydrogen distribution modes (pipeline and onsite truck) and including 

other sources of hydrogen (such as renewables) or CCS. 

 

This chapter examines incorporating stochastic effects into the formalism, which is a ma-

jor contribution, but more work remains to make this a realistic planning tool for H2 in-

frastructure because of the multiple pathways possible.  These modifications would have 

an impact on the complexity of the problem.  Developing an efficient solution algorithm 

for the extended work is the focus of our ongoing efforts. 
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Chapter 6  Conclusions and Future Work 

 

 

 

 

Summary  

This section highlights original contributions to the improvement of sustainability in in-

frastructure systems and outlines strategic research plans in the future.  

 

6.1 Conclusions  

The research effort in Critical infrastructure Protection problem has been summarized in 

Chapter 3 with a focus on the development of robust resource allocation strategies in an 

uncertain decision-making environment.  Both uncertain service availability and accessi-

bility were captured through a stochastic modeling framework that explicitly modeled 

random scenarios of accessibility costs, with built-in reliability constraints on service 

availability.  It extended the existing literature in disaster mitigation and emergency ser-

vice.  In addition, the study has explored the performances of different modeling ap-

proaches (i.e., deterministic, stochastic programming, and robust optimization) to reflect 

various risk preferences.  Based on the results of Singapore case study, stochastic model-

ing methods in general offers more robust allocation strategies compared to deterministic 

approaches in achieving highest possible coverage to critical infrastructures under risks.  

However, it has also been noticed that different modeling approach has its own emphasis 
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of objective and different data and computational needs. Therefore, how to compare and 

evaluate solutions from different models is still arguable.   

 

The research efforts in renewable energy infrastructure system for the first time bridge 

two knowledge domains: operations research and energy technology. The emphasis was 

given to energy supply chain system design and management (in Chapter 4) and transi-

tional energy system planning (in Chapter 5).  The environmental and economic sustain-

ability and system reliability are the main measurements in the studies.   

 

In Chapter 4, feedstock and fuel storage facilities are included in the supply chain to pro-

vide self-healing functions (via smoothing and redistribution) against unexpected system 

risks caused by supply seasonal variations and demand fluctuations.  The study aims to 

seek the least-cost yet reliable infrastructure systems.  A stochastic mixed-integer pro-

gramming model that integrates feedstock seasonality, geographic variation, and demand 

fluctuation was developed, with the goal of minimizing the total expected cost of the en-

tire supply chain from a life-cycle viewpoint.  The model was evaluated using a case 

study considering California corn stover feedstock resources to produce biofuel.  It was 

found that the cellulosic ethanol is cost competitive in a range between $2.03 and $2.75 

per gallon depending on the demand.  The case study also demonstrated the role of stor-

age facilities in smoothing the negative impact of supply seasonality and demand fluctua-

tion on the energy supply chain system.   
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In the process of transforming the current energy supply system to a renewable energy 

based society, dynamics caused by the evolving technologies and societal changes as well 

as uncertainties involved in resource supply and demand market fluctuations are the ma-

jor issues.  However, they have not been received sufficient attention in the existing re-

search literature.  The research work presented in Chapter 5 filled this void.  From a 

modeling perspective, the conventional time-independent snapshot method was inade-

quate for such as transitional system planning and multistage stochastic dynamic model 

that integrates the spatial and temporal dimensions was proposed for sequentially build-

ing a renewable energy production and distribution system under dynamics and uncer-

tainties.  The model was applied to develop the hydrogen supply system in Northern Cali-

fornia with the assumed hydrogen fuel cell vehicle (HFCV) market penetration rate grow-

ing from 1% to 25% over a 20-year period.   

 

6.2 Future Work  

Sustainable infrastructure system development is highly interdisciplinary, which requires 

addressing multiple disciplines in an integrated modeling framework.  A good example is 

the development of energy infrastructure system, in which the energy technology was 

successfully integrated into an optimization modeling framework to achieve better cost 

competitiveness and pathway reliability.  It also evokes more interdisciplinary research 

efforts and some of immediate research extensions are briefly discussed as follows, 

which mainly cluster in risk management in energy supply chains, integrated multi-

energy-pathway portfolio, and interdependencies between built environment and ecosys-

tems.  



 

 

119 

• Develop sustainable energy infrastructure system with an emphasis on robustness 

and security 

To improve the system resilience against recurrent and non-recurrent risk threats, critical 

infrastructure protection should be addressed along with the system planning.  Recurrent 

risks are those repeating occurrences which affect daily system operations, such as, feed-

stock supply fluctuations and demand uncertainties.  A key research question will be how 

to establish a system and maintain normal operations in an economically viable way un-

der uncertainty.  Stochastic programming method is often used to develop robust strate-

gies for system planning and operations across all possible scenarios.  In contrast, non-

recurrent risks are rare but have more severe impacts on the system.  Examples include 

disruptions in resource supply and/or on transport networks caused by natural disasters or 

human errors and attacks.  Most existing studies focus on quantifying a disaster’s impacts 

on energy systems in post-disaster scenarios. The results have informative policy implica-

tions but do not tell how to improve system reliability to avoid or reduce potential losses.  

By integrating knowledge in risk analysis, operations research (such as, stochastic pro-

gramming and robust optimization), and survivable network design into the planning of a 

robust energy system, it is able to survive through future extreme events, such as, earth-

quakes and hurricanes.  

 

• Develop sustainable multi-energy-pathway system 

Alternative energy can come from a wide range of feedstock sources including biowastes 

(e.g., residues of agriculture, forestry and municipal wastes) for biofuel production as 

studied in the current research.  Other potential natural renewable sources include but not 
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limited to solar, wind, and water.  However, different supply sources require different 

energy supply pathways.  How to strategically integrate multiple energy systems to form 

a sustainable energy portfolio is another main research question to be pursued. Given the 

projected growth of energy demand in the future, all possible energy sources will be 

needed to play a collective role in sustaining future energy supply, which makes the ques-

tion of sustainable energy portfolio design extremely important. A thorough assessment 

for all possible alternative energy technologies will be necessary.  

 

� Consider land-use and ecosystem impacts on energy system sustainable development 

Land-use and ecosystem impacts cannot be ignored in developing sustainable energy sys-

tems. The design of an energy system is often subject to restricted land use and affected 

by ecosystem interactions.  For example, an economically optimal (i.e., minimum costly 

or maximum profitable) refinery site may not be ecologically viable or may violate land-

use policies. Meanwhile, the operation of an existing energy system also impacts the 

evolvement of future ecosystem and land use.  These interdependencies between built 

systems and ecosystems will be integrated into strategic energy system planning.  Some 

key research questions to be answered through this research will include: (1) given exist-

ing land use and environmental policies, what will be a sustainable trajectory for future 

energy system growth? (2) how would transition of energy systems to alternative tech-

nologies impact land use and ecosystems? 
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