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PREFACE 

The California Energy Commission Public Interest Energy Research (PIER) Program supports 
public interest energy research and development that will help improve the quality of life in 
California by bringing environmentally safe, affordable, and reliable energy services and 
products to the marketplace. 

The PIER Program conducts public interest research, development, and demonstration (RD&D) 
projects to benefit California. 

The PIER Program strives to conduct the most promising public interest energy research by 
partnering with RD&D entities, including individuals, businesses, utilities, and public or 
private research institutions. 

PIER funding efforts are focused on the following RD&D program areas: 

 Buildings End-Use Energy Efficiency 

 Energy Innovations Small Grants 

 Energy-Related Environmental Research 

 Energy Systems Integration 

 Environmentally Preferred Advanced Generation 

 Industrial/Agricultural/Water End-Use Energy Efficiency 

 Renewable Energy Technologies 

 Transportation 

 

Updating the PECAS Modeling Framework to Include Energy Use Data for Buildings is the interim 
report for the Methodology to Establish Regional Energy Baselines project (contract number 
500-10-033) conducted by UCLA’s  Institute  of  the  Environment  and  Sustainability (subcontract 
to UC Davis Urban Land Use and Transportation Center). The information from this project 
contributes  to  PIER’s  Transportation Research Area. 

For more information about the PIER Program, please visit the Energy Commission’s website at 
www.energy.ca.gov/research/ or contact the Energy Commission at 916-654-4878. 
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ABSTRACT 

Building operations nowadays account for an important portion of total energy consumption. 
This study investigates the consumption of electricity and natural gas for building operations 
for several categories of residential and non-residential buildings. The purpose of the study is to 
update the Production Exchange Consumption Allocation System (PECAS) land use modeling 
framework to include energy components. The proposed approach is useful to serve as part of 
an urban metabolism framework, creating a methodology to account for environmental and 
energy balances of cities and complex regions. Annual electricity and natural gas consumption 
data from utility companies operating in Los Angeles County are used to build an energy 
database to study energy consumption in buildings, based on the analysis of almost 450,000 
Energy Analysis Zones. Additional data on building stock, climate zones, geomorphological 
data, and sociodemographics are collected from multiple sources and integrated into the energy 
database. We conduct statistical analysis of utility data and estimate linear regression models to 
predict energy consumption in buildings. Electricity and natural gas consumption in residential 
and non-residential buildings are studied in relation to several variables, including building use 
type, building size, and climate zone. Energy profiles are created for several categories of 
buildings. Annual energy consumption is estimated for various types of residential units. 
Electricity and natural gas consumption per square foot of developed floorspace is estimated for 
various categories of non-residential buildings. We validate the results of the analyses through 
validity checks carried out using data from independent sources, including the California 
Residential Appliance Saturation Study (RASS) and the Commercial End-Use Survey (CEUS),  
given the limited amount of energy data provided by the utility companies, to date, and the lack 
of overlapping data for the consumption of both electricity and natural gas in the same zones. 
The results of the study are useful to update the PECAS land use modeling framework, and 
form part of the baseline study to estimate energy and greenhouse gas balances in an urban 
metabolism framework for the analysis of the environmental impacts of complex urban regions. 
The results also allow us to estimate the total energy consumption and greenhouse gas 
emissions for residential and commercial building operations through the application to the 
total residential and commercial building inventory in the region. These results are then useful 
for the evaluation of possible energy savings in buildings. 

 

Keywords: Energy consumption, building operations, urban metabolism, land use modeling, 
energy mapping, energy efficiency, urban sustainability, sustainable communities 

 

Please use the following citation for this report: 

Circella, Giovanni, Robert A. Johnston, Andrew J. Holguin, Eric W. Lehmer, Yang Wang and 
Mike McCoy (University of California Davis Urban Land Use and Transportation 
Center). 2013. Updating the PECAS Modeling Framework to Include Energy Use Data 

for Buildings. California Energy Commission. February 2013.  
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EXECUTIVE SUMMARY 
Urban  metabolism  (UM)  is  a  comprehensive  systems  approach  for  assessing  a  city’s  
sustainability. It measures the total energy, materials, and waste products that flow into and out 
of an urban area. As part of an urban metabolism analysis of the environmental impacts in 
complex regions, the Production Exchange Consumption Allocation System (PECAS) land use 
modeling framework is used to simulate the interactions among transportation, land use 
development and energy consumption.  

The PECAS modeling framework is a complex land use transportation modeling framework 
that allows simulating land use development and the allocation of economic activities. It has the 
ability to assess and depict the interregional effects of major changes to land uses, economics, 
and transportation on the economy and the environment through the forecast of the interactions 
among economic activities, residential locations and travel behavior. Several updates were 
introduced in the PECAS modeling framework to properly account for energy consumption 
and greenhouse emissions associated with the various sectors of economic activities, land use 
and building operations.  

The interim methodology report Methodology to Establish Regional Energy Baselines (Pincetl et al., 
2012) provides a detailed description of the process that was followed to update the PECAS 
model to account for the energy consumption and greenhouse emissions associated with 
commodity flows and economic activities in a region. The approach is based on the integration 
of energy consumption data (for both direct, indirect, and lifecycle effects) that are associated 
with the production (and/or consumption) of each unit of economic output by economic sector 
(expressed in US$) in the PECAS modeling framework. 

The remainder of this report describes the process that was developed in order to update the 
PECAS model also to account for energy consumption associated with building operations. This 
task was developed through the analysis of an extensive dataset for energy consumption in 
buildings, built using data for energy consumption from utility companies in Los Angeles 
County. Several types of buildings are studied to account for differential energy consumption, 
various land use types and building categories. A comprehensive database that includes almost 
450,000 energy analysis zones (EAZs) is developed as part of the activities. The database is 
populated with energy consumption data obtained from the utility companies, information on 
the building stock in the region, climate and geomorphological data, and sociodemographics. 

In the development of the research project, energy profiles are defined for single-family and 
multi-family residential buildings, as well as for several categories of non-residential buildings. 
The results of the analysis allow studying the variation of energy consumption for building 
operations in different floorspace types. Also in consideration of the limitations to the available 
data provided by the utility companies, in terms of both area of coverage and level of spatial 
aggregation, we run a series of validation checks using data from independent sources, such as 
the  California  Energy  Commission’s  Residential  Appliance Saturation Surveys (RASS) and the 
Commercial End Use Survey (CEUS).  
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The final results of the analysis confirm the impact of climate (i.e. California climate zones) as 
an important explanatory variable for energy consumption. Additionally, the impact of size and 
type of residential units is estimated, with a stronger impact on energy consumption associated 
with larger single family housing units, in particular for those that are equipped with a pool in 
their premises. Detailed analyses of per capita energy consumption (for electricity and natural 
gas) are carried out, and they highlight the role of building age, slope and aspects as important 
predictors of energy consumption. In particular, the age of the buildings is responsible for 
significant changes in energy consumption patterns in correspondence to the various thresholds 
for the implementation of Title 24 energy efficiency standards in California). 

The analysis of energy consumption for non-residential buildings highlights many differences 
in energy consumption existing among various building categories. Estimated energy 
consumption for a square foot of floorspace types are computed for several categories and 
inform the modeling system on the consumption of electricity and natural gas associated with 
the different building types.  

The analysis of energy consumption for building operations and the update of the land use 
modeling framework with energy data is fundamental in the definition of the baseline urban 
metabolism approach for the estimation of energy consumption and GHG emissions in complex 
regions. The application of the proposed approach to the building stock in the area of study 
allows researchers to estimate the distribution of energy consumption by category of building 
type, and it allows forecasts of energy consumption depending on the future expansion and 
modifications of the building stock. Thus, it yields more comprehensive knowledge on the 
formation of GHG emissions and on the energy impacts of various land use and other policy 
scenarios. The updated land use modeling framework provides an updated resource for MPOs 
struggling with SB 375 implementation, and it is useful to develop energy use and GHG 
baseline analyses and policy trend analyses in an urban metabolism framework. 



3 

CHAPTER 1: Introduction 
Urban  metabolism  (UM)  is  a  comprehensive  systems  approach  for  assessing  a  city’s  
sustainability. Urban metabolism measures the total energy, materials, and waste products that 
flow into and out of an urban area. Urban metabolism analysis allows the identification and 
quantification of interactions between transportation, land use, water, waste and energy of the 
urban region to improve understanding of the material basis upon which a complex urban 
system depends. Cities concentrate energy and resources drawn from near and far for use in 
relatively compact spaces and UM is an important method for understanding the relationship 
between cities and the wider environment.   

The first urban metabolism was conducted by Abel Wolman (1965), who estimated the water 
needs for a city of one million people to highlight the potential of resource scarcity over the 
longer term. Since then, over 50 studies have been conducted on cities across the globe. 
However, due to data availability limitations, these studies are typically performed at the scale 
of the whole city using average annual data or impute state or national data to localities. 
Obviously, this approach faces practical challenges and limits the ability of researchers to 
determine the specific metabolism of each place, key to understanding how places may differ 
and what their particular sustainability challenges might be.  A second issue is that measuring 
flows across urban boundaries neglects some of the key metabolic processes within the city such 
as storage (water in aquifers, nutrients in waste dumps, materials in building stocks) (Kennedy 
et al., 2007), or local transportation, including water, energy and materials (Kierstead and 
Sivakumar, 2012).  As Kierstead and Sivakumar point out, the distinction between aggregate 
urban metabolism data and the highly resolved demand data necessary for policy decision 
making into the twenty-first century presents a substantial research challenge. 

As described in the interim report Methodology to Establish Regional Energy Baselines (Pincetl et al., 
2012), this project advances urban metabolism research in three ways. First, researchers employ 
an analytical platform that enables quantification of the direct and embodied energy and 
emissions associated with economic activity occurring within the county. Second, researchers 
assess lifecycle, rather than solely direct, energy and emissions consumed and generated by the 
study area. Finally, researchers use significantly more granular data than in previous urban 
metabolism studies, enabling consideration of spatial patterns of energy use and waste 
production. 

This pilot urban metabolism analysis of Los Angeles County addresses the problem of 
aggregate urban metabolism data and the need for highly resolved data through integrating 
methodologies.  Researchers combine activity-based modeling of land use and transportation 
(using the California PECAS model) with highly disaggregated data on direct flows of 
electricity, gas, and water consumption collected from utilities serving Los Angeles County, 
economic input-output life-cycle analysis by industry sector, process-based life-cycle analysis of 
building materials for 32 building types, and hybrid life-cycle analysis of roadway and parking 
infrastructure. This last component takes into  account  existing  stocks  in  cities  that  are  “stored,”  
as embedded energy that has thus far not been addressed in UM studies. The PECAS model 



4 

provides the data integration and synthesis platform for this analysis.  Flows of solid waste and 
air emissions are also added, with different scales of resolution reflecting data availability. This 
data is then overlaid with county parcel assessor information of land use type, building type, 
and building age, and employment data, socio-demographic data, and other information.   

This report describes the approach that was developed to update the Production Exchange 
Consumption Allocation System (PECAS) modeling framework to include energy data and 
allow the estimation of energy consumption and greenhouse gas emissions in the proposed 
urban metabolism approach. The PECAS modeling framework is a complex land use and 
transportation modeling framework that allows the simulation of land use development and the 
allocation of economic activities. It has the ability to assess the interregional effects of major 
changes to land uses, economics, and transportation on the economy and the environment 
through the forecast of the interactions among economic activities, residential locations and 
travel behavior. Several updates were introduced in the PECAS modeling framework to 
properly account for energy consumption and greenhouse emissions associated with the 
various sectors of economic activities, land use and building operations.  

Chapter 4 in the interim methodology report for this project (Pincetl et al., 2012) provides a 
detailed description of the process that was adopted to update the PECAS modeling framework 
to account for the energy consumption and greenhouse emissions associated with commodity 
flows and economic activities in a region. The approach is based on the integration of energy 
consumption data (for both direct, indirect, and lifecycle effects) that are associated with the 
production (and/or consumption) of each unit of economic output by economic sector of 
activities (expressed in US$) in the PECAS modeling framework. 

The remainder of this report describes the research activities that were developed the update 
the PECAS modeling framework also to account for energy consumption associated with 
building operations. This research project investigates energy consumption patterns for 
residential and commercial buildings in Los Angeles County. The purpose of the research is to 
contribute to the energy baseline assessment for Los Angeles County, and to provide detailed 
information that can inform the land use modeling framework on energy consumption from 
buildings. The project is based on the analysis of energy consumption records provided by the 
utility companies that operate in Los Angeles County and on the generation of a comprehensive 
dataset that includes additional data from different sources that provide information on the 
building stock, land use patterns, geographic location, climate data, and sociodemographics. 

Accurate accounting for energy consumption and greenhouse gas emissions from buildings is 
rather difficult for areas with large and complex land uses. Aggregate zonal estimates of energy 
use can be obtained from utilities, while individual building energy use by building type can be 
estimated from building characteristics. Previous studies have attempted to define energy 
baseline assessments for cities and regions. For example, a simple approach to generate GHG 
accounting would be to inventory the buildings in a zone and compute their estimated energy 
use from the  literature.  This  approach,  if  useful  to  produce  a  “snapshot”  of  the  estimated  energy  
use in a zone based on past research and the building stock, is not sensitive enough to the 
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effects of possible changes in land use, building technology, and building operations policies 
that are designed to reduce energy consumption and resulting greenhouse gas emissions.  

Many studies have investigated energy consumption in buildings. Previous research has 
identified the main drivers of energy consumption, and has provided useful insights on the 
impact of technological solutions, energy costs, and building efficiency standards on energy 
consumption. These studies investigate the explanatory variables behind energy consumption 
in buildings and evaluate the potential for energy consumption reduction that could be 
achieved through the adoption of policies that favor energy efficiency and reduce 
environmental impacts from buildings. 

This research project builds on previous experiences from the literature to develop an energy 
assessment for the building sector in Los Angeles County, one of the most populous and 
economically dynamic regions in the United States. The project aims at informing public 
agencies and decision-makers on the energy consumption and greenhouse gas emissions 
associated with the operation of various categories of existing buildings. The project 
investigates consumption of electricity and natural gas in the current stock of buildings in this 
region, at a highly disaggregated level of spatial details, through the definition of almost 
450,000 Energy Analysis Zones in Los Angeles County. Through the estimation of econometric 
models, it provides energy profiles based on information on building age, location, land use, 
and sociodemographic variables. The results of the project are designed to serve as part of a 
land use modeling and urban metabolism approach for environmental analysis in the region.  

The study builds on the previous experience developed by the researchers at the Urban Land 
Use and Transportation Center (ULTRANS) of the University of California, Davis on the 
treatment of spatial information and the development of land use and transportation modeling 
solutions to support informed decisions in planning. The study integrates data developed in 
previous projects carried out at UC Davis and produces information on energy consumption for 
building operations that is integrated in the PECAS land use modeling framework. The results 
of the project are useful for the definition of an energy baseline assessment for Los Angeles 
County. Additionally, they will be useful to inform land use models on the impact of changes in 
land use features on energy consumption in the area of study, as part of an ongoing modeling 
framework for economic activities, land use, transportation and energy use. In addition to 
providing information on energy consumption from buildings for Los Angeles County, the 
project also contributes to the current research in the field, through the development of a 
detailed modeling approach that studies energy use and environmental pollution effects from 
the building stock and that is of interest for many settings with complex land uses. 

In the development of the project, researchers analyzed data from multiple sources to (1) create 
an inventory of the built floor space in Los Angeles County using information obtained from 
the  Assessor’s  data;  (2)  generate  a  comprehensive  database  to  study  energy  consumption  in  
buildings that includes information on land use and the building stock, geographical location, 
climate data and sociodemographics; (3) analyze energy consumption using utility records 
obtained from the local utility companies that operate in the county; (4) estimate energy 
consumption models for various categories of existing buildings in the County; and (5) compute 
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an assessment of energy consumption and the resulting greenhouse gas emissions in the region 
that can be used in an urban metabolism study.  

The study is based on the integration of multiple sources of data and the development of energy 
consumption models from the analysis of utility records obtained from the local utility 
companies. The project analyzed data from Los Angeles County, and it was designed to support 
knowledge development on the impact of specific variables and selected building and 
environmental characteristics on energy efficiency. As part of this project, the researchers 
developed an innovative approach that integrates data collected from different sources and at 
different levels of spatial aggregation, and a comprehensive set of analytical tools that is able to 
investigate energy consumption in buildings in the area of study. Although these analytical 
tools and the spatial aggregation process are of general validity for the entire region of study, 
the completeness of the results from this study was somewhat limited by the availability of 
energy consumption records provided by local utility companies. Unfortunately, contrary to the 
expectations and previous contacts with utility companies and local administrators in the area 
of study, only two utility companies agreed and were able to provide good quality data on 
energy consumption in Los Angeles County, at a useful level of spatial disaggregation for this 
project. The Los Angeles Department of Water and Power (LADWP) provided data on the 
consumption of electricity in the city of Los Angeles, and the Long Beach Gas and Oil (LBGO) 
provided data on the consumption of natural gas in the Long Beach area.1  Additional utility 
companies that operate in the area agreed to share energy consumption data, but no additional 
data were delivered in a useful format and in timely manner to allow use for this project, 
mainly as a result of possible concerns about privacy issues associated with the release of these 
data. The limits of the available data from utility companies limited the ability of the current 
project to cover the entire area of study and analyze in full depth the contributions to the 
formation of energy consumption behaviors. 

Finally, an important source of limitation of the current study is associated with the lack of 
spatial overlap for the available data on the consumption of both energy and natural gas (the 
two main sources of energy that are used in buildings in the area of study). Such limitation, 
which derives from the availability of energy consumption data only for the areas respectively 
served by LADWP (electricity consumption) and LBGO (natural gas consumption) may cause 
distortions in the analysis of energy consumption in buildings2 through the estimated energy 
consumption models.  

                                                      
1 The limitation of the available data on energy consumption somewhat hampered the ability to develop 
comprehensive analysis of energy consumption in buildings in the entire area of study. The researchers 
made all necessary steps to develop alternative approaches that could reduce the disruptions caused by 
this issue on the quality of the research, as described in the following sections of this report. Despite the 
limits of the available data, the validity of the proposed analytical tools remains unchanged. The 
robustness of the results will increase when additional energy consumption data will become available. 

2 It might be responsible for the presence  of  “unobserved  variables  biases”  in  the  estimation  of  energy  
consumption models, as discussed in Chapter 7 of this report. 
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Researchers originally planned, in the design of the study, to analyze energy consumption in 
buildings through the estimation of jointly estimated models for energy consumption of both 
electricity and natural gas. The lack of spatially overlapping data for the consumption of these 
two energy sources made it necessary to change the original research methodology. The 
estimation of independently estimated multiple linear regression models for the consumption of 
electricity and natural gas, as imposed by the limited data, may be responsible for the presence 
of eventual unobserved variable biases in the study. Natural gas and electricity are potential 
substitutes at least for some of the energy uses in buildings (e.g. heating in the residential 
sector), and the inability to estimate the consumption of both energy sources jointly may limit 
the validity, and robustness, of part of the results of the estimated models for energy 
consumption. 

The latter sections of this document describe the steps that were developed by the researchers to 
deal with the issues associated with the limits of the available energy consumption data, to 
compare the results from the study with independent sources and to assess the impact of any 
eventual unobserved variable biases in the analysis of energy consumption in buildings. 
Chapter 7 also presents some simplified approaches for the analysis of energy consumption in 
buildings that were estimated using alternative datasets that do not involve the presence of 
unobserved variable biases, as in the case of data from the California Energy Commission's 
Residential Appliance Saturation Study (RASS) and Commercial End-Use Survey (CEUS). 
These simplified models of energy use, which miss some of the depth of the analysis that is 
allowed by the more detailed energy consumption models built on the analysis of energy utility 
records, can be used as benchmarks for the analysis of energy use in buildings for this project.  

Despite the limits of the energy consumption data provided, to date, by the utility companies in 
Los Angeles County, the validity of the analytical tools developed as part of this study remains 
untouched. This research project embodies the first comprehensive study for the estimation of 
energy consumption in one of the most important and energy intensive metropolitan areas of 
the United States that is based on the analysis of utility records at a very fine level of spatial 
aggregation and that integrates many different sources of data for buildings, land use, climate 
data and sociodemographics. A great potential is associated with the full development of the 
proposed approach in future extensions of the project, when additional data on the 
consumption of electricity and natural gas will finally become available from the remaining 
utility companies that operate in the area. Using the analytical tools that have been developed 
in this research, it will be possible to estimate more comprehensive energy consumption models 
and  investigate  in  more  detail  consumers’  behavior  associated with energy consumption. 
Besides, the application of the updated land use modeling framework, which includes the 
energy modeling component for building operations, will offer important insights on the 
forecasts for future energy and environmental impacts of land use development and of the 
policies developed to increase energy efficiency in buildings. 
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CHAPTER 2: Background 
Several studies have investigated energy consumption in buildings. This section provides a 
summary overview of the relevant studies that have investigated the topic, including both 
studies that have focused on the analysis of energy consumption in residential buildings as well 
as in non-residential (and predominantly commercial) buildings. For each study, we reviewed 
the approach that was used, the available data, the level of spatial aggregation that was used in 
the analysis of energy consumption, and the main findings from the research. This literature 
review, even if not at all exhaustive of a field that is continuously evolving with many research 
projects being currently carried out, provides a brief overview of the main research streams that 
have focused on the analysis of energy consumption in buildings. It summarizes the 
background for the current research, and it identifies the supporting elements that led to the 
definition of the modeling approach for the analysis of energy consumption in buildings that is 
used in this study. 

Many different approaches can be used to model the various aspects of energy supply and 
demand. Jebaraj and Iniyan (2006) conducted a review of the various emerging issues related to 
energy modeling, and discussed the various categories of models that have been developed to 
analyze certain aspects of energy production and consumption, including energy planning 
models, energy supply–demand models, forecasting models (e.g., commercial energy models, 
renewable energy models, etc.), optimization models, specific methodologies used to estimate 
energy consumption (e.g. using neural networks), and emission reduction models. All these 
models have received important attention in scientific research, given the importance of the 
topic, and the need for researchers and stakeholders to identify key variables that affect the 
demand for energy use, the sensitivity of energy demand (and supply) to perturbations in the 
economic, legislative and policy frameworks, and the environmental impacts associated with 
energy use.  

Final energy consumption is usually split into three main sectors: industry, transport, and 
others, including the service sector and residential buildings (Figure 1). Energy consumption in 
buildings other than residential dwellings constitutes a sizeable fraction  of  ‘other’  sectors.  In  
developed countries, buildings account for 20-40% of the total final energy consumption.3 The 
service sector, which covers all commercial and public buildings, includes many types of 
buildings (schools, restaurants, hotels, hospitals, museums, etc.) with a wide variety of uses and 
energy services - heating, ventilation and air conditioning (HVAC), domestic hot water (DHW), 
lighting, refrigeration, food preparation, etc. 

In non-domestic buildings, the type of use and activities make a huge impact on the quality and 
quantity of energy services needed. Office and retail are the most energy intensive building 
categories typically accounting for over 50% of the total energy consumption for non-residential 
buildings. Other important building types that are responsible for a sizable portion of energy 
                                                      
3 In 2004, the EIA estimated the final energy consumption by building sectors: 18% commercial and 22% 
residential (in total 40% of final energy consumption). 
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consumption are hotels and restaurants, hospitals and schools.4 According to the EIA data, 
HVAC is the main end use with a weight close to 50%, lighting follows with 15% and 
appliances with 10%. Building type is critical in how energy end uses are distributed and in 
their energy intensity: it is therefore essential to develop independent studies on energy 
consumption by building types. 

Figure 1: Share of Energy Consumption by Major Economic Sectors (left) and Trends in Energy 
Consumption in 1949-2010 (right) 

  

In the Unites States, offices account for 17% of total non-residential area and about 18% of the 
energy use, equivalent to a 3.2% of the total consumption. Moreover, the amount of artificial 
lighting required, IT equipment use and air-conditioned area have steadily increased over time. 
Three key energy end uses, respectively HVAC, lighting and appliances, add up together to 
about 85% of the total energy bill for these buildings. 

Early behavioral models for the estimation of energy use in residential buildings have been 
proposed since several decades ago, while the discussion on technological innovations and their 
impact on energy conservation started to be an important topic in this research field (Darley, 
1978). Van Raaij and Verhallen (1983a, 1983b) developed a behavioral model of residential 
energy use, which included different end uses for which energy is consumed in a household. 
Several more comprehensive, and accurate, studies have followed, accounting for the various 
end uses for which energy is consumed in a household and the rationale behind the adoption of 
specific energy consumption patterns (Keirstead, 2006; Lopes et al., 2012). 

                                                      
4 In 2003, the EIA estimated the energy use in the US commercial sector by building type: Retail 32%, 
Offices 18%, Hotels and restaurants 14%, Schools 13%, Hospitals 9%, Leisure 6%, and Others 9%. 
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Several studies have attempted to model energy use in residential buildings as a dependent 
variable of land use and building characteristics. The physically-based model BREHOMES 
(Building Research Establishment Housing Model for Energy Studies) has been used to model 
the energy use of the UK housing stock. Shorrock and Dunster (1997) provide a description of 
the model. The model was useful to develop scenarios for energy use and carbon dioxide 
emissions in future years. It provided information on a reference scenario, which represents 
what is likely to happen if current trends continue, and compared it with the possible outcomes 
from a number of energy efficiency measures (based on the technology available at the time the 
study was developed). This study also highlighted the importance of the time at which the 
outcomes of the proposed policies are achieved, as a central point in the evaluation of the future 
scenarios. 

A related approach, which focuses on energy use at the level of an individual building is 
illustrated by the Hong Kong Building Environmental Assessment Method (HK-BEAM). Lee, 
Yik and Burnett (2007) describe the building energy performance assessment method 
implemented in the latest versions of the HK-BEAM model. This model is based on the energy 
budget approach, which has been formulated to rate energy performance of a wide range of 
new and existing buildings. This flexible approach can cater to a wide range of building types 
and allows energy performance trade-offs among various components in a building. The energy 
budget  for  an  assessed  building  is  the  predicted  annual  energy  use  for  a  ‘baseline’  building.  The  
baseline building model has the same shape and dimensions, and comprises the same mix of 
areas and types of premises as the assessed building (except for window-to-wall ratio 
adjustment to meet the relevant regulatory requirement). It also incorporates a range of 
standard (default) characteristics such that the model represents a building that has a level of 
energy performance that barely meets the relevant regulatory requirements or meets only basic 
design quality. The predicted annual energy use of the assessed building will be based on its 
specific design characteristics. 

In a recent study, Miller (2011) applies parametric energy simulation modeling to assess the 
impact of different urban forms, and combination of building types, on the consumption of 
energy in buildings in Vancouver (Canada). The study identifies different energy patterns that 
can be explained by the specific combinations of urban forms and building types, isolating them 
from the effects of building construction standards and occupant behavior. 

The analysis of energy consumption in different building categories is the object of the study 
from Pérez-Lombard et al. (2008): this study analyzes the available information concerning 
energy consumption in buildings, in particular as it relates to heating, ventilation, and air 
conditioning systems. The authors discuss energy consumption data for residential and non-
residential buildings in different countries, comparing different energy end uses. They also 
discuss the difficulty in accessing information on energy use in non-domestic buildings, where 
the type of use and specific activities make a huge impact on the quality and quantity of energy 
services needed. Office buildings are identified together with retail as buildings responsible for 
very large energy consumption and CO2 emissions. Finally, the authors conclude that it is 
essential to make available comprehensive building energy information, in order to allow 
energy consumption analysis and forecast, and plan efficient energy policies. The assessment of 
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energy balance in individual buildings is also the topic of the investigation from Hani and Koiv 
(2012), who analyze the thermal and electrical energy consumptions for different types of 
residential, educational and other public buildings. The study considers the impact of climate 
variables on energy consumption (as an effect of cooling vs. heating days) and separates the 
components of energy consumption by energy end use in the building.  

Tso and Yau (2007) performed a study comparing three methods of predicting electricity 
consumption in buildings: regression analysis, decision tree, and neural networks. They found 
that decision tree and neural networks performed better in different seasons but the difference 
in error between the three methods were minimal, indicating that, as a predictive tool, linear 
regression is a valid method, and usually the easiest to develop.  

Regression analysis has been the most popular modeling technique in predicting energy 
consumption. The least-squares method is generally used for estimation purposes in the 
multiple-regression model. Once regression coefficients are obtained, a prediction equation can 
then be used to predict the value of a continuous output (target) as a linear function of one or 
more independent inputs. The popularity of the regression models may be attributed to the 
interpretability of model parameters and ease of use. However, the major conceptual limitation 
of all regression techniques is that one can only ascertain relationship but cannot identify causal 
mechanisms among variables. Moreover, the estimation of linear regression models is based on 
the assumptions of normality and of independent distributions of the explanatory variables, 
which are often violated in many empirical studies. 

For neural network models, feedforward network is the simplest and most popular type of 
network. Training a neural network is the process of setting the best weights on the inputs of 
each of the units and backpropagation (backprop) is the most common method for computing 
the error gradient for a feedforward network. Neural networks perform well in applications 
when the functional form is nonlinear. They are especially useful for prediction problems where 
mathematical formulae and prior knowledge on the relationship between inputs and outputs 
are unknown. A disadvantage in using neural network for a regression analysis is that it does 
not provide p-values for testing the significance of the parameter estimates. Moreover, a 
preliminary step of feature selection before learning is needed. Artificial neural networks with 
hidden layers are better as classifiers for problems involving nonlinear decision hyper-surfaces, 
but are much harder to interpret.  

In decision tree modeling, an empirical tree represents a segmentation of the data that is created 
by applying a series of simple rules. These models generate set of rules that can be used for 
prediction through the repetitive process of splitting. The most common tree methods include 
chi-squared automatic interaction detection, classification and regression trees. A major 
advantage of the decision tree over other modeling techniques is that it produces a model that 
can represent interpretable rules or logic statements. The explanation capability that exists for 
trees producing axis parallel decision surfaces is an important feature. Besides, classification can 
be performed without complicated computations and the technique can be used for both 
continuous and categorical variables. Furthermore, decision tree model results provide clear 
information on the importance of significant factors for prediction or classification. However, 
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decision tree induction generally does not perform as well as neural networks for nonlinear 
data, and it is susceptible to noisy data. The technique is more suitable for predicting categorical 
outcomes and, unless visible trends and sequential patterns are available, decision trees are less 
appropriate for application to time series data. 

The use of alternative analytical methods has not been popular in the energy consumption 
literature. While the regression analysis method is supported by statistical theories as 
producing good estimates according to certain statistical properties (for instance, being the best 
linear unbiased estimator), other approaches such as decision tree and neural network are 
useful in developing predictive models in other fields. In the past decade, advancements in 
database management and improvements in computing speed have led to new ways of 
conducting data analysis. Data mining is now receiving attention and is being recognized as a 
newly emerging analysis tool. When searching for a predictive model, common practice in data 
mining is to develop various models using different approaches, then select a final model after 
comparing their accuracies according to some model selection criteria. 

Kalogirou and Bojic (2000) adopt an innovative method for the estimation of energy 
consumption in buildings. The energy consumption of the building is studied depending on the 
thickness of the masonry, the building insulation and the season. Simulated data for a number 
of cases are used to train an artificial neural network (ANN) in order to generate a mapping 
between the easily measurable inputs and the desired output, i.e., the building electricity 
consumption (in kWh).  

Short-term weather patterns are an additional factor that can cause substantial spikes in 
household electricity consumption. The lack of comprehensive information on household 
characteristics, however, can make the development of accurate models difficult. As a result, 
several groups (Mihalakakou, et al., 2002; Beccali, et al. 2008) have used artificial neural network 
(ANN) models for short-term prediction of electricity demand. 

Mihalakakou et al. (2002) use a neural network model, for estimating the energy consumption 
time series of a residential building in Athens using several climatic parameters as inputs. These 
parameters are hourly values of the energy consumption, for heating and cooling purposes in 
buildings. The primary objective of the study is to examine the ability of neural network 
systems to estimate the hourly values of energy consumption for a residential building. The 
second objective is to examine the feasibility of the neural network system in predicting future 
values of energy consumption  using  as  inputs  “multi-lag”  predicted  values  of  ambient  air  
temperature and total solar radiation time series. The authors found that the neural network 
approach is able to estimate building energy consumption rather successfully for both the warm 
and the cold period of the year.  

Beccali et al. (2008) present a forecasting model for the short-time prediction of the household 
electricity consumption related to a suburban area of Palermo, Italy.  An Elman artificial neural 
network (ANN) model predicts the household electric energy demand of the investigated area 
and evaluates the influence of Heating, Ventilation, Air Conditioning (HVAC) equipment on 
the overall consumption. The model estimates the electricity consumption for each hour of the 
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day, starting from weather data and electricity demand related to the hour before the hour of 
the forecast. The model was designed to predict, one hour ahead, the intensity of the electric 
current supplied to a sub-urban area of the town of Palermo, characterized by the sole presence 
of household users.  

Artificial neural network models have also been used to model urban heat islands, and their 
impact on energy demand (Kolokotroni et al., 2010; Gobakis et al., 2011). Kolokotroni et al. 
(2010) describe a method for predicting air temperatures within the Urban Heat Island at 
discrete locations, based on input data from one meteorological station in London. The paper 
describes a method that can be applied to other cities using historical air temperature data, in 
many cases available through air pollution networks or meteorological stations. The authors use 
London as a case-study to describe the method and its applications. The model is capable of 
predicting site specific hourly air temperature within the Urban Heat Island based on input 
data from one meteorological station for the time the prediction is required, and historic 
measured air temperatures within the Greater London Area. Gobakis et al. (2011) adopt a 
similar approach, using artificial neural networks and learning paradigms for predicting the 
intensity of urban heat islands in Athens. They present several variations on the neural 
networks architectures, and evaluate the feasibility of predicting urban heat island phenomena 
using a limited data series. The Athens case study was used to demonstrate the feasibility and 
accuracy of the overall approach. The methodology presented showed that the urban heat 
island intensity can be predicted quite accurately for at least a 24-h prediction horizon using a 
limited set of data.  

Yu et al. (2010) develop a building energy demand predictive model based on the decision tree 
method. In the study, the method is applied to estimate residential building energy 
performance indexes by modeling building energy use intensity levels. The results demonstrate 
that the use of decision tree method can classify and predict building energy demand levels 
accurately, identify and rank significant factors of building energy use intensity automatically. 
One of the advantages of this method, as suggested by the authors, is associated with its ability 
to predict categorical variables and generate accurate predictive models with interpretable 
flowchart-like tree structures that enable users to quickly extract useful information on the 
studied phenomena. 

In a recent energy consumption study, Howard, et al. (2012) build a model to estimate the 
building sector energy end-use intensity (in KWh/m2 of floor area) for space heating, domestic 
hot water, electricity for space cooling and electricity for non-space cooling applications in New 
York City. The model assumes that such end use is primarily dependent on building function 
and not on construction type or the age of the building. The modeled intensities are calibrated 
using 5-digit ZIP code level data  reported  by  the  New  York  City  Mayor’s  Office  of  Long-Term 
Planning and Sustainability on the annual electricity and natural gas, steam, or fuel oil 
consumption for 191 ZIP codes. End-use ratios are derived from the Residential Energy 
Consumption Survey (RECS)  and  CBECS’s  Public  Use  Microdata.  The  results  provide  the  ability  
to estimate the end-use energy consumption of each tax lot in New York City. Annual end-use 
energy consumption intensities are developed by performing a robust multiple linear 
regression to obtain electricity and total fuel intensities for eight different building functions: 
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residential 1–4 family, residential multi-family, office, store, education, health, warehouse and 
other commercial. The electricity and total fuel intensities are apportioned into base electric, 
space heating, water heating, and space cooling end uses by ratios derived from the RECS and 
CBECS end use estimation. The base electric end use includes energy consumed for appliances, 
lighting, ventilation, and refrigeration. The annual end-use intensities are applied to building 
floor area across New York City to determine the spatial distribution of energy consumption for 
the four primary end uses. Weather is found to have a large impact on energy consumption 
from year to year indicated by the high correlation between the consumption of fuel oil, natural 
gas, and to some extent steam, with heating degree days. The study uses information from the 
New York City Department of City Planning on the NYC building stock stored in a geo-
rectified database, PLUTO. The study is able to project energy consumption for different 
building types using the total building floor area for each tax lot available in PLUTO for eight 
different building categories: commercial, residential, office, retail, garage, storage, factory, and 
other.  

Recent applications of energy use models have integrated energy consumption models in 
integrated urban models for the simulation of land use, transportation and economic 
development. These models can simulate both the short-term and long-term decisions of firms 
and households that directly affect urban energy consumption. Chingcuanco and Miller (2012) 
integrated a model of energy use for residential space heating demand in the ILUTE model. The 
model combines a bottom-up approach to aggregate individual uses with a logit-type discrete 
choice model that simulates the heating fuel and equipment choice. The model is developed and 
estimated using household microdata for the City of Toronto, Canada. Energy consumption for 
heating purposes in the individual dwelling units is then computed with the HOT2000 
software. The resulting residential space heating model component is added to the ILUTE 
model as the first step towards the creation of an integrated energy-land use model that can 
study energy consumption in cities. 

To support the modeling of energy demand, and the viability of alternative and distributed 
generation systems, accurate load profiles are required for different types of buildings. 
Armstrong et al. (2009) review the efforts to synthetically generate electric and thermal load 
profiles in Quebec, for three targets single-family detached households – low, medium and high 
consumers – based on a limited amount of available information. Although the synthetic 
Canadian profiles proved useful to simulate a residential cogeneration system, and compared 
favorably to simulation results with measured data, there is still room for improving the realism 
of the synthetic profiles. The current generated profiles include only seasonal variations for 
lighting. According to the authors, the method of generating domestic load profiles could easily 
be applied for different target households, or even different countries. 

The form of an urban area can affect energy use in other ways, such as through its impact on the 
types and amount of transportation that it generates. The empirical results regarding urban size, 
density, and distance to the city center can be related to the concept of the compact city. Høyer 
and Holden (2003) found that the extent of environmentally harmful household consumption 
varies  substantially  with  the  physical/structural  conditions  in  housing  areas.  The  authors’  
research supports the assumption that compact urban structures would lead to reductions in 
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the overall ecological footprints of households. This is because shorter distances between 
houses and services results in less travel, and at the same time because dense and concentrated 
types of housing use less energy for heating and other technical equipment. Steemers (2003) has 
similar findings, and also establishes the relative magnitudes of building energy use in 
comparison to transport. An important finding from this study is that dense cities are generally 
low energy cities. The results shows that for residential buildings, the energy implications of 
compact densification are balanced between the benefits from reduced heat losses and the non-
benefits of reduced solar and daylight availability. Specific results can vary, however, and the 
author found that for naturally ventilated office buildings, increasing urban density increased 
energy use because of the reduced availability of daylight. The results from both studies 
emphasize the importance of physical urban planning, and demonstrate how housing and land-
use planning can be important tools in achieving sustainable levels of consumption. 

Many governments and public agencies have introduced important changes in regulations for 
new buildings, in order to reduce the energy consumption and the GHG footprint of new 
developments. For European Union (EU) countries, this shift has been highly supported by EU 
policies to increase efficiency in buildings, as supported by the Directive 2002/91/CE on the 
energy performance of buildings from 2002. The Department for Communities and Local 
Government in the UK issued a report in 2006, in which it outlined a plan for achieving zero 
carbon buildings for new homes in UK within a decade. To achieve this target, they set out a 
package of measures that includes innovative standards and regulations for new technologies. 
This  was  followed  by  the  report  “Building  Regulations:  Energy  efficiency  requirements  for  new  
dwellings”,  from  2007,  where  likely  changes  to  the  building  regulations  were  described.  The  
report intended to provide an early indication of the changes that were likely needed to meet 
future targets for energy efficiency. These changes to the building regulations are part of a 
larger initiative to reduce energy consumption and GHG production throughout the UK 
(Department of Trade and Industry 2007). The intention of the UK government is to 
significantly reduce energy use in buildings as an important element in its climate change 
strategy, and in its approach to securing energy supplies in the future.  

An evaluation of the technical feasibility of achieving major reductions in CO2 emissions by the 
year 2050 has been described by Johnston (2003) and Johnston et al. (2005). These papers 
describe the development of an energy use and CO2 emission model of the UK housing stock, 
which is capable of being used to explore a range of possible future scenarios. The model is 
used to explore the technological feasibility of achieving CO2 emission reductions within the 
housing stock under a number of different illustrative scenarios, with the objective of achieving 
emission reductions in excess of 80% within this sector by the middle of the century.5 The model 
uses a bottom-up approach for forecasting energy and CO2 emissions, and tends to focus on the 
energy sector alone, using highly disaggregated, physically-based, engineering-type models to 
represent in detail the energy demand and supply sectors. Although the model has some 
weaknesses, such as a concentration on the residential sector – leaving aside the business and 
                                                      
5 Reductions of this order are likely to be required across the industrialized countries in order to stabilize 
the atmospheric CO2 concentration and global climate. 
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industrial sectors – and a relatively simple energy supply model, it is has significant value as a 
policy tool. It represents a detailed and scientifically defensible attempt to project the delivered 
energy use and CO2 emissions attributable to the UK housing stock through the middle of this 
century. Johnston et al. (2005) concludes that despite increases in the total number of 
households, and increasing standards of thermal comfort, it is possible to achieve CO2 emission 
reductions in excess of 80% within the UK housing stock by 2050. However, achieving these 
sorts of reductions will require strategic shifts in both energy supply and demand side 
technology. Overall, initiating substantial changes in the energy performance of new and 
existing buildings is likely to require changes to energy use and greenhouse gas regulations. 
Bell (2004) reviews existing regulatory energy provision and CO2 performance in the UK and 
Europe, and discusses ways in which it could be modified, or new mechanisms developed to 
have a greater impact on the performance of existing buildings. 

In the United States, several measures have been implemented to increase energy efficiency in 
buildings. A wide range of interventions at federal and state level have contributed to increase 
energy efficiency of appliances, on one side, and improve building standards, on the other, with 
both effects contributing to an increase in the efficiency of energy use in buildings. In California 
in particular, an important milestone in this field was the approval of the Regulations 
Establishing Energy Conservation Standards for New Residential and New Nonresidential 
Buildings  (“Title  24”)  in  1978  (California  Energy  Commission,  1978).  A  series  of  more  recent  
generation of building energy efficiency standards has followed, with the latest set of energy 
efficiency standards adopted in 2008. A new set of 2013 standards will continue to improve 
upon the current 2008 Standards for new construction of, and additions and alterations to, 
residential and nonresidential buildings, and should be effective starting on January 1, 2014. 
The building energy efficiency standards have produced significant effects in improving energy 
efficiency in buildings in the State of California. Additional support in the direction of increased 
energy efficiency and the creation of zero net energy solution came from the 2008 California 
Long-Term Energy Efficiency Strategic Plan. Moreover, significant contributions to the increase 
of energy efficiency in the State are associated with the efficiency programs currently promoted 
by the Investor Owned Utilities (IOUs) in the state, which have contributed to spread low 
energy consumption technologies and have incentivized California residents to adopt 
technological solutions that reduce energy use in their residences.6 

The impact of these policies has contributed to smooth the demand for energy use, in particular 
during the daily and seasonal peaks, as reported in the updated forecasts provided by the 
utilities and contained in the California Revised California Energy Demand Forecast 2012 - 2022 
(Kavalec et al., 2012) and the 2011 California Energy Commission Integrated Policy Report 
(California Energy Commission, 2011). 

                                                      
6 Example of the efficiency programs promoted by the IOUs in California include education programs, 
energy audits, analysis of energy use, measures of infiltration and free energy improvement upgrades 
promoted by the IOU among their customers. These programs have been mainly addressed to reduce 
peak-energy use after the record energy consumption registered in the 2000s. A similar pattern of energy 
efficiency programs is also provided by the main Municipally Owned Utilities (MOUs) in California. 
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The actual effectiveness of policies designed to increase energy efficiency in reducing energy 
consumption in buildings is an important research topic that is increasingly studied in the 
literature. For example, Scott (2011) evaluates the energy consumption from the residential 
sector through the development of a structural equation model (SEM) designed to investigate 
the relations among physical, demographic and behavioral characteristics of dwellings and their 
occupants. Structural equation models are useful to deal with the limitations of multiple linear 
regression models, and they can be used to study causality issues among variables in a dataset. 
In the study, Scott discusses the causality issues that can be investigated with a SEM approach, 
and concludes that according to the UK data used in the research, homes with a propensity to 
consume more energy are also those that have higher energy efficiency standard rates. 

In view of the changes that are introduced in newer buildings, as an effect of regulations for 
increased energy efficiency, Pérez-Lombard et al. (2009) provide a summary of the 
benchmarking, labeling and rating concepts used for building energy certification schemes, and 
that helps the comparison of energy efficiency plans and requirements in different context. 
Similarly, Marszal et al. (2011) discuss the need for a standardization of the definitions and 
calculation methodologies used in energy consumption analysis, as they apply to the Zero 
Energy Building (ZEB) concept, which can help to mitigate CO2 emissions and reduce energy 
use in the building sector. They conclude that the most important issues which should be given 
special attention before developing a new ZEB definition are: 

 The metric of the balance 

 The balancing period 

 The type of energy use included in the balance 

 The type of energy balance 

 The accepted renewable energy supply options 

 The connection to the energy infrastructure 

 The requirements for the energy efficiency, the indoor climate, and in case of gird 
connected ZEB, for the building–grid interaction 

Among the many other technological solutions that have been proposed to increase energy 
efficiency in buildings and reduce the resulting GHG emissions is the addition of a green roof 
(Castleton et al., 2010). The greatest benefits from this solution seem to be realized in older 
buildings with poor existing insulation (as current building regulations require high levels of 
insulation, green roofs are seen to hardly affect annual building energy consumption). In their 
review, Castleton, et al. discuss the current state of knowledge on the potential benefits that 
green roofs offer in relation to building energy consumption, and also discuss the issues 
involved in retrofitting older buildings.  

Research on the effects of energy efficiency policies on the consumption of energy in 
commercial buildings has analyzed several possible scenarios for the reduction of energy 
consumption in this category of buildings. For instance, in 2007, researchers at the National 
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Renewable Energy Laboratory (NREL) conducted a study to assess the technical potential for 
achieving net zero-energy commercial buildings (Griffith, et al. 2007). The simulation of 
building  energy  use  needs  to  cover  all  interactions  among  systems,  components,  occupants’  
activities and weather. NREL used EnergyPlus as the modeling tool to assess alternative 
scenarios as it accounts for the complicated interactions among climate, internal gains, building 
form, HVAC systems and renewable energy systems. The analysis framework for the study 
used detailed energy performance simulations for a large number of individual building 
models, which were intended to represent the entire commercial sector at the national level. The 
simulation used distributed computing to assess what would happen if an aggressive set of 
Zero-Energy Building (ZEB) technologies and practices were applied to the buildings, under 
several different scenarios. This study focused on energy use and energy consumption costs, 
but did not consider life-cycle environmental and economic performance for the entire building. 

Many sources of data provide information on energy consumption in buildings. In addition to 
datasets collected for specific research projects, and for energy efficiency programs conducted 
by utility companies, energy authorities usually monitor energy consumption in both 
residential and commercial buildings through periodic surveys. The U.S. Energy Information 
Administration has collected many useful datasets, such as the Residential Energy 
Consumption Survey (RECS), Commercial Buildings Energy Consumption Survey (CBECS) and 
several reports on energy consumption in the industrial sector. These studies usually estimate 
energy consumption per square foot of buildings and are useful to inform environmental 
studies in a specific geographic area. 

In the State of California, the California Energy Commission (CEC) administers the Residential 
Appliance Saturation Study (RASS) and the Commercial End-Use Survey (CEUS) to 
periodically collect information on energy use, respectively, in residential units and commercial 
buildings. The CEC also has databases of electricity and natural gas consumption for the 
residential and nonresidential sectors by county and for six sectors by utility area. The 
California Energy Commission sources apply to residential, commercial and industrial 
buildings and take into account climate zones and other locally and regionally unique 
modifiers. Some of these sources include building characteristics that are of interest in land use 
modeling studies, such as the California PECAS model developed at UC Davis. Other sources 
include the International Council for Local Environmental Initiatives (ICLEI), the World 
Resources Institute (WRI), the World Business Council for Sustainable Development (WCSB), 
the Greenhouse Gas Regional Inventory Protocol (GRIP) and the California Climate Action 
Registry (CCAR).  

In this project, the available sources of data and the relevant experiences available in the 
literature were reviewed to inform the energy consumption study for Los Angeles County on 
the standards, processes and calculations to use in assessing the energy use of the surveyed 
floorspace types and to update the PECAS land use modeling framework with these energy 
components. The following sections of this report describe the process that was used to develop 
the analysis on energy consumption in buildings, and discuss the outcomes from the analysis. 
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CHAPTER 3: 
Building and Floorspace Inventory for Los Angeles 
County 
An inventory of buildings in Los Angeles County was prepared using information from the Los 
Angeles  County  Assessor’s  data.  The  purpose  of  this  study  is  to define an inventory of energy 
consumption and GHG emissions from buildings that is suitable for use in modeling 
approaches that study urban metabolism and that will allow the analysis of future scenarios of 
development and the effects of the adoption of energy efficiency policies. To do this, it is 
necessary to develop a methodology to account for the total amount of developed floorspace in 
the region. This floorspace inventory is then useful to compute the resulting energy 
consumption and GHG emissions from buildings. To accomplish this task, the information on 
the building stock was analyzed and classified using categories that are compatible with land 
use modeling approaches in the State of California, so that they can be easily integrated in 
modeling applications to compute energy consumption and the resulting environmental impact 
associated with the building stock. 

The California Production, Exchange, Consumption, Allocation System (PECAS) modeling 
system adopts the developed floorspace categories reported in Table 1 to classify the available 
building types in the State of California. 

Table 1: Non-agricultural, developed floorspace types in the California PECAS model 

Floorspace types 
1 Light industrial space 
2 Heavy industrial space 
3 Warehouse space 
4 Highway retail space 
5 Downtown retail space 
6 Mall and big box retail space 
7 Neighborhood retail space 
8 Low density office space 
9 High density office space 

10 Developed amusement parks space 
11 Hospital space 
12 Secondary education space 
13 Primary K-12 education space 
14 Religious space 
15 Government operations space 
16 Military space 
17 Fishing dock space 
18 Depot space 
19 Rural luxury residential 
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20 Rural economy residential 
21 Acreage luxury residential 
22 Acreage economy residential 
23 Single family detached luxury residential 
24 Single family detached economy residential 
25 Joined luxury residential 
26 Joined economy residential 
27 Low-rise luxury residential 
28 Low-rise economy residential 
29 High-rise luxury residential 
30 High-rise economy residential 
31 Urban “mobile  home”  residential 
32 GQ (Group Quarters) residential 

 

Due to the difficulties in tracking energy consumption (and the associated GHG emission) 
patterns for several floorspace types reported in Table 1, and the similar difficulties in 
crosswalking  the  building  information  from  the  Assessor’s  data  to  the  PECAS  categories,  the  
researchers further aggregated these floorspace types into a shorter list of floorspace categories 
for energy consumption purposes. The floorspace types that were considered for the inventory 
of the building stock in Los Angeles County are reported in Table 2. 

Table 2: Building/Floorspace types used in the definition of the Los Angeles County building 
inventory 

Building categories  PECAS floorspace types 
Apartment residential Low-rise luxury residential 

 
Low-rise economy residential 

 
High-rise luxury residential 

 
High-rise economy residential 

Developed amusement park space Developed amusement parks space 
General commercial Neighborhood retail space 

 
Downtown retail space 

 
Highway retail space 

Government operations space Government operations space 
GQ residential GQ residential 
Heavy industrial space Heavy industrial space 
High density office space High density office space 
Hospital space Hospital space 
Joined residential Joined econ residential 

 
Joined lux residential 

Light industrial space Light industrial space 
Low density office space  Low density office space  
Mall and big box retail space Mall and big box retail space 
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Mixed use space (combination of various floorspace types) 
Parking (not included in PECAS) 
Primary k-12 education space Primary k-12 education space 
Religious space Religious space 
Secondary education space Secondary education space 
Single family detached residential Single family detached economy residential 

 
Single family detached luxury residential 

 
Acreage economy residential 

 
Acreage luxury residential 

 
Rural econ residential 

 
Rural luxury residential 

Single family detached with pool (included in previous SF categories above) 
Urban mobile home residential Urban mobile home residential 
Warehouse & distribution space Warehouse space 

 
Depot space 

 

Assessor’s  data 
The Los Angeles County Assessor Parcel Dataset provides a list of parcels located in the County 
of Los Angeles for property tax purpose. The dataset contains information on the characteristics 
of each building (up to five buildings on each parcel), which are of valuable interest for the 
definition of a building inventory for Los Angeles County, as well as for the analysis of 
relationships of the building characteristics with the energy use.  

The Los Angeles County Assessor Parcel Dataset was developed by the Office of the Assessor in 
the  Los  Angeles  County.  Assessor’s  parcel  data  were  provided  by  Los  Angeles  County  in  a  text  
file format covering the entire parcels (for 2008 property tax purpose) in Los Angeles County. 
The County Assessor Parcel Dataset is a master dataset for this study, as it provides information 
on the building stock in Los Angeles County and provides many explanatory variables used in 
the statistical analysis for the estimation of energy consumption models. Each record of this 
parcel dataset represents a single parcel with geographic information attached, including street 
location, size, and building attribution (up to five buildings on the same parcel).  

The  dataset  was  provided  to  the  University  of  California,  Davis  in  the  condition  of  ‘as  is’  from  
the Los Angeles County Office of Assessor. The spatial resolution is at the parcel level. 
However, records with typos and missing values are present in the dataset. The researchers 
corrected and interpolated them as much as possible for the purposes of the analyses for this 
project. Records with missing location information were removed from the analyses since these 
data cannot be used to retrieve ZIP+4 information from the U.S. Postal Services website, and 
therefore cannot be matched to any energy consumption data available for the project.7 

                                                      
7 The removed records consist of approximately 5% of the entire parcel dataset, which is considered 
reasonable given the approximately 2.3 million records in the parcel inventory. 
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Data processing 
The  original  Los  Angeles  County  Assessor’s  Roll  dataset  came  as  a  fixed  length  text  file  nearing  
2.66 GB in size. To facilitate its import into SQL Server this file needed to be transformed into a 
comma separated value (CSV) file. This process began by discovering from the documentation 
what fields were included in the file and their column positions. Then a python script was 
developed to read the fixed length file line by line and split the line into elements for each field. 
Address parts were combined together into one field for simplicity. After running this script 
and trying to import the fixed length text file into SQL Server it was found that there were 
errors  in  the  Assessor’s  file.  Some  records  (lines)  did  not  contain all fields: this made lines have 
varying number of columns and therefore impossible to import correctly. Also some invalid 
characters were incorporated into the file. This caused SQL Server to throw an error during the 
process of data import.  

A second python script was developed to determine how many columns were in each line, as 
well as an additional script that identified the invalid characters. These errors were then 
manually corrected in the original file through a text editor. After these fixes in the original 
fixed length file, it was possible to parse the data using the transformtocsv.py script into a 
“.csv”  format  file.  This  file  was  then  imported  into  a  table  of  the  SQL  Server  database,  and  the  
field specifications were changed to match the attribute types in the data. 

Once the data table had been successfully imported into the SQL Server database, it had to be 
transformed into a more useful format: this was done using a series of SQL statements. This 
allowed the use of the information contained  in  the  Assessor’s  dataset  in  combination  with  the  
other datasets described in the following sections of this report, and allowed the researchers to 
easily  merge  the  information  from  the  Assessor’s  data  into  the  energy  database  developed  at  the  
Energy Analysis Zone level of spatial aggregation, as described in the following sections of this 
report.  

The  Assessor’s  database  was  developed  and  stored  in  SQL  Server  to  ensure  the  relationship  
among  variables  and  records.  Information  from  the  Assessor’s  data  was also spatially joined to 
a GIS parcel shapefile of Los Angeles County. The Assessor Identification Number (AIN) 
recorded in both the roll parcel text file and the GIS parcel shapefile was used as spatial 
reference, allowing easy relationships among variables.  The projected coordinate system is 
Albers Conical Equal Area whose European Petroleum Survey Group (EPSG) code is 9822 and 
the geographic coordinate system is North American Datum 1983 whose EPSG code is 6269. 

Building Inventory 
The information from  the  Assessor’s  data  was  processed  to  obtain  an  inventory  of  the  building  
stock in Los Angeles County. The Los Angeles County Assessor Dataset consists of 126 
variables, including street location, size, value, and building attributions. Their descriptions are 
elaborated in the Record Layout and Field Definitions document (pages 9 -31) prepared by the 
Office of Assessor of Los Angeles County. The property use code and building type fields 
respectively identify the land use of each parcel and classify each building contained in the 
parcel. 
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There  are  1,121  different  use  codes  in  the  Los  Angeles  County  Assessor’s  data.  The  researchers  
crosswalked the use code field from the parcel database to the 21 floorspace types listed in 
Table 2 according to a functional crosswalk list of floorspace types that was developed as part of 
this research (and that is available on request from the researchers). Table 3 summarizes the 
number of parcels, the number of buildings and the total amount of square feet by each 
floorspace type in Los Angeles County. 

Table 3: Distribution  of  floorspace  types  in  the  Los  Angeles  County  Assessor’s  data 

Floorspace type No. of         
Parcels 

No. of 
Buildings 

Sum of         
Sq. Ft. 

Apartment residential                67,955  95,339 827,435,126 
Developed amusement park space                        64  81 5,266,180 
General commercial                37,861  45,311 448,102,968 
Government operations space                25,377  1,385 15,040,709 
GQ residential                  1,570  2,136 29,741,686 
Heavy industrial space                  1,416  2,998 117,307,348 
High density office space                  1,231  1,735 219,590,994 
Hospital space                      585  1,098 47,672,473 
Joined residential              452,684  558,581 766,031,088 
Light industrial space                33,762  45,422 528,756,911 
Low density office space                17,138  19,778 206,922,884 
Mall and big box retail space                  1,266  1,793 127,114,088 
Mixed use space                12,989  20,193 85,038,073 
Parking                15,783  15,060 221,881,094 
Primary k-12 education space                  2,467  2,968 28,213,383 
Religious space                  5,410  8,417 71,662,943 
Secondary education space                      245  521 19,005,819 
SFD residential          1,248,123  1,242,569 2,002,020,745 
SFD residential with pool              246,059  245,831 602,266,635 
Urban MH residential                  2,403  2,995 8,071,276 
Warehouse & distribution space                13,374  18,490 566,879,657 
Total Developed Floorspace  2,187,762  2,332,701  6,944,022,080  
Vacant              133,009 2,626 35,927,690 
(Null)*                   1,609  561 3,099,793 
Total (Non Agricultural)  2,322,380  2,335,888   6,983,049,563  
Agricultural and Park Space                53,979       1,755    15,136,251 
Total (including Agricultural) 2,376,359  2,337,643  6,998,185,814  
*The  “null”  field  refers  to  parcels  with  invalid  or  missing  code  that  could  not  be  matched  to  any  
floorspace type 

 

The  Assessor’s  database  contains  information  on  up  to  five  buildings  for  each  parcel.  If  a  parcel  
contains more than five buildings, the information is truncated, and the information reported 
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by the Office of the Assessor of the Los Angeles County for the additional buildings is omitted. 
This constitutes a potential loss of information in the building inventory. To try to compensate 
for this error, the researchers analyzed the distribution of the number of buildings in each 
parcel, by floorspace type, to establish a method to estimate the number of parcels with six or 
more buildings in the dataset. The proportion of parcels with six or more buildings was then 
calculated from the number of parcels with information for five buildings in the Assessor’s  
data.8 

Another  additional  issue  is  associated  with  the  purpose  for  which  the  Assessor’s  data  are  
created  and  maintained.  Assessor’s  data  are  mainly  created  and  used  for  collecting  information  
on property taxes. Accordingly, they do usually contain accurate information on private 
residential and non-residential buildings that are subject to property taxes. They often do not 
contain  very  updated  information  for  public  buildings  and  other  “non-property  tax”  buildings  
though.  

Table 4: Distribution of floorspace types and adjustments introduced in the building inventory for 
Los Angeles County 

Floorspace type 
No. of         

Parcels with 
missing Sq. 

Ft. 

Percentage 
of total 
Parcels 

Adjusted 
Sum of                 
Sq. Ft. 

Apartment residential 617 0.9% 835,607,112  
Developed amusement park space 19 29.7%  7,723,730  
General commercial 1,077 2.8%  462,507,541  
Government operations space 24,381 96.1%  35,523,283*  
GQ residential 70 4.5% 31,387,392  
Heavy industrial space 148 10.5% 141,715,444  
High density office space 53 4.3% 229,852,255  
Hospital space 29 5.0% 55,574,937  
Joined residential 3,700 0.8% 772,371,343  
Light industrial space 1,020 3.0% 547,576,935  
Low density office space 193 1.1% 209,378,398  
Mall and big box retail space 137 10.8% 144,934,874  
Mixed use space 378 2.9% 87,648,920  
Parking 1,284 8.1% 241,595,694  
Primary k-12 education space 732 29.7% 183,716,885** 
Religious space 100 1.8% 73,282,749 

                                                      
8 Given  the  way  the  assessor’s  data  is  structured,  a  parcel  with  a  high  number  (larger  than  5)  of  buildings  
is reported with information for five buildings. Therefore, parcels with six of more buildings have to be 
searched among the subset of parcels with information for five buildings in the dataset. This significantly 
restricts the amount of parcels that might include a large number of buildings, and therefore restricts the 
possible interval of values, and the error associated with it, for the number of parcels with six or more 
buildings. 
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Secondary education space 54 22.0% 39,241,821* 
SFD residential 6,556 0.5% 2,012,644,137  
SFD residential with pool 310 0.1% 603,038,633  
Urban MH residential 273 11.4% 30,157,566  
Warehouse & distribution space 326 2.4% 584,560,624  
Total developed floorspace in Los Angeles County 7,330,040,272  
Notes: *Adjusted through computation of information for Federal and State buildings from government 
sources; **Estimated using the California PECAS floorspace synthesizer modeling framework 

 

After an examination of the parcel record dataset for Los Angeles County, we determined that 
the information reported for public buildings (administrative, educational, religious and other 
non-property tax buildings) was not very accurate (and the building stock and the amount of 
floorspace for these types of buildings were probably largely underestimated). Unfortunately, 
there are not a lot of sources of information that could allow access to more reliable sources of 
data to complement building information for these categories. For this reason, the researchers 
tried to analyze the  Assessor’s  data,  in  order  to  find  information  that  could  help  assess  the  order  
of size of the error associated with the estimation of the amount of floorspace by each category 
found in the data, and try to correct it. 

Table 4 reports the distribution of the number of parcels with missing information for the size 
(in square feet) of the buildings contained in each parcel. As expected, the number of parcels 
with missing information for the size of the buildings is particularly high for non-property tax 
buildings. In particular, they reach very high percentages of the total number of parcels in 
dataset for primary education space (K-12 schools), secondary education (colleges and higher 
education institutions), and for the government buildings. Information related to the amount of 
floorspace for government buildings is missing for more than 96% of the parcels belonging to 
this category.  

In order to correct for the described issues, the researchers developed a set of adjustment factors 
that were applied to scale the amount of floorspace (in square feet) by category. These factors 
included both a term that compensated for the eventual presence of more than six buildings in a 
parcel9 and a term that compensated for the proportion of parcels of each floorspace type that 
do not contain information on the building size. The latter term of the factors was further 
corrected in order to attenuate large corrections: for instance, in the case of government 
buildings, the researchers assumed that probably only smaller buildings were usually left out of 
the  Assessor’s  data,  and  therefore  corrected  the  scaling  factor  to  60%  of  the  original  factor  that  
was proposed in earlier versions of the building inventory.  

                                                      
9 This attempt to correct the amount of floorspace for the eventual presence of more than five buildings in 
a parcel was developed in a rather conservative way, in order not to over-inflate the number of square 
feet in the building inventory. This means that, probably, the issue was only partially corrected in the 
dataset. However, given the lack of more detailed and reliable information in this field, it is difficult to 
assess the exact order of magnitude of this error.  
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The researchers also compared the information on the amount of developed floorspace used for 
public buildings to other available data sources. In particular, they requested information on the 
Public Building Inventory from the Professional Services Branch of the Department of General 
Services of the State of California. The DGS data provided information on 1,889 public buildings 
that are located in Los Angeles County, including 627 buildings that are considered university 
facilities in the various campuses of the University of California and the California State 
University. The information for these buildings, which accounted for more than 30 million sq.ft. 
in total size in Los Angeles County, was used to update the information on secondary education 
from  the  Assessor’s  data.  The  remaining  1,261 public building records provided information for 
buildings prevalently owned by the State of California and a few County buildings, for a total of 
12,260,346 sq. ft. in Los Angeles County.10 Additional information were obtained from the 
General Service Administration (GSA) of the U.S. Federal Government. GSA data included 
information for 136 Federally-owned buildings located in Los Angeles County, for a total 
floorspace of 6.8 million sq. ft. The DGS and GSA public building records were used to update 
the estimates for the floorspace inventory for public buildings. Additional adjustments were 
included to account for City (not included in the DGS records), County (only partially included 
in DGS records) and other public buildings located in the area of study. 

Moreover, the researchers compared the results from the building inventory with the amount of 
floorspace for each building category predicted by the floorspace synthesizer built as part of the 
California PECAS model. The comparison identified some categories (in particular, single 
family detached homes, primary and secondary education, GQ residential and apartment 
residential  buildings)  for  which  the  building  inventory  obtained  from  the  Assessor’s  data  
largely differ from the results of the floorspace synthesizer. In particular, for the  “primary  K-12 
education  space”,  data  from  the  Assessor’s  dataset  appeared  particularly  low  from  a  
comparison to the other source. For this floorspace category, the researchers adopted the 
estimate for the sum of square feet that was estimated and validated by data from the California 
Department of Education as part of the development of the PECAS floorspace synthesizer. For 
all  other  floorspace  types,  as  the  official  Assessor’s  data11 were, overall, considered a more 
reliable source of information on the building stock in Los Angeles County than any modeling 
approach,  the  researchers  decided  to  rely  on  the  data  obtained  from  the  Assessor’s  dataset.   

The researchers also compared the numbers reported in the adjusted building inventory from 
Table 4 with other sources to verify the reliability and consistency of the data. In particular, the 
total building inventory (in square feet) for industrial areas (sum of heavy and light industrial 
areas) was found to be rather consistent with the estimates for industrial floorspace developed 
by real estate operators (http://www.grubb-ellis.com/Forecast2012/PDFs/Los-
Angeles_IND_2012_1Q.pdf, last accessed on December 4, 2012; 

                                                      
10 Unfortunately, also in the DGS data on public buildings, information on the building size was missing 
for  274 of the 1261 records (21.7% of the total).  

11 At  least  in  theory,  Assessor’s  data  contain  real  information, and not modeled data, on existing 
buildings. 

http://www.grubb-ellis.com/Forecast2012/PDFs/Los-Angeles_IND_2012_1Q.pdf
http://www.grubb-ellis.com/Forecast2012/PDFs/Los-Angeles_IND_2012_1Q.pdf
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http://www.cushwake.com/cwmbs3q12/us_3q12.html, last accessed on December 4, 2012; 
http://www.colliers.com, last accessed on December 4, 2012).   

Estimates for the retail and commercial space, as well as for the low-rise and high-rise office 
space  from  the  building  inventory  built  using  the  Assessor’s  data  appeared  to  be  higher  than  
estimates reported by real estate operators (http://www.grubb-
ellis.com/Forecast2012/PDFs/Los-Angeles_OFF_2011_4Q.pdf, last accessed on December 4, 
2012; http://www.cushwake.com/cwmbs3q12/us_3q12.html, last accessed on December 4, 2012; 
http://www.colliers.com, last accessed on December 4, 2012). However, given the official source 
of information that was used in the case of the Los Angeles County Assessor’s  data,  the  
researchers did not reduce the amount of floorspace for these building categories.  

The final numbers of the adjusted sum of square feet of developed space in Los Angeles 
County, by each category of building type, are reported in the last column to the right of Table 
4. It is implied that the proposed inventory of the building stock for Los Angeles County is not 
expected to be perfectly exact, given the difficulties in acquiring accurate information on the 
amount of floorspace by each building  category.  Moreover,  data  from  the  Assessor’s  dataset  are  
referred to 2008, and do not include later changes in Los Angeles County real estate 
development.  

Still, the inventory provides a reliable enough basis, computed from the observed data from the 
Assessor, which can be used in the assessment of a baseline energy study for Los Angeles 
County. As previously discussed, the reliability of the results for a specific building type 
category varies, in particular between buildings subject to property tax and non-property tax 
buildings,  with  the  former  categories  of  buildings  better  reported  in  the  Assessor’s  data  than  the  
latter ones. Even with the limitations here discussed, this building inventory and the resulting 
energy baseline study is useful to inform researchers on the trends in energy use in buildings. 
Further, they can be used as the basis in modeling projects for the development of forecasts for 
the estimation of future energy consumption from the building stock, for instance under specific 
assumptions on policies that will increase energy efficiency in some specific sectors and for 
specific categories of buildings. 

 

 

 

 

 

http://www.cushwake.com/cwmbs3q12/us_3q12.html
http://www.colliers.com/
http://www.grubb-ellis.com/Forecast2012/PDFs/Los-Angeles_OFF_2011_4Q.pdf
http://www.grubb-ellis.com/Forecast2012/PDFs/Los-Angeles_OFF_2011_4Q.pdf
http://www.cushwake.com/cwmbs3q12/us_3q12.html
http://www.colliers.com/
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CHAPTER 4: 
Spatial Aggregation: Energy Analysis Zones 
One of the main challenges in the development of this project relates to the need for the 
definition of a common level of spatial aggregation for the development of the analysis of 
energy consumption in buildings. This task became necessary for the need to treat information 
available from different sources and aggregated at different geographic scales. In particular, 
building  information  was  obtained  from  the  parcel  dataset  of  the  Assessor’s  data  for  Los  
Angeles County. This dataset contains a rich source of information on building location, size, 
age and technology, all information available at the parcel level data.  

Unfortunately, energy consumption data for electricity and natural gas in the area of study 
were not available at the billing address level. Utility consumption data were provided at the 
Zip+4 level of spatial aggregation. This level of aggregation is not particularly user-friendly and 
not easily treatable in terms of geographical information. Zip+4 areas are not uniquely defined 
geographic areas, but rather a level of functional aggregation of addresses defined by the 
United States Postal Service (USPS) to facilitate mail delivery. As such, it allows rather 
straightforward aggregation of data on the side of utility companies: they can easily sum up the 
energy consumption data from the individual billing addresses in a region based on the Zip+4 
field they have on records.12  

The treatment of information aggregated at the Zip+4 level is not easy when integrated with 
spatial data from other sources, which are usually provided at standardized levels of spatial 
aggregation (e.g. parcels, blocks, block groups, census tracts, etc.). Currently, no GIS layer of 
Zip+4 areas exist for the United States. Moreover, Zip+4 areas may considerably vary in size, 
with smaller areas located in more densely built areas, and even spatially overlapping Zip+4 
areas often found in large buildings in the Central Business Districts or in densely populated 
areas of a city.13 

The spatial aggregation problem for the analysis of energy consumption in buildings was 
solved for this project through the definition of Energy Analysis Zones (EAZs).  EAZs are 
defined in a way that allows the treatment of all data contained in the energy use dataset that 
was built for this study, regardless of the original scale in which each variable was measured. 

                                                      
12 Each valid U.S. address where mail is delivered is usually associated with zip+4 information. The 
aggregation of billing address data at the Zip+4 level is therefore a rather straightforward process in a 
database that includes complete street addresses of the customers. However, the aggregation of other 
types of spatial information, as those measured at the parcel level, to Zip+4 areas is not similarly 
straightforward, and poses serious spatial and computational difficulties that are discussed in this section 
of the report. 

13 Example of spatially overlapping Zip+4s can be found in large residential or commercial buildings, 
where they refer to aggregations of suites located on different floors (in a large commercial building), or 
aggregation of apartments (or condos) in a large apartment complex or residential building. 



29 

The following subsections of this chapter describe the process that was developed to generate 
the Energy Analysis Zones. 

ZIP+4 
Energy use data for this project was supplied by utility companies at the ZIP+4 level, for the 
LADWP and LBGO service areas. To compare the energy data provided by the utility 
companies with parcel-level information, a correspondence had to be developed between the 
ZIP+4 codes used for the energy data and the addresses from the Los Angeles County 
Assessor’s  parcel  dataset.   

The  Assessor’s  parcel data could be joined to a spatial dataset of parcel polygons. This provided 
a valid geography and a well-defined level of spatial aggregation for all data available at the 
parcel level for the research. Unfortunately, a spatial approach to developing the ZIP+4-to-
parcel relationships was hindered by the lack of a corresponding ZIP+4 spatial dataset. 

ZIP+4 codes are defined by the U.S. Postal Service (USPS) using roads and address ranges, and 
the USPS does not attempt to produce a ZIP+4 spatial dataset of the aggregated parcel polygons 
which would make up the areal extent of each ZIP+4. Some point approximations are available 
from private sources, but researchers could not access any source that could provide a complete 
spatial dataset sufficient for developing ZIP+4-to-parcel relationships using a spatial approach.  

Therefore we developed a non-spatial approach for merging the different levels of aggregation 
and  matching  address  records  from  the  Assessor’s  parcel  database  to  the  ZIP+4  codes  provided  
by the utility companies. This task was carried out using the address information available from 
the  Los  Angeles  County  Assessor’s  dataset.  The  situs address for each parcel record was used to 
query  the  U.S.  Postal  Service’s  ZIP  Code  Lookup  webpage  through  a  script developed as part of 
the research project. For each record, the available address information was submitted, and a 
standardized version of the address was returned. This standardized address data was then 
gleaned to extract any valid ZIP+4 codes associated with the address. This process was 
implemented in Python scripts, to automate the extraction and processing of each address in the 
dataset. The raw outputs were stored in text files, which were later transferred into 
spreadsheets for review. Finally, they were loaded into SQL Server where the ZIP+4 codes were 
attached to the rest of the parcel data. Many records14 in  the  Assessor’s  parcel  dataset  lacked  
valid addresses, and as a result, could not be directly cross-walked to any Zip+4 record nor 
linked to the energy use records.  

By  matching  addresses  from  the  Assessor’s  dataset  to  ZIP+4  codes,  it  was  possible  to  develop  a  
table of the required ZIP+4-to-parcel relationships. This allowed energy data summarized by 
ZIP+4 to be attached to parcel information, and then analyzed together. Also, as a result of this 
effort, it is possible to extract a spatial representation of ZIP+4 zones within Los Angeles 

                                                      
14 214,669 parcels (approximately 9% of the total number of parcels) in the dataset did not have a valid 
situs address  in  the  assessor’s  dataset, and therefore they could not be queried in the process of the Zip+4 
information extraction. 
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County, which was built through the aggregation of parcel polygons associated with each 
Zip+4.  

Figure 2 shows an example of the correspondence between parcels and Zip+4s in downtown 
Los Angeles: each parcel might be associated to one or more Zip+4s.15 Similarly, a Zip+4 may 
contain multiple parcels, with some of these also associated with other Zip+4s. 

Figure 2: Parcels and Zip+4s in downtown Los Angeles 

 

Processing of Parcel Roll Records 
There  are  2,376,361  roll  records  in  the  Assessor’s  Roll  database.  The  vast  majority  of  these  
records include complete information for the following variables: 

 parcel number (AIN) 

 street number 

                                                      
15 Each parcel might contain one or more buildings, and each large building might contain multiple 
residential or commercial units, which are not necessarily all associated with the same Zip+4. 
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 street name 

 prefix/suffix 

 apartment/unit number 

 city name 

 5-digit zip code 

Through querying the USPS website with a Python script, researchers were able to match most 
of the parcels in the dataset to a valid Zip+4 code. However, there are records with address data 
in a valid street address format that did not return USPS ZIP+4 information.  

When  processing  the  information  from  the  Assessor’s  dataset,  some  data  cleansing  and  
transformation were necessary, e.g. the removal of records with missing address information. 
Of  the  original  2,376,361  roll  records  in  the  Assessor’s  database,  2,118,065  parcels  (about  89.1%  
of the total) were matched with a valid ZIP+4 using the USPS ZIP Code Lookup webpage. These 
parcels were linked to a total of 649,457 unique ZIP+4 codes. 

At this point, the tabular data with ZIP+4 attributes were joined to the Los Angeles County 
Assessor’s  Parcel  GIS  dataset,  which  contains  parcel  geometries.  Within  the  GIS  parcel  dataset  
there are 2,382,897 records; however, some AINs are duplicated (e.g. a building annex is 
geographically separated, but it still shares the same AIN with its main building). A GIS 
dissolve process was performed on the AIN column to get 2,382,017 unique AINs from the 
parcel GIS dataset. After this process, there was still a discrepancy in the number of AIN 
between the GIS-based parcel dataset and the table-based roll dataset. This was due to the 
presence of AINs that are contained in one file but not in the other. This resulted in a reduced 
number of coincident AINs when the two sources of information are joined. 

There are four possible types of spatial relationships between the AIN codes and the ZIP+4s, 
which can be summarized as follows: 

 1 AIN  to 1 ZIP+4 

 Many AINs to 1 ZIP+4 

 1 AIN  to Many ZIP+4s 

 Many AINs to Many ZIP+4s 

The majority of USPS queried outputs belong to the first two categories: either one parcel (AIN) 
is uniquely associated with one ZIP+4, or many parcels (AINs) are linked to the same ZIP+4. 
There were 2,067,298 queries in the merged dataset (parcel; Zip+4) that fitted in either one of 
these two categories. Of these, the number of cases that have a spatial geometry in the GIS layer 
is 2,062,910. These records can be easily joined to the parcel GIS dataset16: the geometry of the 
parcels is dissolved to become a great portion of the ZIP+4 GIS layer.

                                                      
16 GIS analyses for this project were developed in the ESRI ArcMap environment 
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Figure 3: Process Diagram for Zip+4 and Parcel Data 
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For the two remaining relationships between AIN and ZIP+4, a Python script was developed by 
the researchers at the University of California, Davis to spatially represent the remaining cases 
of  “1  AIN  to  Many  ZIP+4s”  and  “Many  AINs  to  Many  ZIP+4s”.  In  the  case  of  one  parcel  (AIN)  
linked to many ZIP+4s, the script automatically created duplicate GIS polygons with identical 
shapes on top of the existing shape. It then assigned each of the unique ZIP+4 codes to one of 
the resultant polygons. For example, if there are 10 ZIP+4 associated with a certain AIN (in the 
case of large apartment complex), the script generated 9 extra polygons on top of the pre-
existing polygon (thus generating 10 polygons with the same shape) and then assigned each of 
the unique ZIP+4 codes associated with this AIN to one of those 10 polygons. 

The  treatment  of  the  “Many  AINs  to  Many  ZIP+4”  was  more  difficult:  the  automatic  script  
identified for each parcel (AIN) all ZIP+4 values with which this parcel was associated. It then 
queried the dataset to search for additional AINs that were associated with any of these ZIP+4s 
initially linked to the first AIN. The algorithm keeps searching for AINs and ZIP+4 iteratively, 
until it identifies all possible combinations (parcel; ZIP+4) that are linked to each other. 

The result of this process is a GIS layer with both AIN and ZIP+4 codes. This GIS dataset 
contains the 2,113,234 AINs that can be geographically represented. Since nearly 5,000 AINs 
(.002%) are lost in the spatial join process, slightly fewer ZIP+4 than those contained in the 
original dataset are contained in this adjusted dataset. The final number of Zip+4s in this dataset 
is 646,324. By doing a GIS dissolve process on the ZIP+4 code, a ZIP+4 GIS dataset was created, 
representing all 646,324 unique ZIP+4 codes. Figure 3 summarizes the process that was used for 
the generation of the Zip+4 dataset. 

The following possible sources of errors are associated with the process of generation of the 
Zip+4 GIS dataset: 

• Geographically, the ZIP+4 zones are based upon the Los Angeles County parcel dataset 
geometry. Therefore, they inherit this dataset’s  spatial  precision  and  accuracy.  Los  
Angeles County parcels are digitized to a high quality, and the Zip+4 dataset shares the 
same high quality. 

• As  mentioned  before,  the  Assessor’s  dataset  was  created  and  is  maintained  for  tax  
purpose only. It is not an exhaustive list of buildings in Los Angeles County. Therefore, 
due to the process that was used for the creation of the Zip+4 dataset, we do not have a 
complete record of Zip+4 codes for all properties in LA County. The quality of the 
dataset is significantly higher in the areas predominantly occupied by buildings subject 
to property tax.  

• 214,669 parcels could not be attributed with a ZIP+4 code because they do not have a 
valid situs address. In addition, 43,627 address records either did not return a ZIP+4 
from the U.S.P.S. website or returned only a five digit ZIP code. These records were not 
used in the resulting dataset. 

• The addresses used to build this dataset were obtained from the Los Angeles County 
Assessor’s  dataset  from  2008.  The  ZIP+4  attributes gathered from the U.S. Postal Service 
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website are 2012 data collected at the time the project was developed. This mismatch in 
the years the data are referred to may generate some inconsistencies in the data, and it 
might be responsible for part of the missing ZIP+4 results from the USPS website 
queries. 

Energy Analysis Zones 
A new level of spatial aggregation was created so that energy consumption could be analyzed 
with data aggregated from several different sources. A complex spatial relationship between 
ZIP codes and parcels exists and a common denominator needed to be found so that energy use 
could be analyzed spatially. This process led to the definition of the Energy Analysis Zones 
(EAZs). 

EAZs are defined from the overlap of ZIP+4s and parcels. They were generated through a series 
of database queries, which selected all parcels that shared common ZIP+4 designations, and all 
ZIP+4 codes that share common AIN (parcel) designations, in an iterative process.  

Figure 4: Creation of EAZ from the Zip+4 and Parcel Data 

 AIN EAZ ZIP+4  

 5544011033 1 900279  

 4332026022 2 900358  

 4332026022 3 900359  

 6032012015 4 900446  

 5123004429 5 900891  

 5123004433 5 900891  

 4330004036 6 902129  

 4330004037 6 902129  

 4330004038 6 902129  

 4330004038 6 902130  

 4330004040 6 902130  

 4330004041 6 902130  

 4330004042 6 902130  

 4330004042 6 902131  

 4330004044 6 902131  

 4051003005 7 902501  
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First a unique list of ZIP+4 codes was created and looped through. Parcels matching a ZIP+4 
were selected and then the set of AINs (unique key for each parcel) from the parcels were re-
queried for the ZIP+4s that belonged to them. Then again the list of ZIP+4s was queried for 
AINs. This iterative process continued until the number of records returned from the AIN list 
was equal to the number of records returned from the ZIP+4 list. The final set was then given a 
unique EAZ number that was written to the parcel dataset, for the parcels in the set of AINs. 
Figure 4 shows an example of the relationship AIN - ZIP+4 that led to the creation of the EAZ 
system. 

After generating the complete set of ZIP+4 to AIN relationships in the database, the newly 
created EAZ numbers were joined to the spatial parcel dataset. The parcel polygons were then 
dissolved on common EAZ numbers, to create the spatial EAZ dataset. The final number of 
EAZs in the dataset is 448,380. 

Researchers ran a number of quality checks to verify the quality and completeness of the EAZ 
system and the correspondence of the parcel-Zip+4 matches to spatially contiguous areas and 
functional aggregations of parcels. By looking up parcel addresses on the USPS ZIP code lookup 
page, 2,118,065 parcels were successfully matched to valid ZIP+4 codes and integrated into an 
EAZ. Of the remaining 258,296 parcels, 43,627 had some level of information available in the 
Situs Address field. In an attempt to match some of these parcels to a ZIP+4 code, researchers 
tried using a proprietary address verification service, provided by the company SmartyStreets. 
This process ultimately matched about 4,500 additional parcels to ZIP+4 codes. These parcels, 
however, were not added to the current version of the EAZ system, as many of them did not fit 
in the areas that are currently covered by the available energy data provided by the utility 
companies. Therefore, the computational burden to update the EAZ system was not justified by 
eventual increases in the quality of the results of the energy consumption study.17 

The following Figures 5, 6 and 7 show some examples of how parcel geographies are associated 
with Zip+4 codes (after querying street addresses through the USPS website) and how these 
correspondences are aggregated in the Energy Analysis Zones. 

                                                      
17 An additional reason not to include these parcels in the current EAZ system is that the information 
used to match these parcels to Zip+4 codes is based on a different source than the rest of the database. 
This might generate an additional source of errors in the dataset, without significant gains in terms of 
additional records added to the database. In future extensions of the research, when data from more 
utility companies will be available, the quality of the information obtained from this different source will 
be checked more thoroughly, and the additional parcels will be added to the Energy Analysis Zone 
System. 

 4051003005 7 902502  

 4051006002 8 902503  

 4051006002 8 902504  
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Figure 5: Spatial overlap of Zip+4 areas and parcels 
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Figure 6: Spatial overlap of EAZs and Parcels 

 

 

As mentioned earlier in this section of the report, four different relationships might regulate the 
correspondence between parcels and Zip+4s. Each of the four different cases that have been 
described contribute to create the Energy Analysis Zones, which might aggregate a rather 
variable number of Zip+4 codes and parcels, depending on the location18, and the specific 
relationships between Zip+4s and parcels.  

                                                      
18 Neighborhoods with more uniform land uses and regular urban form tend to have EAZs that include a 
smaller number of parcels and very few Zip+4s. 
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Figure 7: Spatial overlap of EAZs and Zip+4s 

 

Overlaps of EAZs with other geography systems 
Energy Analysis Zones can be overlaid spatially with other geographic units, for the purpose of 
comparing and analyzing data available in different units of geographic aggregation. EAZs 
created for this study are based on the aggregation of parcels and Zip+4s. Given the way the 
EAZs are created, they nest very well in the county and city boundaries in Los Angeles County. 
Appendix A contains a table with the distribution of the 448,380 Energy Analysis Zones in the 
various cities inside Los Angeles County. 

Researchers also overlaid the Energy Analysis Zones with other levels of spatial aggregation 
that are of interest for this research project, and in particular with census tracts and census block 
groups (important levels of aggregation at which sociodemographic data are aggregated by the 
U.S. Census Bureau). Almost all EAZs (about 99% of the total) nest perfectly in the 2,346 census 
tracts in Los Angeles County. Figure 8 shows an example of the overlap of the Energy Analysis 
Zones with the census tracts. Similarly, Figure 9 shows the spatial overlap of the Energy 
Analysis Zones with the census block groups in the LA County. 



39 

Figure 8: Spatial overlap of Energy Analysis Zones and Census Tracts 
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Figure 9: Spatial overlap of Energy Analysis Zones and Block Groups 

 

 

Appendix A contains additional information on the spatial overlap of the Energy Analysis 
Zones developed for Los Angeles County and other levels of spatial aggregations, as the Traffic 
Analysis Zones (TAZs) and the Land Use Zones (LUZs), developed at the University of 
California, Davis, respectively for the analysis of transportation demand in the California 
Statewide Travel Demand Model and the distribution of land use activities in the PECAS model 
(ULTRANS, 2011).  
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CHAPTER 5:  
Utility Data 
Utility companies provide the vast majority of electricity and natural gas to residents and 
commercial and industrial establishments within Los Angeles County through centralized 
distribution systems. For both electricity and natural gas, there are a small number of utility 
providers. The two largest electric utilities serve 92 percent of grid-supplied demand in Los 
Angeles County, whereas the two largest natural gas utilities serve almost 100 percent of grid-
supplied demand. 

Tables 5 provides a list of all utility companies that provide electricity with service territories 
either partly or entirely located within Los Angeles County, ordered by the quantity supplied 
within the county in 2010. 

Table 5: Electricity utility companies servicing Los Angeles County 

Utility Usage (GWh, 2010) Customers (2010) 

Southern California Edison 31,877 1,730,792 

Los Angeles Department of Water and Power 22,944 1,449,174 

Burbank Department of Water and Power 1174 50,100 

Pasadena Department of Water and Power 1144 62,130 

City of Vernon 1138 1129 

Glendale Department of Water and Power 1076 84,118 

Azusa Light and Water 239 15,326 

City of Cerritos 45 52 

City of Industry 32 106 

Source for electricity calculations: data provided by utilities and the CEC: 
http://www.energy.ca.gov/maps/serviceareas/Electric_Service_Areas_Detail.pdf 

Electricity and natural gas utilities are either municipally owned or investor owned. The 
California Public Utilities Commission (CPUC) regulates investor-owned utilities (IOUs) 
providing electricity, natural gas, water, or telecommunications services within the state. The 
CPUC enacts decisions and rulemakings that guide IOU operations—for example, directing 
IOUs providing electricity to invest in energy efficiency and conservation. The CPUC also sets 
out provisions regarding disclosure of customer data. While disclosure of customer data to 
third parties is generally not permitted, several exceptions exist, including: 

• A customer consents to the release of their data; 

• Data  are  aggregated  so  that  customers’  individual  identities  are  not  disclosed; 

http://www.energy.ca.gov/maps/serviceareas/Electric_Service_Areas_Detail.pdf
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• Data are disclosed for a primary purpose being carried out under contract with or on 
behalf of the utility, including for utility system, grid, or operational needs, or for the 
implementation of demand response, energy management, or energy efficiency 
programs; 

• Data disclosure is otherwise permitted or required under state or federal law, or is 
required by an order of the CPUC. 

Figure 10: Utility Data Coverage 

 



43 

Through the support of the researchers at the University of California, Los Angeles, and of Los 
Angeles County officials, researchers collected direct consumption data for flows of electricity 
and natural gas. Unfortunately, the data collection for these flows proved to be a very time-
consuming process: although utilities universally collect these data, they were not immediately 
willing to provide them with the requested parameters. This significantly delayed the access to 
spatially and temporally disaggregated data from the utility companies. 

By the time the project was developed, energy consumption data were provided by utility 
companies only for some geographic areas within Los Angeles County. In particular, the Los 
Angeles Department of Water & Power (LADWP) provided data on electricity consumption 
within the City of Los Angeles, and the Long Beach Gas & Oil Department (LBGO) provided 
data on natural gas consumption within the City of Long Beach (Figure 10). Unfortunately, the 
service areas of these two utility companies do not spatially overlap, which generates some 
problems in the analysis of the energy consumption patterns, as discussed in the following 
Chapter 7, which focuses on the estimation of energy consumption models for buildings with 
the use of these utility data.  

Electricity data 
The Los Angeles Department of Water and Power provided electricity consumption data for 
their entire area of service in the City of Los Angeles aggregated at the Zip+4 level. The data 
provided by this utility company included total annual consumption of electricity (in 
KWh/Zip+4 area) for all customers located in each of the 254,910 Zip+4s in the LADWP area of 
service. Electricity consumption data did not separate for different uses (e.g. residential vs. 
commercial) and covered all calendar years 2005 to 2010. 

The electricity consumption data that were received are referred to 254,910 Zip+4s that are 
included in the LADWP area of service. For the purposes of the analysis of this project, 
researchers aggregated annual electricity consumption data at the Energy Analysis Zone level, 
using the crosswalk between Zip+4s and EAZs that was created in the process of spatial 
aggregation described in Chapter 4 of this report. The final energy dataset contains information 
on electricity consumption for 150,743 EAZs. 

Figure 11 shows the total annual electricity consumption in all EAZs in the LADWP dataset for 
the years 2005 to 2009. Annual electricity consumption data for 2010 were discarded because the 
data proved to be significantly incomplete. After verification with LADWP representatives, it 
was established that this was due to the process of temporal aggregation that was used by the 
utility company and the time in which these data were compiled, as the data included only the 
first three quarters in year 2010. As Figure 11 shows, the total electricity consumption for all 
EAZs in the LADWP area of service vary between 18,050 GWh (in 2005) and 19,078 GWh (in 
2008), and it approximately includes 90% of the total electricity consumption of LADWP users.19 

                                                      
19 Electricity consumption of some users may not be included in the database used for studying energy 
consumption in buildings in this project, either because (1) it was not possible for LADWP to aggregate 
electricity consumption for these customers at the Zip+4 level of spatial aggregation, or (2) it was not 
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Total electricity consumption in the area of study increased at an average annual growth rate of 
1.87% from 2005 until 2008. The electricity consumption significantly decreased (of more than 
5%) from 2008 to 2009. This result might be explained by the economic crisis, and it is consistent 
with the reduction in energy use observed for LADWP and other energy providers and the 
conclusions reported in the Revised California Energy Demand Forecast for 2012-2022 (Kavalec 
et al., 2012).20 Additional effects might be explained by weather effects, which often significantly 
affect both winter and summer energy consumption, respectively for heating and cooling 
purposes. 

Figure 11: Total annual electricity consumption in the Energy Analysis Zones served by LADWP  

 

It is also important to stress that the total consumption of electricity reported in the energy 
dataset does not include the total consumption of electricity consumed by all LADWP 

                                                                                                                                                                           
possible to match these Zip+4 areas with the corresponding parcels (and building information) to 
generate the Energy Analysis Zones used in the study. 

20 According to the report, electricity consumption declined during 2009, and in particular became lower 
than the previously forecasted California Energy Demand (CED) for 2009 due primarily to the economic 
downturn.   
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customers in Los Angeles County, but accounts for about 90% of it. Some customers may not be 
included in the dataset, as a result of the process of aggregation of the data at the Zip+4 level 
done by the utility company before releasing the data to the researchers.21 

The geographic specificity of electricity consumption data allows researchers to explore 
relationships between consumption outcomes and a number of explanatory variables such as 
land use, income, and socio-demographic characteristics using a variety of data sources and 
statistical approaches. Researchers also generated maps of electricity consumption to provide a 
spatial representation of usage patterns in the county. Researchers generated both static maps 
and supported the development of a web-based interactive map that was developed by the 
colleagues at the University of California, Los Angeles. 

Natural Gas 
At the time the project was developed, data for the consumption of natural gas in Los Angeles 
County were only available for the Long Beach Gas and Oil (LBGO) utility company. Original 
data were provided by LBGO in several files, which were broken out by facility type and 
consumption level, and summarized by ZIP+4 codes. The researchers merged the files together 
and imported the resulting table into a SQL Server database where they were joined to the other 
additional data for further analysis. The data were joined to the corresponding EAZ using the 
ZIP+4 code, and then aggregated by EAZ and time period, to produce summary values.  

 

                                                      
21 Actual growth rate in the annual electricity consumption in the City of Los Angeles and in the complete 
LADWP service area might slightly differ from the data presented above, for the aforementioned reasons. 
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Figure 12: EAZs with 2008 natural gas consumption data from LBGO 
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Figure 13: EAZs with 2009 natural gas consumption data from LBGO  
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Figure 14: EAZs with 2011 natural gas consumption data from LBGO 

 

However, from the analysis of the data that were provided by the utility company, it resulted 
that the data for the consumption of natural gas were largely incomplete for all years before 
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2011. Figures 12, 13 and 14 summarize the areas of coverage for the LBGO natural gas 
consumption data respectively for 2008, 2009, 2011. Monthly natural gas consumption data 
were complete only for year 2011, and for the first months of year 2012.  

The incomplete data issue was caused by the LBGO billing system, which only retains 24 
months of billing data for each account number in its database. The system is designed to 
overwrite new billing information over older records for all customers that do not move their 
location  or  their  “tenant” status. This causes older records to be largely incomplete, and 
generate missing gaps in between continuous records for all records that are referred to more 
than 24 months before the data were released by LBGO.22 In the context of this data request, this 
means that all records outside the 24 months before the data request are largely incomplete. As 
data were received by LBGO in April 2012, the natural gas consumption dataset is supposed to 
be largely incomplete for all records before May 2010.  

As a consequence of the incompleteness of the data on natural gas consumption data until 2010, 
the researchers selected 2011 as the year for the analysis of natural gas consumption data. This 
decision, which was forced by the data availability from the utility company, generated one 
additional problem for the development of energy consumption models (and their 
interpretation) in terms of the consistency of the data used in the study. Not only do these 
natural gas consumption data describe a different, non-overlapping geographical area than the 
electricity consumption data, and therefore it is not possible to control for the possible 
substitution effects for the use of the two energy sources in buildings. The data do not overlap 
on a temporal scale either: electricity data refer to 2008, natural gas data to 2011. This limitation 
to the validity of the results of the study is further discussed in the following sections of the 
report, and is the object of further investigation and comparison with data on energy 
consumption in buildings from other sources. Figure 15 shows the variation of natural gas 
consumption in the entire LBGO service area during the year 2011. 

                                                      
22 A one-digit  “tenant  code”  is  included  as  part  of  each  account  number:  therefore,  if  for  example  a  
housing unit keeps turning among different uses over every 24 months or less, the associated account 
number is changed before the billing system can no longer store additional monthly usage data. In this 
way, a continuous record of usage for that unit is built over many years. However, if the housing unit 
turns over less frequently than every 24 months, new months will replace old months in the billing 
system database and gaps in the record will be introduced. LBGO also confirmed that apartment units 
turn over much more frequently than houses in their service territory, so in addition of being largely 
incomplete, residential data from before May 2010 will be skewed toward the usage patterns of multi-
family dwellings.  
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Figure 15: Total monthly natural gas consumption in the Energy Analysis Zones served by LBGO 

 

Natural gas data were delivered by LBGO as monthly record for Zip+4 areas. The data were 
aggregated at the Energy Analysis Zone level of spatial aggregation for the purposes of 
studying the building energy consumption in this study. 

Future availability of energy consumption data for Los Angeles 
County 
While researchers have acquired and used the data described in this section of the report in the 
development of the baseline energy analysis, additional negotiations are under way with the 
utility companies operating in the Los Angeles County for the provision of additional data that 
will improve the coverage and certainty of the results of this study. At the time the project is 
developed, researchers at UC Davis, together with colleagues at UCLA are continuing to work 
with utility providers to acquire these data. This process follows the efforts of the Los Angeles 
County Office of Sustainability, which spent more than a year working to collect similar data 
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before the beginning of this project.23 In particular, researchers request data for each electricity 
and  natural  gas  utility’s  full  service  territory  within  Los  Angeles  County  with  a  higher  level  of  
details with the following parameters:  

• Spatial granularity: by service address; 

• Temporal granularity: by billing cycle (monthly or bimonthly); 

• End-user granularity: by tariff (e.g. residential, commercial, industrial). 

The request for spatially and temporally more disaggregated data is motivated by the interest to 
develop a more disaggregated modeling analysis on energy consumption patterns in buildings 
to inform the environmental sustainability studies in Los Angeles County.  

Researchers initiate data collection by identifying and contacting appropriate utility staff, 
including customer service representatives, account managers, and general managers. The high 
spatial granularity requested by researchers was one of the main issues for some utilities, 
primarily because of implications for customer confidentiality. As identified above, the CPUC 
does not allow release of customer data except in certain situations—one such situation being 
that data are aggregated such that individual consumption signatures are not identifiable. Since 
its  promulgation  by  the  CPUC,  IOUs  have  used  a  threshold  referred  to  as  the  “15/15  rule”—
where any data released must be composed of at least 15 customer accounts, with no one 
account comprising more than 15 percent of total usage—to determine whether data are 
sufficiently aggregated. In meetings with UCLA and the IOUs, the CPUC has affirmed that this 
threshold is only a guideline rather than a steadfast rule, but it has not issued a formal 
clarification to this effect or provided further guidance.24  To address this limitation, researchers 
at UC Davis developed a computer routine to flexibly aggregate IOU service address data to 
data points that just satisfy 15/15, thereby maximizing spatial granularity. The IOUs did not 
initially  support  researchers’  efforts  to  devise  a  collaborative  solution  to  data  provision  under  
the 15/15 guideline. Their willingness to work with researchers developed in response to 
researchers at UCLA building strong relationships with CPUC staff and commissioners and 
with  the  Governor’s  Office  of  Planning  and  Research  (OPR).  Researchers  argued  the  social  
benefits and need for access to consumption data to generate effective policy responses to 
environmental challenges such as climate change.  

 
                                                      
23 This process entailed significant time spent by the researchers and by the colleagues at the University of 
California, Los Angeles for meetings with utility staff and management, as well as with local and state 
government representatives and CPUC staff and commissioners to generate pressure for release of the 
data. 

24 The primary challenge this poses for research is that the IOUs were only willing to provide data 
satisfying the 15/15 guideline through a one-size-fits-all aggregation. For residential data, this may equate 
to the ZIP code, while for commercial or industrial usage the data often only satisfy 15/15 when 
aggregated to the individual city. In both cases, this granularity is insufficient to provide the level of 
certainty required for the energy consumption study. 
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As of this writing, Southern California Edison was working with researchers to implement 
researchers’  computer  algorithm.  In contrast, Southern California Gas Company (SCG) told 
researchers it would continue to abstain from providing customer data until required to do so 
by law or by an order from the CPUC. SCG maintains that their customer database is a business 
asset owned by their  shareholders.  The  high  spatial  granularity  of  researchers’  data  requests  
similarly  generated  concern  from  municipally  owned  utilities  (MOUs).  However,  MOUs’  rules  
generally allow them to work with researchers to provide the requested data as long as there is 
a clear and significant benefit to the public and the utility, such as improving energy efficiency 
and conservation programs, and as long as customer data remains strictly protected. Energy 
consumption data from other MOUs operating in the area of study were not provided to the 
researchers to date. However, the process of obtaining access to these data is under 
development and close to a future successful conclusion. Although it was not possible to 
include these additional data in the development of the analysis of this current project, the 
researchers organized the research activities so that, when these data will become available, it 
will be possible to analyze them in future extensions of the project using the database structure 
and methodology approach already developed for this study.25 

 

                                                      
25 The definition of the Energy Analysis Zones and the structure of the energy consumption database 
developed for this project were prepared for the entire Los Angeles County, and are designed to use data 
from all utility companies in the County. In the current study, however, given the current limitations on 
the amount of data provided by the utility companies, the estimation of energy consumption models was 
carried out for the areas covered by the energy consumption data available at the time of development of 
the project. The following sections of this report discuss the validity and extension of the results from this 
study to the other areas currently not covered by energy consumption data. 
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CHAPTER 6:  
Input Data 
Several different sources of data were used to create the energy consumption database that is 
used in this project. These sources cover a wide variety of physical and socioeconomic variables, 
and were compiled into a single database to allow the study of energy consumption in 
buildings at the level of Energy Analysis Zones (EAZs). There are 449,539 EAZs in the final 
energy database, 448,380 of which can be represented spatially in a GIS dataset. The database 
includes more than 1,000 explanatory variables, which measure different characteristics of the 
land use, building stock, natural environment, and sociodemographics in the area of study. The 
sources for these data include the Los Angeles County  Assessor’s  Property  Database,  
demographic data from the U.S. Census Bureau – American Community Survey, 
geomorphologic information on slope and aspect, information related to the building climate 
zones as defined by the California Energy Commission, and climate data from previous 
research studies developed at the University of California, Davis. This section of the report 
describes the data that researchers used in the analyses, with necessary details on the data 
sources that were accessed, the transformations that were applied for data processing and 
analysis, and the level of spatial aggregation at which the data were available. 

Building  Information  from  the  LA  County  Assessor’s  Property  
Database 
The  Los  Angeles  County  Assessor’s  Property  database  contains information on individual 
parcels, and on the building stock in Los Angeles County, including information on square 
footage, construction type, and value. The data received from the Assessor were imported into a 
Microsoft SQL Server database, following the methodology described in the Chapter 3 of this 
report. The following list summarizes some of the main fields that were included in the original 
dataset, or that were attached by researchers to the parcel records, for inclusion in the energy 
consumption database: 

AIN  (Assessor’s  ID  Number) – Identifies  individual  parcels  within  the  Assessor’s  database.  It  
consists of a Mapbook number (4 digits), page number (3 digits), and parcel number (3 
digits). 

LUZ  (PECAS Land Use Zone) – Zone that the parcel majority resides in; derived by GIS overlay 
of parcels and zones. This zone is used by the PECAS model to determine commodity 
flows between the geographic areas. 

TAZ  (CSTDM Traffic Analysis Zone) – Zone where the parcel majority resides in; derived by GIS 
overlay of parcels and zones. These zones are used by the CSTDM (California Statewide 
Travel Demand Model). 

ZIP+4 (United States Postal Service 9 digit zip code) – This information was attached to parcel 
records via address matching with USPS records. 



54 

Land Year  – Year of current land value 

Land Value – Value of land, excluding improvements 

Improvement Year – Year of current improvement value 

Improvement Value – Value of improvements (structures) on parcel. 

Situs Address – The street address of the parcel; used to identify ZIP+4 codes. 

Zone Code – Zoning classification given to the parcel by local jurisdictions or cites. The first two 
characters represent the city code. The 3rd character represents the type of zoning, such 
as agricultural, commercial, industrial, or residential. The 4th through 15th place 
characters represent the zoning of the parcel. 

Use Code – Actual current use of the property regardless of zoning. This consists of four 
alphanumeric characters. The 1st character denotes the general classification (e.g., 0 = 
residential, 1 = commercial, etc.). The 2nd character further defines the type of property 
within the major classification. The 3rd and 4th characters indicate additional 
characteristics, and the presence of specific features. 

Last Sale Amount  – Dollar amount of the last sale price of the parcel. 

Last Sale Date – Date of the last sale. 

Number of Rental Units – The total number of rental units on the property. 

For each parcel, the characteristics of up to five buildings are reported. The information 
available in each of these fields is summarized in Table 6. 

Table 6: Building  variable  in  the  Los  Angeles  County  Assessor’s  data 

Field Description 

Design Type A 4-character code describing the original purpose for which the 
improvement was intended, providing the building has not been 
extensively remodeled. 

Quality, Class, Shape A 5-character code identifying the class of construction, quality of 
construction, and shape of the perimeter. See below for additional 
information. 

Year Built Original year the structure was built. 
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Number of Units The number of stores, residential units, etc., contained in a 
multiple unit type structure. This code follows a similar scheme to 
the  “UseCode”. 

Number of Bedrooms Number of bedrooms present in a single residence or the total 
bedrooms in the apartment 

Number of Bathrooms Number of bathrooms present in a single residence or the total 
bathrooms in the apartment 

Square Footage The total area in square feet of the main structure 

Unit Cost Main The dollar cost per square foot for the main structure 

RCN Main The cost of replacing the main structure (square feet x unit cost) 

 

Quality, Class, Shape (QCS) code – Additional details: 

A three part (5-character) code designating Quality, Class, and Shape of the 
improvement.  The  first  character  denotes  the  building  class.  For  example,  “A”  
represents a building having a fireproofed structural steel frames carrying all wall, floor, 
and roof loads. Wall, floor, and roof structures are built of noncombustible materials. 
The next 1, 2 or 3 characters represent the quality of the construction. The quality class 
ranges from 1 to 12.5 and gives a relative assessment of the construction quality of the 
structure. The last character denotes the shape of the perimeter. Shape classifies the 
structure by how regular or irregular the shape of the structure is, to determine the 
aspect ratio of the front/back and sides and whether the structure is a simple box or has 
more complex geometry. 

To make the information  in  the  Assessor’s  database  comparable  to  other  datasets,  including  the  
energy consumption data, it was aggregated into EAZs. During this process, additional 
transformations were applied to some of the variables. For example, the original 4-character use 
code, which had over a thousand unique values, was cross-walked into a set of 21 new use 
categories (see Chapter 3, Table 3), which were derived from PECAS floorspace categories. All 
of  the  relevant  variables  from  the  Assessor’s  dataset  – for both parcels and buildings – were 
then aggregated to EAZs, using both the original use code and the new use categories. The 
reason for doing this was that later steps utilize both the original 4-character use codes, and the 
new categories. 



56 

Figure 16: Predominant Land Use Types (100% minimum threshold) 

 

To identify EAZs of a predominant use type, we queried the table with the values summarized 
by original 4-character use code to identify the use codes that are associated with the majority of 
the developed square feet in the parcel. The use codes are passed to a custom T-SQL function, 
which classifies each EAZ into one of several general categories, based on the proportion of 
square footage in the zone: 

 Single Family Residential 

 Multi-Family Residential 

 Commercial 

 Industrial 

 Vacant 

 Other 

The total square footage in each of these categories is calculated, and then passed to another 
function, which calculates if any of the six general types comprises a proportion of the total that 
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is above a specified minimum threshold. If so, the EAZ is identified as being predominantly 
composed of that type (Figure 16). If no single type falls above the minimum threshold, then the 
EAZ is classified as mixed. A Mixed Residential category is also used to identify EAZs for 
which neither the Single Family Residential nor the Multi-Family Residential uses reach the 
threshold used in the computation but the sum of the two categories of floorspace types reach 
the threshold. Minimum threshold values were tested at 70, 80, 90, 95, 99, and 100%. This was 
done to examine how changing the minimum threshold value would affect the classification of 
EAZs into predominant use type categories. In addition to identifying predominant types, the 
total square footage falling into each of these categories was calculated for each EAZ, and added 
to the final dataset. 

Average  building  age  was  calculated  for  each  EAZ,  using  the  “Year  Built”  attribute  (Figure  17).  
The average building age was added to the final dataset as a potential explanatory variable for 
energy consumption. 

Figure 17: Average Building Age 

 

Several additional attributes were summarized using the information available in the use type, 
design type, and QCS codes. For example, the 4-character use type codes indicated residential 
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buildings that had a pool on the property. For each EAZ, the number of parcels (total and 
proportion) and the building square footage (total and proportion), was calculated.  

The design type code is another 4-character code, which provides information on the original 
purpose for which the building was intended. It contains information on technological features, 
such as the type of heating and cooling present in the building. The information in this field was 
summarized into a few general categories. For each of these categories, the number of buildings, 
total square footage, and proportion of square footage was calculated at the EAZ level. 

A similar process was done to summarize the construction class information contained in the 
QCS codes. As with the design type codes, the number of buildings, total square footage, and 
proportion of square footage was calculated at the EAZ level, for each class code (Table 7). 

Table 7: Construction Class Codes 

Class Description 

A Buildings have fireproofed structural steel frames carrying all wall, floor, and roof 
loads. Wall, floor, and roof structures are built of noncombustible materials. 

B Buildings having fireproofed reinforced concrete frames carrying all wall, floor, and 
roof loads. Wall, floor, and roof structures are built of noncombustible materials. 

C Buildings having exterior walls built of a noncombustible material such as brick, 
concrete block, or poured-in-place concrete. Interior partitions and roof structures are 
built of combustible materials.  Floor may be concrete or wood frame. 

D Buildings having wood or wood and steel frame. 

S Those specialized buildings that do not fit in any of the above categories. 

 
American Community Survey (ACS) 
The United States Census Bureau conducts the American Community Survey on an ongoing 
basis to provide current information on demographic, social, economic, and housing 
characteristics. The 5-year estimate (2006 – 2010), which is centered on the target year of 2008, 
was selected to provide data on these characteristics within LA County. ACS data is also made 
available in 1-year and 3-year estimates, but the geographic resolution of these datasets is much 
coarser than the 5-year estimate and, because they are based on smaller samples, the data are 
less reliable. 

For this project, a subset of data was extracted, covering the spatial extent of LA County. A 
PostgreSQL database was built using raw census files, and queried to produce the subset of 
variables that were of interest for this project. The data can be accessed at several levels of 
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census geography, but block groups were used because they provide the most useful set of 
attributes at the highest spatial resolution. There are 6,425 block groups in LA County. 

A full description of the 2006-2010 ACS 5 Year Summary File, including all available attributes, 
can be found on the website of the US Census Bureau.26 The attributes selected for use in this 
project are as follows: 

• Total population 

• Median age 

• Population by age category 

• Household occupancy status 

• Median household income 

• Median household income by race 

• Hispanic or Latino origin by race 

After extracting the ACS data, each of the variables was allocated to the EAZ polygons. The 
ACS data were originally available at the level of census block groups, which are generally 
larger than the EAZs (on average, about 70 EAZs per block group). As a result, the ACS data 
had to be allocated using an appropriate method for each variable. 

Population was disaggregated to EAZs using the amount of residential square footage in each 
EAZ.  Residential  square  footage  was  obtained  from  the  LA  County  Assessor’s  Parcel  Database,  
which crosswalks directly to EAZs. A Python script was developed to control the 
disaggregation process. It begins by converting the EAZ polygons to points, and uses a spatial 
join to attach the ACS attributes to the EAZ points. The total residential square footage is first 
calculated for a block group, and then the proportion that each EAZ contributes to that total is 
calculated. This proportion is then multiplied by the total population of the block group, to 
allocate it to EAZs in the same ratio as the amount of residential square footage. In rare cases 
(~0.4% of all persons), some amount of population is estimated to occur in a block group where 
the  LA  County  Assessor’s  database  does  not  record  any  non-vacant residential square footage. 
In this case, the population is allocated to EAZs using the proportion of total area in the EAZ 
polygons. Figure 18 illustrates the result of the population disaggregation process, where 
population has been allocated to the EAZs that contain residential buildings. 

                                                      
26 See http://www2.census.gov/acs2010_5yr/summaryfile/ACS_2006-2010_SF_Tech_Doc.pdf 

http://www2.census.gov/acs2010_5yr/summaryfile/ACS_2006-2010_SF_Tech_Doc.pdf
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Figure 18: Population values after being allocated to EAZs. 

 

The median age attribute for each block group was allocated to the EAZs using the same EAZ-
to-block group spatial relationship developed for population. It is assumed that the median age 
in the block group is a relatively good representation of the median age in the corresponding 
EAZs. The ratio of total population in several age categories (under 18, 18 to 29, 30 to 64, and 65 
plus) was also calculated for each block group and assigned to the EAZs. The same was done 
for the ratio of occupied vs. unoccupied housing units, and Hispanic or Latino origin by race. 
Median household income and median household income by race were also assigned to the 
EAZs from the ACS block group data. 

In this way, the ACS variables were processed in order to provide estimates of the demographic 
and economic characteristics of the population in each EAZ. They are used as explanatory 
variables in the energy use model. 
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Figure 19: Median Household Income. 

 

 

Geomorphological data 
Mean slope and aspect, by parcel, were calculated for the purpose of representing solar 
exposure, which can impact levels of energy consumption. This information was attached to the 
parcels to aid in the understanding of its variation across the study area. 

Geographically, the mean slope and aspect are determined for units in the Los Angeles County 
parcel dataset. The slope and aspect values are derived from the U.S.G.S. 10 meter Digital 
Elevation Model. This resolution of data is sufficient to get a reasonably accurate value for mean 
slope and aspect by parcel. The mean slope and aspect are two fields in the parcel database that 
respectively measure the average slope of a parcel (in percent slope) and average aspect of a 
parcel (in degrees from North). 

The Los Angeles County GIS Parcel data was rasterized using a U.S.G.S. 10 meter Digital 
Elevation Model as a template. The slope and aspect of the DEM were then derived using 
standard surface analysis tools available in GIS software. Finally, the zonal statistics tool was 
used to calculate the mean slope and aspect of each parcel. These mean values were then joined 
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back to the parcel database to be used as explanatory variables in the energy consumption 
model.  

Figure 20: Average slope (degrees) 

 

 
Climate data 
Average values of climate variables, namely Maximum Temperature, Minimum Temperature, 
Precipitation, Potential Evapotranspiration, and Actual Evapotranspiration, are calculated at the 
level of Energy Analysis Zones (EAZs). Information on climate variables was obtained from a 
refined version of the Parameter-elevation Regressions on Independent Slopes Model (PRISM). 

The original PRISM datasets were processed and downscaled by researchers at the Information 
Center for the Environment (ICE) of the University of California, Davis and the USGS for the 
California Energy Commission, Public Interest Energy Research (PIER) Program 2010 
Vulnerability and Adaptation (V&A) Study. As part of the V&A project, several additional 
climate variables were derived from the downscaled PRISM temperature and precipitation data, 
using a regional water balance model, the Basin Characterization Model (BCM). The result is a 
total of 14 climatic and hydrologic variables, which are available at a resolution of 270 meters: 
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• Maximum Temperature 

• Minimum Temperature 

• Precipitation 

• Potential Evapotranspiration 

• Runoff, Recharge 

• Climate Water Deficit 

• Actual Evapotranspiration 

• Sublimation 

• Soil Water Storage 

• Snowfall 

• Snowpack 

• Snowmelt 

• Excess Water 

The finer resolution of climate data (downscaled from original 4-KM PRISM data to 270-meter) 
enables  us  to  associate  climate  information  with  County  Assessor’s  parcel  geography  and  EAZ  
geography. Out of the 14 variables, 5 were selected for use in this study. They are summarized 
in Table 8 below. 

 

Table 8: Climate Variables obtained from the PRISM and BCM Models 

Variable Code Units Description 

Maximum 
Temperature 

tmax Celsius Maximum monthly temperature 

Minimum 
Temperature 

tmin Celsius Minimum monthly temperature 

Precipitation ppt mm Total monthly precipitation (rain or snow) 
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Potential 
Evapotranspiration* 

pet mm Potential amount of water that can 
evaporate from the ground surface or be 
transpired by plants if available water is 
not limiting 

Actual 
Evapotranspiration† 

aet mm Actual amount of water that evaporates 
from the surface or is transpired by plants 

* Modeled on an hourly basis from solar radiation (which is modeled using topographic shading), corrected for 
cloudiness, and partitioned on the basis of vegetation cover to represent bare-soil evaporation, and 
evapotranspiration due to vegetation 
† Calculated to be the same as pet, while soil water content remains above the wilting point. 

The climate data were available in raster files at a resolution of 270 meters. The five climate 
variables selected for use in this study were allocated to parcels by overlaying them with the 
County  Assessor’s  parcel  GIS  dataset.  The  results  are  then  summarized  at  the  EAZ  level. 

Building Climate Zones 
The California Energy Commission has established 16 zones in California, which are used in 
conjunction  with  California’s  Title  24  Building Energy Efficiency Standards27 to dictate the 
minimum efficiency standards that are required for new construction in an area.  Each zone has 
distinct climatic conditions which determine the types of energy efficiency features that are the 
most appropriate. The climate zones are based on energy use, temperature, weather and other 
factors, and are essentially geographic areas with similar climatic conditions. They were defined 
using weather station data from across the state, and are based primarily on summer and 
winter mean temperatures (California Energy Commission, 1995). Additionally, for ease of 
enforcement, they are kept fairly consistent with jurisdictional boundaries. The five climate 
zones found within LA County are summarized in Table 9. 

 

 

 

 

 

                                                      
27 Also  referred  to  as  “Standard  Climate  Zones”,  climate  zones  are  used  by  the  CEC  to dictate building 
energy standards. These climate zones are different from the Forecasting Climate Zones. A potential 
cause of confusion is that there are also 16 forecasting climate zones. The standard climate zones, used in 
this study, are based on climatic conditions and population centers, independent of utility service area, 
whereas the forecasting climate zones are based on utility electric service area boundaries and climate. 
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Table 9: Building Climate Zones in LA County 

Zone # 
Representative 

City 
Description* 

6 Los Angeles Includes the beaches at the foot of the southern California hills, as 
well as several miles of inland area where hills are low or 
nonexistent. The Pacific Ocean is relatively warm in these 
latitudes and keeps the climate very mild. 

8 El Toro Inland from the coast, but still influenced by marine air. Since this 
zone is not directly on the coast the temperatures in the summer 
are warmer, and in the winter, cooler. 

9 Pasadena Both coastal and interior weather influences the Southern 
Californian inland valley climate zone. The inland winds bring 
hot and dry air, and marine air brings cool and moist air. 
Compared to the coast, summers are warmer and winters are 
cooler. 

14 China Lake Medium to high desert, the continental mass influences this 
interior climate more than the ocean. This zone is characterized 
by wide swings in temperature, both between summer and 
winter and between day and night 

16 Mount Shasta High, mountainous and semiarid region above 5,000 feet in 
elevation. The climate is mostly cold, but seasonal changes are 
well defined and summer temperatures can be mild. 

* Climate Zone descriptions from The  Pacific  Energy  Center’s  Guide  to:  California  Climate  Zones  and  

Bioclimatic Design (2008) 

 

For each of the 16 zones, the California Energy Commission has established typical weather 
data, prescriptive packages, and energy budgets. An energy budget is the maximum amount of 
energy that a building, or portion of a building, can be designed to consume per year (California 
Energy Commission, 2008). 
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Figure 21: California Building Climate Zones in Los Angeles County 
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CHAPTER 7:  
Energy Consumption Patterns for Building Operations 
This section presents the results of the analysis on energy consumption for building operations 
in Los Angeles County that the researchers developed using the energy database built for this 
project. In the original research plan for the project, the researchers initially planned to develop 
jointly estimated models, or structural equation models, to analyze the consumption of both 
electricity and natural gas in buildings in Los Angeles County simultaneously. The very 
comprehensive energy database that was built as part of this project, developed at a very 
detailed level of spatial analysis (it includes almost 450,000 Energy Analysis Zones), has a great 
potential to investigate energy consumption in buildings in connection with the characteristics 
of the building stock, geographical location, climate and geomorphological variables and 
sociodemographic traits. However, the development of this plan was limited by the reduced 
availability of energy consumption data for these two energy sources. In particular, the lack of 
spatial overlap between the areas of service of the Los Angeles Department of Water and 
Power, which provided data on electricity consumption, and the Long Beach Gas and Oil, 
which provided data on natural gas consumption, hampered the ability to estimate models for 
the consumption of these two energy sources simultaneously. Still, the rich energy database 
built as part of this project allows a wide variety of meaningful analyses on the relationships 
between energy use and other variables of interest in the area of study. The remainder of this 
section of the report describes the analyses that were carried out in the study, through the 
presentation of summary descriptive statistics, first, and through the estimation of econometric 
models for the consumption of energy use in different categories of buildings. 

It is important to note that the estimation of jointly estimated models, and of structural equation 
models, would have allowed the estimation of energy consumption models for each one of the 
two energy sources, electricity and natural gas, while accounting for the contemporary 
consumption of the other form of energy in each area. Natural Gas and Electricity are 
substitutes for some end use purposes. In particular, they are common substitutes for heating 
purposes in residential buildings (as well as for some purposes in non-residential buildings). 
According to the U.S. Department of Energy, about 71% of the California homes heat using 
natural gas during the cold season28, while 22% of California homes use electricity instead. 
These percentages provide a clear example of the importance of controlling for the consumption 
of all other energy sources when studying the distribution, and relationship with other 
variables, of the consumption of one of these energy sources in a building.29 Otherwise, for 
example, the estimation of a model to explain electricity consumption in buildings might incur 

                                                      
28 Percentages for the use of natural gas for heating purposes in residential homes are lower in other parts 
of the country. At national level, 51% of homes are heated using natural gas, and 30% using electricity.  

29 Only 7% of California homes use other energy sources for heating purposes (mainly propane). This 
percentage is usually lower in highly urbanized areas, as in Los Angeles County and the use of these 
other sources of energy is not explicitly treated in this study. 
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in  an  “unobserved  variables  bias”.  If  the  unobserved  variable (natural gas consumption, in this 
example) is highly correlated with the dependent variable (e.g. electricity consumption), the 
estimated coefficients from the regression model will be biased, and will significantly differ 
from their true values.30  

Energy data for Los Angeles County 
The limited availability of energy consumption data, which were provided only by the two 
utilities LADWP and LBGO, did not allow the researchers to populate the entire 450,000 EAZ 
energy database with energy consumption data for these two energy sources. In particular, at 
the time of writing this report, the lack of spatial overlap in the utility data does not allow the 
joint estimation of energy consumption models for electricity and natural gas in this project, as 
originally planned. For the reason, the researchers have developed an alternative approach that 
still allows exploring the relationships between energy consumption in buildings and the many 
variables of interest in the database.  

The following subsections of the report present the results of the analysis of energy 
consumption in buildings that was performed where energy consumption data were available. 
The results are then compared to independent sources, and in particular to simpler energy 
consumption models that were developed using data from the RASS and CEUS energy 
consumption studies developed by the California Energy Commission respectively for 
residential and commercial buildings in California.  

The authors also want to stress how, while they worked on the development of this alternative 
plan to investigate energy consumption in buildings, and took all necessary steps to develop 
alternative approaches that could reduce the disruptions caused by the limited availability of 
utility data on the quality of the research, they also kept working in close cooperation with the 
funding agency and the colleagues at UCLA on trying to obtain additional energy consumption 
data from the remaining utility companies in Los Angeles County. Additional efforts have been 
made, as previously described in this report, for this purpose. Talks are currently underway 
with the major IOUs in the area of study, and the energy consumption data from these utilities 
might become available in the near future. At the time these data will be available, it will be 
possible to update the current analyses, and use the full potential of the large energy database 
that has been created as part of this research. The data management and analytical tools that 
were developed as part of this project are of general validity and could be applied to the 
complete energy database, as soon as the new data become available, disclosing the full 
potential and depth of information contained in the almost 450,000 records (EAZs) database, 
with more than 1,000 explanatory variables, that has been created for the project. 

                                                      
30 Accordingly, the estimated coefficients in an econometric model that does not control for an 
unobserved variable that is correlated, in a statistically significant way, with the explanatory and the 
dependent variables, are biased, and they will tend to underestimate, or overestimate, the effect of the 
explanatory variables on the dependent variable, depending on the sign of the correlation and the nature 
of the interaction among the variables. 
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Out of the 448,380 EAZs that compose the energy database, energy consumption data for 
electricity are available for 149,812 EAZs included in the LADWP area of service and natural 
gas data are available for 20,426 EAZs included in the LBGO area of service, for a total of 
170,238 EAZs with available energy consumption data. Electricity consumption data provided 
by LADWP are available for all years from 2005 to 2010. Consumption data for year 2008 were 
selected for the analyses of this project, as most of the other variables (including the information 
for  the  building  stock  from  the  Assessor’s  data)  are  for  this  year.  Annual  electricity  
consumption by EAZ for all other years was also loaded into the energy database, as they 
provide additional information on the energy use in the EAZs.31 The researchers used 
consumption data for natural gas for 2011, given the high proportion of missing records in the 
LBGO data for previous years, as described in Chapter 5. The EAZs with available energy data 
cover roughly 40% of the total number of EAZs, with about one third of the total EAZs included 
in the LADWP area of service, and less than 5% of the EAZs included in the LBGO subsample. 

Table 10: Energy Analysis Zones by CEC climate zone in the total sample 

 Frequency Percent Valid Percent Cumulative Percent 

Climate Zone  

6 33,452 19.7 19.7 19.7 

8 28,735 16.9 16.9 36.5 

9 107,729 63.3 63.3 99.8 

16 322 .2 .2 100.0 

Total 170,238 100.0 100.0  

 

Table 10 reports the distribution of the number of EAZs in the total sample by CEC building 
climate zone. CEC Climate Zones 6, 8, 9 and 16 are represented in the sample with the available 
energy consumption data. Climate Zone 16 is not well represented in the sample (very small 
sample size, only 322 cases across the entire sample). Only climate zones 6 and 8 are present in 
the LBGO subsample. The additional climate zone 14, which is present, in the Northern part of 
the Angeles County, is not covered in the areas of service of the two utility companies and 
therefore it is not included in the sample. 

                                                      
31 Future extensions of this project could focus on the time series analysis of electricity consumption by 
Energy Analysis Zones, using the information contained in the energy database. 
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Figure 22: Predominant Use Types in Energy Analysis Zones (70% threshold, N=170,238) 

 

The information on the building stock in Los Angeles County contained in the energy database 
was used to code the predominant land use observed in each Energy Analysis Zone. We 
controlled the predominant land use that was observed in each zone, using different threshold 
levels to code an EAZ as belonging to a specific predominant land use if the proportion of 
developed space belonging to that land use exceeded the threshold. The  “Other”  category  
includes the remaining land use types that did not fit into the residential, commercial, 
industrial, or vacant categories: these include institutional, government, recreational, farm and 
miscellaneous uses. We  coded  the  zone  in  the  “Mixed Use Types”  category,  which  aggregate  
mixed land use areas, if no dominant use type reached the threshold level. Figure 22 shows the 
predominant land use categories obtained with a 70% threshold, separating zones into Single 
Family Residential, Multifamily Residential, Mixed (Density) Residential, Commercial, 
Industrial, Other (including government, institutional, etc.), Mixed Use Types (when no use 
type reached the 70% threshold), and Vacant (when more than 70% of the floorspace contained 
in the EAZ is vacant).  
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Figure 23: Predominant Use Types in Energy Analysis Zones (100% threshold, N=170,238) 

 

 

As building types tend to mix in a city, we also controlled for other thresholds of the 
predominant land use, and in particular measured at 70%, 80%, 90%, 95%, 99% and 100%. The 
results from the different coding assumptions showed little differences between the various 
threshold levels. Figure 23 shows the map of predominant land use types at 100% level (all 
developed floorspace in an Energy Analysis Zone needs to share the same use type to be 
assigned to that category). In the rest of the analyses presented in this chapter, we will always 
refer to the 100% Predominant Use Type category, in order to identify zones in a sharper way, 
and reduce disturbances associated with the total amount of energy consumed for different end 
uses and building types.32 

 

                                                      
32 At least for the LADWP dataset, energy consumption records do not distinguish between energy 
consumed by residential customers or by other customers in the same geographic area. 
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Table 11: Energy Analysis Zones by climate zone and predominant use type 100% (N=170,238) 

 Climate Zone Total 

6 8 9 16 

Pred Use Type  

(100%) 

COM 1,676 1,578 6,245 1 9,500 

IND 568 892 2,286 0 3,746 

MFR 10,290 7,993 25,225 2 43,510 

MXR 4,098 6,824 9,814 15 20,751 

MIX 1,568 2,621 4,728 6 8,923 

OTH 187 254 657 0 1,098 

SFR 15,063 8,572 58,767 298 82,700 

VAC 2 1 7 0 10 

Total 33,452 28,735 107,729 322 170,238 

 
Table 11 shows the crosstabulation of EAZs by predominant use type (rows) and climate zone 
(columns) for the records with available energy consumption data. Tables 12 and 13 provide the 
breakdown of the numbers from Table 11 in the two different areas of service for LADWP and 
LBGO. 

Table 12: EAZs by climate zone and predominant use type 100% (LADWP subsample, N=149,812) 

 Climate Zone Total 

6 8 9 16 

Pred Use Type  

(100%) 

COM 1,005 1,266 6,245 1 8,517 

IND 355 827 2,286 0 3,468 

MFR 5,371 6,864 25,225 2 37,462 

MXR 1,833 5,794 9,814 15 17,456 

MIX 857 2,355 4,728 6 7,946 

OTH 111 206 657 0 974 

SFR 10,349 4,565 58,767 298 73,979 

VAC 2 1 7 0 10 

Total 19,883 21,878 107,729 322 149,812 
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Table 13: EAZs by climate zone and predominant use type 100% (LBGO subsample, N=20,426) 

 Climate Zone Total 

6 8 

Pred Use Type  

(100%) 

COM 671 312 983 

IND 213 65 278 

MFR 4,919 1,129 6,048 

MXR 2,265 1,030 3,295 

MIX 711 266 977 

OTH 76 48 124 

SFR 4,714 4,007 8,721 

Total 13,569 6,857 20,426 

 

The energy database contains a number of variables that can be useful to investigate energy 
consumption patterns in buildings. For instance, Table 14, below, shows the distribution of the 
age of the buildings by climate zone for EAZs with available energy consumption data. 

Table 14: EAZs by building age and climate zone (N=170,238) 

 Climate Zone Total 

6 8 9 16 

Age  

Category 

Missing 253 521 1,249 0 2,023 

1920 or Older 1,429 2,944 4,970 0 9,343 

1921 to 1940 5,868 9,067 19,250 19 34,204 

1941 to 1960 13,134 11,186 40,867 139 65,326 

1961 to 1980 7,474 3,569 27,697 122 38,862 

1981 to 1990 3,643 878 9,152 6 13,679 

1991 to 2000 818 365 2,397 32 3,612 

2001 to 2007 804 198 2,048 4 3,054 

2008 or Newer 29 7 99 0 135 

Total 33,452 28,735 107,729 322 170,238 

 

As the numbers from Table 12-14 demonstrate, information on buildings that were built in 
recent  years  is  quite  limited  in  the  database  (in  particular,  considering  that  the  Assessor’s  data  
are referred to the year 2008). For this reason, for all further analyses on energy consumption, 
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the  two  most  “recent”  categories  of  building  age  were  merged  into  one  category  “Built  in  2001,  
or Newer”,  which  groups  all  buildings  built  in  the  new  century.  In  addition,  buildings  built in 
the 1980s and 1990s were merged in a unique category. This category is of particular interest to 
study the impact of energy efficiency standards, which were first introduced in California with 
the Title 24 building standards, whose effects started to be measureable for buildings built after 
1980.33 In addition, buildings that are located in climate zone 16 are not sufficiently represented 
in the sample.  

Residential Sector 
This subsection of the report presents the results from the analysis of energy consumption for 
the residential sector. Energy consumption records for either electricity or natural gas are 
available for a total of 170,238 Energy Analysis Zones in Los Angeles County. After filtering out 
the records that do not contain information on residential areas and removing incomplete 
records and outliers from the sample, the sample that contains information on energy 
consumption (either for electricity or natural gas) for the residential sectors contains 132,514 
EAZs. In the creation of this dataset, the researchers decided also to remove the records in 
which mixed land uses where observed, as the utility data, at least for the larger utility that 
provided data (LADWP), did not allow them to separate energy use by purpose. Also 
considering the small sample of EAZs with mixed land uses, and to avoid difficulties in the 
allocation of energy consumption to different types of customers (e.g. commercial vs. 
residential) in the same Energy Analysis Zone, it was decided to focus the rest of the analysis on 
the more homogenous data for purely residential areas. The rest of the analysis reported in this 
subsection of the report are therefore referred to the EAZs with predominant land use coded in 
the categories SFR (Single Family Residential), MFR (Multi-Family Residential) or MXR (Mixed 
Residential), which can include various typologies of building types belonging to either the 
single family or multifamily categories in the same EAZ.  

Table 15: Residential EAZs by use type, building age and climate zone (N=132,514) 

Climate Zone predUseType100 Total 
MFR MXR SFR 

6 Age Category 

1920 or Older 415 402 299 1,116 
1921 to 1940 1,242 1,820 1,369 4,431 
1941 to 1960 2,609 1,438 6,295 10,342 
1961 to 1980 2,683 221 2,897 5,801 
1981 to 1990 1,138 24 1,827 2,989 
1991 to 2000 87 10 490 587 
2001 or Newer 64 0 591 655 

Total 8,238 3,915 13,768 25,921 

8 Age Category 

1920 or Older 396 1,639 422 2,457 
1921 to 1940 1,314 3,577 2,338 7,229 
1941 to 1960 2,719 1,309 4,794 8,822 

                                                      
33 The first building standards were approved in California with  the  “Title  24”  regulation  approved  in  
1978. Several additional updates and new regulations have been introduced in the following years in the 
State. More information is available from http://www.energy.ca.gov/title24/standards_archive/ 
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1961 to 1980 1,929 101 579 2,609 
1981 to 1990 439 12 173 624 
1991 to 2000 136 4 78 218 
2001 or Newer 94 4 39 137 

Total 7,027 6,646 8,423 22,096 

9 Age Category 

1920 or Older 1,027 1,986 844 3,857 
1921 to 1940 4,870 4,785 5,384 15,039 
1941 to 1960 6,405 2,179 24,942 33,526 
1961 to 1980 6,083 256 15,179 21,518 
1981 to 1990 2,414 14 4,446 6,874 
1991 to 2000 418 3 1,273 1,694 
2001 or Newer 312 1 1,383 1,696 

Total 21,529 9,224 53,451 84,204 

16 Age Category 

1920 or Older 0 0 0 0 
1921 to 1940 1 2 15 18 
1941 to 1960 1 7 115 123 
1961 to 1980 0 1 114 115 
1981 to 1990 0 0 3 3 
1991 to 2000 0 0 30 30 
2001 or Newer 0 0 4 4 

Total 2 10 281 293 

Total Age Category 

1920 or Older 1,838 4,027 1,565 7,430 
1921 to 1940 7,427 10,184 9,106 26,717 
1941 to 1960 11,734 4,933 36,146 52,813 
1961 to 1980 10,695 579 18,769 30,043 
1981 to 1990 3991 50 6449 10490 
1991 to 2000 641 17 1871 2529 
2001 or Newer 470 5 2017 2492 

Total 36796 19795 75923 132514 
 

The aggregation of the floorspace types reported in Chapter 3 of the report is used for the 
aggregation of these floorspace types. We further distinguish, in the development of the energy 
analyses, between single-family  residential  units  “without  a  pool  (simply  regarded  as  “single  
family  housing”  in  the  report)  and  single  family  units  “with  a  pool”.  The  distinction  between  
these two categories of residential units correspond to observed trends in the energy data, as 
homes with a pool are usually found to consume more energy (in particularly for electricity), all 
else equal, than other single family homes. Table 15 reports the crosstabulations of the EAZs 
included in the residential sample by climate zone, age category of the building (rows) and 
predominant use type (columns).  
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Figure 24: Residential Electricity use per capita in the LADWP area of service (in 2008)  
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As mentioned in Chapter 4 of this report, EAZs were created as a logical aggregation of parcels 
and Zip+4 areas. As such, they vary in size and population (larger EAZs are associated with 
more complex relationships that link many Zip+4s and parcels). For this reason, the total energy 
consumption per EAZ is not a very interesting metric to represent spatially, as it is largely 
influenced by the size of each EAZ, and by the total population and amount of built floorspace 
in each zone.  

The availability of demographic data and information on the building stock in Los Angeles 
County allowed computing derived measures of energy intensity in the area of study. Measures 
of  electricity  consumption  as  “electricity  (respectively,  natural  gas)  use  per  capita”,  or  
“electricity  (respectively,  natural  gas)  use  per  residential  unit”  are  of  larger  interest,  at  least  for  
the purposes of mapping energy use on a more homogenous and easily readable scale. Figure 
24 shows the variation of electricity use per capita (by EAZ) in the LADWP area of service in 
2008. Hilly areas of the city predominantly associated with lower density housing and larger 
single family homes are the areas where the highest rates of electricity consumption per capita 
are observed. Analogously, Figure 25 shows the variation of electricity use per sq. ft. of 
residential space. The different demographic distribution, average household size and size of 
the residential units in the various areas in the map contribute to mitigate the differences in 
electricity use per sq. ft. between areas. However, higher energy consumption per sq. ft. of 
residential space is associated with housing units located in the northern part of the map, which 
are located further away from the ocean and have higher thermal variation. The integration of 
several different sources of data in the energy database allows studying several additional 
relationships between electricity consumption and the possible explanatory variables contained 
in the dataset. 

We estimated econometric models for electricity consumption based with the data obtained 
from the energy database. As we could not follow our original plan to develop jointly estimated 
models (or structural equation models) to model electricity consumption, while at the same 
time accounting for the consumption of natural gas (and vice versa), we opted for the 
estimation of cross-sectional multiple linear regression models that predict the consumption of 
each one of these energy sources, in separate analyses34. 

                                                      
34 As previously mentioned, the inability to account for the consumption of the other energy source 
during the estimation of the consumption models might be a source of unobserved variable biases in the 
estimated coefficients. We will later discuss this topic in more details when comparing the results from 
the estimated energy consumption models with other sources of data. Any eventual bias in the data could 
be removed through the access to more complete energy consumption data for both electricity and 
natural gas data in the area of study, and re-estimating models of energy consumption with the energy 
database and the analytical tools that were developed for this project. 
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Figure 25: Electricity use per square foot of residential space in the LADWP area of service (in 
2008) 
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Several different functional forms where tested to create robust, and meaningful, specifications 
that can explain electricity consumption in the LADWP area of service. We first estimated 
models to predict electricity use per capita. Thanks to the large amount of variables in the 
dataset, we were able to test several different model specifications with or without a constant 
term and combinations of explanatory variables. We tested various specifications for this 
electricity consumption model, with or without a constant term. Table 16 summarizes the 
results from the model of electricity use per capita with a constant term, which was selected as 
best fitting to describe the electricity consumption per capita. 

Table 16: Linear regression model for residential electricity use per capita (LADWP area) 

Variable 
Unstandardized 

Coefficients 
Standardized 

Coefficients 
p-value 

Constant 2,490.731  <.001 

Population per unit -446.581 -.368 <.001 

Median Income .017 .350 <.001 

Avg. Slope 8.737 .024 <.001 

Avg. SF unit size (sq. ft.) .227 .125 <.001 

Avg. SF unit size, with pool (sq. ft.) .450 .273 <.001 

Avg. MF unit size  (sq. ft.) -.087 -.025 <.001 

Year Built (1981 to 2000) 179.714 .031 <.001 

Year Built (2001 or newer) 109.408 .009 <.001 

Climate Zone 6 -589.561 -.116 <.001 

Climate Zone 8 -337.045 -.068 <.001 

Aspect - South -179.678 -.051 <.001 

Aspect - North 42.502 .005 .008 

Sample Size (N) 115,987   

R Square .559   

Dependant Variable: Annual Electricity Consumption per capita (KWh) 

The model for electricity user per capita has a rather good goodness of fit (R-square = 0.559) and 
it includes several variables of interest. Electricity use per capita tends to increase with income35, 

                                                      
35 Higher income individuals tend to leave in larger, more comfortable houses, have smaller household 
sizes, and tend to make higher use of appliances and other energy-intensive devices. Even after 
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while it decreases with the number of people that live in the household: as expected, all else 
equal, individuals that live in larger groups in the same housing unit tend to consume less 
electricity per capita. Electricity use per capita tends to increase also with the slope of the area 
where the EAZ is built: this variable is probably a proxy also for the geographical location of the 
household. In the area of study, larger, more luxury houses are generally located on the steeper 
areas of the hills surrounding the city. 

Electricity consumption is lower for individuals that live in the Climate Zones 6 and 8 
(comparing to Climate Zones 9 and 16 as reference in the dataset). These areas, located closer to 
the ocean, benefit from the proximity to this vast body of water, and consequentially usually 
require lower amounts of energy for heating during winter and for cooling during the summer 
season. A similar effect, although smaller in terms of absolute impact on energy consumption, is 
associated with the aspect of the EAZ where the individual lives. Areas that face the North tend 
to have slightly higher electricity consumption per capita, while the consumption is lower for 
areas facing the South (compared to areas facing East or West, used as reference).36  

The age of the building is a significant predictor of electricity use in the building: in particular, 
individuals that live in newer buildings (built after 1980) tend to consume more energy than 
those that live in older buildings, probably as an effect of larger use of modern appliances and 
increased use of A/C and other facilities that overcompensate for the increased efficiency of the 
building. Several different specifications were tried to model the influence of the age of the 
building on electricity use. Among the main findings, a reduction in the electricity use per 
capita is registered for individuals that live in recently built (or renovated, after 2000) homes. 
Overall, electricity consumption per capita is higher in homes built between 1981 and 2000 than 
in older buildings. It then declines for individuals that live in newer buildings (built or 
renovated after 2000) if compared to the buildings built in the previous era (1981-2000). This 
effect can be probably explained by the effects of the improvements in the standards for the 
energy efficiency in buildings and by the increased proportion of retrofits in the existing 
building stock.37  

As expected, the impact of the size of the housing units is an important predictor of the 
electricity consumption per capita. Individuals that live in larger homes tend to use more 
electricity, and the effect is amplified for individuals that live in a house with a pool: the 
estimated  coefficient  for  housing  unit  size  “with  pool”  is  always  higher  than  the  one  for  single  
family home without a pool in all models that were estimated. This effect sums with another 
                                                                                                                                                                           
accounting separately for the household size and the size and type of housing unit, the income variable is 
still statistically significant and has a positive estimated coefficient. 

36 Please note that apart from the different exposure to the sunlight, the different aspect of an area is also a 
proxy for the location of the building in the county, as in particular in the LADWP area of service, a 
limited number of residential lots are built in areas that predominantly face the North direction and most 
of them are predominantly located in specific part of the area of study. 

37 The variable for age of the building is an average across the entire Energy Analysis Zone and it includes 
newly built buildings but also major renovation of previously existing buildings. 
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relationship observed in the dataset, which is that the average size of a home with pool is 
usually larger than the average size of a house without a pool in the area of study. This effect 
increases even more the difference in the electricity consumption between individuals that tend 
to live in a house with a pool and those that do not. 

The negative coefficient for the average size of a multifamily home might look rather 
counterintuitive, at first, and it greatly differs from the alternative model specifications 
estimated without a constant term. However, the negative coefficient for the size of the 
multifamily family housing unit might be explained by the need to compensate the excessive 
value of the constant term for individuals that live in multifamily houses. For this reason, a 
modified model was estimated, including the possibility for the constant term to assume a 
different value for the individuals that live in Energy Analysis Zones dominated by multifamily 
housing units. The results of the modified model are summarized in Table 17. The significance 
and signs of all the variables in the model resemble the values from the previous model. 
However, the presence of the additional constant modifier for the Multi-Family units reduces 
the size of the constant to 2,177.31 Kwh, with a positive, and statistically different from zero, 
coefficient for the size of the multifamily home in which the individual lives.  

Table 17: Linear regression model for residential electricity use per capita (LADWP area, with 
modified constant for Multi-Family housing units) 

Variable 
Unstandardized 

Coefficients 
Standardized 

Coefficients 
p-value 

Constant 3,104.219  <.001 

MF Constant (modifier) -926.914 -.269 <.001 

Population per unit -498.963 -.411 <.001 

Median Income .015 .319 <.001 

Avg. Slope 10.143 .028 <.001 

Avg. SF unit size (sq. ft.) .061 .033 <.001 

Avg. SF unit size, with pool (sq. ft.) .431 .262 <.001 

Avg. MF unit size  (sq. ft.) .343 .100 <.001 

Year Built (1981 to 2000) 256.540 .044 <.001 

Year Built (2001 or newer) 147.441 .012 <.001 

Climate Zone 6 -566.260 -.112 <.001 

Climate Zone 8 -334.472 -.067 <.001 

Aspect - South -153.161 -.043 <.001 
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Aspect - North 45.316 .006 .004 

Sample Size (N) 115,987   

R Square .578   

Dependant Variable: Annual Electricity Consumption per capita (KWh) 

One of the purposes of this study is to develop models of energy consumption that can be easily 
applied in a modeling approach that simulates the development of buildings in a complex area 
such as Los Angeles County. For this reason, we developed some simplified models to model 
energy consumption in Los Angeles County. We will present them starting from the simplest 
(and more parsimonious) model. In this part of the analysis of electricity consumption, we 
focused on both models that include a constant term and models that do not. These models are 
built for the purpose of developing estimates for energy consumption of individual buildings 
and are based on a number of inputs. This type of model can generate energy estimates that can 
be applied to a building inventory to project energy use in our area of study. 

Table 18 summarizes the results of the estimation of a simple model of energy consumption that 
simply estimates the consumption of electricity depending on the size of the residential unit. 
The model differentiates the weight that a square foot of each of the three residential floorspace 
types can have on residential electricity consumption through the adoption of different slopes 
in the model for the three residential floorspace types. The model is estimated without a 
constant term, in order to simplify its application to an energy assessment of the building stock 
through the estimation of a unique coefficient for each of the three floorspace types that can be 
easily applied to the building inventory developed for Los Angeles County.  

Table 18: Regression model for residential electricity consumption in residential EAZs (LADWP 
area) 

Variable Unstandardized Coefficients p-value 

Total sq. ft. SF housing 4.395 <.001 

Total sq. ft. SF housing, with pool 5.792 <.001 

Total sq. ft. MF housing 4.379 <.001 

Sample Size (N) 115,987  

R Square .791  

Dependant Variable: Total Annual Electricity Consumption in EAZ (KWh/EAZ). Regression model 
through the origin. 

The interpretation of the unstandardized coefficients from this model is very simple, as each 
estimated coefficient represents the estimated electricity consumption of one square foot of that 
floorspace type (in KWh/sq. ft.). We want to call attention to the goodness of fit measure for this 
model (the R-squared), in this case, refers to a model through the origin. This measure of the 
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goodness of fit cannot be directly compared to the R-square measure of the goodness of fit for a 
model with an intercept (as the models that presented later in this section). 

We developed an alternative model using a stratified sample, created through the separation of 
the different residential densities in the sample. The purpose of this model is to isolate the 
effects of the different types of residential floorspace types on electricity consumption in 
buildings reducing the perturbation introduced by the presence of multiple types of floorspace 
types in the same EAZ.38 Table 19 shows the results of the estimation of a linear regression 
model estimated using the stratified sample composed of more homogenous residential areas. 
In this sample, all records from EAZs with mixed residential building types were filtered out. 

Table 19: Regression model for residential electricity consumption in residential EAZs (LADWP 
area, separated residential land uses) 

Variable 
Unstandardized 

Coefficients 
p-value 

Total sq. ft. SF housing 4.261 <.001 

Total sq. ft. SF housing, with pool 5.244 <.001 

Total sq. ft. MF housing 4.361 <.001 

Sample Size (N) 71,371  

R Square .738  

Dependant Variable: Total Annual Electricity Consumption in EAZ (KWh/EAZ). Regression model 
through the origin. 

Table 20 presents a modified version of the previous regression model, still based on the same 
stratified sample, which accounts for the location of EAZs in different climate zones. This model 
estimates the annual electricity consumption (in KWh/residential unit) using the average square 
footage of the units located in each EAZ as explanatory variables. Given the distribution of the 
EAZs by climate zone in the sample, it is not possible to estimate a separate coefficient for the 
climate zone 16 (for which the sample size is particularly small). Similarly, climate zones 6 and 
8, which showed a similar behavior in terms of energy consumption in all modeling analyses, 
are grouped in a unique climate area for the purposes of this analysis (this ensures larger 
sample sizes for all subsamples). For this reason, the model shown in Table 21 is based on the 
estimation of different coefficients for the three floorspace types for residential units 
respectively located in the CEC Title 24 climate zones 6 or 8, and for those located in the climate 
zones 9 or 16.  
                                                      
38 The process of aggregation of the Energy Analysis Zones, imposed by the need to treat the information 
provided by the utility companies at the Zip+4 level imposes some averaging of the variables for the 
building stock across an EAZ. This might reduce the explanatory power of the variables in the model. The 
separation of the land uses in this model tried to isolate the effects of the different building types on 
energy consumption without these confounding factors. 
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Table 20: Regression model for electricity consumption in residential areas (LADWP area, 
separated residential land uses, with climate zones) 

Variable 
Unstandardized 

Coefficients 
p-value 

Sq. ft. SF housing    (CZ6 or CZ8) 3.886 <.001 

Sq. ft. SF housing, with pool   (CZ6 or CZ8) 3.969 <.001 

Sq. ft. MF housing    (CZ6 or CZ8) 3.950 <.001 

Sq. ft. SF housing    (CZ9 or CZ16) 4.574 <.001 

Sq. ft. SF housing, with pool   (CZ9 or CZ16) 5.069 <.001 

Sq. ft. MF housing    (CZ9 or CZ16) 4.522 <.001 

Sample Size (N) 71,371   

R Square .870   

Dependant Variable: Annual Electricity Consumption per residential unit (KWh/ residential unit). 
Regression model through the origin. 

The models that have been so far presented in this section are estimated using the data 
contained in the energy database developed as part of this project with a regression model 
through the origin (without intercept, to simplify the computation of the energy consumption 
per square foot of residential unit). However, one problem with this kind of models is that 
forcing the intercept to a value of zero might reduce the ability of the estimated coefficients to 
correctly explain the variance in the dependant variable.  

For this reason, Table 21 presents the results of a modified version of the previous model that 
includes an intercept and that explains the energy consumption in buildings depending on the 
amount of square feet of the various typologies of residential buildings and their location in the 
different climate zones. Similarly to what was done with the regression model that explains 
electricity consumption per capita, this model also allows the constant term to vary for single 
family vs. multifamily housing units, using a MF constant modifier in the regression. 

This model has a high goodness of fit, and it is able to estimate the electricity consumption per 
household using a constant term (which measures the common consumption to all households, 
independently from the square footage) and an additional term proportional to the size of the 
residential unit. The coefficients (the “slope”  in  the  regression  model)  are  allowed  to  vary  for  
the various residential types and for the impact of the climate zones on electricity consumption. 
In addition, the model makes a rather realistic representation of electricity consumption in 
buildings, with a different constant term for residential units in multifamily buildings, which 
have different electricity consumption profiles than single family homes. 
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Table 21: Regression model for residential electricity consumption in residential EAZs (LADWP 
area, separated residential land uses, with climate zones) 

Variable 
Unstandardized 

Coefficients 
p-value 

Constant 4,163.054 <.001 

MF Constant (modifier) -3,865.776 <.001 

Sq. ft. SF housing    (CZ6 or CZ8) 1.468 <.001 

Sq. ft. SF housing, with pool   (CZ6 or CZ8) 2.675 <.001 

Sq. ft. MF housing    (CZ6 or CZ8) 3.647 <.001 

Sq. ft. SF housing    (CZ9 or CZ16) 2.266 <.001 

Sq. ft. SF housing, with pool   (CZ9 or CZ16) 3.612 <.001 

Sq. ft. MF housing    (CZ9 or CZ16) 4.233 <.001 

Sample Size (N) 71,371   

R Square .611   

Dependant Variable: Annual Electricity Consumption per residential unit (KWh/residential unit). 

The dataset that is used in these analyses has one severe limitation due to the limited 
information released by the utility companies in Los Angeles County. Thus, it cannot account 
for the consumption of natural gas in the estimation of the electricity models presented above. 
For this reason, the researchers also accessed alternative datasets that can provide information 
on the relationships between electricity and natural gas consumption and they compared the 
results from this present analysis to other independent sources, in order to make a validity 
check of the estimated models of energy consumption. Table 22 shows a simple model of 
electricity consumption that was developed using the California Energy Commission RASS 
(Residential Appliance Saturation Survey) dataset for the five largest utilities in the State. The 
model is developed using a similar approach to the previous models, and it contains a constant 
term (that is also in this case allowed to differ for multifamily housing units). 

For the way the RASS survey data are structured, we cannot differentiate between houses with 
a pool and without. The simple regression model that is estimated with the RASS data has a 
lower explanatory power, and different estimated coefficients than the model that is presented 
in the previous table. Besides, it has the ability to control for the natural gas consumption, as the 
model is built using a dataset that contains information on both electricity and natural gas. We 
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will return to the joint estimation of the electricity and natural gas consumption towards the 
end of this section.39 

Table 22: Regression model for residential electricity consumption from RASS data 

Variable 
Unstandardized 

Coefficients 
p-value 

Constant 2,536.964 <.001 

MF Constant (modifier) -615.481 <.001 

Sq. ft. SF housing unit 2.229 <.001 

Sq. ft. MF housing unit 1.529 <.001 

Sample Size (N) 13,826  

R Square .299  

Dependant Variable: Total Annual Electricity Consumption per household (Kwh/residential unit). 

In order to compare the results from the model estimated with the energy database built with 
this project and the simple model developed using the RASS data, we used the information 
related to the average characteristics of residential units in the area of study to build an 
electricity  consumption  function  for  the  “average”  household  in  the  study.  Table  23  contains  the  
results of this comparison. The estimated coefficients from the model are multiplied by the 
average household sizes for the various categories of residential units respectively in the 
LADWP and in the RASS dataset. 

The estimated electricity consumption predicted by the model for the “average”  housing unit in 
the LADWP dataset is slightly higher than for the correspondent housing unit in the RASS 
dataset. However, this is probably reasonable for the Los Angeles area, if compared to the rest 
of the state (RASS data are collected for the entire State of California). Overall, the estimations of 
electricity consumption that was estimated in the study seem reasonable. The model is also able 
to account for the variation of energy consumption by climate zone, with higher levels of 
electricity consumption forecasted for housing units located in climate zones 9 and 16, which 
are located further away from the ocean. This appears to be reasonable, in consideration of the 
higher use of energy, for cooling and heating purposes respectively during the summer and 
winter seasons. 

                                                      
39 Linear regression models cannot account for an additional unobserved variable that is not included in 
the regression. This topic will be discussed later through the estimation of a simple structural equation 
model for the estimation of electricity and natural gas consumption.  
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Table 23: Estimated residential electricity consumption per housing unit40 

Energy database Constant MF Constant KWh/sq. ft. 
Avg. 

Sq. ft./Unit 

Total 

KWh/Unit 

SF housing     

  (CZ6 or CZ8) 
4,163.054  1.468 1,638.74 6,568.724 

SF housing, with pool 

  (CZ6 or CZ8) 
4,163.054  2.675 2,095.46 9,768.426 

MF housing     

  (CZ6 or CZ8) 
4,163.054 -3,865.776 3.647 878.07 3,499.614 

SF housing     

  (CZ9 or CZ16) 
4,163.054  2.266 1,638.74 7,876.429 

SF housing, with pool 

  (CZ9 or CZ16) 
4,163.054  3.612 2,095.46 11,731.877 

MF housing     

  (CZ9 or CZ16) 
4,163.054 -3,865.776 4.233 878.07 4,014.165 

RASS data Constant MF Constant KWh/Sq. ft. 
Avg. 

Sq. ft./Unit 

Total 

KWh/Unit 

SF housing 2,536.964  2.229 1,746.84 6430.670 

MF housing 2,536.964 -615.481 1.529 951.77 3376.739 

 Note: Comparison based on estimated coefficients from Table 21 (LADWP area) and Table 22 (RASS 
data). 

In a similar way to what was developed for the estimation of electricity use in residential 
buildings, we also estimated similar linear regression models to predict the natural gas 
consumption in residential buildings in Los Angeles County. Table 24 shows the estimated 
coefficients for a linear regression model for natural gas use per capita. The R-square (measure 
of goodness of fit) for this model is 0.153, lower than in the model for the electricity 
                                                      
40 Electricity consumption estimates from the model seem to be consistent with data from other sources, 
too, and in particular with the average annual amount of electricity consumed per household in the 
LADWP area, which is estimated at the level of about 6,500 KWh (in 2008) in the adopted forecasts for the 
California Energy Demand 2010-2020 developed by the California Energy Commission (Kavalec and  
Gorin, 2009). 
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consumption per capita. This is in line with the lower explanatory power of all the models 
estimated with the natural gas dataset in this study, which has smaller sample size, and is 
referred to a smaller geographic region.41 

Table 24: Linear regression model for residential natural gas use per capita (LBGO area, with 
modified constant for Multi-Family housing units) 

Variable 
Unstandardize
d Coefficients 

Standardized 
Coefficients 

p-value 

Constant 181.965  <.001 

MF Constant (modifier) -20.655 -.085 <.001 

Population per unit -30.092 -.318 <.001 

Median Income .000 .090 <.001 

Sq. Ft. SF unit (with/without pool) size .028 .194 <.001 

Sq. Ft. MF unit size  .009 .034 .001 

Year Built (1981 to 2000) -21.266 -.054 <.001 

Year Built (2001 or newer) -36.504 -.029 <.001 

Sample Size (N) 16,527   

R Square .153   

Dependant Variable: Annual Natural Gas Consumption per capita (Therms) 

In the preferred (best) model for natural gas consumption per capita, the difference in the 
impact  of  the  square  footage  of  single  family  homes  “with  a  pool”  and  “without  a  pool”  on  
natural gas consumption per capita is not significant. For this reason, given also the limited 
sample size for the LBGO area of service (the only area where natural gas consumption data are 
available for this study), the researchers chose a more parsimonious specification for this model. 
A unique term estimates the impact of the size (in square feet) of the residential units (with or 
without the pool) on the consumption of natural gas per capita in this model.42 Natural gas 
                                                      
41 Limited variance is observed for many variables in this smaller dataset, e.g. for the size of multi-family 
residential units and the location of EAZs in different climate zones. In addition, complete records for the 
annual consumption of natural gas were provided by the utility company (see Chapter 5) only for 2011. 
Later in the report, we will discuss the possible effects of this temporal mismatch (with the other 
variables in the database) on the estimated coefficients, and on the goodness of fit of the models of 
natural gas consumption. 

42 Even if the estimated coefficients for the impact of a square foot of residential unit on natural gas 
consumption per capita are the same for houses with and without a pool, in practical applications, higher 
levels of consumption of natural gas per capita are observed in houses with a pool, as an effect of the 
larger average size of these housing units (which affects the distribution of this explanatory variable). 
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consumption per capita is usually lower in multifamily homes, and it decreases with the 
household  size  (i.e.  “population  per  unit”  in  the  model).  As  expected,  average  natural  gas  
consumption increases with an increase in income (as confirmed by other studies, as an effect of 
the different characteristics of the buildings, lifestyles and energy use).  

Finally, an important role is associated with the age of the building: average natural gas 
consumption per capita is lower for individuals that live in newer buildings. This confirms the 
effects of the energy efficiency standards: Title 24, approved in 1978, is responsible for the 
reduction in the consumption of natural gas per capita for individuals that live in buildings 
built in 1980s and 1990s (compared to older buildings). The reduction becomes even larger for 
individuals that live in even more recent buildings, built or largely renovated after 2000, when 
efficiency standards become even more stringent.43 The impact of climate zones on the 
consumption of natural gas per capita is not found to be statistically significant in this model. 
But it is important to note that the data from LBGO cover only two (and rather similar) climate 
zones, respectively number 6 and 8, and therefore the possibility to study the impact of climate 
zones on energy consumption with the available data is limited. 

Following the same approach used for the electricity consumption, the researchers also 
estimated some more simplified models to predict the natural gas consumption in a residential 
unit in the area of study, which can be of interest for the assessment of energy consumption for 
the building stock in the area of study. Table 25 shows the results of the estimation of the final 
model that estimates natural gas consumption for a residential unit in the LBGO area of service. 
The model is estimated with an intercept (which can differ for residential units located in single 
family or multifamily buildings). This simplified model of natural gas consumption predicts the 
natural gas consumption in a residential unit as a linear function (including a constant term) of 
the residential unit size. The model predicts slightly different natural gas consumption for 
single family homes located respectively in climate zone 6 and climate zone 8. The total natural 
gas consumption of single family homes in climate zone 8 tends to increase at a slightly higher 
rate with size, than for houses located in climate zone 6. As expected, natural gas consumption 
in multifamily housing units is found to be lower than in single family homes. Interestingly, the 
estimated coefficients for the size of the residential units located in multifamily buildings are 
not statistically different from zero. Natural gas consumption does not vary in statistically 
significant way with the size of the unit in this area of service (however, not a very large 
variation in the square footage for this type of residential units is observed in the sample, 
making the estimation of this coefficient more difficult). 

 

                                                      
43 Additional policies promoted by the utility companies and the increased awareness on energy 
efficiency are also probably co-responsible for the increased efficiency of buildings built in more recent 
years. 
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Table 25: Regression model for residential natural gas consumption in residential areas (LBGO 
area, separated residential land uses, with climate zones) 

Variable 
Unstandardized 

Coefficients 
p-value 

Constant 278.229 <.001 

MF Constant (modifier) -58.756 <.001 

Sq. Ft. SF unit (with/without pool) SF housing  (CZ6) .109 <.001 

Sq. Ft. SF unit (with/without pool) SF housing  (CZ8) .115 <.001 

Sample Size (N) 16,527   

R Square .204   

Dependent Variable: Annual Natural Gas Consumption per residential unit (Therms/residential unit). 

Also for the natural gas consumption, the researchers developed a simple model of energy 
consumption using the data from the CEC RASS survey, which can be used for comparison of 
the results from the model estimated with the energy database for this project. Table 26 
summarizes the regression model for natural gas consumption estimated using the RASS data. 

Table 26: Regression model for residential natural gas consumption from RASS data 

Variable 
Unstandardized 

Coefficients 
p-value 

Constant 283.924 <.001 

MF Constant (modifier) -143.301 <.001 

sq. ft. SF housing unit .128 <.001 

sq. ft. MF housing unit .093 <.001 

Sample Size (N) 13,826  

R Square .266  

Dependent Variable: Total Annual Natural Gas Consumption per household (Kwh/residential unit). 

The RASS model provides a useful comparison to validate the results from the analysis of this 
project. Table 27 provides some comparison for the natural gas consumption predicted by the 
model from Table 25 and the RASS model from Table 26 for some categories of housing units 
with  “average”  characteristics  in  the  respective  samples. Total natural gas consumption is not 
very different for the two models, and is consistent with expectations: consumption of larger 
homes with a pool is higher than for single family homes without a pool, and residential units 
in multifamily buildings tend to consume less natural gas than single family homes in the same 
climate zone.  
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Table 27: Estimated natural gas consumption per housing unit 

Energy database Constant MF Constant 
Therms/ 

Sq. ft. 

Avg. 

Sq. ft./Unit 

Total 

KWh/Unit 

SF housing   (CZ6) 278.229  .109 1477.50 439.277 

SF housing, with pool  (CZ6) 278.229  .109 1883.56 483.538 

MF housing   (CZ6) 278.229 -58.756  812.437 219.473 

SF housing   (CZ8) 278.229   1477.50 448.142 

SF housing, with pool  (CZ8) 278.229  .115 1883.56 494.839 

MF housing   (CZ8) 278.229 -58.756 .115 812.437 219.473 

RASS data Constant MF Constant 
Therms/ 

Sq. ft. 

Avg. 

Sq. ft./Unit 

Total 

KWh/Unit 

SF housing 283.924  .128 1,746.84 507.519 

MF housing 283.924 -143.301 .093 951.77 229.138 

 Note: Comparison based on estimated coefficients from Table 25 (LBGO area) and Table 26 (RASS data). 

Overall natural gas consumption in the LBGO housing units tend to be slightly lower than in 
the housing units predicted by the RASS model, but this result is somewhat expected if 
considering the geographical areas the two datasets refer to. RASS data contain households in 
the entire State of California, and it is expected that natural gas consumption in residential units 
in Los Angeles County (and in general in Southern California) tends to be lower than in the rest 
of the State, as one of the primary end uses for natural gas is heating residential housing units. 

As the RASS data allow studying both electricity and natural gas consumption simultaneously, 
we also developed a simple model of jointly estimated regression equations that analyzes the 
relationships between square footage of the two housing types (SF vs. MF) and energy 
consumption. Figure 26 shows the modeled relationships among the studied variables in this 
model: two equations respectively predict electricity and natural gas consumption of each 
household. The explanatory variables, as in the previous examples using the RASS data, are the 
square footage of the two types of housing units, single-family residential and multifamily 
residential. The errors of the two dependent variables, electricity consumption and natural gas 
consumption, are allowed to be correlated. 
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Figure 26: Jointly estimated models of household energy consumption from the RASS data 

 

Figure 27 shows the final specification for this model. Standardized coefficients from the 
estimation of the model are reported in the figure. The inclusion of the MF constant allows the 
constant term to differ for Multifamily housing, in a similar way to the linear regression models 
presented earlier in this section. The estimation of this simple model produces coefficients that 
are equal in sign and magnitude to those from the estimation of the linear regression models in 
Table 22 and Table 26 and used for the computations in Table 28. The standard errors of the 
coefficients, however, are smaller, as an effect of the jointly estimated model that is able to deal 
with some of the violation of the assumptions of the multiple linear regression model and that 
leads to the estimation of more efficient estimators. 

Figure 27: Standardized estimated coefficients for the jointly estimated models of household 
energy consumption from the RASS data 

 

The model with the RASS data accounts for the correlation among electricity and natural gas 
consumption levels. The correlation is statistically significant and positive (0.37). The result, 
which might be counterintuitive, is actually explained by the relationships among the 
consumption patterns of these two types of energy sources. Even if natural gas and electricity 
can be important substitutes for some energy end uses (e.g. heating in residential units), the 



93 

total consumption of the two energy sources will tend to be a function of the size of the housing 
units and the characteristics of the household. Larger households are associated with larger 
consumption of both electricity and natural gas. Therefore, the correlation among the total 
consumption levels of the two energy sources tends to be positive, as well as the regression 
weights for the total amount of square footage for both types of residential units. 

The comparison of the energy models estimated with the energy database built for this project 
with the simpler models built from the RASS data is useful to provide some benchmark to 
check the reasonability of the estimated consumption patterns analyzed in this study. The 
results from our study were also compared to other data sources and studies in the literature, 
for instance on the annual consumption of electricity per capita in the residential sector in the 
State of California44 (Kandel et al., 2008). Also this comparison did not highlight any significant 
issues or concerns on the validity of the results that were estimated as part of the current 
research and its application for the estimation of energy use in the residential sector in Los 
Angeles County. 

Non-Residential Sector 
Energy consumption in buildings other than residential dwellings constitutes an important 
fraction of the total energy use in urban areas. The service sector includes all commercial and 
public buildings: under this definition, many different types of buildings are grouped, 
including retail and stores, offices, schools, restaurants, hotels, hospitals, museums, etc. The 
non-residential service sector accounts for a wide variety of uses and energy services. Among 
the most relevant in terms of the energy consumption are heating, ventilation and air 
conditioning [HVAC], domestic hot water, lighting, refrigeration, food preparation, etc.45 In 
non-domestic buildings, the type of use and activities make a huge impact on the quality and 
quantity of energy services needed. Office and retail are among the most energy intensive 
building types, typically accounting for over 50% of the total energy consumption for non-
residential buildings. Hotels and restaurants, hospitals and schools are other building types that 
consume a large share of energy in the service sector.  

In this subsection of the report, we will discuss the analysis of energy consumption in non-
residential buildings that was developed in the project. The analysis of energy consumption in 
non-residential buildings focused on the floorspace types presented in Chapter 3. Differently 

                                                      
44 In the cited study, electricity consumption per capita in the residential sector in California was 
estimated to be 2,369 KWh/person, on average.  The study provides information on the variation of 
electricity consumption per capita depending on income, household size, number of cooling/heating 
days, and electricity price (this last variable is not analyzed in our research, as it is a constant in a cross-
sectional study) through a time series analysis of energy consumption in California.  The results from the 
study are consistent with the results from our research.  

45 Developed countries have witnessed a sharp increase in energy consumption in the service sector 
during the last few decades. According to estimates from the EIA, in the USA, energy consumption in the 
service sector has expanded from about 11% to 18% of the total energy budget from the 1950s until the 
beginning of the 21th century. 



94 

from the analysis of energy consumption in residential buildings presented in the previous 
section, the investigation of energy consumption in the service sector had an additional 
difficulty: a relevant number of energy analysis zones used in the project had heterogeneous 
land use characteristics. This is primarily due to the need, in the definition of the EAZs, to 
aggregate Zip+4 areas (the level of aggregation at which the utility companies provides energy 
consumption data for the area of study), which in more densely populated areas often tend to 
include contiguous parcels with different land uses. The separation of the land uses is important 
for a more accurate analysis of energy consumption in the study. However, the energy 
consumption data (at least in the LADWP dataset) do not disaggregate energy consumption by 
end use or sector. For these reasons, EAZs were classified using the predominant land use type 
classification with a 100% threshold. EAZs belonging to the non-residential sector were further 
subdivided using the floorspace type categories presented in chapter 3.  

After filtering out records that contained information on residential EAZs (either in 
predominantly residential EAZs or as a minor portion of the total floorspace type in the EAZs), 
the non-residential dataset includes 13,442 EAZs. Of this total number of EAZs, 12,183 EAZs 
have information on electricity consumption data (in the LADWP area of service) and 1,259 
EAZs have information on natural gas consumption (in the LBGO area of service).  

The researchers further subdivided the sample for non-residential buildings, in order to identify 
energy trends in zones containing different building types. In particular, 1,768 EAZs contain 
office buildings, while 2,406 EAZs contain commercial/retail buildings (including a smaller 
subset of 91 EAZs that contain malls and big box retail space) and 3,338 EAZs contain 
warehouses and distribution facilities or light industrial buildings46. In the development of the 
energy consumption analysis, due to the difficulty of separating different energy purposes in 
the total consumption data (electricity consumption data from LADWP did not include 
information on the final energy end use), we focused the analysis of energy consumption on 
EAZs that had only limited variation in the contained floorspace types. 

Information on government buildings and secondary education buildings (colleges and 
universities) was not used in the computation of energy consumption by square foot, because of 
the large amount of missing entries in  the  Assessor’s  data  for  these categories.47 This could 
cause large departures from current energy consumption when trying to develop estimates 

                                                      
46 This study did not attempt to study energy consumption in heavy industrial buildings (heavy 
industries and factories). Energy consumption in the industrial sector is in fact  rather difficult to study, 
and it highly depends on the activities that are performed in the building. This is in particular true for 
heavy industrial buildings, where the type of manufacturing/production that is hosted in the building is 
directly responsible for the highest proportion of the energy consumed in the building. For this reason, 
the energy consumption and environmental impacts of heavy industries are better studied through 
dedicated analysis that focus on the assessment of the energy consumption of the specific facilities and/or 
the stationary emissions associated with each plant/factory. 

47 The computation of the total energy consumption for these buildings (Chapter 8) uses proxies for the 
unitary energy consumption per square foot of these buildings from similar floorspace categories. 
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while compensating for the missing information (up to 96% of government buildings have 
missing  information  on  their  size  in  the  Assessor’s  data) that would need to be interpolated in 
the dataset. An additional group of 1,873 EAZs was removed from the dataset and treated 
separately,  as  these  EAZs  included  land  use  types  that  are  coded  as  “mixed  land  uses”  in  the  
Assessor’s  data.  This  category  contains a variety of combinations of different land use codes, 
many of which are rather rare and difficult to study in statistical terms. These mixed land use 
zones, overall, contain various possible combinations of residential and commercial buildings. 
Mixed use EAZs were treated separately in this analysis, and their energy consumption was 
computed through a combination of the residential and commercial energy forecasting tools, as 
explained in the following Chapter 8 of this report. The remaining EAZs identified smaller 
groups of building types (which respectively include hospitals and educational/religious 
buildings) or were associated with the presence of heterogeneous building types belonging to 
different categories.48 

In this part of the research, we estimated the average energy consumption in non-residential 
buildings using a different approach from the energy models developed for residential units. 
For the non-residential  sector,  the  building  “units”  do  not  represent  a  valuable  metrics  to  
evaluate energy consumption. Rather, a valuable measure of energy consumption (and of 
energy efficiency) that is usually adopted in most energy studies expresses the building energy 
consumption in terms of unitary electricity and natural gas consumption per square foot of 
developed floorspace (by building type). We identified different clusters of buildings, and 
estimated the average energy consumption for square foot of developed floor space of each 
group of building types, using the data contained in the energy database. We also attempted to 
estimate regression models for energy consumption in non-residential buildings. However, the 
energy consumption models estimated at the EAZ level, using the limited sample size for the 
non-residential sector, did not have a satisfactory goodness of fit. For this reason, we did not 
use regression models to estimate energy consumption in non-residential buildings. Instead, we 
used the data contained in the energy database to estimate average values for electricity and 
natural gas consumption per square foot of developed floorspace in non-residential buildings. 
This approach is more appropriate, given the limited energy consumption data provided by the 
utility companies (in particular, sample sizes for some non-residential building categories are 
very small in the natural gas datasets), and the rather high variance often observed in the 
energy consumption variables as an effect of the many categories of non-residential buildings 
included in each zone.49  

                                                      
48 The analysis of energy use in zones that included many different types of buildings was further 
complicated by the lack of information on the end use and purpose of energy consumption in the utility 
data. The investigation of energy consumption in more complex combinations of building types will be 
possible when more disaggregated data will be available, both at the spatial level and by purpose/energy 
end use. 

49The estimation of energy consumption patterns in non-residential buildings could significantly improve 
with the access to more spatially detailed information on energy consumption data from the utility 
companies, which include also information by final energy end use, and the information. This, in addition 
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Table 28 reports the annual average consumption of electricity and natural gas per square foot 
of office buildings (including both high rise and low rise office space) computed using the data 
contained in the energy database. It is important to note that the energy consumption per 
square foot of built floorspace tend to have a rather large dispersion from the average values (as 
indicated by the standard deviation in parentheses), as an effect of the small sample and the 
variety of different types of building that are aggregated in the same category. Besides, climate 
zone do not significantly affect the consumption of energy for this category of buildings (at 
least, in the limited sample that is available; a similar effect is observed for the other floorspace 
types described later in this section).  

In order to verify the average values for the consumption of electricity and natural gas per 
square foot of built office space from this study, we compared the results from the analysis to 
available independent studies. In particular, the results are rather consistent with the forecasts 
for energy consumed in office buildings estimated with the CEUS survey from the California 
energy Commission (CEC, 2006). The annual electricity consumption per square foot of office 
building computed in this study (14.147 KWh/sq. ft.) is contained between the values predicted 
by the CEUS study respectively for a small office (13.10 KWh/sq. ft.) and a large office (17.70 
KWh) in the State of California, as well as the CEUS estimates for a small office (13.25 KWh/) 
and a large office (17.91 KWh) located in Southern California.50 

Table 28: Average annual electricity and natural gas consumption in office buildings  

 

Electricity Consumption 

(KWh/Sq. ft.) 

Natural Gas Consumption 

(Therms/Sq. ft.) 

Office Space 14.1469 .2319 

sample size 1612 156 

(Std. Deviation) (8.7534) (.2113) 

 

The average consumption of natural gas from this study is higher than in the CEUS data (0.105 
to 0.219 Therms/Sq. ft. in California) and in particular it is much higher than the estimated 
consumption in the SCE area (0.08 to 0.13 Therms/Sq. ft., as reported in CEC, 2006). This 

                                                                                                                                                                           
to the access to the complete dataset for all utilities in the Los Angeles County would contribute to map 
energy consumption patterns with more certainty, and to increase the goodness of fit of the estimated 
models. 

50 Please note that the cited study refers to estimates for energy consumption in the Southern California 
Edison (SCE) area of service. Please note that SCE has not (yet) provided utility consumption data for this 
research project. SCE serves an area of service that is predominantly located further away from the 
coastal climate than LADWP, and this might explain the reason for which our estimates is closer to the 
lower boundary of the interval. Besides, the majority of office square feet in our dataset come from small 
office buildings.  
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discrepancy might be due to the small sample size for natural gas in this study. Also 
considering the high variance observed in the annual natural gas consumption in our sample, 
we recommend reducing the coefficient for the consumption of natural gas for the office 
floorspace type to a value included in the range from the CEUS study (we recommend 0.12 
Therms/Sq. ft.; this value will be used in the computations in Chapter 8). 

Table 29 reports the average electricity and natural gas consumption per square foot of 
commercial and retail floorspace. These average energy consumptions are computed 
respectively with data from 2,237 EAZs commercial EAZs in the LADWP areas of service and 
169 EAZs in the LBGO areas of service.  

Table 29: Average annual electricity and natural gas consumption in general commercial and 
mall/big box retail space 

 

Electricity Consumption 

(KWh/Sq. ft.) 

Natural Gas Consumption 

(Therms/Sq. ft.) 

General Commercial* 21.5085 .2683 

sample size 2237 169 

(Std. Deviation) (14.4696) (.2529) 

*It includes energy consumption for malls and big box retail. 

The data include both neighborhood commercial stores and shops, larger store facilities and 
malls and big box retail. The decision to include malls and big box retail in the same category 
with other commercial facilities was due to the rather small sample size for these types of 
floorspace types (in particular for natural gas consumption). Average consumption of electricity 
and natural gas per square foot of developed, non-vacant space are in the range of the statewide 
estimates for electricity consumption (from 13 KWh/Sq. ft. for general commercial to 40.99 
KWh/Sq. ft. for food stores; please note that this category may contain several categories of 
heterogeneous commercial floorspace types), and natural gas consumption (.260 to .276 
Therms/Sq. ft.). Also in this case, the average natural gas consumption per square foot from this 
study tends to be higher than the estimates built on CEUS data for the SCE area.  

Table 30: Average annual electricity and natural gas consumption in primary K12 educational and 
religious space 

 

Electricity Consumption 

(KWh/Sq. ft.) 

Natural Gas Consumption 

(Therms/Sq. ft.) 

Educational and Religious Space* 7.7074 .2539 

sample size 433 61 

(Std. Deviation) (8.0254) (.1554) 

*It includes primary K12 educational and religious floorspace types. 
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We also computed average annual energy consumption for K-12 schools and religious space 
(we  grouped  these  two  “educational/religious”  floorspace  types  as  the  sample  sizes  for each 
individual category were rather small). Table 30 summarizes the average consumption of 
electricity and natural gas for one square foot of these floorspace types. Please note that the 
smaller sample size (in particular for the natural gas) and observed variance in the sample 
contribute to the higher uncertainty associated with the average consumption of energy in these 
floorspace types. 

Electricity consumption per square foot of educational/religious space is very similar to the 
range of values for schools from the Statewide (7.46 KWh/Sq. ft.) and SCE specific results (8.22 
KWh/Sq. ft.). Natural gas consumption values tend, however, to be much higher than the values 
from the CEUS dataset. Also in consideration of the small sample size for the natural gas dataset 
and  the  incomplete  information  for  school  and  religious  buildings  in  the  Assessor’s  data  (which  
might be responsible for inaccurate estimation of the total square footage of developed 
floorspace in the dataset), we recommend adopting a more conservative value for the average 
consumption of natural gas, closer to the statewide averages, in the area of .15 Therms/Sq. ft. 

Table 31: Average annual electricity and natural gas consumption in hospitals and health facilities 

 

Electricity Consumption 

(KWh/Sq. ft.) 

Natural Gas Consumption 

(Therms/Sq. ft.) 

Hospitals 20.658 1.0394 

sample size 44 10 

(Std. Deviation) (11.002) (.5797) 

 

We also attempted to compute average consumption of electricity and natural gas for hospitals 
and health facilities (Table 31). Results for hospitals are based on a small number of EAZs, in 
particular for the consumption of natural gas. Average annual electricity consumption per 
square foot of hospital space is in line with the estimates for California and the SCE area. 
Annual average natural gas consumption per square foot is about 25% higher than in the 
estimates from CEUS.51 

Finally, we computed annual electricity and gas consumption for light industrial space and 
warehouses. These two floorspace types proved to have rather similar results, especially for the 
estimation of the annual average electricity consumption.  

 

                                                      
51 Please note that the sample size for the natural gas data for hospitals includes only 10 EAZs and is 
probably not statistically representative of the wide variety of health facilities and hospitals that can be 
found in Los Angeles County. 
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Table 32: Average annual electricity and natural gas consumption in light industrial space and 
warehouses 

 

Electricity Consumption 

(KWh/Sq. ft.) 

Natural Gas Consumption 

(Therms/Sq. ft.) 

Light Industrial and Warehouses 9.7004 .1289 

sample size 3119 219 

(Std. Deviation) (11.6942) (.1759) 

 

The consumption of electricity for this category of floorspace types tend to be slightly higher 
than the estimates for warehouses (the only category for which an estimate is available in the 
CEUS data). Current estimates for electricity consumption in warehouses range between 4.45 
KWh/Sq. ft. and 20.02 KWh/Sq. ft. in the case of refrigerated warehouses (only a subset of the 
this floorspace category). Estimates for energy consumption by square foot for light industrial 
space are not common, as electricity and natural gas consumption in industrial areas tend to 
vary depending on the activities that are performed in the industrial site.52 In this study, we 
merged the light industrial sector and warehouses for the rather similar patterns that are found 
in energy consumption trends for these more limited categories.  

We do not include heavy industries in our energy consumption estimations, as the forecasts for 
this subcategory of industrial activities would be too difficult to predict at the unit of floorspace, 
given the dramatic differences in the use of energy that is registered in different industrial 
fields. The annual average consumption of natural gas in light industrial space and warehouses 
differ more significantly in our dataset than the electricity consumption. In particular, natural 
gas consumption, which for the two categories of floorspace types lies way above the estimates 
from other sources for warehouses, was recomputed separately respectively for the light 
industrial space and the warehouses. Final results showed an average of .1045 Therms/Sq. ft. in 
warehouses and .1534 Therms/Sq. ft. for light industrial space.  

Still, we call the attention of the reader on the large variation in the energy use of natural gas for 
different purposes in these building types, and limited amount of information53 that is available 
                                                      
52 Documents as the California Energy Demand 2010‐2020, Adopted Forecast and its 2012 revised version 
(Kavalec et al., 2012) provide estimates for total electricity consumption in the area of study for the entire 
industrial sector, and by unit of production (in $ dollars). For the reasons mentioned before, it is difficult 
to estimate electricity consumption per unit of square foot in the industrial sector. 

53 Moreover, natural gas consumption data available from LBGO are referred to 2011, while the 
information  from  the  Assessor’s  data  are  for  2008.  This temporal mismatch might cause distortions in the 
process used to match energy data with the information on the building stock, as the number of square 
feet in EAZs for specific floorspace categories might be underestimated, for instance in the case of new 
building construction or renovation with upgrades (or change of use) in some parcels between 2008 and 
2011. 
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through the analysis of the available energy consumption data for natural gas in this project. 
When more complete data for natural gas consumption are available from all utility companies 
in the area of study, it will be possible to revise the estimation of energy consumption for the 
various categories of floorspace. This will result in more robust and accurate estimates of 
energy consumption in buildings for this study, using the large amount of data developed as 
part of the project and contained in the energy database and the methodologies developed (and 
the others that were originally planned but could not be applied yet) in this research. 

 

 

 

 

 



101 

CHAPTER 8:  
Pilot Energy Baseline and Building Energy 
Consumption in Los Angeles County 
The purpose of this project is to develop an analytical methodology to study energy 
consumption for building operations in Los Angeles County. It provides an opportunity to 
study energy consumption patterns in buildings for many research purposes, i.e. through the 
possibility to assess the impact of several variables, such as income, climate zones and the 
characteristics of the housing units, on energy consumption per capita or by unit of developed 
floorspace. Additionally, the study aims at informing modeling applications on the energy 
consumption that is associated with the most common building types and land uses in the area 
of study. In this way, the results of the study can inform land use models and studies on the 
assessment of the energy consumption and greenhouse gas emissions associated with the 
current land use patterns. It also provides useful information to study energy trends and 
possible impacts on the energy demand associated with future land development and 
modifications in the location of residences and economic activities in Los Angeles County.  

The results from the study provide useful insights on the distribution of energy consumption by 
building types/sectors, and their geographical variation with climate zones and other variables 
of interest. Moreover, the results from the analyses presented so far are useful to provide the 
needed inputs to estimate the proportion of GHG emissions that are associated with the various 
sectors of the building stock. In the following sections, applications of the results from the study 
are discussed. Some of these results will be of immediate application in an urban metabolism 
study that focuses on the analysis of environmental impacts of different sectors (economic 
activities, buildings, transportation) in Los Angeles County.  

Building electricity consumption 
This section applies the results from the previous analyses of energy consumption patterns in 
buildings in Los Angeles County to build an assessment of energy use for building operations 
in the area of study. We estimate the energy consumption for the various categories of buildings 
in the area of study using the estimated coefficients from the energy consumption models 
presented in the Chapter 7 of this report.  

Table 33: Electricity consumption by categories of building types in the LADWP area of service 

Floorspace type No. of  
Units 

Sum of            
Sq. Ft. 

Total Energy 
Consumption 

(MWh) 
a) Residential Sector 

   SF residential1 381,385 619,160,875 3,197,437  
SF residential with pool 99,773 259,130,732 1,487,315  
MF residential2 1,046,667 808,409,437 4,044,014  
Total Residential Sector    1,527,825     1,686,701,045  8,728,765  
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Floorspace type Sum of          
Sq. Ft. 

Total Energy 
Consumption 

(MWh) 
b) Non-Residential Sector    

Developed amusement park space  747,662 18,972  
General commercial  153,640,527 3,898,549  
Government operations space  7,564,050 126,242  
Office space3  168,855,095 2,818,140  
Hospital space  20,594,888 501,920  
Mall and big box retail space  34,669,370 879,717  
Mixed use space  43,114,895 805,728  
Primary K-12 education space  76,623,166 696,715  
Secondary education space  3,770,901 34,288  
Religious space  22,589,725 205,403  
Warehouse & distribution space  94,140,152 1,077,337  
Industrial space4  196,424,142 2,793,103  
Total Non Residential Sector         822,734,573 13,856,115 
Total LADWP area     2,509,435,618  22,584,880  

Note: 1includes urban mobile homes; 2includes apartments, joined and GQ residential; 3high and low 
density office space; 4light and heavy industrial space. 

 

Table 33 summarizes the results for the electricity consumption in the LADWP area by 
categories of floorspace/building type.54 Estimates for the energy consumption from building 
categories are built using the number of units and the amount of developed floorspace (in 
square feet) by each floorspace category that has been determined as part of the building 
inventory for Los Angeles County. The assessment of the developed floorspace by category in 
the area of study is primarily based on the data from Assessor’s  parcel  records,  with  the  
inclusion of the adjustments described in Chapter 3 of the report, to account for missing 
information  on  specific  floorspace  categories  in  the  Assessor’s  data.   

In the definition of the electricity consumption assessment summarized in the table we 
primarily used the estimates for unitary electricity consumption from Chapter 7. Energy 
consumption values for general commercial were used also for the developed amusement park 
space, as direct observations for this floorspace types did not allow us to estimate specific 
energy use estimates. Similarly, energy estimates for office space were used for government 
buildings, and secondary education space shares the same energy consumption patterns of the 
educational/religious space (estimated for primary K-12 and religious space). In the 
development of the energy assessment, we do not consider parking space (which was 
previously included in the building assessment from Chapter 3). 
                                                      
54 Results were scaled to match total electricity consumption in the LADWP area of service. Original 
results produced a slight underestimation of the total amount of annual electricity consumption in the 
LADWP area of service, probably due to an underestimation of the building stock in the area of service. 
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The mixed use space includes EAZs that are coded with various combinations of land uses 
according  to  the  Assessor’s  data.  From  the  distribution  of  floorspace  in  this  category,  we  could  
categorize this floorspace in two main sub-categories: EAZs that include various combinations 
of office and commercial space (46.05% of the square feet that fit in this category) and EAZs that 
include various combinations of commercial and residential space (53.95% of the mixed use 
square feet). Accordingly, we could estimate energy consumption profiles for this category of 
space using the appropriate combinations of floorspace types that resembled these sub 
categories of mixed use developed floorspace. 

Finally, as mentioned before, industrial areas are very difficult to predict through the estimation 
of consumption patterns, as energy intensity highly depends on the specific activities that are 
carried out in each plant/establishment. The electricity consumption for the industrial sector 
reported in table 33 was matched to the reported quantity of electricity consumed by the 
industrial sector in the LADWP area in 2008. For this specific economic/building category, only 
the computation of electricity consumption in light industrial buildings is computed using the 
method from Chapter 7: the remaining amount of energy that is consumed in the industrial 
sector is therefore assigned to the heavy industries that are present in the area.  

We initially produced estimates for electricity consumption that (from the comparison with 
LADWP total consumption data) slightly underestimate total annual electricity consumption in 
the LADWP area for all sectors (estimates are about 9% lower than observed consumption, on 
average). Results were scaled to match the total consumption of energy in the LADWP area of 
service. The results from Table 33 match the total consumption of energy in the region, and they 
provide an interesting breakdown of the electricity consumption by sector/building category. 

The estimation of the energy consumption from buildings is based on the energy consumption 
patterns that have been identified and on the amount of developed floorspace types that is 
present in each Energy Analysis Zone in Los Angeles County. This allows the creation of the 
energy summaries at all levels of geography. The results presented in Table 33 are summarized 
for the entire LADWP area.  

Energy consumption in buildings can be summarized also at different geographical levels of 
spatial aggregation, for example at the city level, and can provide information for specific 
comparisons among regions in the County. Using the results that were computed for the areas 
where energy consumption data were available, we can compute estimates  of electricity 
consumption for building operations in the entire area of Los Angeles County. The results are 
scaled to match the total consumption of electricity in the region (65,163 GWh in 2008; original 
electricity forecasts from the application of the model were 10% lower than the total electricity 
consumption in the County). Table 34 shows the summary of energy consumption by categories 
of building types in the entire Los Angeles County. The same assumptions on the aggregation 
of buildings from the computation for the LADWP area are used also in this computation. In 
addition, assumptions for the effects of the climate zones for the climate zone 14 (not included 
in the sample that was used to estimate the electricity consumption model) were derived from 



104 

the literature, based on the average number of cooling degree days and heating degree days in 
this climate zone.55 

Table 34: Electricity consumption for building operations in Los Angeles County 

Floorspace type No. of  
Units 

Sum of            
Sq. Ft. 

Total Energy 
Consumption 

(MWh) 
a) Residential Sector 

   SF residential1 1,288,923 2,042,801,703 10,437,144  
SF residential with pool 246,609 603,038,633 3,414,202  
MF residential2 1,847,195 1,639,365,847 7,785,426  
Total Residential Sector    3,382,727     4,285,206,183  21,636,772  

Floorspace type Sum of          
Sq. Ft. 

Total Energy 
Consumption 

(MWh) 
b) Non-Residential Sector    

Developed amusement park space  7,723,730 176,252  
General commercial  462,507,541 10,554,181  
Government operations space  35,523,283 533,175  
Office space3  439,230,653 6,592,491  
Hospital space  55,574,937 1,218,044  
Mall and big box retail space  144,934,874 3,307,338  
Mixed use space  87,648,920 1,500,426  
Primary K-12 education space  183,716,885 1,502,286  
Secondary education space  39,241,821 320,887  
Religious space  73,282,749 599,246  
Warehouse & distribution space  584,560,624 6,016,097  
Industrial space4  689,292,379 11,206,050  
Total Non Residential Sector     2,803,238,395  43,526,473  
Total in Los Angeles County     7,088,444,578  65,163,245  

Note: 1includes urban mobile homes; 2includes apartments, joined and GQ residential; 3high and low 
density office space; 4light and heavy industrial space. 

 

The proposed assessment of energy consumption in Los Angeles County is based on the results 
of the analysis of energy consumption patterns that were developed as part of this project. As 
such, it is an attempt to depict energy consumption phenomena for the entire county. Indeed, 
large variation in energy consumption might be observed in specific areas, with local results 
that might differ significantly from the trend that has been estimated for the entire area of 

                                                      
55 In the final estimates of energy consumption, we assume an increase in energy consumption from 
climate zone 9 to climate zone 14 that is similar to the increase that was estimated respectively between 
electricity consumption in climate zones 6 and 8 and in climate zones 9 and 16. 
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study. As highlighted in the previous sections of this report, the results from the study could be 
crosschecked and better verified when utility data will become available from all utility 
companies that operate in the area of study. With these pieces of additional information56, it will 
be possible to improve the model specification and the estimation of the energy consumption 
pattern used in the study to improve its goodness of fit and the correspondence to local patterns 
and specific energy use profiles in the region. 

Building natural gas consumption 
Similarly to what was done for the annual electricity consumption in the LADWP area, we also 
computed the annual natural gas consumption by building type in the LBGO area of service. 
Table 35 summarizes the distribution of natural gas consumption by building type in the LBGO 
area.  

Table 35: Natural gas consumption for building operations in the LBGO area of service 

Floorspace type No. of  
Units 

Sum of            
Sq. Ft. 

Total Energy 
Consumption 
(thousands of 

Therms) 
a) Residential Sector 

   SF residential1 58,797 85,714,229 25,643  
SF residential with pool 5,905 11,931,720 2,949  
MF residential2 113,624 83,032,856 24,618  
Total Residential Sector    178,326     180,678,805  53,209  

Floorspace type Sum of          
Sq. Ft. 

Total Energy 
Consumption 
((thousands 
of Therms) 

b) Non-Residential Sector    
Developed amusement park space  -                  -    
General commercial  17,719,684           8,453  
Government operations space  281,239               134  
Office space3  14,683,911           6,055  
Hospital space  2,670,069           3,561  
Mall and big box retail space  3,046,412           1,453  
Mixed use space  4,230,176           2,420  
Primary K-12 education space  3,304,993           1,175  
Secondary education space  809,309               288  
Religious space  3,078,276           1,095  
Warehouse & distribution space  7,332,787           1,362  

                                                      
56 To date, energy consumption data for electricity and natural gas associated with the majority of the 
population and building stock in Los Angeles County have not been provided yet by the utility 
companies, and could not be included in the analyses for this project. 
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Industrial space4  12,771,676         14,062  
Total Non Residential Sector       69,928,532          40,058  
Total LBGO area     250,607,337          93,267  

Note: 1includes urban mobile homes; 2includes apartments, joined and GQ residential; 3high and low 
density office space; 4light and heavy industrial space. 

 

Estimates from the natural gas consumption models from this study are able to estimate natural 
gas consumption in residential dwellings quite accurately (total energy consumption in the 
residential sector was initially slightly above, about 1%, the actual amount of energy 
consumption in the residential sector in the LBGO). Natural gas consumption in the non-
residential sector was forecasted with lower accuracy, and needed more adjustments to match 
the total consumption in the area. The difference in the estimated and observed consumption of 
natural gas for non-residential buildings might be due to the small sample size that was used to 
estimate natural gas consumption and the rather large dispersion observed in the data. 57 

Table 36: Natural gas consumption for building operations in Los Angeles County 

Floorspace type No. of  
Units 

Sum of            
Sq. Ft. 

Total Energy 
Consumption 
(thousands 
of Therms) 

a) Residential Sector 
   SF residential1 1,288,923 2,042,801,703 687,049  

SF residential with pool 246,609 603,038,633 160,282  
MF residential2 1,847,195 1,639,365,847 463,439  
Total Residential Sector    3,382,727     4,285,206,183  1,310,770  

Floorspace type Sum of          
Sq. Ft. 

Total Energy 
Consumption 
(thousands 
of Therms) 

b) Non-Residential Sector    
Developed amusement park space  7,723,730 2,934  
General commercial  462,507,541 176,914  
Government operations space  35,523,283 13,401  
Office space3  439,230,653 143,854  
Hospital space  55,574,937 59,069  
Mall and big box retail space  144,934,874 55,346  
Mixed use space  87,648,920 41,504  
Primary K-12 education space  183,716,885 52,082  

                                                      
57 The accuracy of the estimation of natural gas for the various categories of non-residential buildings 
would certainly benefit from the availability of more complete and spatially disaggregated utility data, 
and it could be improved in future extensions of the project when the data become available. 
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Secondary education space  39,241,821 11,046  
Religious space  73,282,749 20,801  
Warehouse & distribution space  584,560,624 86,048  
Industrial space4  689,292,379 1,059,701  
Total Non Residential Sector     2,803,238,395  1,722,700  
Total in Los Angeles County     7,088,444,578  3,033,469  

Note: 1includes urban mobile homes; 2includes apartments, joined and GQ residential; 3high and low 
density office space; 4light and heavy industrial space. 

 

Table 36 computes the natural gas consumption for building operations in Los Angeles County. 
The results are based on the estimated consumption patterns for each category of buildings, and 
are scaled to the totals for annual natural gas consumption in the County in 2008. As visible 
from the data in the table, the total volume of natural gas consumed in the LBGO area of service 
is only a very limited fraction of the total amount of natural gas consumed in Los Angeles 
County. LBGO is a small MOU that provides natural gas in Los Angeles County. The largest 
share of the total supply of natural gas consumed in Los Angeles County58 is provided by 
Southern California Gas Company. 

GHG emissions from building operations 
Using the results from this study, it is possible to estimate the proportion of greenhouse gas 
(GHG) emissions associated with the energy consumption in the various sectors of the building 
stock, by the various zones in Los Angeles County. Table 37 uses the results from the 
assessment of the electricity consumption that was presented earlier to compute an estimate of 
GHG emissions associated with electricity consumption for building operations in the LADWP 
area of service.59   

For simplicity of exposition in this report we have reported only the total CO2 equivalent 
emissions associated with the use of electricity in the LADWP area. A more complete 
assessment of GHG emissions could be created using disaggregate emission factors that 
differentiate the environmental impact of electricity production among the emission 
components for various greenhouse gases (or for any other pollutant emissions60). The results 
reported in Table 36 are based on the use of LADWP specific mix of energy sources for the 

                                                      
58 Unfortunately, to date, SCG has not provided utility data that could be included in our energy database 
and used for the estimation of energy consumption models for this study. 

59 Please note that the amount of GHG emissions associated with the industrial sector, even if labeled as 
“industrial  space”  actually  refers  to  the  total  amount  of  GHG  emissions  (and  energy  consumption)  
associated with the consumption of energy in the industrial sector, as it is not easy to separate energy 
consumed for building operation from the energy consumed for other activities in industrial facilities. 

60 Alternative estimates could be created for specific pollutant emissions if, for instance, of interest in a 
study on the impact of human activities on health. 
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production of electricity, and on the use of the GHG emission estimates reported by the U.S. 
Environmental Protection Agency (EPA) Emissions & Generation Resource Integrated Database 
(eGRID)61 for this specific utility. 

Table 37: GHG emissions associated with electricity consumption for building operations, 
including grid losses, in the LADWP area of service 

Floorspace type 
 Total Adjusted 

Emissions 
 (lb CO2 Equivalent) 

 Total Adjusted 
Emissions (Metric  

Tons CO2 Equivalent) 
a) Residential Sector 

  SF residential1     3,724,159,956      1,689,251  
SF residential with pool     1,732,324,406         785,769  
MF residential2     4,710,195,737      2,136,509  
Total Residential Sector   10,166,680,099      4,611,529  

Floorspace type 
 Total Adjusted 

Emissions 
 (lb CO2 Equivalent) 

 Total Adjusted 
Emissions (Metric  

Tons CO2 Equivalent) 
b) Non-Residential Sector    

Developed amusement park space            22,096,772            10,023  
General commercial      4,540,768,848      2,059,658  
Government operations space          147,037,859            66,695  
Office space3      3,282,380,582      1,488,863  
Hospital space          584,603,212         265,172  
Mall and big box retail space      1,024,635,884         464,767  
Mixed use space          938,458,181         425,677  
Primary K-12 education space          811,486,827         368,084  
Secondary education space            39,936,182            18,115  
Religious space          239,239,196         108,517  
Warehouse & distribution space      1,254,810,141         569,172  
Industrial space4      3,253,219,276      1,475,635  
Total Non Residential Sector    16,138,672,959      7,320,379  
Total LADWP    26,305,353,058   11,931,907  

Note: 1includes urban mobile homes; 2includes apartments, joined and GQ residential; 3high and low 
density office space; 4light and heavy industrial space. 

 
The results presented in Table 37 are based on energy consumption patterns that were 
estimated as part of this study and on the specific emission factors for LADWP. They also 
include an adjustment factor that accounts for power grid losses between the points of 
consumption and the points of generation (that are not already factored in the eGRID output 
                                                      
61 More information on the Emissions & Generation Resource Integrated Database program from the U.S. 
EPA can be found on  http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html. 

http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html
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emissions rates).  For these reasons, the researchers adjusted the output emission rates for 
electricity consumption to account for transmission and distribution line losses, which account 
on average for 8.21% of electricity production in the Western region of the United States.62 

Table 38: GHG emissions associated with electricity consumption for building operations, 
including grid losses, in Los Angeles County 

Floorspace type 
 Total Adjusted 

Emissions 
 (lb CO2 Equivalent) 

 Total Adjusted 
Emissions (Metric  

Tons CO2 Equivalent) 
a) Residential Sector 

  SF residential1   12,156,485,721       5,514,089  
SF residential with pool      3,976,633,237       1,803,770  
MF residential2      9,067,942,312       4,113,149  
Total Residential Sector   25,201,061,270     11,431,009  

Floorspace type 
 Total Adjusted 

Emissions 
 (lb CO2 Equivalent) 

 Total Adjusted 
Emissions (Metric  

Tons CO2 Equivalent) 
b) Non-Residential Sector    

Developed amusement park space          205,285,928             93,116  
General commercial    12,292,802,781       5,575,922  
Government operations space          621,006,794           281,684  
Office space3       7,678,491,305       3,482,905  
Hospital space       1,418,695,608           643,510  
Mall and big box retail space       3,852,165,996       1,747,313  
Mixed use space       1,747,595,055           792,696  
Primary K-12 education space       1,749,761,848           793,679  
Secondary education space          373,748,124           169,529  
Religious space          697,961,750           316,590  
Warehouse & distribution space       7,007,146,106       3,178,388  
Industrial space4    13,052,055,155       5,920,313  
Total Non Residential Sector    50,696,716,450     22,995,644  
Total in Los Angeles County    75,897,777,720     34,426,653  

Note: 1includes urban mobile homes; 2includes apartments, joined and GQ residential; 3high and low 
density office space; 4light and heavy industrial space. 

 

Table 38 summarizes the total greenhouse gas (GHG) emissions associated with electricity 
consumption in Los Angeles County, computed using the average GHG emission factors for the 
generation of electricity associated with the utilities that operate in Los Angeles County. Also 

                                                      
62 The actual amount of electricity that needs to be produced to satisfy electricity demand is therefore 
obtained by the consumption divided by (one minus the grid gross loss as a decimal).  
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for this table, results are expressed in total annual CO2 equivalent emissions, and they do 
contain the same adjustment factors to account for power grid losses on the electric grid.63 

Similarly to what has been done for the consumption of electricity, Table 39 contains the GHG 
emissions associated with the consumption of natural gas in Los Angeles County. 

Table 39: GHG emissions associated with natural gas consumption for building operations in Los 
Angeles County 

Floorspace type 
 Total Adjusted 

Emissions 
 (lb CO2 Equivalent) 

 Total Adjusted 
Emissions (Metric  

Tons CO2 Equivalent) 
a) Residential Sector 

  SF residential1 9,238,058,320            4,190,313  
SF residential with pool 2,155,149,629               977,559  
MF residential2 6,231,399,650            2,826,515  
Total Residential Sector 17,624,607,598            7,994,388  

Floorspace type 
 Total Adjusted 

Emissions 
 (lb CO2 Equivalent) 

 Total Adjusted 
Emissions (Metric  

Tons CO2 Equivalent) 
b) Non-Residential Sector    

Developed amusement park space  39,452,976                  17,896  
General commercial  2,378,791,161            1,079,002  
Government operations space  180,183,727                  81,730  
Office space3  1,934,258,431               877,365  
Hospital space  794,235,291               360,259  
Mall and big box retail space  744,187,976               337,558  
Mixed use space  558,067,450               253,135  
Primary K-12 education space  700,292,331               317,647  
Secondary education space  148,522,107                  67,368  
Religious space  279,691,818               126,866  
Warehouse & distribution space  1,157,002,142               524,807  
Industrial space4  14,248,737,015            6,463,118  
Total Non Residential Sector  23,163,422,425         10,506,752  
Total in Los Angeles County  40,788,030,023         18,501,139  

Note: 1includes urban mobile homes; 2includes apartments, joined and GQ residential; 3high and low 
density office space; 4light and heavy industrial space. 

 

GHG emissions for the consumption of natural gas are expressed in terms of total CO2 
equivalent associated with the consumption of natural gas in buildings in Los Angeles County. 

                                                      
63 CO2 equivalent emissions are computed using a weighted factor to account for the presence of different 
utility companies, with different energy mixes, operating in the area. 
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Estimates of CO2 equivalent for natural gas have been computed using an average value of 
13.446 lb CO2 equivalent/Therm, according to the specifications suggested by the CPUC.64 

The total GHG emissions associated with the consumption of electricity and natural gas 
compose the total emissions associated with building operations. Table 40 summarizes the total 
distribution of GHG emissions by the building types that are responsible for the consumption of 
energy. 

 

                                                      
64 The emission factor for the consumption of natural gas is based on the ClimateSmart computation, 
which  includes  both  the  emissions  from  the  customers’  use  of  natural gas and an estimate of the 
emissions associated with gas delivery. 
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Table 40: GHG emissions associated with electricity and natural gas consumption for building operations in Los Angeles County 

Floorspace type 
Total Emissions from 

Electricity Cons. 
(MetricTons  

CO2 Equivalent) 

Total Emissions from 
Natural Gas Cons. 

(MetricTons  
CO2 Equivalent) 

Total Emissions from 
Building Operations 

(MetricTons  
CO2 Equivalent) 

a) Residential Sector 
  

 
SF residential1 5,514,089  4,190,313  9,704,402  
SF residential with pool      1,803,770  977,559          2,781,330  
MF residential2      4,113,149  2,826,515          6,939,665  
Total Residential Sector    11,431,009  7,994,388        19,425,397  

Floorspace type 
Total Emissions from 

Electricity Cons. 
(MetricTons  

CO2 Equivalent) 

Total Emissions from 
Natural Gas Cons. 

(MetricTons  
CO2 Equivalent) 

Total Emissions from 
Building Operations 

(MetricTons  
CO2 Equivalent) 

b) Non-Residential Sector     
Developed amusement park space             93,116                  17,896              111,012  
General commercial       5,575,922            1,079,002          6,654,923  
Government operations space           281,684                  81,730              363,414  
Office space3       3,482,905               877,365          4,360,270  
Hospital space           643,510               360,259          1,003,769  
Mall and big box retail space       1,747,313               337,558          2,084,871  
Mixed use space           792,696               253,135          1,045,831  
Primary K-12 education space           793,679               317,647          1,111,326  
Secondary education space           169,529                  67,368              236,898  
Religious space           316,590               126,866              443,456  
Warehouse & distribution space       3,178,388               524,807          3,703,195  
Industrial space4       5,920,313            6,463,118        12,383,431  
Total Non Residential Sector     22,995,644         10,506,752        33,502,395  
Total in Los Angeles County     34,426,653         18,501,139        52,927,792  

Note: 1includes urban mobile homes; 2includes apartments, joined and GQ residential; 3high and low density 
office space; 4light and heavy industrial space and processes. 
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Figure 28 shows the percentage distribution of GHG emissions associated with the consumption 
of energy for building operations in Los Angeles County. Please note that in this pie chart 
“industrial” emissions include GHG emissions associated with industrial building operations 
and also those associated with the energy consumed for other activities, as in industrial 
processes and manufacturing, as it was not possible to separate the different energy end uses 
for industries. The residential sector (including the various types of residential units) accounts 
for the largest share of total GHG emissions from the building stock. 

Figure 28: GHG emissions from different building types in Los Angeles County65 

 

The results contained in this estimate of greenhouse gas emissions for the area of study are not 
supposed to be exact accounts of the actual GHG emissions, but they provide some good 
metrics to compute the order of magnitude and proportion of the GHG emissions associated 
with energy consumption in buildings in the region.  

Several sources of error and uncertainty might affect these results: first, the results are estimated 
through assumptions on the electricity and natural gas consumption patterns in buildings 
located in Los Angeles County, but they are estimated only on data provided by only two utility 
providers in the region (LADWP, for the electricity data, and LBGO for the natural gas data). 

                                                      
65 Values for industrial space include not only building operations but also the energy consumed (and 
GHG emissions) associated with energy consumption for other activities in the building facilities. 
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Second, utility data that are used for the estimation of the energy consumption model were 
provided by these utility companies at the Zip+4 level of spatial aggregation and do not 
discriminate for energy purpose or end use. Therefore, it is possible that some of the 
relationships between energy consumption and the explanatory variables in the energy 
database  might  have  been  “watered  down”  due the necessary process of aggregation of parcels 
and Zip+4 data in the Energy Analysis Zones. This might contribute to the generation of some 
confounding factors, for instance for areas with mixed residential and commercial land uses, 
where the portions of energy consumed for the different purposes cannot be separated. Third, 
not all parcels in the database had a valid mailing address that could be matched to a Zip+4, 
and therefore matched to information on energy use for that area. Luckily, the amount of 
parcels that could not be matched to valid Zip+4 codes is rather small, but still they account for 
a number of buildings that could not be included in the energy database. The results of this 
study are based on the assumption that unmatched parcels were uniformly distributed in the 
database, and therefore that they do not generate distortions in the spatial patterns of buildings 
in the EAZs and in the resulting definition and interpretation of the energy consumption 
profiles.66 Finally, an additional possible source of error in the study is due to the lack of 
accurate  information  on  the  “non-property  tax”  buildings  in  Los  Angeles  County.  This  problem,  
which is common to many studies that attempt to assess, and model, land use patterns in a 
region, reduces the validity of the energy estimates associated with these buildings.  

Even after accounting for all the issues above, this research represents an important milestone in 
the development of a methodology for the assessment of energy consumption in buildings, 
based on the integration of data from a number of different sources, and developed at a high 
level of spatial details (about 450,000 Energy Analysis Zones). As part of the study, the 
researchers developed an important set of analytical tools for the analysis of energy 
consumption in buildings, which are of general validity. The accuracy of the results and of the 
projections/forecasts can be increased when more detailed utility consumption data become 
available, and in particular if detailed consumption data are provided by the utility companies 
for both natural gas and electricity for the same areas and times (ideally, for the entire county 
and for multiple years), and at a good level of temporal and spatial aggregation (ideally, 
monthly data, at the parcel level). 

 

                                                      
66 The proportion of unmatched parcels might be responsible for an underestimation of the number of sq. 
ft. in the EAZs, and therefore for some resulting errors in the estimation of energy consumption per 
residential unit and square foot of developed floorspace. However, the results for total energy 
consumption in the region were scaled to match energy consumption totals in 2008 in Los Angeles 
County. This reduces the risk of overestimation (or underestimation) of CO2 emissions in the assessment 
of the GHG emissions from energy consumption of the building stock. 
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An analytical tool to forecast future energy use in Los Angeles 
County 
This study provides information on the energy consumption (for electricity and natural gas) in 
buildings in Los Angeles County. The results from the study are useful to create estimates for 
energy consumption by sectors (e.g. residential vs. commercial) and for specific building types, 
which are of valuable use to explore the relationships between energy consumption patterns 
and  the  characteristics  of  the  building  stock,  of  the  natural  environment  and  individuals’  
sociodemographic features. Moreover, they inform the PECAS land use modeling system on the 
energy consumption component of land use and can be used as part of studies that attempt to 
quantify the impact of human settlements and communities on the consumption of resources 
and on the generation of GHG emissions and other environmental externalities. 

The estimates provided by this study can be also used to provide forecasts on the modifications 
in energy demand that would result from changes in the land use and the (re)location of 
residences and economic activities. Especially if in combination with a land use model, the 
results from the study can inform on the expected modifications in the energy demand and in 
the resulting GHG emissions, by sector, under different scenarios of development of land use. 

The study has been designed, on purpose, to use categories of floorspace types that are as 
consistent as possible with the floorspace types adopted in the California Statewide PECAS 
modeling framework. Additionally, the results from the study, and any future updates and 
extensions, could be easily applied also to inform other land use models on building energy 
consumption, or to inform simplified sketch models for a specific region67. 

The results from the study and the application of the land use modeling framework, updated 
with the building energy consumption component, may provide useful information, for 
instance, on the modification of the resulting energy demand and GHG emissions associated 
with a change in land use that favors an increase in density of residential units. This could be 
the case for policies that support the development of more compact developments (e.g. 
compared to a different scenario in which more conventional suburban developments are built). 
The results from the study can inform on the expected magnitude of the change in energy 
consumption that would derive from such modifications, as well as can be useful to estimate 
expected differences in energy demand forecasts under different development scenarios. 
Another use is to estimate (all else equal, i.e. not varying the total amount of developed space) 
the effects on energy consumption of the implementation of policies to further increase energy 
efficiency in buildings, e.g. reducing the energy consumption for some specific categories of 

                                                      
67 The use of improved sketch models, like Urban Footprint, is quickly spreading in metropolitan 
planning organizations (MPOs) and research institution, as a quick way to represent the interaction 
between the land use and the transportation and energy systems, usually with more simplified 
approaches and faster times of development than full land use models. The accuracy and 
comprehensiveness of this new generation of models is, however, significantly increasing, providing a 
valuable alternative to more complex, and expensive to build and maintain, models. 
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buildings in the current inventory, or simulating a target rate of building retrofits that would 
reduce energy consumption and GHG emissions for specific building categories.  

It is important to note how the current study is based on the analysis of energy consumption 
data from 2008, and that it therefore does not consider the impact of additional technological 
development introduced since then, or still to develop. Policies that account for these additional 
gains in energy efficiency could be, however, accounted for as external inputs that further 
modify the energy consumption estimates created through the simulation of the previously 
scenarios of land use development. Finally, the impact of specific factors, like the spread of 
photovoltaic (PV) panels or other solutions that contribute to modify energy consumption 
through increased energy efficiency and/or cogeneration (up to the level of zero energy balance 
in buildings) is not explicitly studied in this research. If not necessarily associated with a 
reduction in the total energy consumption per se, PVs are responsible for a change in the energy 
demand that is requested from the grid and in the overall energy mix associated with the 
energy consumed in a study area. These factors could be included in future extension of the 
project, using the same research methods and analytical tools that were developed for this 
project, and they would lead to further developments in the application of land use models 
(providing additional and more detailed information on the characteristics of the buildings and 
their energy sources and technology).68 

Future extensions of this research will focus on refining the analysis of energy consumption 
patterns for different building types, using the more detailed energy consumption data that will 
be provided by the utility companies in the region. Additional research is needed to study the 
impact of specific technological solutions, building structures, vintage and shape of the 
buildings  on  energy  consumption.  Moreover,  the  Assessor’s  data  provide  limited  information  
on the adoption of new technologies in buildings (PVs, green roofs, higher efficiency standards, 
cogeneration and zero energy buildings, etc.). However, data from additional sources, like 
satellite imagery and surveys on the adoption rate of PVs and cogeneration facilities can be 
useful to provide additional sources of data to estimate the contribution to energy conservation 
and GHG reduction strategies of these solutions.  

The use of the estimated patterns of building energy consumption in land use modeling 
solutions is particularly useful for understanding the impact of modifications of land use on 
energy consumption for building operations. Future extensions of this project will focus on the 
integration of the analysis of the building stock and the energy consumption for building 
operations developed in this study to develop forecasts for future trends in energy consumption 
in the region, under different assumptions of land use development, demographic and 
economic trends and modifications in the building efficiency standards. 

 

                                                      
68 This eventual extension of the project would also need the access to reliable sources of data to 
complement the energy database for the region of study, as information on the adoption of these 
solutions is still rather fragmented (especially in terms of the spatial distribution in a region), and in 
continuous evolution. 
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GLOSSARY  
 
AIN Assessor Identification Number 
ANN Artificial Neural Network 
CCAR California Climate Action Registry 
CBECS Commercial Buildings Energy Consumption Survey 
CEC California Energy Commission 
CED  California Energy Demand 
CEUS Commercial End-Use Survey 
CPUC  California Public Utilities Commission 
CSV Comma Separated Value 
DGS Department of General Services 
eGRID Emissions & Generation Resource Integrated Database 
EIA Energy Information Administration 
EPA Environmental Protection Agency 
EPSG European Petroleum Survey Group 
GHG Greenhouse Gas 
GIS Geographic Information System 
GQ Group-Quarter 
GRIP Greenhouse Gas Regional Inventory Protocol 
GSA General Service Administration 
GW Gigawatt 
GWh Gigawatt hours 
HVAC Heating, Ventilation, Air Conditioning 
IEPR  Integrated Energy Policy Report 
ICLEI International Council for Local Environmental Initiatives 
IOU Investor-owned utility 
KW Kilowatt 
KWh Kilowatt hours 
LADWP  Los Angeles Department of Water and Power 
LBGO Long Beach Gas and Oil 
MH Mobile Home 
MW Megawatt 
MWh Megawatt hours 
PIER Public Interest Energy Research 
PV  Photovoltaic 
RASS Residential Appliance Saturation Study 
RECS Residential Energy Consumption Survey 
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SCE  Southern California Edison Company 
SEM Structural Equation Model 
SCG  Southern California Gas Company 
SFD Single Family Detached 
WRI World Resources Institute 
WCSB World Business Council for Sustainable Development 
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APPENDIX A 
Energy analysis Zones nest very well in the county and city boundaries for communities located 
in Los Angeles County. The following table reports the distribution of EAZs by city inside Los 
Angeles County. 

Table A-1: Distribution of Energy Analysis Zones by city in Los Angeles County 

City Name Number of EAZs  

Agoura Hills 1071   

Alhambra 4935   

Arcadia 3760   

Artesia 740   

Avalon 0   

Azusa 1802   

Baldwin Park 2500   

Bell 1271   

Bell Gardens 935   

Bellflower 2666   

Beverly Hills 2004   

Bradbury 111   

Burbank 5667   

Calabasas 1220   

Carson 4161   

Cerritos 2558   

Claremont 2020   

Commerce 905   

Compton 4381   

Covina 2666   

Cudahy 423   

Culver City 2529   

Diamond Bar 2904   

Downey 4419   

Duarte 1071   

El Monte 3407   



125 

El Segundo 1286   

Gardena 3480   

Glendale 10813   

Glendora 2999   

Hawaiian Gardens 539   

Hawthorne 3710   

Hermosa Beach 1593   

Hidden Hills 186   

Huntington Park 2141   

Industry 644   

Inglewood 6267   

Irwindale 229   

La Canada Flintridge 1402   

La Habra Heights 633   

La Mirada 2518   

La Puente 1281   

La Verne 1799   

Lakewood 3198   

Lancaster 7804   

Lawndale 1073   

Lomita 1033   

Long Beach 22888   

Los Angeles 154022   

Lynwood 2235   

Malibu 1217   

Manhattan Beach 2921   

Maywood 971   

Monrovia 2346   

Montebello 2653   

Monterey Park 3481   

Norwalk 3850   

Palmdale 7242   

Palos Verdes Estates 955   
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Paramount 1754   

Pasadena 8943   

Pico Rivera 2348   

Pomona 6223   

Rancho Palos Verdes 2454   

Redondo Beach 3835   

Rolling Hills 112   

Rolling Hills Estates 393   

Rosemead 1810   

San Dimas 1758   

San Fernando 1124   

San Gabriel 2272   

San Marino 1029   

Santa Clarita 8528   

Santa Fe Springs 1466   

Santa Monica 6952   

Sierra Madre 985   

Signal Hill 923   

South El Monte 937   

South Gate 3118   

South Pasadena 1613   

Temple City 1691   

Torrance 8163   

Vernon 558   

Walnut 1517   

West Covina 4904   

West Hollywood 2420   

Westlake Village 617   

Whittier 4734   

LA County (Total) 448,380   
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The following Figures A-1 and A-2 and A-3 show some examples (for the same geographic area) 
of the spatial overlap of the Energy Analysis Zones with the U.S. Census Block Group and the 
Traffic Analysis Zones (TAZs) developed at the University of California, Davis, for the analysis 
of transportation demand in the California Statewide Travel Demand Model (CSTDM) 
(ULTRANS, 2011). Figure A-3 shows the overlap of the Energy Analysis Zones with the larger 
Land Use Zones (LUZs), also developed at the University of California, Davis, for the analysis 
of land use activities in the PECAS model (ULTRANS, 2011).  

Figure A-1: Spatial overlap of Energy Analysis Zones and Block Groups 
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Figure A-2: Spatial overlap of Energy Analysis Zones and Traffic Use Zones 
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Figure A-3: Spatial overlap of Energy Analysis Zones and Land Use Zones 

 

 

 


