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ABSTRACT 
 The first part of this dissertation develops a new theoretically consistent GIS based 

locomotive emission model which improves the accuracy of current inventory methods while also 

increasing the spatial detail. Greater spatial resolution is important for considering local effects 

and environmental justice concerns.  The model increases accuracy and spatial detail by 

considering the effect of track grade, train type and the local (route specific) locomotive fleet on 

fuel consumption. Further improvement is gained by developing emission factors that are specific 

to the local locomotive fleet. The modeling platform also allows the user to easily change model 

inputs and view results in a map or table at multiple geographic scales. 

 How engineering and economic modeling is used to support public financing decisions 

for the provision of private rail infrastructure is also investigated. Public assistance for private rail 

infrastructure is a growing national trend in the effort to increase the share of goods moved by 

rail. Project applications for public funds provided by California's Trade Corridors Improvement 

Fund which allocates $3 billion for goods movement infrastructure improvements are taken as a 

case study. The modeling and assumptions completed by each applicant seeking funds for rail 

projects are reviewed. 

 The study finds a large variety or mostly ad-hoc modeling methods and unsupported 

assumptions. The most critical finding is the lack of a theoretically sound method which assesses 

the cost, benefits and risks of using public funds for private infrastructure projects. Few project 

applications consider or identify the cause of the problem they are trying to solve.  For example, 

is a lack of rail capacity preventing truck traffic from shifting to rail? Under what conditions 

would private railroads provide less than the socially optimum level of rail capacity? And is 

public funding of freight rail the best solution to mitigate negative environmental and health 

impacts caused by goods movement? This research suggests that public planners and policy 

makers currently lack the required data, tools and experience to make informed freight rail 



-iii- 
 

infrastructure decisions. Focusing on correcting apparent market failures is likely to offer more 

certain benefits. This research also points to the need for a more standardized framework for 

evaluating goods movement projects.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



-iv- 
 

ACKNOWLEDGEMENTS 

 This dissertation completes nearly 12 years of university study. More people than I can 

name, or recall, have either persuaded me to continue or provided inspiration, and in doing so 

have contributed in some way to this dissertation. In particular, I would like to thank the 

committee members for their thoughtful input and the knowledge they have imparted on me over 

the course of my studies at UC Davis. I also cannot say enough about the challenges, 

opportunities and inspiration that Professor Deb Niemeier has provided during my time as a Ph.D. 

student. I would also like to thank Professor Jonathan Rubin at the University of Maine who 

introduced me to the field of transportation research as a M.S. student and guided me towards the 

Institute of Transportation Studies at UC Davis.  

 I would also like to thank my family, and in particular my parents. They have provided 

assistance and support whenever I have needed it. Lastly, I would like to acknowledge Dana 

Rowan who for the past 4 years has listened with patience to my ideas and thoughts, has provided 

critical and useful insight along every step of the way towards completing this dissertation and 

has brought a smile to my face when it was most needed. 

 Additionally, the research described in Chapters 2 and 3 were funded by the California 

Air Resources Board. However, the statements and conclusions are those of the author and not 

necessarily those of the California Air Resources Board.  

 

 

 

 

 

 

 



-v- 
 

TABLE OF CONTENTS 
 

List of Tables ................................................................................................................................. vii 

List of Figures ............................................................................................................................... viii 

1 Introduction .............................................................................................................................. 1 

2 Literature Review: Locomotive modeling ............................................................................... 5 

2.1 Background - Locomotives and Railroads ....................................................................... 5 

2.1.1 Locomotives ............................................................................................................. 5 

2.1.2 Operations ................................................................................................................ 6 

2.1.3 Regulation ................................................................................................................ 7 

2.2 Locomotive Models ......................................................................................................... 8 

2.2.1 Activity Measurement .............................................................................................. 8 

2.2.2 Emission Factors .................................................................................................... 23 

3 Creating a New Spatially Resolved Locomotive Emission Model ........................................ 34 

3.1 Introduction .................................................................................................................... 34 

3.1.1 Contributions of the Research ................................................................................ 34 

3.2 Model Framework .......................................................................................................... 36 

3.3 Detailed Model Development ........................................................................................ 38 

3.3.1 Line-Haul Method .................................................................................................. 39 

3.3.2 Yard Method .......................................................................................................... 61 

3.4 Model Results and Inventory ......................................................................................... 67 

3.5 Summary and Conclusions............................................................................................. 75 

4 Goods Movement data constraints on public policy and planning: A Case Study of 
California’s Trade Corridors Improvement Fund .......................................................................... 78 

4.1 Introduction .................................................................................................................... 78 

4.2 TCIF Case Study ............................................................................................................ 84 

4.2.1 Framework for quantifying project benefits .......................................................... 88 

4.3 Case Study Findings ...................................................................................................... 91 

4.3.1 Rail Demand .......................................................................................................... 91 

4.3.2 Rail Capacity .......................................................................................................... 97 

4.3.3 Latent Demand ..................................................................................................... 103 

4.3.4 Estimating Public Benefits ................................................................................... 106 

4.3.5 Analysis of Air Pollutant Emission Reductions ................................................... 115 



-vi- 
 

4.1 Summary and Conclusions........................................................................................... 121 

5 Summary and Conclusions .................................................................................................. 127 

References .................................................................................................................................... 130 

Appendices ................................................................................................................................... 139 

Appendix A – Estimating Mobile Source Emission Factors ................................................... 140 

Appendix B – Copies of Difficult to Obtain Documents ......................................................... 144 

Appendix F-1 ........................................................................................................................... 166 

Appendix G .............................................................................................................................. 187 

Appendix H .............................................................................................................................. 194 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



-vii- 
 

LIST OF TABLES 
 

Table 2-1 Difference between activity estimates based on rail yard inventories and EPA and 

CARB methods   ...................................................................................................................... 22

Table 2-2 Average time continuously in notch   .............................................................................. 26

Table 3-1 Sample sizes of UP route data   ....................................................................................... 47

Table 3-2 Regression results   .......................................................................................................... 49

Table 3-3 Proportion of traffic (gross ton-miles) by train type and subdivision (2007)   ................ 53

Table 3-4 EPA Estimated emission factors for line-haul locomotives   .......................................... 58

Table 3-5 Proportion of locomotive fleet meeting each EPA emission standard   .......................... 59

Table 3-6 Comparison of Environ/BNSF yard specific duty cycles to EPA switch duty cycle   .... 63

Table 3-7 Estimated rail yard fuel consumption rates   ................................................................... 65

Table 3-8 EPA estimated emission factors for switcher locomotives   ............................................ 66

Table 3-9 Comparison of UCD, EPA and CARB line-haul model results for California   ............. 69

Table 3-10 Comparison of UCD, EPA and CARB line-haul fuel consumption, NOx and PM10 

estimates for 10 counties with the greatest amount of freight rail traffic   .............................. 71

Table 3-11 Comparison of UCD, EPA and CARB yard switcher locomotive fuel consumption, 

NOx and PM10 estimates for several rail yards   ....................................................................... 75

Table 4-1 TCIF rail project descriptions   ........................................................................................ 86

Table 4-2 Estimates of truck volume and air pollutant emission reductions from TCIF rail project 

applications and supporting material   ..................................................................................... 87

4-3 Estimated growth in rail demand and underlying growth assumptions   ................................... 92

4-4 Estimated TCIF project freight rail capacity improvements and modeling assumptions   ........ 98

4-5 Estimated TCIF project truck trip reductions and truck to rail conversion assumptions   ....... 107

Table 4-6 Locomotive air pollutant emission calculation methods   ............................................. 111

Table 4-7 Comparison of locomotive emission factors   ............................................................... 115

4-8 Summary of the main TCIF project public benefit analysis flaws   ........................................ 122

 

 

 

 

 



-viii- 
 

LIST OF FIGURES 
 
Figure 1-1 Light duty vehicle, heavy duty truck and locomotive emission trends   .......................... 2

Figure 2-1 Basic mobile source emission model   ............................................................................. 8

Figure 2-2 Hourly emission rates of NOx, PM, CO and HC versus the fuel consumption rates of 

two common in-use uncontrolled diesel-electric locomotives   ............................................... 10

Figure 2-3 Emission rates of NOx, PM, CO and HC by throttle notch of two common in-use 

uncontrolled diesel electric locomotives   ................................................................................ 11

Figure 2-4 EPA’s method of estimating regional locomotive fuel consumption   ........................... 14

Figure 2-5 Correlation between the fuel consumption rate and power of two common in-use 

uncontrolled diesel electric locomotives   ................................................................................ 16

Figure 2-6 CARB’s method of estimating regional locomotive operating hours   .......................... 18

Figure 2-7 Comparison of line-haul and switching duty cycle weighted federal test procedure and 

adjusted emission factors   ....................................................................................................... 27

Figure 2-8 Sources of line-haul locomotive emission factors used in influential locomotive 

emission studies   ..................................................................................................................... 30

Figure 2-9 Variability of HC, CO, NOx and PM emissions by throttle notch from three 

uncontrolled 3,400hp GE Dash9 locomotives   ....................................................................... 33

Figure 3-1 Detailed schematic of line-haul emission model   .......................................................... 39

Figure 3-2 Editing parallel track segments   .................................................................................... 40

Figure 3-3 Railroad and NTAD track segment overlap possibilities   ............................................. 41

Figure 3-4 Algorithm for Projecting traffic data for a subdivision onto the NTAD rail network   .. 42

Figure 3-5 Plot of regression residuals   .......................................................................................... 50

Figure 3-6 Modeled relationships between positive grade factor and negative grade factor and 

fuel efficiency   ........................................................................................................................ 50

Figure 3-7 Estimated positive grade factors and negative grade factors for travel in the direction 

of increasing mile posts   ......................................................................................................... 51

Figure 3-8 Estimated fuel efficiency (GTM/gallon) for travel in the direction of ascending mile 

posts and descending mile posts   ............................................................................................ 52

Figure 3-9 Relationship of fuel sulfur content and PM emissions reproduced from EPA memo   .. 57

Figure 3-10 Detailed schematic of proposed rail yard emission model   ......................................... 61

Figure 3-11 Class I line-haul annual traffic and annual PM10 ton/mile emission rates   .................. 68

Figure 3-12 Spatial comparison of CARB and UC Davis PM10, NOx, CO and fuel consumption 

estimates for 2007   .................................................................................................................. 73



-ix- 
 

Figure 4-1 Expanding rail capacity for growth: truck and rail demand scenarios   ......................... 89

Figure 4-2 Expanding rail capacity for latent demand: truck and rail demand scenarios   .............. 90

Figure 4-3 Comparison of historical and forecasted container throughput at the ports of Los 

Angeles and Long Beach   ....................................................................................................... 93

Figure 4-4 Comparison of historical and forecasted container throughput at the port of Oakland   94

Figure 4-5 Schematic of Shafter short haul rail proposal   ............................................................ 105

Figure 4-6 Comparison of the range of EPA U.S. average line-haul locomotive emission factors 

and EMFAC California average heavy duty diesel truck emission factors on a ton-mile basis 

for the years 2010 and 2030   ................................................................................................. 117

Figure 4-7 Plots of reported TCIF project annual truck VMT replaced with freight rail by annual 

NOX emission reductions and PM10 emission reductions   ................................................... 120

 

 



1 INTRODUCTION 
Historically, traffic congestion and air quality problems from transportation have been 

addressed though strategies targeting passenger vehicles (Weiner 1999; Woudsma 2001) and as a 

result emissions from light-duty vehicles have been significantly reduced even with a growing 

number of vehicle miles traveled (VMT) (Figure 1-1).  The focus on passenger transportation has 

also led to the development of relatively sophisticated light-duty vehicle emission models (e.g., 

MOBILE1, EMFAC2 and MOVES3) and travel demand models (e.g. the four step model (Ortuzar 

and Willumsen 2001)) to inform decisions and track progress. The historical focus on passenger 

transportation can be traced to the rapid suburbanization of American cities which resulted in 

changing land use and employment patterns that greatly increased VTM resulting in highway 

congestion and increased air pollution (Weiner 1999). Now, with increasing levels of goods 

movement driven by growth in imports, lower density development and lean distribution 

networks4

1 The U.S. Environmental Protection Agency’s vehicle emission modeling software, available at 

 (Bertram, Santini et al. 2009), goods movement is receiving more attention at both the 

federal (GAO 2008) and state levels (AASHTO 2002; State of California 2005).  However, the 

legacy of a focus on transportation planning and modeling for passenger transportation has left 

some critical gaps in our ability to effectively plan for goods movement. 

http://www.epa.gov/oms/m6.htm 
2 The California Air Resources Board’s vehicle emission modeling software, available at 
http://www.arb.ca.gov/msei/onroad/latest_version.htm 
3 MOVES or “Motor Vehicle Emission Simulator” is a replacement for the MOBILE model currently under 
development by the U.S. Environmental Protection Agency’s. Portions of the model have been developed 
and approved for use, it is available at http://www.epa.gov/otaq/models/moves/index.htm 
4 Lean distribution/manufacturing is an attempt to operate businesses more efficiently by keeping a 
minimal inventory on hand. As a result, more frequent truck trips are required to continuously supply 
manufactures and retailers.  

1
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Figure 1-1 Light duty vehicle, heavy duty truck and locomotive emission trends5

One of these gaps is methods to evaluate locomotive emissions. While total locomotive 

emissions are less than those from other mobile sources, they are poised to rise as the volume of 

imports grows and government policies push to shift more goods movement from highways to 

railroads. A lack of more sophisticated locomotive emission models results in locomotive 

emissions also being one of the least understood. Generally, only rough or outdated estimates for 

large geographic areas are available while contemporary policy questions require more accurate 

and spatially resolved estimates. For example, policies which increase freight rail activity will 

need to consider local air quality effects of redistributing criteria air pollutant emissions from 

areas along highways to railways. Similarly, to gain a better understanding of the net air quality 

benefits, including carbon dioxide (CO2) emission reductions, of shifting more goods movement 

from trucks to freight rail requires a locomotive emission model that can produce route specific 

emission estimates that can be compared to equivalent truck route estimates.  

 

A second gap is in understanding the constraints posed by the limited information public 

planning and transportation agencies have about the largely private goods movement sector and 

5 Data sources: Davis, S. and S. Diegel (2006). Transportation Data Energy Book Edition 25. Oak 
Ridge,TN, Oak Ridge National Laboratory. And BTS Transportation Statistics, table 1-46b available on 
line at: http://www.bts.gov/publications/national_transportation_statistics/. Accessed on 4/22/2008. 
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the limited experience public agencies have had in planning for goods movement.  While there 

has been a recent push to publicly fund freight rail capacity projects in an attempt to reduce 

highway congestion and air pollutant emissions, it is unclear if public planning and transportation 

agencies have the required data and modeling tools to make effective decisions. Generally, one 

would expect private railroads which are in this case very competitive with trucking firms for 

intermodal goods movement to provide themselves with sufficient rail capacity. To show that 

there is a shortage of rail capacity under such competitive conditions and that granting public 

funds is the best option to add capacity requires a strong analysis. 

This dissertation begins to fill these gaps by developing a new spatially detailed locomotive 

emission model and conducting a case study to determine what data and methods are currently 

used by state, regional and local planning and transportation agencies to evaluate the air quality 

merits of policies aimed at shifting more goods movement from highways to railways. The 

dissertation is the product of two independent, but closely related research projects. Chapters 2 

and 3 are based on research conducted for the California Air Resources Board (CARB) to 

develop a new geographic information system (GIS) based statewide locomotive emission model 

which began in the fall of 2006 and was completed in the spring of 2010 (Gould, G. and D. 

Niemeier, 2010). Chapter 2 provides a literature review which covers basic railroad and 

locomotive operations and the methods and data currently available to estimate locomotive 

emissions. Chapter 3 provides a detailed development of the new modeling framework, produces 

a new statewide locomotive emission inventory and discusses the modeling results. Chapter 4 

presents a case study of California’s Trade Corridors Improvement Fund (TCIF) which 

investigates how state, regional and local planning and transportation agencies currently use 

freight, and particularly rail, data and models to make decisions regarding policies to shift more 

goods movement from highways to railways. This research was motivated by a review of 

proposals for TCIF funds which raised serious questions about the quality of emission estimates 

3



calculated to support rail related projects. The dissertation concludes in Chapter 5 with a brief 

summary of the main findings and some thoughts on future research directions, policy 

considerations and data needs.  
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2 LITERATURE REVIEW: LOCOMOTIVE MODELING 

2.1 Background - Locomotives and Railroads 
 All mobile source emission models share a basic framework: a measure of activity is 

multiplied by an emission factor producing an estimate of the quantity of emissions produced in a 

given time period. Emission factors are typically developed from engine exhaust tests. Because 

engine emission rates usually vary with engine speed and load, exhaust emissions are weighted 

by a representative duty cycle. The general modeling framework for locomotives is similar to that 

for other mobile sources; however, locomotives and railroads also have important unique 

attributes. 

2.1.1 Locomotives 
 Almost all locomotives in the United States are either diesel-electric or electric, with 

diesel-electric locomotives comprising the majority of the locomotive fleet (EPA 2008b). 

Emissions from electric locomotives, commonly used for passenger transportation in urban areas, 

are not considered here since they occur at the electric power generation source.   

Unlike most vehicles, the engines of diesel-electric locomotives are not mechanically 

linked to their wheels (Hay 1982). Locomotive engines provide mechanical energy to an electric 

generator (alternator) that powers electric traction motors connected to the wheels. The 

mechanical decoupling of the engine and the wheels allows the locomotive engine to operate at 

discrete throttle positions known as notches. There are typically 8 notches for movement of the 

locomotive in addition to two idle settings and dynamic braking. Dynamic braking uses a 

locomotive’s traction motors to slow the locomotive by transforming the kinetic energy from the 

wheels to electrical power which is then dissipated in a resistance grid.  

 The discrete engine throttle positions result in steady state engine operation (Hay 1982), 

producing a relatively constant fuel consumption rate in each notch (Drish Jr. 1989).  The steady 

state engine conditions also simplify emission testing, producing stable emission rates in each 

notch. By comparison, the operation of engines in on-road vehicles is transient, fuel consumption 

5



and emission rates vary continuously under changing loads and throttle. Locomotive emission 

rates are determined by sampling the engine exhaust at each notch. The notch specific emission 

rates are then weighted by a representative duty cycle, the relative amount of time that the 

locomotive operates in each notch, producing a composite locomotive emission factor.   

 The duty cycle, along with the particular make and model of the locomotive, determines 

the locomotive emission rate. Different railroad services and operations determine the duty cycle. 

Several additional factors also affect the duty cycle: the desired train speed, number of 

locomotives being used, weight of the train, topography (grades and hills), weather, and operator 

skill (Hay 1982; William F. Dish 1989; Armstrong 1990).   

2.1.2 Operations 
 Trains can be classified into three categories:  intermodal, unit, and manifest. Each type 

of service makes different tradeoffs between speed, reliability and cost; some tradeoffs affect 

emission rates. Intermodal trains carry either truck trailers on flat cars (TOFC) or shipping 

containers on flat cars (COFC), allowing for quick interchange of freight between shipping, 

trucking and rail. Intermodal trains also compete with trucking, tending to offer quicker service 

than typical trains (AASHTO 2002). However, intermodal trains have higher costs than other 

types of trains due to reduced fuel efficiency caused by poor aerodynamics and higher speeds 

(Hay 1982). Unit trains provide low cost transportation for bulky, low value commodities such as 

coal, grains, and chemicals. Low costs are achieved by requiring large shipments of single 

commodities, scheduled service, and improved fuel efficiency from using identical railcars 

(AASHTO 2002). A manifest train moves a variety of goods using various railcars that are picked 

up and dropped off along the train’s route. Manifest trains may also require time consuming re-

arrangement of cars between trains at rail yards. Dropping off, picking up, and re-arrangement of 

rail cars results in slow travel times and reduced fuel efficiency for manifest trains. Unit and 

manifest trains may also achieve greater fuel savings by operating with lower power densities 

(ratio of power to train weight) given the lower priority on speed.  

6



 The type of train operation also influences emission rates. Locomotives perform three 

general categories of work: line-haul transportation of freight, line-haul transportation of 

passengers, and switching.  Line-haul operations move freight trains between rail yards or 

passenger trains between stations. Switching operations move railcars around rail yards and 

sidings, adding and removing railcars from trains. Locomotives used in line-haul operations 

spend relatively more time in high power notches, while switching locomotives spend more time 

in lower power and idle notches (EPA 1998). Due to the differing power requirements between 

line-haul and switching operations, the most powerful locomotives are used for line-haul 

operations and lower powered, often older, locomotives are used for switching (EPA 2008b).  

2.1.3 Regulation 

 Regulations also affect locomotive emissions. Locomotive emissions were unregulated 

until 2000 when the first of three tiers of federal standards took effect. The first tier of standards 

(Tier 0) applies to re-manufactured locomotives originally manufactured during 1973-2001, 

stricter Tier 1 and Tier 2 standards subsequently took effect for new locomotives manufactured 

during 2002-2004 and 2005 and later, respectively (EPA 1999). During 2008, EPA established 

two additional tiers of standards for new locomotives that will be phased in during 2009 and 2014 

respectively (EPA 2008a). However, the combination of locomotive lifetimes in excess of 40 

years (EPA 2008b) and lack of historical regulation has resulted in a large stock of unregulated 

locomotives limiting the immediate impact of the new emission standards. Additionally, recent 

federal standards preempt states and other local governments from regulating locomotive 

emissions (40 CFR 85.1603).  

 Regulations also affect locomotive modeling by setting different data reporting 

requirements for different types of railroad companies. There are three categories of freight 

railroads classified by the Surface Transportation Board (STB) on the amount of annual revenue 

they generate: Class I, Class II, and Class III. Class I railroads generate the most revenue; 

7



currently there are 7 Class I railroads in the U.S., which accounted for 84% of all freight rail 

traffic in 2000 (AASHTO 2002). Class II and III railroads generate less revenue and account for 

less freight rail traffic though there are several hundred of them in the U.S. The STB requires 

Class I railroads to submit a detailed report of annual operation and business data  which includes 

fuel consumption, locomotive purchases, and the quantity of freight moved (49 CFR 124.11), 

Class II and III railroads do not have these reporting requirements.  

2.2 Locomotive Models 

 Locomotive and other mobile source emissions are typically estimated by multiplying an 

emission factor by an estimate of locomotive activity as shown in Figure 2-1. Ideally, emission 

factors are known from a large, representative sample of the in-use locomotive fleet and an easily 

observable (inexpensive and unobtrusive) measurement of activity that is highly correlated with 

emissions rates. However, this is not the case for locomotives and as with other mobile sources, 

our knowledge about emissions variability and influencing factors continues to evolve. Activity 

measurements and emission factors for locomotive emission models are discussed, respectively in 

the following two sections.  

 

 

2.2.1 Activity Measurement 

 In estimating emissions of any type, a robust measure of activity that is strongly 

correlated with emissions is critical. If emission factors are unknown or unreliable, the relative 

amount of activity will still indicate the relative amount of emissions. The most detailed measure 

of activity is an account of the cumulative amount of time each locomotive spends in each notch 

Activity 
(activity/time) 

Emission Factor 
(mass/activity) 

Total Emissions 
(mass/time) 

X = 

Figure 2-1 Basic mobile source emission model 
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because emission rates are stable at each notch. However, such detailed operational data are 

typically held as proprietary information or are unknown. Exceptions are a few limited studies 

(Barth and Tadi 1996) which compared emissions from trucks and locomotives along a 140 mile 

interstate highway corridor, in this case the railroad was willing to provide detailed time-in-notch 

data. 

 Fuel consumption is a more convenient measure of activity because it is typically 

observable and is highly correlated with pollutant emissions (Figure 2-2). Fuel consumption has 

also been used or recommend as an activity measure for other mobile sources because of the high 

correlation with emission rates, reducing the importance of the drive or duty cycle (Singer and 

Harley 1996; Dreher and Harley 1998; Kean and Sawyer 2000). However, fuel based emission 

rates still vary across throttle notches, most notably in the idle and braking notches (Figure 2-3) 

and for PM and CO (Figure 2-3 b and c). Therefore, fuel based emission factors should be 

weighted by a representative duty cycle.  
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  (a)                                                                                        (b) 

 

                                                  (c)                                                                                        (d) 

Figure 2-2 Hourly emission rates of (a) NOx (b) PM (c) CO and (d) hydrocarbons (HC) 
versus the fuel consumption rates of two common in-use uncontrolled6

 

 diesel-electric 
locomotives (chart data derived from (Fritz 2000)) 

6 Not certified to any emission control standards. 
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                                                       (a)                                                                                   (b) 

 

 

                                                       (c)                                                                                    (d) 

Figure 2-3 Emission rates of (a) NOx, (b) PM, (c) CO and (d) HC by throttle notch of two 
common in-use uncontrolled diesel electric locomotives (chart data derived from (Fritz 
2000)) 

 While national fuel consumption data are available from surveys (EIA 2008) and the 

railroads (AAR 1995; APTA 2007; ASLRRA 2007; DOT 2007) and is the preferred activity 
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measure for national estimates,  disaggregate fuel consumption data are not available. Estimation 

of regional fuel consumption from regional fuel sales data (if that were available) is unattractive 

since locomotives can travel long distances before refueling given their large fuel tanks. No 

method is currently available to allocate regional fuel sales data to any particular place. And 

while measurement of locomotive fuel consumption is conceptually simple (no different than 

measuring the fuel consumption of your car) railroads currently do not collect or are unwilling to 

provide disaggregate fuel consumption data. 

 Given the lack of regional fuel consumption data, spatially disaggregate models must rely 

on alternative activity measures, typically either an estimate of fuel consumption derived from 

other factors or an estimate of operating hours. Fuel consumption can also be estimated by 

simulation models based on train-rail dynamics (physical model of train motion). The Train 

Energy Model (TEM) developed by the railroad industry is the most popular simulation model for 

estimating energy use; however, a license must be provided by the railroad industry and it 

requires detailed train, locomotive and route data, making it impractical as a source of activity 

data (Drish Jr. 1989).    

 The following sections review the methods used by EPA and CARB to estimate 

locomotive activity for use in regional emission inventories.  The methods differ by each agency, 

rail class, and rail operations. 

2.2.1.1 Class I Line-Haul 

2.2.1.1.1 EPA Guidance 

 EPA has two methods for estimating regional locomotive emission inventories: the 

National Emission Inventory (NEI) method (ERG 2005) and its guidance for regional inventory 

preparation (EPA 1992).  
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 The NEI method is simply a disaggregation of EPA’s national locomotive emission 

inventory by county (ERG 2005). The national locomotive emission inventory is estimated by 

multiplying EPA’s national locomotive emission factors (EPA 1997) by EIA’s estimate of 

national railroad fuel consumption (EIA 2008). The national emission inventory is then 

proportioned to individual counties based on their share of national traffic density (gross ton-

miles). County traffic density is obtained from the Bureau of Transportation Statistic’s National 

Transportation Atlas Database (NTAD) which contains traffic density data for each track in the 

U.S. (BTS 2006). The NTAD does not contain actual traffic density, but 6 ranges of traffic 

density to maintain the confidentiality of railroad company data; the medians of the traffic density 

ranges are used. 

 EPA’s guidance for regional inventory preparation provides a more detailed approach as 

shown in Figure 2-4 (EPA 1992). The first step is estimation of each railroad’s fuel efficiency 

obtained by dividing each railroad’s system-wide traffic density by system-wide fuel 

consumption. Each railroad’s system wide traffic density and fuel consumption are reported 

annually to the STB and may be downloaded from the STB website7

7 Railroad company annual reports available at 
http://www.stb.dot.gov/econdata.nsf/f039526076cc0f8e8525660b006870c9?OpenView 

. Fuel efficiency is then 

divided by the traffic density of each track segment in a region producing a track segment by 

track segment fuel consumption estimate. This is carried out separately for each railroad 

operating in the region and then all the fuel consumption estimates are summed. However, the 

detailed traffic density data (by track segment or subdivision) is typically considered confidential 

business information; this method is therefore limited by the willingness of each railroad to 

provide the data. 
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Data issues aside, both of the above methods would be insufficient for most regional and local 

 Data issues aside, both of the above methods would be insufficient for most regional and 

local emission modeling applications. The NEI approach assumes a constant mass per gross ton-

mile emission rate and the guidance for regional inventory preparation assumes a constant 

system-wide fuel consumption rate. Each method ignores important local factors: geography and 

train type, and potentially congestion.  

 The geography, grades, curves, and wind, associated with track alignment can cause a 

large increase in the work required to move a train. Because locomotive work directly correlates 

with fuel use (see Figure 5) grades, curves and wind increase fuel consumption per gross ton-

mile.  Currently, no data exist that quantifies the effects of these factors. However, because the 

work required to move a train is proportional to the amount of resistance acting on the train by 

friction and gravity, it is possible to estimate the effect that grades and curves have on fuel 

consumption.  

 In 1926 Davis (Davis Jr. 1926) published a paper containing an equation that estimates 

the unit (lb/ton) resistance, Ru, acting on a moving train, it became known as the Davis equation. 

The Davis equation is the basis of the TEM (Drish Jr. 1989) which has been shown to produce 

System-wide Traffic 
Density 

(gross ton-miles/year) 
 

System-wide Fuel 
Consumption 
(gallons/year) 

 

Local Traffic Density 
(gross ton-miles/year) 

Fuel Consumption 
(gallons/year) 

÷ 

= 

Fuel Efficiency 

Figure 2-4 EPA’s method of estimating regional locomotive fuel consumption 
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accurate fuel consumption estimates (1992b). Hay (1982) provides a “modified” (updated) 

version of the Davis equation (       eq 2-1). 

 

𝑹𝒖 = 𝟎.𝟔 + 𝟐𝟎
𝒘

+.𝟎𝟏𝑽 + 𝑲𝑽𝟐

𝒘𝒏
         eq 2-1      

where; 

Ru = unit resistance (lbs/ton) 
w  = weight per railcar axle (tons) 
V  = speed (miles per hour) 
K  = rail car drag coefficient 
n  = number of axles per rail car 
                                                                                                              
 Using equation 2-1, the total unit force of resistance for a typical 60 ton rail car is 4.7 

lbs/ton assuming a drag coefficient of 0.07 and speed of 45MPH. Hay also shows that the 

increased resistance caused by a grade is the force needed to balance the downward pull of 

gravity, and is 20 lbs/ton per percent grade. Therefore, a 1% grade adds 20 lbs/ton of resistance to 

move the 60 ton rail car, an increase in resistance of 425% over a level track. Curves cause 

additional resistance because the wheel flanges rub against the sides of the rail, preventing 

derailment. Based on a series of tests described by Hay, unit resistance caused by curves is 

estimated at 0.8 lbs/ton/degree, or an increase in unit resistance of 17% over straight tracks. These 

factors result in large increases in resistance (and thus fuel consumption) and should not be 

ignored. Hay also reports that wind can cause significant amounts of resistance, the severity 

depending on wind speed and angle as well as train speed and type.  
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Figure 2-5 Correlation between the fuel consumption rate and power of two common in-use 
uncontrolled diesel electric locomotives (chart data derived from (Fritz 2000) ) 

 
 The different types of train service (intermodal, unit, and manifest) represent tradeoffs 

between speed, reliability and cost. Greater speed requires more work, and thus more fuel, to 

overcome greater air resistance. Additionally, different train configurations also affect air 

resistance. Substituting the drag coefficient from (Hay 1982) for a COFC into equation 2-1 results 

in a 17% increase in resistance over a typical rail car and a 64% increase for a TOFC.  The 

prevalence of different train types can vary widely by region, impacting fuel consumption per 

gross ton-mile. For example, intermodal trains service ports and international trade corridors, 

while unit trains service coal mines and agricultural regions.  

 California provides a good example of the problems of using system wide fuel efficiency 

values and disaggregating national inventories based on traffic density. There are two Class I 

railroads in California, the Union Pacific (UP) and Burlington Northern Santa Fe (BNSF), and 

they both primarily provide intermodal train service to the major sea ports. However, nationally, 

coal accounts for nearly half the tons moved by UP and BNSF, while intermodal trains account 

for less than 10% (AAR 2001). California is also relatively hilly: all Class I railroads must cross 
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the Sierra Nevada Mountains to leave the state or travel between the northern and southern 

regions. Therefore, UP’s and BNSF’s system wide fuel efficiencies are heavily influenced by the 

fuel efficient transport of coal over relatively level terrain, while rail traffic in California is 

typified by fuel intensive intermodal service over mountain passes.  

 Given the short comings of EPA’s guidance, a revised inventory method was developed 

by Sierra Research for the Southeastern State Air Resources Managers Inc. (Caretto 2004a; 

Caretto 2004b). Correction factors that adjust the system-wide fuel consumption rate in EPA’s 

guidance for the amount and steepness of grade and the proportion of bulk train traffic were 

developed. However, development of the revised method was limited by data availability, relying 

on few out-dated data from a previous study, BAH (1991a). Additionally, corrections for the 

amount of travel across flat terrain were not considered. This may have been an important 

oversight since the system-wide fuel efficiency is some average of travel over hilly and flat 

terrain and is therefore unrepresentative of either. Correction factors for other train types were 

also not developed.    

2.2.1.1.2 California’s Model 

 The limitations of the EPA methods, the presence of several large ports, and severe air 

quality problems probably served as factors prompting California to develop its own locomotive 

emission model. Booz-Allen Hamilton developed the California model and worked closely with 

the railroads operating in the state at the time of the study (late 1980s). 

 For line-haul service, the activity measure is the total annual operating hours in each 

notch for each type of train (intermodal, unit and manifest) traveling each route as shown in 

Figure 2-6 (BAH 1991a). The detailed travel times were calculated for each railroad, route and 

train type with data provided by Class I railroads operating in the state when the study was 

conducted. The railroads obtained the data from two sources: locomotive event recorders (devices 

which record time spent in each throttle notch among other things) and train performance 
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modeling software. These data did not include idle time. An average idling time was developed 

from analysis of data provided by a single railroad which showed 8 hours of idle time per 

locomotive between arriving and departing from a rail yard.  

 

 
 
 
The Booz-Allen inventory was only conducted for air basins with large air quality problems and 

excluded many regions of the state. In a follow up report, Booz-Allen forecasted activity to the 

remainder of the state and for future time periods (BAH 1992). To forecast activity to the 

remainder of the state, gram per mile emission rates were calculated for each train in the original 

study. Route information from the original study was also used to estimate the number and type 

of trains that traveled routes in the remainder of the state. The number of trains, gram per mile 

emission rates and distances of the additional routes were multiplied to produce emission 

estimates for these routes.  

 The highly detailed approach taken by CARB fully addressed the shortcomings of EPA’s 

methods by considering the differences in activity caused by train type and geography. As 

previously noted, accounting for the time spent in each notch would provide the most accurate 

emission estimate. However, the approach is dependent on highly detailed route data which was 

made available on a one-time basis only to CARB, as part of the initial study. Since that time, 

Train Throttle Profile 
(total time in each notch/train) X Number of Trains 

(trains/year) = Total Time in each Notch 
(time/year per notch) 

For each: 
Railroad 

Route 
Train type (intermodal, unit, manifest) 

Figure 2-6 CARB’s method of estimating regional locomotive operating hours 
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CARB has relied on updating its emission inventories using growth factors. The methods and 

data used to estimate growth factors have changed over time, but generally rely on assumptions 

related to technological change (of the locomotives) and economic growth (BAH 1992; Alexis, 

Jaw et al. 2006; Wong 2006).  

 The reliance on growth factors, which are applied uniformly to all routes in the state, 

reduces the spatial detail of CARB’s estimates.  For example, some of the growth factors, which 

are based on U.S. economic growth or the national average net ton-miles per locomotive, are not 

specific to California railroads or individual routes within California. Growth factors are unlikely 

to reflect changes in train length and locomotive power which both affect locomotive duty cycles 

– and the time spent in each notch. Unlike traffic density or national fuel consumption, which are 

directly tied to locomotive activity, growth factors based on international trade or economic 

growth are only partially correlated with locomotive activity. While using national averages in the 

absence of local information is a reasonable approach, there is little way to verify how these 

growth factors ultimately impact the emissions estimates.  

 One additional limitation in CARB’s method is the assumption that all line-haul 

locomotives idle for 8 hours between rail yard arrival and departure.  This assumption was 

derived using data collected from a single railroad at one point in time. It is likely that rail yard 

arrivals and departures themselves are highly variable, and it is fairly common that locomotives 

also idle outside of yards at sidings and throughout the lines due to congestion. 

2.2.1.2 Class II and III Railroads 

2.2.1.2.1 EPA Guidance 

 EPA recommends using a different approach for Class II and III railroads because they 

are exempt from submitting annual reports to the STB. EPA’s guidance suggests that regional 

authorities ask each Class II and III railroad to report its fuel consumption, possibly through a 

survey. The guidance notes that many Class II and III railroads operate locally, so further 
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disaggregation of fuel consumption data provided by the railroads may not be necessary; 

however, some Class II railroads do cover a relatively large region. To further disaggregate the 

Class II and III railroad fuel consumption the EPA guidance suggests proportioning fuel use by 

route traffic density, provided the data are available from the railroad. If not, the guidance 

recommends proportioning the fuel use by track length.  

 Provided that fuel consumption data can be obtained from the railroads, EPA’s method 

should provide a reasonable estimate of emissions from Class II and III railroads. Many of these 

railroads operate only a single route or over a relatively small geographic area, so geographic 

considerations (variability in emissions over larger spatial areas) are less of a concern. For 

railroads that operate over larger regions the approach recommended for Class I railroads would 

be sufficient provided that traffic density data are available; the limitations of this approach as 

noted for Class I railroads will be reduced because of the comparatively small geographic 

coverage of even the largest Class II and III railroads. Additionally, small railroads typically offer 

just one type of train service, further reducing variability between routes. The largest challenge 

facing this methodology is likely to be obtaining the fuel consumption data. At least one 

documented attempt by SESARM (a group of 8 southeastern state air quality control agencies) to 

obtain these data were not successful; railroads did not necessarily collect or archive the required 

data or did not have personnel available to retrieve the data (Caretto 2004a).  

2.2.1.2.2 California’s Model 

 CARB’s model also distinguishes between line-haul and “local” service; local service is 

described as line-haul service provided by smaller railroads (BAH 1991a). For local service, the 

annual numbers of train trips are used to represent the activity measure. Instead of determining 

the amount of travel time on each local route, an average travel time is developed for all local 

service. Event recorder and train performance modeling software data were used to estimate that 

a local train trip is 10 hours and that there is 10 hours of idling per day per locomotive.  

20



 

 One constraint to this method is that it excludes consideration of almost all regional and 

local factors.  Analysis of the NTAD shows that Class II and III routes vary considerably in 

length, therefore the time required to travel each route should also vary (BTS 2006). Additionally, 

geographic and train type differences are also not considered. The relative errors in these 

estimates is difficult to predict since no distributional data were provided with the average values 

presented in original (Booz-Allen) inventory report (BAH 1991a). 

2.2.1.3 Rail Yard Activity 

 Both EPA and CARB estimate rail yard activity using a very simplified approach. EPA’s 

method measures activity by multiplying the number of switching locomotives in each yard by an 

estimate of annual switching locomotive fuel consumption provided by EPA. The EPA guidance 

recommends asking each rail yard for the number of switching locomotives used. If the rail yard 

will not provide the data, the guidance suggests going to the yard and counting the number of 

switching locomotives in use. The California model applies a similar method: the number of 

locomotives in each yard is multiplied by 24 hours to obtain total operating hours. An average 

yard duty cycle is then applied to the total operating hours to estimate the total time spent in each 

notch (BAH 1991a). 

 Both the EPA and CARB methods assume no variation in the operation of switching 

locomotives between different rail yards (that is, constant annual fuel consumption or operating 

hours per locomotive). However, a series of recent toxic air contaminant inventories8 of major 

California rail yards completed by the state’s Class I railroads to support CARB’s rail yard health 

risk assessments (HRAs) show large differences in operating hours and estimated9

8 Inventories available at http://www.arb.ca.gov/railyard/hra/hra.htm 

 fuel 

9 Locomotive fuel consumption is estimated based on the fuel consumption rate of a representative rail yard 
locomotive (EMD GP39). For each rail yard, using information from each yard’s HRA, fuel consumption is 
estimated by multiplying, for each throttle notch, the locomotive fuel consumption rate (obtained from EPA 
test data [7]), the annual yard locomotive operating hours and the fraction of time spent in the throttle 
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consumption per locomotive (Table 2-1).  Table 2-1 shows that applying either the EPA or CARB 

rail yard method produces estimates that differ from the detailed accounting of individual rail 

yard operations in the HRAs. The variations in fuel consumption and operating hours per 

locomotive between the yards are caused by different operating durations (some are 24 hours 

while others are 8 or 16 hour operations) as well as varying levels of traffic and types of activity 

(building manifest versus intermodal trains).  

 The California rail yard inventories show the importance of considering how yard 

operations differ. For California, the rail yard inventories also provide a detailed source of 

activity data that could be used to update CARB’s emission inventory and study methods to more 

accurately estimate rail yard activity should such detailed data not be available in the future.   

 
Table 2-1 Difference between activity estimates based on rail yard inventories and EPA and 
CARB methods 

 
HRAa EPAb EPA ∆c HRA CARBd   CARB ∆e 

Rail Yard 
gallons of 
diesel 

gallons of 
diesel   

hours 
 

hours 
   

BNSF Wilmington/Watson 68,963 83,220 20.7% 4,200 8,760 108.6% 
BNSF Stockton 254,004 249,660 -1.7% 19,612 26,280 34.0% 
BNSF Richmond 118,188 166,440 40.8% 17,520 17,520 0.0% 
BNSF Commerce/Hobart 358,371 416,100 16.1% 30,112 43,800 45.5% 
UP Commerce 244,150 249,660 2.3% 17,520 26,280 50.0% 
UP LATC 569,683 499,320 -12.4% 40,880 52,560 28.6% 
UP Mira Loma 223,804 166,440 -25.6% 16,060 17,520 9.1% 
UP Oakland 488,300 332,880 -31.8% 35,040 35,040 0.0% 
UP Stockton 773,142 665,760 -13.9% 55,480 70,080 26.3% 
aEstimates from rail yard health risk assessment inventories. 

  bEstimates from EPA Procedures for Inventory Preparation (28). 
  cPercent difference from HRA estimates ( (EPA-HRA)/HRA*100) 
  dEstimates from CARB/Booz Allen method (37). 

    ePercent difference from HRA estimates ((CARB -HRA)/HRA*100) 
   

 

position. The fuel consumption estimates for each throttle position are then added up, providing an estimate 
of annual yard locomotive fuel consumption.    
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2.2.2 Emission Factors 

 Emission factors describe the rate that pollutants are emitted from vehicle operation. 

Performing engine exhaust measurements is the most straightforward, and most common, method 

of estimating emission factors. Engine exhaust measurements have been made on locomotives 

since the early 1970’s (SP 1972) but our understanding of locomotive emission rates remains 

relatively limited. This section describes how emission factors are estimated and discusses the 

issues concerning the accuracy and precision of the emission factors.  

 Emission factors for locomotives are based entirely on laboratory studies; in-use 

measurements have never been made or remain unpublished. Like other mobile sources (e.g., see 

the brief literature review in Appendix A), emission factors derived from laboratory studies of 

locomotive emissions are limited by the degree that tested locomotives represent the actual in-use 

fleet and how representative test duty cycles are of real world locomotive operation. In general, 

there has been very little testing completed on locomotives, resulting in an unknown but likely 

large amount of uncertainty in these laboratory measurements.  

2.2.2.1 The In-Use Fleet 

 The EPA defines fleet average emission factors based on a projected in-use locomotive 

fleet (EPA 1998). Fleet average emission factors are determined by weighting individual 

locomotive emission factors by relative fuel consumption. In turn, relative fuel consumption is 

estimated as a function of the age, horse power and number of each make and model of 

locomotive. Future fleets are projected based on the retirement of old locomotives determined by 

age, and the penetration of new locomotives to make up for power lost from the retired 

locomotives. The EPA method allows for projection of future emissions based on a continuously 

evolving fleet, accounting for expected changes in new locomotive fuel efficiency and emission 

rates. However, no updates have been made to EPA’s original projections from 1997 (EPA 1997) 

and they have never been verified against the actual in-use fleet. The original 1997 fleet was 
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based on data obtained from a railroad book10 (EPA 1998) written for railroad enthusiasts and toy 

train modelers11

 In the 1991 Booz-Allen report commissioned by CARB, fleet average emission factors 

were estimated for each railroad by weighting notch specific emissions factors for each 

locomotive by the number of locomotives, horse power and typical availability (% of time not in 

maintenance)(BAH 1991b). Locomotive rosters were provided by Class I railroads. Future 

emission rates were then projected based on a number of assumptions about future locomotive 

technology, efficiency and traffic levels (BAH 1992). For example, it was assumed that by 2010 

mixed (manifest) and bulk traffic would increase by 2% to 4% and intermodal traffic would 

increase by 46% over 1986 levels, the rated power of new locomotives would be 5,200 bhp and 

fuel efficiency would increase by 8% due to new locomotives, reduced aerodynamic drag and 

increased rail lubrication. These assumptions may have been reasonable, and CARB has indicated 

that many were refined and updated as the inventory was revised over time.

. Few other sources of information about past or current in-use fleets are publicly 

available.  

12

10 Official Locomotive Rosters and News, 1997 special edition – Class I railroads, James W. Kerr, July 31, 
1997 (EPA’s citation). No publisher information could be found for the cited edition; however, current 
editions are published by DPA-LTA Enterprises, Lewiston, NY) 

 We cannot 

comment on the robustness of the assumptions in general, for either the Booz-Allen or the 

subsequent CARB updates, because the available documentation is limited.  It is very difficult to 

build inventories that can be used to reliably forecast trends. In general, models must take into 

consideration underlying economic mechanisms to produce robust forecasts. For example, some 

of the Booz-Allen forecasts have not aligned well with recent national railroad statistics. 

According to the AAR (AAR 2006), between 1990 and 2005 gross ton-miles have increased by 

65%, intermodal traffic has doubled and fuel efficiency has increased by 20%; the maximum 

rated power of new locomotives is 4,400 bhp. And some trends cannot be reliably predicted with 

11 The Union Pacific Railroad lists its current in-use fleet on its website; however, important details such as 
the Tier certification level, remanufacture history, and age of the locomotives is not included. 
12 CARB comments on final report (dated March 2010) 
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current knowledge. For example, since the Booz-Allen study was carried out before EPA 

emission regulations were considered, future fleets do not currently account for any penetration of 

lower emitting locomotives – the assumption was that emission reductions would come from 

improved fuel efficiency rather than (newer) cleaner diesel locomotives. Forecasting future trends 

in inherently uncertain and developing new modeling tools that facilitate incremental updates will 

help to increase overall robustness. 

 In both cases (EPA’s and CARB’s emission models) the emission estimates are likely to 

exhibit some error because of the underlying assumptions about the actual in-use locomotive 

fleet. EPA’s data on the base in-use fleet comes from a source of unknown validity; in contrast, 

CARB’s data comes directly from the railroads. However, CARB’s projections rely on 

unsupported assumptions (e.g., forecasts of traffic growth, locomotive technology and efficiency 

and do not account for EPA emission regulations; EPA’s projections are somewhat more sensible 

yet lack any sort of verification.  

2.2.2.2 Locomotive Duty Cycles  

 Steady state emission rates estimated for each locomotive throttle notch are weighted by 

a duty cycle to create a single emission factor (the average locomotive emission rate for typical 

operation). EPA uses a national average line-haul and switching duty cycle while CARB uses 

average duty cycles for each rail segment and train type for line haul operations and a single duty 

cycle for all switching operations (BAH 1991a; EPA 1992; EPA 1998; ERG 2005). Dunn (Dunn 

and Eggleton 2002) conducted a study which evaluated the impact of various duty cycles on 

emission factors, finding that they had relatively little impact. However, the study only 

considered average duty cycles, that is, duty cycles which represent operations over large 

geographic areas (e.g. Canada, California and the United States). Actual duty cycles for a specific 

track segment can be highly variable, depending on topography, train type, congestion and the 

particular locomotives in use. Given the variability in emission rates across throttle notches (see 
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Figure 2-3) actual duty cycles can produce substantially different emission factors than average 

duty cycles. The use of fuel based emission factors, as opposed to hourly emission factors, 

overcomes some of the differences that occur as a result of using average duty cycles. 

 Yanowitz (Yanowitz and Cameron-Cole 2003) noted that locomotive test procedures are 

designed to measure steady state emission rates but average continuous time-in-notch data 

provided to EPA by several railroads (Table 2-2) indicate that actual operation of locomotives 

may be more transient (EPA 1998). The federal locomotive test procedure (40 CFR 1033.515) 

requires emissions to be sampled from all notches for 5 to 10 minutes, except for notch 8 which is 

sampled for 10 to 15 minutes, from the time that the throttle is changed. The maximum PM 

emission sampling time can be extended so that a sufficiently large sample can be collected to 

accurately weigh. The previous federal test procedure (40 CFR 92.124) required a minimum 

sampling time of 6 minutes in all notches, except notch 8 which had a 15 minute minimum 

sampling time, from the time that the throttle is changed. The relatively long sampling times 

mask the effect of emissions during throttle changes. 

Table 2-2 Average time continuously in notch 

 
Minutes 

Throttle Notch 
Line-
Haula Switchinga 

Idle 2.8 1.7 
Dynamic Brake 5.6 N/A 
N1 0.5 0.5 
N2 0.5 0.5 
N3 0.5 0.5 
N4 0.5 0.3 
N5 0.5 0.9 
N6 0.6 0.4 
N7 0.5 0.3 
N8 4.9 0.9 

aData from EPA (EPA 1998) 
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 Yanowitz (Yanowitz and Cameron-Cole 2003) estimated the impact of throttle changes 

on PM emission rates by comparing PM emission rates calculated from two different length 

sampling times. The necessary data are available from (Fritz 1995); two PM measurements were 

collected under identical conditions, with the exception of the sampling time length, for several 

common in-use locomotives. A system of equations can be specified to solve for the impact of the 

notch change since the sampling time is known and all other factors should be constant. Using the 

same data and methods as Yanowitz, but converting the results to a bhp-hr basis, Figure 2-7 

shows that actual in-use emissions of PM may be two to three times greater than estimates based 

on the federal test procedure (FTP).  

 

(a)                                                                             (b) 

Figure 2-7 Comparison of (a) line-haul and (b) switching duty cycle weighted federal test 
procedure (FTP) and adjusted emission factors 

 Similar data to estimate the throttle change effects for other criteria pollutants are not 

available. The FTP requires that measurements of NOx, CO and HC exhaust concentrations are 

made continuously, but the instantaneous mass rate is not available, only the average mass rate 

during the sampling time period. Concentration data recorded during throttle changes cannot be 

readily transformed to a mass rate without knowing the exhaust gas volumetric flow rate, which is 
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unknown. However, concentration plots of exhaust emissions can provide information about 

emission trends, and are therefore helpful.   

 Continuous exhaust emission concentration (ppm) plots for several late model 

locomotives are presented in (SP 1972). The concentration plots show elevated concentrations of 

NOx, CO and HC during throttle changes. Peak concentrations of CO were 300% to 640% higher 

than steady state concentrations in notch 8 (maximum steady state concentrations) while rapidly 

increasing the throttle from notch 1 through 8. Similarly for NOx and HC, peak concentrations 

recorded during rapid throttle advancement were 20% to 500% higher than notch 8 steady state 

concentrations. Minimum concentrations, approximately 75% to 100% less than notch 1 steady 

state concentrations (minimum steady state concentrations) were recorded while decreasing the 

throttle from notch 8 to 1 for CO, NOx and HC. These results, though out dated, provide some 

evidence that the current FTP may be significantly underestimating CO, HC and NOx emissions 

by overlooking emissions generated through transient operation in throttle notch changes. 

2.2.2.3 Emission Test Data 

 Measurements of exhaust emissions under controlled laboratory conditions are relatively 

accurate since analytical equipment can be calibrated and the accuracy measured. Locomotive 

emission testing follows standard EPA mobile source analytical procedures (40 CFR 1065). 

However, uncertainties in the accuracy and precision of emission factors are likely large, though 

unknown, because outdated emission test data are used, empirical emission rate data from a few 

tested locomotive models are extrapolated to estimate emission rates for untested models, and 

there is a general lack of repeat testing.  

 Older emission factors were derived from inferior analytical techniques (EPA 1991a)13

13 A copy of this difficult to obtain document is included in Appendix B. 

 

and empirical test data extrapolated from stationary test engines (EPA 1991b) and a small sample 

of actual locomotives (EPA 1991a). Some of the older emissions factors continue to be used, 

28



despite these issues. For example, the emissions factors for all pollutants from GE locomotives, 

and the PM emission factors from all locomotives presented in BAH (1991a) and EPA (1998) all 

have serious problems.  

 The emission test data for GE locomotives originally presented in BAH (1991b) and later 

in the more widely cited EPA (1998) were derived from a single, stationary GE test engine at 

Southwest Research Institute (SwRI) in 1978 (BAH 1991b). SwRI extrapolated the data to other 

engines based on the number of cylinders and horse power without any validation of the approach 

(EPA 1991a). During the time that the CARB locomotive study was conducted, emission 

measurement methods were only just being developed for PM. These PM measurement data were 

considered unreliable (BAH 1991a; EPA 1991b) and were not available for any of the 

locomotives presented in (BAH 1991b), all PM data reported was extrapolated from testing at 

SwRI (BAH 1991b) of one EMD and GE locomotive respectively.  

 The lack of clear documentation is also a serious concern. Emission factors presented in 

(BAH 1991b) have been used by EPA for its regional inventory preparation guidance (EPA 

1992), emission standard rule makings (EPA 1998; EPA 2008b), national locomotive fleet 

emission factors (EPA 1997), and the National Emission Inventory (ERG 2005). The various 

EPA reports and guidance have subsequently been used by states, regional government agencies 

and the railroads to evaluate locomotive emissions from the early 1990’s to the present. However, 

EPA has failed in all of its documentation to cite the original source of most of the data: the 

CARB Locomotive Emission Study and its Appendices (BAH 1991a; BAH 1991b). Instead, EPA 

cites its inventory preparation guidance (EPA 1992) which then cites an unpublished EPA memo 

which was subsequently lost by EPA and replaced with a draft of that memo (EPA 1991a). The 

CARB locomotive Emission Study, the original source of data, discusses the sources and 

limitations of the test data. Since EPA has failed to clearly document the source of its data, 

important information concerning the sources and accuracy of the data are largely inaccessible to 
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most users. The draft memo cited by EPA does acknowledge the CARB Locomotive Emission 

Study as the source of its data, but does not discuss how the PM data were created and provides a 

conflicting account of the methods used to measure NOX emissions.  

 The data sources and methods used to derive past emission factors continue to exert a 

heavy weight on locomotive emission modeling. Figure 2-8 provides a time series account of 

line-haul emission factors used or reported in the most influential reports from 1991 to present. 

The relative contribution of each locomotive test data to each inventory is represented by the 

height of each bar. The contribution of each emission factor is assumed to be proportional to the 

corresponding number of locomotives it applies to in each study. While this simple method holds 

for some of the studies, it does not for others where the locomotive fleet is also weighted by 

measures of activity such as horsepower. However, this account should still indicate of the 

significance of past testing on current inventories and studies.   

 

Figure 2-8 Sources of line-haul locomotive emission factors used in influential locomotive 
emission studies 

 The accuracy of locomotive emission factors is also affected by remanufacturing. 

Locomotives have long lifetimes and are remanufactured many times (EPA 1998). No studies 
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have looked at the effects of recent re-manufacturing practices on locomotive emissions, but it 

would be difficult to believe that emission rates have not been affected. A study by the railroad 

industry in the early 1970’s found only slight improvements in emission rates, and in one case an 

increase in emission rates due to regular maintenance (SP 1972). However, the locomotives from 

this study are no longer widely used and the test was carried out on only a single locomotive. The 

study recommended that the impact of maintenance on emission levels should be studied further. 

No studies have since been published.  

 The  potential magnitude of errors caused by the use of out-dated emission factors is 

highlighted by considering CARB’s 2004 study of PM emission from UP’s Roseville, CA rail 

yard (Hand, Di et al. 2004). The study goal was to assess the public health risk posed by PM rail 

yard emissions, which are adjacent to the downtown business district and residential areas. The 

composition of the fleet of locomotives that pass through the yard and those used exclusively 

within the yard was provided by UP. Over 65% of the locomotive fleet was matched with 

emission factors from (BAH 1991b) as shown in Figure 6. However, the PM emission factors in 

(BAH 1991b) are derived from just two tests: a 1989 test at SwRI of a 2,500 hp EMD 12-645E3B 

engine and a 1989 test at SwRI of a 2,500 GE 12 cylinder 7FDL engine. The results of both tests 

at SwRI were extrapolated to other, more powerful and modern, locomotives using methods not 

specified in the available documentation. The 2004 CARB study relies on emission factors 

derived from 15 year old test data, for a locomotive model no longer used by UP, which does not 

account for subsequent remanufacturing or emissions during throttle changes. Additionally, 

CARB does not evaluate the accuracy of the emission factor data or acknowledge that an earlier 

CARB study is the source of these emission factors. There is potential for large errors in 

estimates of PM from the Roseville yard which stem from poorly documented sources of 

emission factor data and test procedures which assume steady state operation. Since no ambient 
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measures of yard emissions have been made14

 In addition to questionable accuracy, the precision of emission test data is largely 

unknown. Precision of locomotive emission factors can be evaluated by several metrics: the 

variability in repeated engine exhaust measurements, the variability of exhaust measurements 

between identical locomotive models and the variability of emission factors between similar types 

of locomotives (same EPA Tier certification, power, age, etc.). 

 and no updated emission tests have been 

performed on late model locomotives the magnitude of these errors is unknown, but likely large.   

 Only one study has conducted repeated exhaust measurements on a single locomotive and 

across several identical locomotives (Fritz 2000), a summary of the repeated measurement data 

for an uncontrolled GE locomotive is shown in Figure 2-9. The data in Figure 2-9 were collected 

for a CARB study on the effect of differing diesel fuel sulfur levels on emission rates, and were 

not intended to lend insight to locomotive exhaust measurement precision. However, the repeated 

measurement data reveal several things: the variability of exhaust measurements varies across 

throttle notches, pollutant emission types and the difference in exhaust measurements between 

identical locomotives may be larger than the differences in repeated tests on a single locomotive. 

An identical set of measurements was also performed on a similar EMD locomotive with similar 

results.  

 In summary, few to no studies currently exist that correlate ambient concentrations with 

estimated emissions from a locomotive emissions model or measured laboratory data. Such 

studies have been conducted for on-road mobile sources, but not for rail sources.  Projects 

underway now show great promise for increasing our understanding of emissions versus 

PM measurements have been made at UP’s Roseville yard; however, the study goal is to isolate and 
measure concentrations of locomotive PM emissions in ambient air samples. The study does not estimate 
emission inventories or validate emission models or test data. Roseville PM study available at 
http://www.placer.ca.gov/Departments/Air/railroad.aspx.  
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background. One obvious next step in these efforts would be to better correlate ambient 

concentrations with verification of laboratory emissions data. 

  

    (a)      (b) 

  

   (c)       (d) 

Figure 2-9 Variability of HC (a), CO (b), NOx (c) and PM (d) emissions by throttle notch 
from three uncontrolled 3,400hp GE Dash9 locomotives 
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3 CREATING A NEW SPATIALLY RESOLVED LOCOMOTIVE EMISSION 
MODEL 

3.1 Introduction 

 This section introduces the new model framework, with subsequent sections describing 

the mode structure, data collection and data analysis methods in more detail. 

 This report introduces a new locomotive emission model designed to provide increased 

spatial resolution and accuracy compared to current modeling techniques. The report begins with 

a brief review of locomotive emission modeling. This is followed by an outline of the model 

framework and a description of its improvements over current methods. The model development 

is provided in Section 3, and includes a comparison of results estimated for California with those 

using the California Air Resources Board (CARB) and the U.S. Environmental Protection 

Agency (EPA) guidance. The report concludes with a discussion on model use and additional 

aspects of the new approach that would benefit from more research.  

The research described in this report was conducted in response to CARB's need for an 

updated and improved locomotive emission inventory. 

3.1.1 Contributions of the Research 

• There are significant issues with current rail modeling techniques. For example, CARB’s 

current inventory is based on forecasted changes in locomotive emissions from a 1987 

inventory and EPA’s fuel based approach uses national average fuel efficiency values, 

thus obscuring changes in fuel use (and consequently, emissions) due to topography or 

differences in locomotive fleet. In this study, we describe a new approach that allows fuel 

efficiencies to vary depending on local conditions including topography, differing types 

of train traffic and varying locomotive fleets. By better reflecting local conditions the 

spatial resolution of emission estimates is greatly improved. 
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 The new framework also improves how emission factors are estimated and 

applied to the fuel consumption estimates. The current EPA method relies on projecting 

estimates of base national fleet average emission rates based on historical locomotive 

replacement rates.  The new framework can estimate spatially resolved emission factors 

that depend on the EPA certification level of locomotives currently in use by each of the 

railroads operating on a specific track segment. The emission inventory estimated in this 

report assumes a uniform locomotive fleet for California since railroads generally do not 

assign particular locomotives to particular routes. The ability to define different regional 

locomotive fleets allows the model to remain adaptable to future conditions or more 

detailed studies.  

 

• The model system employs a new GIS modeling platform that facilitates the use of local 

data into the estimation. The GIS framework is built around a new statewide GIS layer 

which identifies all track alignments and their grades, and also rail yards. The GIS 

platform provides new capabilities in data management, scenario analysis and reporting 

of results. Data specific to an individual route or track segment can be located and 

adjusted through the GIS interface by selecting the link on map, the model can be run, 

and the results immediately displayed for that segment. Track specific emission estimates 

can also be easily aggregated to customized levels through the GIS interface. This 

contribution is also aligned with CARB’s objective of moving all emission models to GIS 

based platforms. The use of a GIS platform is also important because it allows for the 

future development of an open source modeling system that tracks with the need for 

transparency in digital governance. 

 

• As a result of this work, newly updated data and emission estimates have been 

synthesized and incorporated into the framework. We collected new data from 
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California’s Class I railroads: Union Pacific (UP) and Burlington Northern Santa Fe 

(BNSF). This includes new traffic density data, train operation data and locomotive fleet 

information. New emission factors also have been collected from the literature and 

government testing programs while out of date or less reliable emission factors are 

abandoned. These data are available in the modeling platform and used to estimate new 

state wide emission inventories.  

3.2 Model Framework 

 The model framework departs from the current CARB method based on Booz-Allen’s 

time-in-notch approach (BAH 1991a) and extends EPA’s fuel based method (EPA 1992) and 

similar methods (Caretto 2004a; Billings, Chang et al. 2006). Like EPA’s method, fuel efficiency 

(gross ton-miles (GTM) per gallon of diesel fuel consumed) is applied to track segment level 

traffic density to estimate track segment level fuel consumption. However, the new framework 

provides a method to estimate track segment specific fuel efficiency values based on local factors 

which are known to impact fuel consumption rates: type of train (intermodal, bulk, manifest, 

etc.), track grade and locomotive fleet (Davis Jr. 1926; Hay 1982). EPA’s method relies upon 

individual railroad company system-wide fuel efficiencies. Only seven railroads are responsible 

for moving most of the freight in the U.S. (AAR 2006), and each railroad’s system typically 

spans more than half the country. System-level fuel efficiency values do not reflect regional 

conditions. 

 Emissions for each track segment are estimated by multiplying the track segment’s fuel 

consumption estimate by a fuel based (gram per gallon) emission factor. Emission factors for 

each track segment are created by weighting EPA fuel based emission factors (EPA 2009) 

(available for each EPA locomotive tier standard15

15 EPA has published estimated in-use emission factors for locomotives meeting each certification level 
(tier standard) it has promulgated (see 

) by the proportion of locomotives using each 

Table 6 for details). 
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track segment meeting each EPA tier  standard16. EPA’s method assumes a single national 

locomotive fleet (single national locomotive emission factor) and the CARB method uses 

locomotive make and model specific time based (gram per hour) emission factors. Locomotive 

make and model specific time based emission factors are especially problematic. As discussed in 

Section 2.2.2.3, emission tests have only been performed on a small sample of locomotives, often 

with no replications resulting in a high degree of uncertainty and emission factors being 

unavailable for some makes and models. Adding to the uncertainty in these estimates is the use of 

inferior analytical techniques for some tests and extrapolated data. Additional problems are 

encountered when using these locomotive make and model specific time based emission factors 

since most locomotives now used by Class I railroads are controlled17. Most of the available 

make and model specific emission test data (see Appendix E-2 for available test data) are derived 

from older, uncontrolled locomotives, which are no longer used or have been remanufactured to 

meet EPA standards. Emission rates from controlled locomotives are expected to be a function of 

their EPA certification level rather than their specific make and model18

 The new framework stores the track specific fuel consumption estimates, emission factors 

and emission estimates in a database linked to a geographic information system (GIS). The GIS 

provides a spatial view of the model parameters and results, providing a more convenient format 

to view the spatially detailed data and facilitating additional spatial analysis. Current models 

apply differing methods to large and small railroads, for simplicity and consistency this model 

applies the same methods to all classes of railroads.  

.   

16 A single locomotive fleet (proportion of locomotives by tier standard) was assumed for all UP and BNSF 
track segments respectively because it is assumed that particular locomotives are generally not assigned to 
particular routes. However, the model framework enables the user to specify track segment level detail to 
model potential policy outcomes (e.g. the 1998 South Coast MOU between CARB and the UP and BNSF 
railroads which requires the use of a cleaner locomotive fleet in the South Coast Nonattainment Area).  
17 Locomotives meeting EPA tier standards; locomotives manufactured prior to 1973 and locomotives 
currently owned by class III railroads are exempt from emission standards (40 CFR 1033.101 and 40 CFR 
1033.610). 
18 It is assumed that locomotive manufactures produce locomotives that just meet EPA standards with a 
small compliance margin (emissions are slightly lower than the standards to accommodate variability and 
ensure certification). For more details see EPA’s discussion for producing locomotive emission factors  in 
[9].  
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 The above methods are for line-haul operations (the movement of trains between origins 

and destinations), additional improvements also have been made for modeling rail yard 

operations. The new framework departs from current methods, which assume 24 hour operation 

and constant emission rates from all locomotives operating in every rail yard, by allowing these 

parameters to vary. Total annual switcher locomotive (a low powered locomotive used to 

organize rail cars into trains) operating hours are estimated for each yard and multiplied by a fuel 

consumption factor to estimate total fuel use. While a single baseline fuel consumption factor is 

estimated for application to all rail yards, a method is provided to adjust it based on more specific 

information about the efficiency of specific rail yard locomotive fleets. Similar to the method for 

line-haul operations, emission factors are developed for each rail yard based on the proportion of 

switchers that meet each EPA Tier certification level.  The results of the yard inventories are also 

accessible through the GIS.  

3.3 Detailed Model Development 

  The following two sections present a full development of the line-haul and yard emission 

models. The beginning of each section provides a detailed diagram of the modeling framework, 

depicting the input data, calculation steps and model results. The tables represent the actual MS 

Access® database tables used in the model. The calculations steps are performed using the open 

source statistical programming software R® (the model code is available from the authors upon 

request). And the database is linked to ESRI’s ArcMap® for a spatial view of results and further 

analysis.  
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3.3.1 Line-Haul Method 
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Figure 3-1 Detailed schematic of line-haul emission model: green, red and purple colored 
chart elements highlight activity, emission factor and fuel efficiency data, respectively; 
tables show the model input data; arrows indicate the flow of data and calculations; and 
boxes indicate model operations 

Step 1: Populate Network Data 

 The first step in the process is to populate the rail network with rail traffic. Both of 

California’s Class I railroads, the Union Pacific Railroad (UP) and Burlington Northern Santa Fe 

Railroad (BNSF) provided annual traffic data (gross tons per year) for each track segment in their 

systems. The data are generally the same, and include for each track segment mile post, 
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subdivision, segment length and annual million gross tons (Appendix D-1 and D-2)19. Each data 

set also provides the gross ton data separate for each track direction20

 These data are typically available from Class I railroads, but are not publically available 

and the railroads are not required to provide it as part of any federal or state reporting 

mechanisms. Gross ton data can also be obtained from Class II and III railroads; however, it may 

also be possible for these smaller, regional railroads to directly provide their annual fuel 

consumption, allowing the first four steps of the modeling process to be skipped. For small Class 

II and III railroads, the direct use of fuel consumption will not result in loss of much spatial detail 

(Gould and Niemeier 2009).  

.  

 The model uses a rail network based on the 2008 National Transportation Atlas Database 

(NTAD) (2008); the network has been edited to include mile posts, re-classify parallel track 

segments (see Figure 3-2), add missing track segments and to correct track segments with missing 

or incorrectly labeled subdivision names. The beginning mile post for each subdivision is 

identified from a GIS file provided by Caltrans21

 

, subsequent mile posts are calculated by adding 

the length of each segment to the previous mile post calculation. The Caltrans GIS data were not 

used directly primarily because it would have required more editing, is not as widely available as 

the NTAD and would limit the possible geographic expansion of the model outside of California.  

Figure 3-2 Editing parallel track segments 

19 For the original data files provided by UP and BNSF see Appendix C. 
20 The BNSF data includes tracks that oriented north/south. For these tracks, the directional labeling of 
"west" and "east" was unclear. 
21 Caltrans rail GIS file metadata and link to request form: 
http://www.dot.ca.gov/hq/tsip/gis/datalibrary/metadata/ff_rail.gdb.xml 
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 The NTAD divides the rail network into track segments of different lengths than those 

represented in the annual traffic data provided by BNSF and UP. As a result, the traffic data 

(annual gross tons) cannot be directly linked to the rail network. Instead, the traffic data are 

projected onto the network using the process described in Figure 3-4 and explained below.  

Aj Bj

Xi Yi

Aj Bj

Xi Yi

Aj

Xi Yi

Bj
Aj

Xi Yi

Bj

1st scenario 2nd scenario

3rd scenario 4th scenario

 
Figure 3-3 Railroad (red) and NTAD (blue) track segment overlap possibilities: the 
variables AJ and XI are the milepost values at the beginning of each segment and BJ and YI 
are the milepost values at end of each segment 

 
 Figure 3-3 shows the four possible ways in which track segments defined by the 

railroads, j (blue), can overlap track segments defined in the NTAD, i (red). The variable Aj is the 

milepost value at the beginning of a railroad track segment and the variable Xi is the milepost 

value at the beginning of a NTAD track segment.  Similarly, the variable Bj is the milepost value 

at the end of a railroad track segment and the variable Yi is the milepost value at the end of a 

NTAD track segment. For each NTAD track segment, traffic data from overlapping railroad 

segments are added to the NTAD segment. Where only part of a segment overlaps, an amount of 

traffic proportional to the ratio of the over lapping track distance to the railroad track’s length is 

added to the NTAD segment. The complete algorithm is shown by the block diagram in Figure 

3-4.  

 

41



XTGTi=GTi*(Bj-Aj)/(Yi-Xi)+XTGTi

XTGTi=GTi*(Bj-Xi)/(Yi-Xi)+XTGTi

XTGTi=GTi*(Yi-Aj)/(Yi-Xi)+XTGTi

XTGTi=GTi+XTGTi

Aj<Xi & Bj>Xi & 
Bj<Yi 

Aj>Xi & Aj<Yi & 
Bj>Yi 

Aj ≥Xi & Bj ≤Yi 

Increment j 

Yes

No

Yes

No

Yes

No

Increment i

j≤mYes

No

j=1

m = number of track 
segments in subdivision

1st scenarioa

2nd scenario

3rd scenario

4th scenario

 
aSee Figure 3-3 for scenario definitions 
Figure 3-4 Algorithm for Projecting traffic data for a subdivision onto the NTAD rail 
network: GTj = annual gross tons traffic for each railroad track segment j, XTGTi = traffic 
projected onto each NTAD track segment i (the process is iterated for all subdivisions) 
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 For the state’s smaller railroads, no traffic density data are available or have been 

collected at this time. These railroads could be contacted and asked to report their traffic density 

or other available data (fuel consumption); however, the state does not have any legal authority to 

enforce the reporting of these data. In absence of these data, the NTAD (BTS 2006) can be used 

to obtain traffic density estimates. However, these data are only made available as six ranges of 

traffic density (to preserve the confidentiality of each railroad’s data). If these data are used, the 

median values should be applied.  

Step 2: Calculate Traffic Density 

 Traffic density by track segment and direction in the rail network, TDid (gross ton-miles) 

for segment i and direction d, is calculated by equation eq 3-1, 

 𝑻𝑫𝒊𝒅 = 𝑮𝑻𝒊 ∙ 𝑷𝒊𝒅 ∙ 𝑫𝒊        eq 3-1 

where; 

GTid = Tonnage moved over track segment i in direction d (gross tons) 
Pid = Proportion of traffic moving in direction d over track segment i 
Di = Length of track segment i (miles) 
 
The proportion of traffic moving in each direction for UP subdivisions is determined from the 

annual traffic data supplied by UP (Appendix D-3). The data provided by BNSF (Appendix D-4) 

classifies traffic as moving either "east" or "west", the direction of traffic moving over 

north/south routes is therefore ambiguous. Given this, the BNSF traffic is split evenly in each 

direction.  

Step 3: Estimate Base Fuel Efficiency 

 Activity is measured by fuel consumption because it is highly correlated with locomotive 

emission rates (see Figure 2-2) (Gould and Niemeier 2009). However, regional or track specific 

fuel consumption estimates are not available, so fuel consumption is estimated from traffic 

density and an estimate of fuel efficiency. 
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 To estimate the fuel consumption and fuel efficiency (gross ton-miles per gallon) of 

different types of trains traveling over various terrain, confidential operating data were provided 

by both UP and BNSF for a subset of the major routes in California (these data are provided in 

Appendix E)22

eq 3-2

 .  The data provided by the railroads consists of aggregate route specific throttle 

profiles (cumulative amount of time a locomotive operates in each throttle position) for each type 

of train (intermodal, unit/bulk, manifest, auto, other) along with the corresponding traffic density, 

average consist size (number of locomotives per train), annual number of train trips and 

locomotive fleet inventory . The throttle profiles can be combined with locomotive throttle notch 

fuel consumption data from existing, published locomotive exhaust tests (Fritz 1995; EPA 1998; 

Fritz 2000; Fritz 2004; Smith, Sneed et al. 2006) and the other operation data to estimate fuel 

consumption for each type of train over each route ( ).  

 

𝑭𝑪𝒋𝒌 = 𝑵𝒋𝒌 ∙ 𝑪𝒋𝒌 ∑ 𝑷𝒋𝒍𝒌𝒍 ∑ 𝑭𝑪𝒏𝒍 ∙ 𝑻𝒋𝒏𝒌𝒏       eq 3-2 

Where; 

Njk = annual number of trains traveling route k of type j 
Cjk = average consist size for train type j traveling route k 
Pjlk = fleet proportion of locomotive make and model l for route k for train type j 
FCnl = fuel consumption rate (gal/hr) for throttle position n for locomotive make and model l 
Tjnk = average time (hr) in notch n for travel across route k for train type j 
 

The fuel efficiency for each route and train type, FEjk, is calculated by dividing the annual traffic 

density by the fuel consumption estimate derived from equation 3-3, 

 

𝑭𝑬𝒋𝒌 = 𝑻𝑫𝒋𝒌
𝑭𝑪𝒋𝒌

          eq 3-3 

 
 Equations 3-2 and 3- 3 can provide relatively accurate fuel consumption and fuel 

efficiency estimates; however, the detailed, confidential data are not available for all track 

22 For the original data files provided by UP and BNSF see Appendix C. 
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segments, can be difficult and time consuming for railroads to collect and is not regularly 

updated. Because of these limitations, a more general method to estimate fuel consumption based 

on data that are available or observable is required.  

 Locomotive fuel consumption is proportional to the amount of work performed, and the 

amount of work performed is largely determined by the weight of the train being moved, the 

distance being covered,  speed, track grade and the aerodynamic profile of the rail cars (Davis Jr. 

1926; Hay 1982).  The gross weight of all train traffic and the distance traveled is known (from 

step 1), track grade can be estimated with a GIS, and while train speed and the aerodynamic 

profile of rail cars are generally unknown or unavailable they are related to the type of train 

(intermodal, unit/bulk, manifest, etc.) (Hay 1982; AASHTO 2002). We can specify a regression 

model to capture the influences of these observable factors on fuel efficiency. 

 Fuel efficiency estimates for each route from equation 3-3 are regressed on the positive 

grade factor, negative grade factor, and train type by ordinary least squares (eq 3-4). Positive and 

negative grade factors are defined as the total route elevation gain or loss, respectively, divided 

by the total route distance. Grade factors are superior to regressing on grade because the influence 

of an elevation gain (or loss) is weighted by the route distance (e.g., the higher fuel consumption 

incurred when traveling over a mountain pass contributes relatively less to the calculation of 

average fuel consumption the longer a route is).  

 

𝑭𝑰 = 𝜶 + 𝜷𝟏𝑮𝒑 + 𝜷𝟐𝑮𝒏 + 𝜷𝟑𝑰 + 𝜷𝟒𝑴 + 𝒆       eq 3-4 
   

where; 
 
FI = Fuel intensity of route and train type combination (gal/GTM) 
Gp = Positive grade factor for route and train type combination 
Gn = Negative grade factor for route and train type combination 
I = Dummy variable for intermodal and auto train types 
M = Dummy variable for manifest and other train types 
e = error term 
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 To linearize the relationship to the independent variables, fuel intensity (gal/GTM, the 

inverse of fuel efficiency) is used as the dependant variable in equation eq 3-4. The constant term 

represents the fuel intensity of a bulk train over level tracks. Analysis indicated that auto trains23 

were similar in fuel intensity to intermodal trains, so auto trains were grouped with intermodal 

trains. Similarly, “other” trains24

 Fuel efficiency estimates derived from equation 

 were found to have similar fuel intensity as manifest trains, so 

“other” trains were grouped with manifest trains. Local trains were excluded from the regression 

due to small sample size (less than 20 annual train trips). 

3-3 are of variable quality (i.e. 

reliability). Each estimate is computed using the mean train gross weight, consist size, time-in-

notch (duty cycle) and proportions of locomotive types - which were provided by UP (see 

Appendix E). There are three main issues concerning these data. First, each mean value is 

computed from a sample of data which varies considerably with route and train type as shown in 

Table 3-1. Means estimated from larger samples of a population are more reliable that those 

estimated from smaller samples; reliability is typically measured using a confidence interval. 

However, estimating a confidence interval requires not only the sample size, but also the variance 

and ideally information about the distribution that produced the data (e.g. the normal 

distribution). This information was requested, but not provided. Second, no information was 

provided about the sampling method (e.g., do the data include every train trip that occurred over 

the year or a sub sample of trips from trains equipped with data recording devices?). The mean 

values provided by UP could be biased depending on how the data were sampled (i.e., are the 

sampled train trips representative of the population of train trips). An explanation of the data 

collection process was requested, but not provided. Third, the mean values provided by UP 

represent one year of train operations. Without providing greater temporal detail, or the individual 

23 Auto trains are a type of unit train that carries automobiles with specially designed rail cars for this 
purpose. 
24 The “other” trains category is specified by UP and BNSF, they have not provided a definition of what 
trains fall into this category. 
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data points, potential outliers (e.g., unusual events, such as the recent fire which destroyed a 

heavily used UP bridge in Northern California) and temporal trends (e.g., increased traffic during 

preholiday months) will not be detected and accounted for. These data too were requested, but not 

provided. The lack of basic summary statistics, knowledge of the data collection process and 

greater temporal detail limits the generalizability of the results and limits the options available to 

quantify model uncertainty.    

Table 3-1 Sample sizes of UP route data 

   
Count of Train Trips 

RIDa Subdivision Route Bulk Intermodal Manifest 
1 Mojave Colton to Bakersfield 2 48 684 
2 Mojave Bakersfield to West Colton 0 83 872 
3 Yuma Yuma to West Colton 27 2,771 881 
4 Yuma West Colton to Yuma 13 2,876 765 
5 Valley Roseville to Dunsmuir 0 156 1,549 
6 Valley Dunsmuir to Roseville 6 31 1,306 
7 Roseville Sparks to Roseville 45 1 614 
8 Roseville Roseville to Sparks 319 25 615 
9 Martinez Roseville to Oakland 0 372 13 
10 Martinez Oakland to Roseville 0 340 253 
11 Los Angeles Yermo to West Riverside 26 265 579 
12 Los Angeles West Riverside to Yermo 30 21 597 
13 Los Angeles Riverside to Redondo 3 1,836 6 
14 Los Angeles Redondo to Riverside 0 1,402 155 
15 Fresno Sacramento to Fresno 174 105 1,207 
16 Fresno Fresno to Sacramento 20 149 1,021 
17 Fresno Fresno to Bakersfield 128 143 939 
18 Fresno Bakersfield to Fresno 25 166 745 

aUnique route identification number that corresponds to RIDs in the Appendices 
 
 Without sufficient information on the underlying data used to estimate the means 

provided by UP, the only indication of data quality is that in general larger samples should result 

in means closer to the true population mean. Given this, we excluded means derived from 

samples with fewer than 20 observations (see Appendix I-1) from the regression on the estimated 

fuel intensities. Additionally, the data supplied by BNSF were not used in the regression because 

47



the data on bulk and manifest trains were grouped together and no data were provided on the 

makeup of the locomotive fleet25

Table 3-2

. Bulk and manifest trains are expected to have significantly 

different fuel intensities (as the results in  indicate), and variations in fuel intensity 

estimates across routes could be due to differing proportions of bulk and manifest train traffic, 

grades or both (or other unobserved factors).   

 The regression results shown in Table 3-2 indicate that the model specification explains 

about 86% of the variation in locomotive fuel intensity and, as expected, track grade and train 

type are significant factors. The residual plot in Figure 3-5 does not indicate any severe outliers or 

large bias, although the model may under predict fuel efficiency (over predict fuel consumption) 

for very fuel efficient trains (greater than 1,000 GTM/gallon). System wide fuel efficiencies of 

757 GTM/gal and 793 GTM/gal  reported by BNSF and UP respectively, fall around the median 

of fuel efficiency values produced by the model over the range of typical grades (200 GTM/gal to 

2,000 GTM/gal), indicating the model produces plausible results.  Specifically, the regression 

results indicate that on average in California, the estimated fuel efficiency for bulk trains is 1,061 

GTM/gal, intermodal trains 700 GTM/gal and manifest trains 795 GTM/gal on level tracks. 

These results are consistent with what we might expect: bulk trains are most efficient, intermodal 

trains are least efficient and manifest trains fall somewhere in between (Gould and Niemeier 

2009). The relationship between the grade factors and fuel efficiency are shown in Figure 3-6 for 

each train type. These results indicate for example, that a 0.005 positive grade factor (the median 

of observed positive grade factors) decreases the fuel efficiency of an intermodal train by 52% 

over level tracks (increases fuel consumption by 110%).  Similarly, a 0.005 positive grade factor 

25 The most recent data file received from BNSF (which covers the time period 5/1/2007 to 4/30/2008) does 
not include information on the makes and models of locomotives used on each route. An earlier data file 
provided by BNSF (which covers the time period 5/1/2006 to 4/30/2007) does includes the makes and 
models of locomotives used on each route, but was determined to be unreliable - and the reason that the 
new data file was provided. The reliability of the older data file was discussed in a January 30, 2009 Memo 
sent from UC Davis to BNSF (a copy is attached in Appendix B).   
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decreases bulk and manifest train fuel efficiency by 62% and 55% respectively (a 166% and 

125% increase in fuel consumption). 

 

 

 

 

 
Table 3-2 Regression results 

Variable Coefficient P-value 
α     intercept 9.42E-04 < 0.001 
Gp    positive grade factor 3.13E-01 < 0.001 
Gn    negative grade factor 4.76E-02 0.02837 
I     dummy for intermodal trains 4.85E-04 0.00262 
M   dummy for manifest and other trains 3.15E-04 0.05509 
Number of observations 47 

 Adjusted R2 0.8557   
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Figure 3-5 Plot of regression residuals 

 
(a)                                                                                    (b) 

Figure 3-6 Modeled relationships between positive grade factor (a) and negative grade 
factor (b) and fuel efficiency 

 The regression results are used to determine unique fuel efficiency values for each track 

segment in the state. Grade factors are estimated from the NTAD rail network and digital 
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elevation model data from the U.S. Geological Survey (USGS 2009) for travel in each track 

direction (Figure 3-7).  

 

 

 
                                       (a)      (b) 
Figure 3-7 Estimated positive grade factors (a) and negative grade factors (b) for travel in 
the direction of increasing mile posts 

 For each track segment, fuel efficiency is estimated for each train type and travel 

direction. A single fuel efficiency for each track segment and direction is then estimated by taking 

a weighted average of the fuel efficiencies with the weights representing the proportion of traffic 

density produced by each train type (Figure 3-8).  
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    (a)                 (b) 
Figure 3-8 Estimated fuel efficiency (GTM/gallon) for travel in the direction of ascending 
mile posts (a) and descending mile posts (b)  

 The proportion of train traffic by train type is generally not available on a route by route 

basis. The detailed route data from the railroads was used to estimate the proportion of traffic in 

each subdivision by train type (Table 3-3); for subdivisions where no detailed data were available 

the average proportions for either UP or BNSF were used. In the case of BNSF, where bulk and 

manifest trains are grouped together, these were disaggregated using the average proportions of 

UP bulk and manifest traffic.  The discussion at the end of this report discusses other methods 

that could be developed to estimate these proportions. 
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Table 3-3 Proportion of traffic (gross ton-miles) by train type and subdivision (2007) 

Subdivision Bulk Intermodalb Manifestc 
UP       
Mojave 0.08 0.34 0.58 
Yuma 0.03 0.71 0.26 
Valley 0.01 0.13 0.87 
Roseville 0.22 0.16 0.62 
Martinez 0.01 0.42 0.57 
Los Angeles 0.11 0.62 0.28 
Fresno 0.20 0.14 0.66 
Average 0.09 0.42 0.49 
BNSF       
Alameda Corridora 0.02 0.74 0.24 
Bakersfield 0.08 0.39 0.53 
Cajon 0.02 0.56 0.41 
Gateway 0.15 0.01 0.83 
Harbor 0.02 0.46 0.53 
Lucerne Valley 0.00 0.00 1.00 
Mojave 0.09 0.36 0.55 
Needles 0.03 0.59 0.38 
Riverbank 0.00 0.00 1.00 
San Bernardino 0.02 0.46 0.52 
Stockton 0.08 0.31 0.61 
Average 0.05 0.48 0.47 

aAlso applied to UP traffic on the Alameda Corridor 
bIncludes auto trains 
cIncludes all other trains 

Step 4: Adjust FI for Efficiency (optional) 

 The fuel efficiency values estimated above may also be adjusted for various and evolving 

locomotive fleets; for example, the introduction of new technology such as hybrid locomotives26

26 See GE’s website at http://ge.ecomagination.com/site/products/hybr.html. 

. 

A relatively simple method is provided where fuel efficiency is adjusted if additional locomotive 

fleet information is available (or needed for forecasting purposes). The approach requires 

knowledge of locomotive energy efficiency, EEFs (bhp/gal), and corresponding fleet proportion, 
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Ps, of any additional locomotives, s, to estimate an adjustment factor, Ai (relative increase in 

efficiency), for each track segment, i, as shown in equation eq 3-5,  

𝑨𝒊 = �∑ 𝑬𝑬𝑭𝒊𝒔∙𝑷𝒊𝒔𝒔 +𝑬𝑬𝑭𝒃∙(𝟏−∑ 𝑷𝒊𝒔𝒔 )�−𝑬𝑬𝑭𝒃
𝑬𝑬𝑭𝒃

       eq 3-5 

where; 

EEFis  = locomotive energy efficiency of additional locomotives of type s on track segment i 
(bhp/gal) 

Pis       = fleet proportion of additional locomotives of type s on track segment i 
EEFb  = base locomotive fleet energy efficiency (bhp/gal) 

Additional locomotives are defined here as locomotives that are not currently included in the base 

locomotive fleet used to develop the base fuel efficiency estimates in Step 3 (see Appendix F-1).  

Fuel efficiency is then adjusted using equation eq 3-6, 

𝑭𝑬𝒊𝒅∗ = 𝑭𝑬𝒊𝒅(𝟏 + 𝑨𝒊)         eq 3-6 

where; 

FEid  = Base fuel efficiency (GTM/gallon) from e-q 3-4 specified with values shown in Table 3-2 
for track segment i for travel in direction d (ascending or descending mile posts) 

FE*
id = Adjusted fuel efficiency (GTM/gallon) 

 
 Rail lubrication, improved aerodynamics, and optimized scheduling may also increase 

fuel efficiency. However little data are available to estimate the effect of these factors or predict 

future advances. Periodic updates of the base fuel efficiency could take account of these and other 

excluded factors over time, but the method does not allow for explicit modeling of these factors.  

Step 6: Calculate Fuel Consumption 

 Fuel consumption, FCi, is calculated for each track segment, i, using the railroad supplied 

traffic density, TDid  (eq 3-1), and the adjusted fuel efficiency, FE*
id (eq 3-7). 

𝑭𝑪𝒊 = ∑ 𝑻𝑫𝒊𝒅
𝑭𝑬𝒊𝒅

∗𝒅           eq 3-7 

 

54



Step 7: Calculate Fleet Weighted Emission Factors 

 Fuel based emission factors (g/gal) for four criteria pollutants, hydrocarbons (HC), 

carbon monoxide (CO), NOx and PM10, are developed for each EPA Tier emission standard and a 

pre-control locomotive category. Emission rates are likely to vary by locomotive make and model 

of the same Tier rating but the limited test data (often a single test on a single locomotive for each 

model as explained in the literature review) does not provide sufficient evidence to justify 

creating separate categories.  

 In absence of reliable locomotive test data, emission factors were derived from EPA’s 

estimated emission factors for the national locomotive fleet (EPA 2009). These emission factors 

account for deterioration in emission control performance, variability among individual 

locomotives and manufacturer compliance margins (which typically result in emissions10% 

below EPA emission standards) (EPA 2008b). The PM10 emission factors also assume different 

diesel fuel sulfur concentrations. A sulfur concentration of 3,000ppm is assumed for Pre-Control, 

Tier 0, 1 and 2 PM10 emission factors and 15ppm for the remainder (EPA 2008b; Moulis 2009).  

 These emission factors are adjusted for the current sulfur concentration of in-use diesel 

fuel using a method for generic diesel engines from EPA (EPA 2004). The PM10 emission factors 

estimated by EPA are adjusted by the amount provided by equation  3-8, given EPA’s assumed 

(base) fuel sulfur concentration ( Sbase = 3,000 ppm for Pre-Control, Tier 0, 1 and 2 emission 

factors in eq 3-8) and an estimate of actual (in-use) fuel sulfur concentration. California 

regulations (13 CCR 2299, 2281) and an agreement with UP and BNSF(CARB 2005) require the 

use of ultra low sulfur diesel (15ppm sulfur concentration) when locomotives are refueled in the 

state. These standards are stricter than current federal regulations which require railroads to use 

low sulfur diesel fuel (500ppm sulfur concentration), but not ultra low sulfur diesel until 2012 (40 

CFR 80.510). In the draft rail yard toxic air contaminant mitigation plans prepared by Environ 

and BNSF for CARB (CARB 2009), the average sulfur concentration of diesel fuel used by 
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BNSF line-haul locomotives in California ahead of the federal ultra low sulfur standard is 

estimated at 340ppm27

𝑺𝑷𝑴𝒂𝒅𝒋 = 𝑩𝑺𝑭𝑪 ∙ 𝑴𝑺𝑶𝟒,𝑺 ∙ 𝑴𝑷𝑴,𝑺 ∙ 𝟎.𝟎𝟏 ∙ (𝑺𝒃𝒂𝒔𝒆 − 𝑺𝒊𝒏−𝒖𝒔𝒆)    eq 3-8 

. This estimate is used to adjust all line-haul emission factors (Sin-use = 

340ppm in eq 3-8). 

where; 
 
SPMadj     = PM adjustment (g/bhp-hr) 
BSFC  = brake specific fuel consumption (gal/bhp-hr)15.2 
MSO4,S = constant, sulfate fraction of total particulate sulfur (7.0 g PM SO4/ g PM S) 
MPM,S  = constant, fraction of fuel sulfur converted to particulate sulfur (0.02247 g PM S/ g fuel 
S) 
Sbase   = assumed diesel fuel sulfur concentration (w%) 
Sin-use   = actual diesel fuel sulfur concentration (w%) 
 
 An alternative fuel sulfur correction method developed by EPA to adjust PM10 emission 

factors for its locomotive standards (40 CFR 92.12(i), 40 CFR 1033.101(f)(2)(iv) and 40 CFR 

1033.150(k)) is not used (Moulis 2008)28

Figure 3-9

. That method adjusts PM10 emission rates based on an 

equation derived from an ordinary least squares regression of PM10 emission rates from various 

locomotives tested with high, low and ultra low sulfur diesel fuels as shown in .The 

regression data display a large amount of  heteroskedasticity (non-constant variance); this 

probably contributes to an artificially high R2 value (0.84, as shown in Figure 3-9). Additionally, 

the regression appears to be biased. The regression does not result in a good fit for low sulfur 

fuels (15ppm - 500ppm), which are currently required by California and federal regulations. Use 

of this EPA method would underestimate the benefit of lower sulfur fuels in reducing PM10 

emissions. As shown in Figure 3-9, the regression line passes above all of the low sulfur data 

points (i.e., over estimates PM emissions) and intercepts the y-axis at a value above zero, 

implying that fuels with no sulfur still produce sulfate particulate emissions.  This is probably 

caused by the observed heteroskedasticity and small sample size; data for high sulfur fuels have a 

27 This is the only estimate of in-use locomotive diesel fuel sulfur concentration that the authors are aware 
of. 
28 A copy of the entire memo is provided in Appendix B 
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disproportionately large influence on the regression fit due to their relatively larger variance. 

With a large enough sample, these large influences would tend to balance each other, reducing 

bias. 

 

 
Figure 3-9 Relationship of fuel sulfur content and PM emissions reproduced from EPA 
memo (Moulis 2008) 

 Table 3-4 provides EPA’s estimated emission factors for line-haul locomotives meeting 

each EPA locomotive emission (certification level) standard and the PM10 emission factors 

adjusted for current in-use fuel sulfur concentrations (340ppm). 
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Table 3-4 EPA Estimated emission factors for line-haul locomotives 

Cert. Effective PM10 Adj-PM10
c HC NOx CO 

Level Date g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr 
Pre 
Control current 0.32 0.255 0.48 13 1.28 
Tier 0 current 0.32 0.255 0.48 8.6 1.28 
Tier 1 current 0.32 0.255 0.47 6.7 1.28 
Tier 2 current 0.18 0.115 0.26 4.95 1.28 
Tier 0Ra 2008/2010b 0.2 0.208 0.3 7.2 1.28 
Tier 1Ra 2008/2010b 0.2 0.208 0.29 6.7 1.28 
Tier 2Ra 2013 0.08 - 0.13 4.95 1.28 
Tier 3 2012 0.08 - 0.13 4.95 1.28 
Tier 4 2015 0.015 - 0.04 1 1.28 

aR indicates revised EPA standards for remanufactured tier 0, 1 or 2 locomotives 
bStandard effective in 2008 where retrofit kits are available, otherwise effective in 2010 
cPM10 emission factors corrected for current in-use fuel sulfur concentration. Tier 2R, 3, and 4 are 
not shown since these standards do not take effect until after federal ultra low sulfur diesel 
standards become effective. 
 
 The brake specific emission factors, corrected for diesel fuel sulfur concentration are then 

converted to fuel based emission factors (g/gallon) using an estimate of the locomotive fleet’s 

fuel efficiency (19.5 bhp-hr/gal). The fuel efficiency value is estimated from notch specific fuel 

consumption rate and power data, weighted by the EPA line-haul duty cycle29

 Fleet average emission factors are then calculated by weighting the EPA emission factors 

for each tier standard by the proportion of in-use locomotives that meet each tier standard, and 

then taking the sum of the weighted emission factors. For the statewide inventory we have 

assumed a uniform locomotive fleet. The data supplied by UP and BNSF (shown in Appendix E-

, for the current in-

use UP locomotive fleet shown in Appendix F-1. This fuel efficiency value is less than EPA’s 

20.8 bhp-hr/gal estimate, which has not changed for at least 12 years and is based on a national 

locomotive fleet (EPA 1997; EPA 2009).   

29 The EPA line-haul duty cycle is used in place of the actual duty cycle information provided by UP 
because the EPA emission factors assume the EPA duty cycle.  
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5 and E-6) provide the proportion of locomotives that meet each tier standard for major California 

routes; however, average state-wide fleet emission factors for each railroad are calculated (Table 

3-5), not route specific emission factors, because individual locomotives are not usually assigned 

to a particular route. 

 
Table 3-5 Proportion of locomotive fleet meeting each EPA emission standard 

  
Pre 

Control Tier 0 Tier 1 Tier 2 
UP 0.05 0.15 0.19 0.61 
BNSF 0.07 0.62 0.20 0.11 
Alameda Corridora 0.06 0.40 0.20 0.35 

aGross ton-mile weighted average of UP and BNSF locomotive fleet 
 
 Class I railroads operating in the South Coast region of California are obligated to 

provide this information to track the compliance of a MOU between the railroads and CARB 

(CARB 1998). However, elsewhere, the railroads are not obligated to share this information, 

though some provide this information publicly on their websites. Information about most railroad 

locomotive fleets is also available from other, unofficial, published sources (Kerr 2008). In 

absence of specific information about a railroad’s locomotive fleet, projected yearly fleet 

weighted emission factors from the EPA (EPA 2009) may also be used. The certification levels of 

locomotives used by Class II and III railroads are unknown at this time, but most are likely pre-

control because these railroads typically do not purchase new locomotives and many have been 

exempt from EPA requirements to remanufacture existing locomotives to tier 0 standards under 

small businesses provisions of the EPA standards (40 CFR 1033.610)30

 

. 

 

30 Prior to 2008, class II and III railroads not owned by larger corporations were exempt from EPA 
regulations that required locomotives manufactured after 1973 to meet tier 0 standards when they are 
remanufactured. Current regulations no longer provide this exemption for class II railroads. 
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Step 8: Calculate Annual Emissions 

 Emission estimates, Ei, are made for each track segment by multiplying together fuel 

consumption estimates and emission factors (eq 3-9). 

 

𝑬𝒊 = 𝑭𝑪𝒊 ∙ 𝑬𝑭𝒊          eq 3-9 

where; 

EFi = Emission factors (g/gallon) for track segment i 

Carbon dioxide (CO2) and sulfur dioxide (SO2) emissions are estimated for each track segment 

based on fuel consumption only, not the certification level of the locomotives, using methods 

described by EPA (EPA 2009) (eq 3-10 and eq 3-11 ). 

 
𝑪𝑶𝟐 = 𝑭𝑪∙𝟏𝟎.𝟏

𝟏𝟎𝟎𝟎
∙ 𝟏.𝟏𝟎𝟐𝟑        eq 3-10 

where; 
 
FC  = annual fuel consumption by all locomotive tiers (gallons/year) 
1000  = conversion factor (kg/tonne) 
10.1 =carbon content of diesel fuel (kg/gallon) 
1.1023 =conversion factor (ton/tonne) 
 
𝑺𝑶𝟐 = (𝑭𝑪 ∙ 𝟑𝟐𝟎𝟎 ∙ 𝟎.𝟗𝟕𝟖 ∙ 𝟐 ∙ 𝑺) ∙ 𝟏.𝟏𝟎𝟐𝟑

𝟏,𝟎𝟎𝟎,𝟎𝟎𝟎
      eq 3-11 

where; 
 
3200   = density of fuel (g/gallon) 
0.978  = sulfur conversion (to SO2) factor  
2  = constant (64 g SO2/32 g S) 
S  = sulfur content of fuel (PPM x 10-6) 
1,000,000  = conversion factor (g/tonne) 
1.1023  = conversion factor (ton/tonne) 
 
PM2.5 emissions are assumed to be 97% of PM10 emissions (EPA 2009). 
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3.3.2 Yard Method 

 Figure 3-10 provides a detailed description of the method to estimate emissions from rail 

yards. Like line-haul operations, emissions are estimated from fuel consumption, which we are 

unable to empirically derive. Operating hours are easily observed and have been reported; 

therefore operating hours are converted into fuel consumption. Once fuel consumption is 

estimated, emissions are calculated in the same way as for line-haul operations.  
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Figure 3-10 Detailed schematic of proposed rail yard emission model: green, red and purple 
colored chart elements highlight activity, emission factor and fuel efficiency data, 
respectively; tables show the model input data; arrows indicate the flow of data and 
calculations; and boxes indicate model operations 

Step 1: Base Fuel Consumption Rate  

 Similar to line haul operations, fuel consumption rates for switching locomotive activity 

in rail yards are highly correlated with emission rates. In addition, fuel consumption data are 

likewise unavailable for rail yard locomotives but it can be estimated.  

 The main task of rail yard switching locomotives is to position rail cars to set up trains. 

This work is accomplished using low powered locomotives, often in their lowest throttle settings. 
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In this case, fuel consumption is not expected to vary considerably by the type and weight of the 

cars being moved, and can be approximated by the amount of time spent working. Operating 

hours for major rail yards in California have recently been reported in a series of rail yard toxic 

air contaminant emission inventories prepared by UP and BNSF for CARB 

(http://www.arb.ca.gov/railyard/hra/hra.htm). These inventories do not include smaller rail yards 

and will not be available in the future to update inventories; however, operating hours can be 

obtained by contacting each rail yard or by visiting each rail yard and observing their operations 

as suggested by the EPA (EPA 1992). The results reported here only include the major rail yards. 

A default fuel consumption rate (gal/hr) is estimated for calculating switching locomotive fuel 

consumption from operating hours. This method improves upon the current EPA method of 

assuming constant annual fuel consumption per yard locomotive (EPA 1992) and the CARB 

method which assumes 24 hour operation for each yard locomotive (BAH 1991a).   

 The fuel consumption rate of switching locomotives is determined from detailed 

switching locomotive operating data (locomotive fleet, operating hours and duty cycles) included 

in the rail yard toxic air contaminant studies. The reports prepared for UP rail yards do not 

contain enough detail about locomotive fleets to determine an accurate estimate of fuel 

consumption, so a subset of the reports, those prepared for BNSF rail yards, was used (Appendix 

G). The BNSF rail yards are assumed to be representative of typical rail yard operations.  

 The duty cycles developed for the BNSF rail yard studies were obtained from event 

recorder data collected from a portion of the switching locomotives at each yard over a couple of 

days. The EPA switcher duty cycle proportion of idle time was used instead of the idle time from 

the event recorders because the event recorders were unable to distinguish between when a 

locomotive was idling and turned off (this was not done for the Barstow, San Diego and San 

Bernardino rail yards, perhaps erroneously, as shown in Table 3-6). The proportion of time in the 

other notches was normalized to sum to 1 after adding the EPA idle time. As shown in Table 3-6, 
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the duty cycles developed for BNSF are very similar to EPA's switcher duty cycle. Given this 

observation and the limitations of the BNSF duty cycle data31

Table 3-6 Comparison of Environ/BNSF yard specific duty cycles to EPA switch duty cycle 

, the EPA switcher duty cycle is 

used to estimate fuel consumption rates.  

 
Proportion of Time-in-notch 

Rail Yard DB I N1 N2 N3 N4 N5 N6 N7 N8 
Wilmington-Watson 0.00 0.60 0.13 0.10 0.06 0.03 0.02 0.02 0.01 0.04 
Commerce 
Mechanical 0.00 0.60 0.13 0.15 0.07 0.04 0.01 0.00 0.00 0.00 
Stockton 0.00 0.60 0.16 0.12 0.05 0.03 0.01 0.01 0.00 0.02 
Commerce Eastern 0.00 0.60 0.13 0.15 0.07 0.04 0.01 0.00 0.00 0.00 
Richmond 0.00 0.60 0.13 0.14 0.06 0.03 0.01 0.01 0.00 0.01 
Los Angeles-Hobart 0.00 0.60 0.13 0.15 0.07 0.04 0.01 0.00 0.00 0.00 
Barstow 0.00 0.78 0.06 0.04 0.05 0.03 0.02 0.01 0.00 0.01 
San Diego 0.00 0.98 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
San Bernardino 0.02 0.87 0.04 0.03 0.02 0.01 0.01 0.00 0.00 0.01 
EPA 0 0.60 0.12 0.12 0.06 0.04 0.04 0.02 0.00 0.01 
 

 The average fuel consumption rate of each rail yard is shown in Table 3-7. The estimates 

were made by weighting notch specific fuel consumption rate data by the EPA switch duty cycle 

(eq 3-12).  

𝑭𝑹𝒌 = ∑ 𝑭𝑹𝒌𝒋 ∙ 𝑫𝑪𝒋𝒋          eq 3-12 

where; 

FRk = fuel consumption rate of locomotive model k 
FRkj  = fuel consumption rate of locomotive model k, throttle notch j 
DCj = EPA switch duty cycle proportion of time-in-notch j 
 
Switching locomotive fuel consumption data are obtained from (EPA 1998); however, data are 

not available for every make and model of locomotive. In these cases, fuel consumption rates for 

locomotives without data were scaled from those with data based on the difference in power. The 

31 The rail yard studies completed for UP rail yards also assume the EPA switcher duty cycle. 
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duty cycle weighted fuel consumption rates were then weighted by the quantity of each type of 

locomotive in each yard (eq 3-13). 

 

𝑭𝑹𝒍 = ∑ 𝒏𝒍𝒌𝒌

∑ 𝒏𝒍𝒌
𝑭𝑹𝒌
𝒌

          eq 3-13 

where; 

FRl  = fuel consumption rate of yard l 
nlk = quantity of model k locomotives in yard l 
 

 Finally, the base switch locomotive fuel consumption rate was estimated by averaging 

across all the rail yards and weighting by the total number of switch locomotives in each yard (eq 

3-14 and Table 3-7). Switch locomotives are not captive to any particular yard, they are generally 

rotated in and out of yards based on their maintenance schedules. Therefore, use of a single 

switch locomotive fuel consumption rate based on an average off all in use (BNSF California) 

switch locomotives provides a reasonable simplification.  

𝑭𝑹 = ∑ 𝒎𝒍𝒍

∑ 𝒎𝒍
𝑭𝑹𝒍
𝒍

          eq 3-14 

where; 

FR  = weighted average fuel consumption rate of all BNSF rail yards (gallon/hr) 
ml = number of locomotives in yard l 
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Table 3-7 Estimated rail yard fuel consumption rates 

 
Rail 
Yard   

Fuel Consumption Rate 
gal/hr 

Barstow 
 

12.04 
Commerce Eastern 13.01 
Commerce Mechanical 13.01 
Hobart 

 
13.01 

Richmond 12.56 
San Bernardino 13.97 
San Diego 13.94 
Stockton 

 
13.44 

Wilmington-Watson 13.99 
Weighted Average 12.87 

 

Step 2: Locomotive Efficiency Adjustment 

 Similar to the methodology for line-haul locomotives, a method to adjust the base fuel 

consumption rate is developed to account for the introduction of new technology. This is a 

particularly important consideration for rail yards which have been replacing traditional diesel-

electric locomotives with more efficient gen-set (a series of small, efficient diesel engines) and 

hybrid switching locomotives32

 The locomotive efficiency adjustment factor is calculated as previously shown for line-

haul locomotives (

.  

eq 3-5). However, the adjustment factor is applied to the inverse of the fuel rate 

(hr/gal) so that the adjustment response is linear (eq 3-15). 

𝑭𝑹𝒊∗ = 𝟏
𝟏
𝑭𝑹

(𝟏+𝑨𝒊)
          eq 3-15 

where; 

FR*
i  = adjusted fuel consumption rate (gallons/hr) for locomotives in yard i 

FR   = base fuel consumption rate (gallons/hr) from eq 3-14 
Ai     = switching locomotive fuel efficiency adjustment factor for yard i 

32 CARB is currently considering options to accelerate the introduction of new switching locomotives to 
CA rail yards (http://www.arb.ca.gov/railyard/ted/ted.htm).  
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Step 3: Calculate Fuel Consumption 

Fuel consumption for each yard is calculated by multiplying annual operating hours by the fuel 

consumption rate as shown in equation eq 3-16, 

𝑭𝑪𝒊 = 𝑭𝑹𝒊∗ ∙ 𝑶𝑷𝒊         eq 3-16 

where; 

FCi   = Annual fuel consumption for yard i (gallons) 
FR*

i  = Adjusted fuel consumption rate (gallons/hr) for yard i 
OPi   = Annual operating hours for yard i  
 

Step 4: Estimate Weighted Emission Factors 

 The procedure to estimate fleet weighted emission factors are similar to those described 

for line-haul locomotives. EPA estimated switcher locomotive emission factors (EPA 2009) are 

shown in Table 3-8.  

Table 3-8 EPA estimated emission factors for switcher locomotives 

Cert. Effective PM10 Adj-PM10
b HC NOx CO 

 Level Date g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr 
Pre 
Control current 0.44 0.341 1.01 17.4 1.83 
Tier 0 current 0.44 0.341 1.01 12.6 1.83 
Tier 1 current 0.43 0.331 1.01 9.9 1.83 
Tier 2 current 0.19 0.091 0.51 7.3 1.83 
Tier 0Ra 2008 0.23 - 0.57 10.62 1.83 
Tier 1R 2008 0.23 - 0.57 9.9 1.83 
Tier 2R 2013 0.11 - 0.26 7.3 1.83 
Tier 3 2012 0.08 - 0.26 4.5 1.83 
Tier 4 2015 0.015 - 0.08 1 1.83 

aR indicates revised EPA standards for remanufactured tier 0, 1 or 2 locomotives 
bPM10 emission factors adjusted for in-use diesel fuel concentration (15ppm in rail yards). Tier 
0R, 1R, 2R, 3, and 4 are not shown since these emission factors assume a 15ppm diesel fuel 
sulfur concentration. 
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 Similar to the case for line-haul emission factors, the switcher emission factors are 

adjusted for the sulfur content of in-use diesel fuel33

Step 5: Estimate Emissions 

, converted to fuel based emission factors and 

then weighted by the proportion of yard locomotives meeting each tier standard and then 

summed. An average switcher locomotive fleet fuel efficiency of 15.9 bhp-hr/gal is used to 

convert the emission factors to a fuel basis (see Appendix G for calculation), which is slightly 

higher than EPA’s estimate of 15.2 bhp-hr/gal (EPA 2009). Information about the tier standards 

of the switcher locomotive fleet is obtained from the rail yard toxic air contaminate inventories 

which indicate that in 2007 all yard locomotives were pre-control.  

 Once fuel consumption and weighted emission factors are estimated, the calculation of 

emissions is carried out using the same methods applied for line-haul emissions (see eq 3-9, eq 

3-10 and eq 3-11). 

3.4 Model Results and Inventory 

 In this chapter, results derived using the new model for California’s Class I railroads are 

discussed, including illustration of the geographic detail available by using this approach. We 

also compare results from this framework to the EPA and CARB methods. Note that Class II and 

III railroads are omitted at this time as CARB was unable to collect data for these railroads. All 

results shown below are for the year 2007. 

 The fuel efficiency of each Class I route in California was shown previously in Figure 

3-8. Those maps indicate, as expected that fuel efficiency is lowest (highest fuel consumption 

rate) in mountainous terrain. For example, fuel efficiency is 72% lower when traveling over 

Donner Pass in the Sierra Nevada Mountains east of Sacramento than traveling through the 

Central Valley (a 256% increase in the fuel consumption rate) and 53% lower traveling up the 

33 EPA's PM10 emission factors are reduced by the amount given by equation 3-8 where Sbase =  3,000 ppm 
for Pre-Control, Tier 0, 1 and 2 emission factors and Sin-use = 15 ppm .  
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Cajon Pass than traveling through the Los Angeles basin (a 114% increase in the fuel 

consumption rate).  

 Emission estimates are a function of the quantity of traffic and the type of traffic, grade 

and locomotive fleet. Figure 3-11(a) shows the annual quantity of Class I freight rail traffic and 

Figure 3-11(b) displays the estimated annual ton per mile PM10 emissions produced by this 

traffic. Maps of other emissions display similar trends since the emission factors are all fuel 

based.  

 

      (a)      (b) 

Figure 3-11 Class I line-haul annual traffic (line thickness is proportional to traffic volume) 
(a) and annual PM10 ton/mile emission rates (b) 

 A comparison of aggregate state-wide model results is shown in Table 3-9. The results 

vary between the three methods shown, and is expected given differences in methods and data 

underlying each approach.  
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Table 3-9 Comparison of UCD, EPA and CARB line-haul model results for California 

Inventory FIa FCb HC CO NOx PM10 CO2 
 Method GTM/gal mgalc tons/yr tons/yr tons/yr tons/yr tons/yr 
UCDd 530 286 2,421 7,868 43,552 1,213 3,184,000 
EPAe 777 180 1,843 5,429 34,675 1,248 2,024,000 
CARBf -g 261 3,227 11,652 44,510 1,439 2,945,039 
a Average fuel efficiency 
b Fuel consumption 
cMillion gallons 
d The model developed at the University of California, Davis described in this paper (for year 2007). 
e Results estimated following the procedures recommending in (EPA 1992) and with emission factors from 
(EPA 2009) for year 2007 (see Appendix H-6 for calculations). 
f Results obtained from CARB (see Appendix H-5) 
gNo data available 
 
 Recall that the EPA method depends on a system-wide fuel efficiency that is much larger 

than the fuel efficiency estimated by the methods presented in this report (UC Davis method). 

The UC Davis approach accounts for grades, train types and the locomotive fleet. As a result of 

using the larger, system wide fuel efficiency, the EPA method appears to substantially 

underestimate fuel consumption (EPA fuel consumption is 37% less than the UC Davis estimate) 

and emissions (EPA emission estimates are 3% to 36% less than UC Davis estimates).  The EPA 

method also assumes a nationally representative locomotive fleet with greater fuel efficiency than 

the UC Davis method; we applied a California specific locomotive fleet. 

 CARB estimated the inventory shown in Table 3-9  by projecting forward results of a 

detailed locomotive inventory originally completed in 1991 (BAH 1991a; Wong 2006). CARB’s 

CO2 estimate was calculated by UC Davis from fuel consumption data provided by CARB34

Table 3-9

. As 

shown in , the CARB estimates are generally larger than either the UC Davis or EPA 

estimates. However, the degree of the differences between the CARB and the UCD method varies 

by pollutant. CARB HC estimates are 33%, CO estimates 48% and PM10 estimates 19% greater 

than UC Davis estimates and CARB NOx estimates are only 2% greater than UC Davis estimates.  

34 It is unclear how CARB estimated locomotive fuel consumption since their emission inventory is not fuel 
based (i.e., does not estimate fuel consumption or use fuel consumption data in any way) and regional 
locomotive fuel consumption data are typically unavailable as discussed in section 2.2.1. 
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 Table 3-10 compares the three methods for 10 counties with the most freight rail traffic. 

Whereas in Table 3-9 the EPA estimates were less than, and CARB estimates greater than,  the 

UC Davis estimates, the results in Table 3-10 show that these trends do not hold at the county 

level. The degree of the differences between the three methods varies by county. In some cases 

the EPA estimates are larger than UC Davis estimates and CARB estimates are less. Differences 

between the EPA and UC Davis results are due to the different topography of each county as well 

as the differing mix of rail traffic which is accounted for by the UC Davis method but not the 

EPA method.  

 Figure 3-12 shows a spatial comparison of the CARB and UC Davis county level 

inventories (State-wide emission inventories by county, air district and air basin are provided in 

Appendix H-1, H-2 and H-3).The maps show several trends. The gray hatched regions are 

counties where CARB estimates emissions from class I railroads. Data provided by UP and 

BNSF (Appendix D -1 and D-2) do not indicate any traffic in these counties.35

 

  

 

 

 

 

 

 

 

35 Freight traffic has not operated for a fairly long time in the north coast region. The BNSF railroad does 
operate in San Diego County. The tracks are owned by the San Diego transit authority with BNSF retaining 
historical track rights. This is probably the reason these data were not provided by BNSF. Similar situations 
could exist on other publicly owned rail segments. However, in at least one case, the Alameda Corridor 
which is publicly owned, UP and BNSF did report their traffic.  
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Table 3-10 Comparison of UCD, EPA and CARB line-haul fuel consumption, NOx and PM10 
estimates for 10 counties with the greatest amount of freight rail traffic 

 
Fuel Consumption NOx Emissions PM10 Emissions 

 
UCDa EPAb CARBc UCD EPA CARB UCD EPA CARB 

County mgald/yr mgal/yr mgal/yr tons/yr tons/yr tons/yr tons/yr tons/yr tons/yr 
San 
Bernardino 119 66 50 19,859 12,694 10,154 568 457 344 
Riverside 23 14 16 3,250 2,793 2,917 88 101 98 
Kern 23 14 19 3,345 2,689 3,497 91 97 115 
Imperial 15 10 8 2,063 1,834 1,928 55 66 66 
Los Angeles 15 11 33 2,033 2,175 4,766 55 78 155 
San Joaquin 6 5 9 850 1,029 1,264 23 37 39 
Placer 10 5 5 1,300 887 866 35 32 26 
Sacramento 5 4 8 605 809 1,098 16 29 32 
Plumas 6 4 3 859 773 762 23 28 23 
Merced 4 4 4 684 782 604 19 28 18 

a The model developed at the University of California, Davis described in this paper. 
b Results estimated following the procedures recommending in (EPA 1992) and with emission 
factors from (EPA 2009). 
c Results obtained from CARB emission inventory (See Appendix H-5) 
dMillion gallons    
 
 Some differences in the inventories in Table 11 can be attributed to projected emissions 

from Class I rail routes which are no longer in use, or to data not provided by the railroads. The 

maps also show that CARB’s emission and fuel consumption estimates are much higher than UC 

Davis’s in flatter regions (i.e., the Bay Area, Central Valley and Los Angeles) and lower in 

mountainous regions (in particular the Sierra Nevada Mountains). These trends are expected since 

the UC Davis model explicitly considers track grades in making all of its estimates. CARB’s 

inventory, as discussed previously in section 2.2.1.1, is based on an inventory produced by Booz-

Allen, in which detailed calculations of emissions were produced for regions of the state that at 

the time had poor air quality (BAH 1991a). In a follow up report (BAH 1992), Booz-Allen 

produced a statewide county by county inventory by using average locomotive emission rates 

from the original study to estimate emissions for the remaining routes in the state. Routes where 

average emission rates were used, which include many of the more remote mountain regions of 

the state, did not account for differences in topography. Other differences between CARB’s and 
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UC Davis’s inventory are probably due to errors and uncertainty related to the forecasting in the 

original Booz-Allen inventory. As discussed in section 2.2.1.1, these include applying growth 

factors based on national economic growth indicators and correction factors to account for new 

locomotive regulations and efficiency gains. In addition to the large uncertainty that is expected 

from such long term forecasts, the forecasting method cannot account for changes in traffic 

routing, traffic types and other changes in railroad operations that may have occurred over the 

past 20 years.  
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                              (a)                                                                                (b) 

 
                                             (c)                                                                               (d) 
Figure 3-12 Spatial comparison of CARB and UC Davis PM10 (a), NOx (b), CO (c) and Fuel 
consumption estimates (d) for 2007 
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 The rail yard switcher locomotive emissions also vary depending on the method used to 

estimate them (Table 3-11). The differences in the results vary across the yards, but are generally 

comparable. The differences between the UC Davis and EPA estimates are largely the result of 

EPA’s assumption of a constant 228 gallons of fuel consumption per switcher locomotive per day 

and emission factors representative of a national locomotive fleet using diesel fuel with higher 

sulfur content. The UC Davis method accounts for the varying operating schedules across yards 

as well as differing locomotive fleets and diesel sulfur content. The difference between the UC 

Davis and HRA estimates is likely due to the use of a “time-in-notch” approach used by the HRA 

method and the fuel based approach used by the UC Davis method. The time-in-notch approach is 

not fuel based, but depends on the hourly emission rates of each throttle position of the yard 

locomotives and an estimate of the amount of time spent in each throttle position.  This is similar 

to the method used to estimate the switcher locomotive fuel consumption factors applied in the 

UC Davis method, and should produce reasonable estimates. The generalization of the UC Davis 

method (use of a single fuel consumption factor) is likely the cause of some of the differences 

between the two estimates. The method used in the HRA’s; however, is not suitable for larger 

scale modeling purposes given the yard and locomotive specific data requirements. A complete 

emission inventory of all major Class I rail yards is available in Appendix H-4.  
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Table 3-11 Comparison of UCD, EPA and CARB yard switcher locomotive fuel 
consumption, NOx and PM10 estimates for several rail yards 

 

UCDa 
FCb 

EPAc 

FC 
HRAd 
FC 

UCD 
PM10 

EPA 
PM10 

HRA 
PM10 

UCD 
NOx 

EPA 
NOx 

Rail Yard gal/yr gal/yr gal/yr tons/yr tons/yr tons/yr tons/yr tons/yr 
Wilmington 54,054 83,220 68,963 0.33 0.60 0.43 16.5 22.9 
Stockton 
(BNSF) 252,406 249,660 254,004 1.53 1.79 1.55 77.0 68.8 
Richmond 225,482 166,440 118,188 1.36 1.19 1.16 68.8 45.9 
Hobart 387,541 416,100 358,371 2.34 2.98 2.22 118.2 114.6 
Commerce 300,643 249,660 244,150 1.82 1.79 1.90 91.7 68.8 
LATC 526,126 499,320 569,683 3.18 3.58 2.46 160.4 137.6 
Mira Loma 206,692 166,440 223,804 1.25 1.19 2.38 63.0 45.9 
Oakland 380,502 332,880 488,300 2.30 2.38 1.88 116.0 91.7 
Stockton 
(UP) 714,028 665,760 773,142 4.32 4.77 3.58 217.8 183.4 

a The model developed at the University of California, Davis described in this paper. 
b Fuel consumption 
c Results estimated following the procedures recommended in (EPA 1992) and with emission 
factors from (EPA 2009). 
d Results obtained from rail yard toxic air contaminant inventories prepared for CARB: 
http://www.arb.ca.gov/railyard/hra/hra.htm     

3.5 Summary and Conclusions 

 The model developed in this research provides a method to estimate diesel-electric 

locomotive emission inventories with a higher degree of robustness and greater spatial refinement 

than current methods. Unlike methods currently recommended by EPA for line-haul operations, 

the UC-Davis model accounts for differences in track grade, types of train traffic and locomotive 

fleet – factors known to affect fuel consumption and emission rates. While the increased accuracy 

and spatial detail comes at the cost of increased data requirements, they are less onerous than the 

data needs of the current methods used by CARB. The data required to run the model are 

typically available to government agencies through the railroads, observation or estimation. The 

model also improves upon current yard switcher locomotive methods by providing a method to 

account for the differing working schedules and locomotive fleets of each yard.  
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 Understanding the source of air quality problems is especially important in California 

where large populations are exposed to air that regularly fails to meet federal air quality 

standards. A more accurate and spatially resolved emission inventory can help determine the 

contribution from railroads and the effectiveness of specific policy actions. Changes in 

locomotive emissions can be estimated for policies which introduce newer locomotive fleets and 

cleaner fuels to certain regions, and more train traffic along specific routes. Additionally, the 

spatially resolved emissions can be used as input for air dispersion models, estimating the 

concentration of air pollutants along railways. This would be a very useful tool for analyzing 

impacts on environmental justice communities.  

 Besides improving the accuracy and spatial resolution of emission inventories, the new 

modeling method provides for analysis of rail energy intensity. The model can be used to 

compute the energy intensity, fuel consumption and carbon emissions of each train route under 

various assumptions of in-use and future locomotive fleets, efficiency and traffic type. This is an 

important capability given the recent focus on improving the flow of goods movement and 

reducing its environmental and climate impacts, potentially by encouraging greater use of freight 

rail over trucking. Similar analysis of criteria air pollutant emissions can also be made. The 

impacts of shifting freight from road to rail can then be analyzed in terms of potential benefits of 

reduced energy consumption, carbon emission and criteria emissions for a region at the expense 

of increased levels of local criteria emissions from increased rail traffic.  

 While the methods presented are a substantial improvement over current methods, they 

could benefit from additional research. Future work on the development of a method to estimate 

the proportion of traffic type based on data that are publicly available (or at least available to 

government agencies) would be useful. This is not a simple task and will require testing possibly 

several different approaches. Relating information from the Carload Waybill Sample (STB 2009) 

to train types is a promising possibility. Perhaps one of the greatest areas for which additional 
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research would be beneficial is more and better locomotive engine test data. Most of the available 

data are out-dated, performed using test procedures unlikely to achieve real world emission rates 

(Yanowitz and Cameron-Cole 2003) and have never been validated with any sort of in-use 

testing, as has been the case with on-road vehicles.  

 Additionally, methods to forecast freight traffic and future locomotive fleets could also 

be improved. This research developed a new framework for modeling locomotive emissions and 

energy use that takes traffic data (gross ton-miles) as the basic model input. We did not 

investigate methods to forecast the future train traffic which is the main factor in determining 

future emission levels. Generally, rail traffic should be expected to follow economic growth 

indicators such as gross domestic product, although this may not hold in the future. Changes in 

trade imbalances and energy sources (coal currently accounts for the majority of freight rail ton-

miles nationally) can have large effects that will not be explained by these economic indicators. 

Emissions will also depend on changing types of rail traffic, the general trend being towards more 

intermodal traffic which is more fuel intensive. In the same way that MPOs use travel demand 

models to generate input for vehicle emission models, such as the CARB's EMFAC and the 

EPA's MOBILE6 model, MPOs could develop goods movement demand models that provide 

forecasts of freight rail traffic which feed into our locomotive emission model. The introduction 

of new locomotive technologies, such as hybrid locomotives which reduce fuel consumption and 

new locomotives that meet stricter EPA emission standards will also influence emissions in the 

future.  

 Under this study, we did not collect information for Class II and III railroads. However, 

the methods presented here and the model developed can (and should) be used for these railroads 

when appropriate data are available. An estimate of annual traffic (or fuel consumption) by route 

and the proportion of locomotives which meet each EPA tier certification level are required for 

each Class II and III railroad. 

77



4 GOODS MOVEMENT DATA CONSTRAINTS ON PUBLIC POLICY AND 

PLANNING: A CASE STUDY OF CALIFORNIA’S TRADE CORRIDORS 

IMPROVEMENT FUND 

4.1 Introduction 
 In this study, we argue that the recent push to expand freight rail capacity as a way of 

mitigating increasing congestion and air pollutant emissions from a growing goods movement 

demand may have outpaced our ability to adequately evaluate the merits of such projects. 

Specifically, we examine the decision processes and data used to select projects for inclusion in 

California’s Trade Corridors Improvement Fund (TCIF) which allocated over $500 million in 

state funds to freight rail infrastructure projects in 2009. We conduct detailed evaluations of the 

11 TCIF funding proposals to expand freight rail capacity that were ultimately selected for 

funding. These projects were submitted by local, regional and state transportation planning 

agencies, and all claimed significant public benefits. Our results suggest that public agencies may 

not have sufficient data, models or expertise to ensure that efficient freight rail funding decisions 

are made.  

 The heightened public interest in goods movement is driven by expectations of growing 

demand. The Federal Highway Administration estimates that by 2035 the volume of goods 

moved through the U.S. transportation system will increase by 75% over 2007 levels (FHWA 

2008). This large increase in demand for goods movement has the potential to significantly 

increase road- and port congestion, as well as local air pollution and greenhouse gas emissions. 

Moving a greater share of goods by freight rail is seen as an important part of the solution by 

public policymakers and planners (AASHTO 2002; State of California 2005; GAO 2008), and 

there is evidence to suggest that this perspective is warranted. 

 Freight rail offers one of the most energy efficient and least polluting means for 

transporting goods. The Federal Rail Administration (FRA) compared the energy efficiency 

between trucking and rail on 23 different routes (FRA 2009) finding that rail was always the most 
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energy efficient mode. The comparison considered shipments of commodities which are 

commonly transported by either mode, between origins and destinations served by both and 

included the energy consumption of intermodal container handling equipment and drayage. Rail’s 

greater energy efficiency means less fuel consumption and less carbon dioxide (CO2) emissions 

when compared to trucking. These results are consistent with earlier studies (Abacus Technology 

Corporation 1991) as well aw with more recent comparisons using life cycle emissions (Facanha 

and Horvath 2007) and when looking at freight alternatives producing the lowest social costs 

(Forkenbrock 2001). 

 While the emissions advantages to freight rail are fairly clear, the ability of the U.S. 

freight rail system to actually move more goods is less obvious. A recent report from the 

Government Accountability Office (GAO 2008) expressed concern that growth in highway and 

rail capacity was lagging goods movement demand. The American Association of State Highway 

and Transportation Officials (AASHTO), a non-profit organization representing state highway 

and transportation departments, concluded that $23 to $83 billion in public financing would be 

required for freight rail to even maintain its current market share (AASHTO 2002). This range 

was largely consistent with a similar study conducted for the Association of American Railroads 

(AAR) at the request of the National Surface Transportation Policy and Revenue Study 

Commission36

 Concerns over freight rail capacity have also been expressed in the academic literature. In 

particular, a study by Gorman (2008) concluded that investing in freight rail rather than highways 

 which estimated a $39 billion shortfall in the rail revenue required to maintain 

reliable freight rail service (Cambridge Systematics 2007). The state of California also recently 

concluded that freight rail capacity was in short supply, a situation expected to worsen with 

increasing goods movement demand, and required an infusion of public funding for increasing 

capacity to mitigate congestion and worsening air quality (State of California 2005).   

36 The commission was created by congress as part of the Safe, Accountable, Flexible, Efficient 
Transportation Equity Act – A Legacy for Users (SAFETEA-LU).  
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could save the public 58% in infrastructure and 80% in external costs  per ton-mile. Similarly, 

Resor and Blaze (2004) argue that public investment is required to develop short-haul rail 

solutions to compete with trucks. The challenge for public planners is knowing when and where 

to provide support. In response to growing interest in freight rail as a solution for highway 

congestion, the Transportation Research Board (TRB) sponsored a study to provide guidance in 

selecting worthwhile projects (Bryan, Weisbrod et al. 2007).  

 Drawing on 9 case studies, Bryan, Weisbrod et al. (2007) describe how public agencies at 

all levels of government are turning to freight rail as a means of addressing highway congestion. 

Seven of the studies describe how public financing was used to expand railroad capacity by 

upgrading mainline tracks, removing rail-rail at grade crossings, improving access to the rail 

network and creating inland ports. The remaining 2 studies similarly describe plans to use public 

financing to expand freight rail capacity, but these plans had not yet received funding. The 

projects are a mix of large corridor improvement projects and more isolated infrastructure 

projects. Based on these efforts, direction is provided on how public agencies can select cost 

effective freight rail infrastructure projects that are the most likely to reduce highway congestion.  

 While Bryan, Weisbrod et al. (2007) provide comprehensive guidance for prioritizing and 

selecting freight rail infrastructure projects, they say little about how to contrast the efficiency of 

those projects when comparing modal alternatives. Expanding freight rail capacity is just one 

approach for shifting more goods to rail, particularly if the goal is reducing highway congestion 

and air pollutant emissions. Conceptually, adding additional freight rail capacity is treating a 

symptom rather than the problem. In a perfectly competitive goods movement market without 

externalities the railroads would be expected to provide an efficient amount of capacity and level 

of service. There would be little reason to suspect a shortage of rail capacity. However, several 

market failures exist in the goods movement sector and correcting these problems may be more 

advantageous from a social welfare perspective than simply increasing rail capacity using public 

financing.  
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 Despite the rush for public financing options, correcting market failures has been widely 

recognized as the preferred approach to reducing congestion and air pollutant emissions from 

goods movement. Correcting at least some of the externalities would involve ensuring that trucks 

pay the true costs of infrastructure provision and that increased goods movement efficiency is 

achieved through greater competition. What remains an open question, however, is the role of 

public financing in reducing the externalities.  

 It is generally argued that  the main role of government in goods movement is ensuring 

economic efficiency (TRB 2003). That is, that government involvement becomes justified where 

markets are not providing efficient outcomes because of monopolies and externalities. When 

considering public financing options (e.g., grants), proponents argue from several perspectives: 

that providing grants to pay for rail expansion may be less expensive than providing equivalent 

highway expansion; that the scale and complexity requires government management; that there 

are large positive externalities, that it may not be possible to internalize external costs and finally, 

that public passenger trains use the freight tracks too. Opponents argue that fixing the subsidy to 

trucks with a subsidy to rail leads to excess rail and highway capacity; that user fees and taxes can 

correct for many externalities; that providing grants to physically expand rail capacity does not 

provide incentives for expanding capacity through improved management and technology and 

finally, that government does not have the data or tools to determine those projects that would 

have been built without grants or that are the most cost effective.  

 Two earlier goods movement studies, one on finance (TRB 1996) and the other on 

federal intermodal policy options (TRB 1998), also argued that imposing user fees that account 

for the costs of using highways and externalities should be the primary method to ensure an 

efficient goods movement system. However, they argue that in some cases government assistance 

may be required, mainly  to organize complex projects, obtain rights of way or to provide loans 

for expensive capital projects, but grants are not automatically justified. In general, all funding 

provided by the government should be recovered by requiring private firms to pay back 
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government loans or by collecting user fees. Requiring cost recovery creates an incentive for the 

railroads to suggest truly worthwhile projects and helps prevent an oversupply of infrastructure.  

 Regulatory standards offer an additional approach for correcting market failures where 

user fees may not be practical or necessarily efficient (Parry, Walls et al. 2007). Requiring a 

vehicle operator to pay a tax for the marginal damage caused by emissions from their vehicle will 

not be efficient if the operator does not correctly perceive the net present value of an investment 

in cleaner technology. This has been the argument in favor of fuel economy standards for 

passenger vehicles.  In other situations it may be difficult to estimate the marginal cost of 

damages in order to determine appropriate user fees or taxes and relatively easier to adopt fuel 

and emission standards which guarantee some level of abatement.  

 Generally, any of these approaches, either funding infrastructure expansion, charging 

user fees and taxes to internalize external costs or adopting regulatory standards can lead to an 

efficient outcome. The preferred alternative should ideally be based on the approach that has the 

best chance for success.  The main question we ask here is do transportation planning agencies 

know enough about the optimal level of goods movement infrastructure, the costs of externalities 

produced by trucks and train or the acceptable level of externalities produced by trucks and trains 

to select the optimal alternative? The consequences of miscalculating the supply side of 

infrastructure, the setting of tax and fee levels or the determining of standards are all important 

considerations. For example, are the costs posed by the risk of over supplying infrastructure 

larger than setting a tax too low? The ability to provide infrastructure, charge taxes and fees or 

enforce standards are parallel considerations. 

 We hypothesize that public planning and transportation agencies currently know much 

more about the cost of externalities and acceptable levels of externalities than they do about the 

optimal level of goods movement infrastructure. We also observe that infrastructure projects are 

more or less permanent while in theory taxes, fees and regulations can be adjusted over time until 

the desired results are achieved. Accordingly, we suggest that funding freight rail infrastructure 
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projects may be relatively inefficient, potentially wasting limited public funds on projects which 

are unlikely to produce the expected public benefits. This is based partly on our experience 

working with the railroads to develop a new freight rail emission model (see chapter 3), where, 

we found that the railroads were extremely guarded about releasing any data about their traffic, 

which they considered confidential business information. Our difficulty in obtaining basic 

railroad operating data is not unique (Caretto 2004a; Billings, Chang et al. 2006). The lack of 

useful freight data and the difficulty in using what are available has also been noted by many state 

transportation agencies (TRB 2005). Weatherford, Willis et al. (2008) argue that more publicly 

available freight data are needed to support public policies, pointing out that many more data are 

available for highways than freight railroads. Bryan, Weisbrod et al. (2007) also describe the 

difficulty in obtaining railroad capacity data in their guidance for selecting beneficial freight rail 

projects.  

 Data availability and transparency may not be the only problem.  Several studies have 

questioned the ability of public planners and MPO’s to make informed goods movement 

decisions. This concern stems from a long history of planning almost exclusively for passenger 

travel (Weiner 1999; Woudsma 2001). Studies based on surveys of MPO’s (Blonn, Guo et al. 

2007; Schank, Hirschman et al. 2008) have found that most lack methods for evaluating goods 

movement projects and few rigorously consider air quality impacts. Other studies have also noted 

that public planners and MPOs have little goods movement expertise and may apply 

inappropriate project evaluation tools (TRB 2007; GAO 2008).  

 To test our hypothesis, this study examines the inputs/outputs and methods used to 

prioritize projects within California's TCIF program. The funding is expected to satisfy several 

different objectives, including, creating improvements in air quality and congestion relief – both 

key externalities. However, as we show, the calculations used to underpin project estimates of 

reductions in criteria air pollutants and carbon emissions and estimates of congestion relief vary 

widely from project to project, producing results that are at best questionable, and in some cases 
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simply wrong. Based on our review, we argue that public planners and transportation agencies 

currently lack the required information or expertise to justify broadly granting significant public 

funds to expand private rail infrastructure over alternative policy options.  

 In this first study to conduct an in-depth post-hoc analysis of California's public financing 

option for goods movement, we point to evidence that identifying apparent market failures and 

working to correct them directly appears to offer a relatively simple and more effective course of 

action. For example, we note that vehicle emission standards have been highly successful at 

reducing air pollutant emissions and that as more stringent regulations come into force, the 

criteria pollutant emission rates from trucks and trains are expected to harmonize. Numerous cost 

allocation studies have also provided data on the subsidy that heavy trucks receive on public 

highways. Increasing truck specific fees (e.g. registration fees) or tolls could easily remove or 

diminish the subsidy. Lastly, a carbon cap and trade system or fuel taxes are widely proposed as 

the most efficient methods to reduce carbon emissions (Ellerman 2000; Stavins 2003; Tietenberg 

2003).   

4.2 TCIF Case Study 
 The TCIF program was included as part of the Highway Safety, Traffic Reduction, Air 

Quality, and Port Security Bond Act of 2006 (Proposition 1B) approved by California voters in 

2006. The California Transportation Commission (CTC) was charged by Proposition 1B with the 

responsibility of programming the TCIF. The CTC adopted guidelines for project selection and 

solicited proposals from state, regional and local government agencies in the fall of 2007.  The 

CTC project selection guidelines included provisions 37

37 Available from the California Transportation Commission website at: 

 requiring that funding decisions "[place] 

emphasis on projects which increase corridor mobility while reducing diesel particulate and other 

emissions” (CTC TCIF Guidelines, p. 2). Specific project evaluation criteria included in the CTC 

guidelines weighed such freight system factors as throughput, velocity and reliability; 

http://www.catc.ca.gov/programs/TCIF/TCIF_Guidelines_112707.pdf 
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transportation system factors: safety, congestion reduction, bottleneck relief, multi-modal strategy 

and interregional benefits as well as; three community impact factors: air quality impacts, 

community impact mitigation and economic/job growth. Additionally, projects financing private 

infrastructure must “show that the share of public benefits is commensurate with the share of 

public funding” (CTC TCIF Guidelines, p. 4); specific methods to show attainment with this 

criteria were not provided. The TCIF evaluation criteria, project documentation requirements and 

variety of project proposals provide a unique opportunity to examine the underlying modeling 

methods used to justify a very important public policy decision on infrastructure expenditures. 

 The TCIF selection process ultimately awarded $680 million in public funding to 11 rail 

projects38

Table 4-1

. These projects directly benefit private railroads by either funding expansion of their 

existing infrastructure or by expanding publicly owned infrastructure over which they operate. 

The TCIF funding allocated to the projects represents 47% of the estimated total project costs; the 

remainder is derived from other public sources, such as local sale taxes and federal transportation 

funds, and from private investment from the respective ports, railroads and developers. Seven 

projects expand the capacity of mainlines owned or used by Class I railroads; two projects 

develop new inland ports in California’s Central Valley, both are designed to provide intermodal 

rail service to and from the Port of Oakland. One project expands the capacity of an existing rail 

yard, and the ports of Los Angeles and Long Beach and Oakland each requested funding for the 

construction of new port intermodal rail facilities. A brief description of each project is provided 

in . 

 

38 Excluding grade separation projects, 16 rail projects were submitted as part of the process. In total, the 
TCIF awarded $3 billion to 70 projects (30 were rail/highway grade separations, 3 involved non-rail port 
projects and the remainder were highway related) out of 84 submitted, covering 36% of the total costs. See 
http://www.catc.ca.gov/programs/tcif.htm for more information. 
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Table 4-1 TCIF rail project descriptions 

ID Name Description 
1 Martinez Subdivision Rail 

Improvements 
Expands the capacity of Union Pacific's Martinez Subdivision 
by building two additional mainline tracks extending 6.5 miles 
from the Port of Oakland. 

2 Outer Harbor Intermodal 
Terminals 

Expands the intermodal capacity of the Port of Oakland from 
1 million TEU to 3 million TEU by building two new rail 
yards at the port. 

3 Sacramento Intermodal 
Track Relocation 

Expands the capacity of Union Pacific's Martinez Subdivision 
in Sacramento by realigning a 3,300 foot section of mainline 
track; separating passenger loading tracks from the freight 
mainline and removing two sharp turns. The project also 
reduces locomotive idling and improves access to land that the 
city is interested in developing. 

4 Tehachapi Trade Corridor 
Rail Improvement 

Expands the capacity of Union Pacific's Mojave Subdivision 
in the Tehachapi Mountains by extending sidings and adding 
additional double track segments. 

5 LOSSAN N. Rail Corridor 
Improvements 

Expands the capacity of the publicly owned LOSSAN N. rail 
corridor from four to eight daily freight trains. BNSF 
maintains track rights and operates the freight trains. 

6 Ports Rail System (Tier 1) Expands the on-dock rail capacity of the Ports of Long Beach 
and Los Angeles by adding additional tracks into the ports and 
expanding on-dock rail yards. 

7 Colton Crossing Flyover Expands the capacity of the UP’s and BNSF's Los Angeles 
area systems by grade separating two intersecting mainlines. 
Currently, trains take turns crossing the intersection. The 
project also reduces delays at highway grade crossings. 

8 Southline Rail/San Ysidro 
Yard Improvements 

Expands the capacity of the publicly owned South Line Rail 
Corridor and San Ysidro Rail Yard. Freight service is 
contracted to the San Diego and Imperial Valley Railroad. 
Mainline capacity is increased from two to four daily freight 
trains by adding new train control technologies. The rail yard 
is expanded from 10,000 to 19,600 annual car loads by adding 
two additional storage tracks. 

9 San Joaquin Valley Short 
Haul Rail/Inland Port 

Provides funding for the San Joaquin Regional Rail 
Commission to acquire control over 65 miles of Union 
Pacific's Oakland Subdivision between the San Francisco Bay 
Area and the Central Valley and operate 2 daily intermodal 
trains. 

10 Shafter Intermodal Rail 
Facility 

Provides funding to build a new intermodal rail yard in the 
City of Shafter and connect it to BNSF's Bakersfield 
Subdivision. 

11 New Antelope Valley 
Siding 

Expands the capacity of the Los Angeles County Metropolitan 
Transportation Authority's single track Antelope Valley Line 
by building a new 7,000 ft siding. Union Pacific currently 
operates 5 daily freight trains over the line, the new siding will 
reduce idling and allow Union Pacific to operate additional 
freight trains.  
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 Each of these TCIF projects is expected to provide several public benefits (Table 4-2), 

including reductions in truck volumes and corresponding air pollutant emissions. Economic and 

job growth benefits are also expected since shipment by rail is assumed to be less expensive than 

trucking and temporary construction jobs will be created to complete the projects. The 

magnitudes of the benefits that were estimated for each project were highly dependent on 

estimates of reductions in truck travel. The only exception to this is the portion of benefits 

derived from reduced freight rail congestion, such as the benefits from project 1 (locomotive 

idling reduction), which depend only on the ability of the TCIF projects to expand freight rail 

capacity.  

Table 4-2 Estimates of truck volume and air pollutant emission reductions from TCIF rail 
project applications and supporting material 

 
Truck Volume Reductions  Net Emission Reductions 

 
Truck Travel Truck Trips  NOX PM10 CO2 

Project ID million VMT/yr million trips/yr  tons/yr tons/yr tons/yr 
1 0a 0  9.8 0.2 1,285 
2 123 1.44  218 16.4 334,158 
3 166b 0.67  5,343 220c -d 
4 132 1.12  116 3.4 170,000 
5 6 0.05  47.5 3.65 18 
6 24 9.90  2,061 33.5 - 
7 365 4.30  - - - 
8 4 0.03  - - 5,789e 
9 16 0.88  33.7 3.91 5,994 
10 69f 0.22  1,684 104 172,801 
11 23 0.33  43.7 1.8 18,898 

a Project reduces locomotive idling, no reduction in truck travel expected. 
b Inferred by authors from emissions calculation data provided in project documentation. 
c Converted from PM2.5 estimate to PM10 by the authors: 𝑃𝑀10 = 𝑃𝑀2.5/0.92 (EPA 2003) 
d Information not available from TCIF project documentation.  
e CO2 estimated by authors from an estimate of fuel consumption reduction provided in the TCIF 
application materials using a conversion factor of  22.2 lbs of CO2 per gallon of diesel fuel (EPA 
2005). 
f VMT calculated by the authors from the reported number of daily truck trips (600 trips) and the 
reported truck trip distance from Oakland to Shafter (315 miles). 
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 Together, the 11 TCIF projects in Table 4-2 claim to reduce statewide truck travel by 

1,011 million VMT per year, NOX emissions by 9,553 million tons per year and PM10 emissions 

by 371 tons per year.  Most of these benefits are estimated for the year 2030; exceptions are 

projects 3 and 4 which do not provide a time frame for reductions and project 6 which made 

estimates for 2008. These are relatively large reductions considering the small number of 

projects. To put these reductions in perspective we compared them to the California Air Resource 

Board’s estimated statewide heavy-heavy duty truck VMT and heavy-heavy duty truck and train 

emission forecasts for 2020, the most distant year for which forecasts are available39

4.2.1 Framework for quantifying project benefits 

.  The TCIF 

project truck VMT reductions represent 5.4% of the statewide 2020 truck VMT forecast and the 

TCIF project NOX and PM10 reductions are 5.8% and 5.3% of the 2020 combined truck and rail 

NOX and PM10 emission forecasts, respectively. The relative reductions would be smaller by 

2030 since goods movement is expected to continue to increase.  

 As part of the TCIF project proposal, project sponsors were asked to estimate the 

expected truck traffic and air pollutant emissions reductions. No instructions were provided on 

the methods to be used in these calculations; however, the methods used by the different project 

sponsors were similar. Each approach compares a do-nothing baseline scenario to a single TCIF 

project alternative that invariably results in the shifting of truck traffic to freight rail. The 

approaches diverge for different assumptions about the baseline scenario: either the existing rail 

facilities are at capacity (projects 1-8), or there is a latent demand (existing, but unmet) for freight 

rail (projects 9-11). Each approach is described in greater detail below. 

4.2.1.1 Expanding Capacity for Growth 
 For projects 1-8, the baseline scenario assumes that all forecasted rail demand above 

current levels will move by truck (Figure 4-1). That is, there is no additional rail capacity 

39 Forecasts are available at the California Air Resource Board’s website: 
http://www.arb.ca.gov/ei/emissiondata.htm 
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currently available to accommodate future growth. For the TCIF project alternative, it is assumed 

that all forecasted rail demand will continue to move by rail because the respective proposed 

alternatives increase rail capacity. From this standpoint, these projects do not promote a mode 

shift to rail, but rather prevent a shift to trucking. Reductions in truck VMT are thus calculated as 

the avoided increase in trucking that was posited to result if rail capacity was not expanded. 

Emission reductions are calculated as the quantity of emissions that would occur from future rail 

traffic, above current levels, moving by truck minus the amount of emissions that occur from 

moving this traffic by rail. In essence, this represents an all or nothing scenario: all forecasted rail 

growth moves to truck if capacity is not expanded and all marginal emissions are counted as a 

social benefit. 

 

Figure 4-1 Expanding rail capacity for growth: truck and rail demand scenarios (projects 1-
8) 
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4.2.1.2 Expanding Capacity for Latent Demand 
 For projects 9-11, the baseline scenario assumes that there is latent demand for rail that 

currently moves by truck (Figure 4-2).  The TCIF project alternative assumes that the latent rail 

demand is met by expanding the capacity of existing infrastructure or by adding new rail 

infrastructure; this results in a mode shift from truck to rail. Reductions in truck VMT are 

calculated as the amount of truck traffic shifted to rail based on estimates of the latent demand. 

Emission reductions are calculated by estimating emissions that would occur if the diverted truck 

traffic continued to move by truck minus the emissions that occur when that traffic moves by rail. 

 

Figure 4-2 Expanding rail capacity for latent demand: truck and rail demand scenarios 
(projects 9-11) 

 The baseline and project scenarios and their assumptions reveal those factors that affect 

the estimates of public benefits (i.e., reductions in truck volume and air pollutant emissions). For 

the group of projects in which rail capacity is expanded for growth the benefit estimates depend 
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on rail demand forecasts and rail capacity estimates. If rail demand forecasts are over-estimated, 

the project benefits will be as well. Similarly, if rail capacity is under estimated, the project 

benefits will be over-estimated. For the second group of projects (5, 6, and 11), the benefit 

estimates depend on the existence and size of a latent demand for rail capacity. If all current 

shippers are satisfied with their modal choices (i.e., any shipper that wants to send something by 

rail can do so within a reasonable timeframe and for a fair rate), then adding rail capacity will not 

shift truck traffic to rail. No benefits will occur. If the amount of latent demand is smaller than 

estimated, the project benefits will be over-estimated.  

 Thus, there are three key working variables critical to estimating the public benefits 

produced by each investment: rail demand, rail capacity and latent rail demand. These key 

variables are the basic inputs to the various models used to estimate the reductions in truck traffic 

and air pollutant emissions expected from each TCIF project.  

4.3 Case Study Findings 
 The public benefits of reduced truck traffic and air pollutant emissions expected under 

the TCIF project alternative for each proposal depends on how much larger current and future rail 

demand (or latent demand) is than current and future rail capacity. We review how rail demand 

and capacity are estimated based on the case study. We then show how these estimates were used 

to calculate truck traffic and emission reductions and examine the underlying consistency of the 

estimates.  

4.3.1 Rail Demand 
 Rail demand forecasts were used to support projects 1-8 and are based on estimates of 

port growth, cross-border trade with Mexico and regional economic growth (Table 4-3). The 

forecasts are generally made by either simple projections of historical growth trends or by more 

detailed economic analysis. A few proposals provided growth estimates without identifying what 

demand (e.g., sector) is expected to drive growth.  
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4-3 Estimated growth in rail demand and underlying growth assumptions 

Project 
ID Rail Demand Growth Assumptions 
1 22 train trips per day by 

2020 
100% to 140% increase in Oakland port activity, increase 
in intermodal cargo share from 31% to 50% 

2 2 million TEU by 2025 100% to 140% increase in Oakland port activity, increase 
in intermodal cargo share from 31% to 50% 

3 40 million gross tons 
by 2020 

Growth in Oakland port activity 

4 n/a n/a 
5 4 train trips per day by 

2030 
2% regional economic growth, 3% increase in trade with 
Mexico, doubling of San Diego port activity 

6 9 million TEU by 2030 170% increase in LALB port activity, rail share of port 
goods movement remains at 52% 

7 75 trains per day by 
2033 

2% annual growth in rail demand (consultant's 
assumption) 

8 2 train trips per day by 
2030 

2% regional economic growth, 3% increase in trade with 
Mexico, doubling of San Diego port activity 

4.3.1.1 Projects Using Port Container Throughput Forecasts 

 Rail demand forecasts for projects 1 through 3 depend on a container throughput forecast 

for the Port of Oakland and the rail demand forecast for project 6 depends on a container 

throughput forecast for the Port of LALB. In each case, rail demand is derived from the container 

throughput forecasts by estimating what share moves by rail versus truck. 

 Several different methods are available to forecast container throughput. In general, 

container throughput forecasts may be either constrained or unconstrained by port capacity. For 

example, forecasts 1, 3 and 4 for the ports of Los Angeles and Long Beach (LALB) (Figure 4-3) 

and both forecasts for the port of Oakland (Figure 4-4) are unconstrained by port capacity. 

Alternatively, forecast 2 for the port of LALB (Figure 4-3) assumes that the ports have a physical 

capacity limit. As throughput nears the port’s capacity, growth in demand slows as a result of 

congestion. The general forecasting approach applied to each port’s forecast also varies. All of 

the forecasts for the port of LALB are based on detailed assumptions about national and regional 

economic growth and international trade. In comparison, the Port of Oakland’s forecast was 
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derived from an exponential curve fit to historical annual throughput data, and an extrapolation of 

that curve into the future. 

 

Figure 4-3 Comparison of historical and forecasted container throughput at the ports of Los 
Angeles and Long Beach 
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Figure 4-4 Comparison of historical and forecasted container throughput at the port of 
Oakland 

 In assessing the port container forecasts that were included in the TCIF project proposals, 

the exponential curve fit for the Port of Oakland and the 2006 Parsons forecast for the ports of 

LALB (Figure 4-3 and Figure 4-4), it’s clear that the forecasts are very uncertain and that they 

potentially over estimate demand. As might be expected given the uncertainty associated in 

forecasting, none of the original throughput forecasts predicted the economic slowdown that 

began in 2007 and resulted in a large drop in container throughput. Tioga subsequently revised 

their original throughput forecast for the ports of LALB to reflect the economic slowdown; the 

revised forecast predicts 47% lower throughput in 2030. The constrained throughput forecast for 

the ports of LALB made by Parsons, which is used in the port's TCIF proposal, is 35% is lower 

than Tioga's original forecast and 23% larger than Tioga's revised forecast. The Port of Oakland’s 

forecast in Figure 4-4, which is referenced by projects 1-3, assumes an exponential trend in port 
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growth; however, a linear trend appears to offer equally as good a fit40

 The size of the differences between the various forecasts is large. The difference between 

Tioga's original and revised forecast in 2030 for the ports of LALB, 30.5 million TEU, is almost 

3 times the level of current throughput at the ports. The difference in the Port of Oakland's 2030 

forecast and a linear growth trend, 2.8 million TEU, is more than 3 times the port's current 

throughput. Surprisingly, only a single container throughput estimate is carried on to estimate rail 

demand.  

. By 2030 the linear trend 

forecasts 43% less throughput than the port's exponential trend.   

 Freight rail demand is estimated as a share of the forecasted port container throughput at 

the ports of LALB and Oakland. The ports of LALB estimate this share will remain at the current 

level of 52%. The underlying assumption, not stated in the proposal, is that regional (served by 

truck) and national (served by rail) markets will grow at the same rate and the distance at which 

intermodal rail becomes competitive with trucking remains constant. The port of Oakland’s 

current freight rail share is about 31% and the port expects that this may increase to 50%. No 

evidence is provided to support the expectation of a growing rail share, even though the 50% rail 

share is used to estimate the benefits provided by the port’s TCIF proposal to build a new 

intermodal terminal (project 2).  

4.3.1.2 Projects Using Other Sources to Forecast Rail Demand 
 A large portion of California’s rail demand is related to intermodal container traffic 

generated by the ports of LALB and Oakland but other factors also drive rail demand. Two rail 

capacity expansion projects in San Diego (projects 5 and 8) are proposed to accommodate 

growing rail traffic from increasing auto imports, trade with Mexico and regional economic 

growth. Rail traffic generated from the Port of San Diego is expected to double in throughput 

40 The Port of Oakland fit an exponential curve to historical data from 1985 – 2006. The linear fit, by the 
authors, is also fit to the 1985 – 2006 data.   
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from 10,000 car loads (about 150,000 vehicles) during 2006 to 20,000 car loads (or 300,000 

vehicles) by 2030 due to the proposed expansion of the port's of auto storage facility which is also 

seeking TCIF funding. However, it is unclear if the auto storage facility will be built since it was 

denied TCIF funding.41 It is also unclear how the auto facility expansion relates to the expected 

large increase in rail demand. The auto facility expansion would add capacity for 131,400 

additional vehicles per year of which only half are typically moved by rail.42 This suggests that 

the rail share is expected to increase and that the expanded auto facility will be 100% utilized by 

2030. Growth in cross boarder rail traffic with Mexico is expected to increase by 3% while 

regional economic growth is expected to increase regional rail traffic by 2% annually. No 

evidence or references were provided to support these growth estimates; however, the 3% growth 

in cross boarder traffic appears to be based on the assumed rate of U.S. economic growth.43

 Acknowledging the general uncertainty in forecasting, most of the TCIF rail demand 

forecasts rely on estimating demand specific to certain generators such as ports or are pinned to 

regional, state or national economic growth. However, several forecasts were more opaque and 

often lacked supporting data or references. For example, the Colton Crossing Flyover project 

(project 7) assumes a 2% growth rate in freight rail traffic

 The 

combined growth in rail demand from these three sources is forecasted to double rail throughput 

by 2030.   

44

41 See list from the California Transportation Commission TCIF website: 

, but no explanation, supporting data 

or reference is provided to support the estimate. The 2% annual growth rate assumed by the 

Colton Crossing Flyover project is much lower than the growth rates projected for the ports of 

LALB (the source of most of the regions freight rail demand), which ranges from 3.7% to 6.3% 

depending on the forecast.  Similarly, the Tehachapi Trade Corridor project (project 4) provides 

http://www.catc.ca.gov/programs/TCIF/Projects_NOT_included_in_TCIF_Program041008.pdf 
42 Port of San Diego National City Marine Terminal Improvements TCIF proposal, submitted to the 
California Transportation Commission on January 14, 2008.  
43 Multi-County Goods Movement Action Plan: Technical Memorandum 4a – Freight Demand, p1-7 
44 Assumption reported in the public benefit analysis completed by HDR Inc. for the project. 
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no estimates of increased rail traffic, though it does estimate the amount of truck traffic and 

emissions reduced45

4.3.2 Rail Capacity 

. 

 In general, each TCIF proposal assumed that a shortage of rail capacity combined with 

increasing goods movement demand was expected to increase the share of goods moving by truck 

in the future. For example, project 1’s proposal states that the Martinez subdivision is “currently 

at or near capacity” (TCIF funding nomination for the Martinez Subdivision and Rail 

Improvements, p. 5), project 6’s proposal states that the port of LALB’s rail capacity is 

“becoming constrained” (TCIF funding nomination for the Ports Rail System (Tier I), p. 2) and 

project 7’s proposal states that the Colton Crossing is a “major choke point” (TCIF funding 

nomination for the Colton Crossing  Rail Improvement Project, p. 3) . Because no standard 

definition of rail capacity exists (Kozan and Burdett 2005; Abril, Barber et al. 2008; Weatherford, 

Willis et al. 2008), direct comparisons of the capacities that are referred to in the various 

proposals are problematic. 

 For example, while every TCIF proposal cited a rail capacity constraint, only five 

proposals actually quantified rail capacity as a maximum volume of goods movement that can be 

handled by a specific rail segment (Table 4-4). Proposals for projects 5 and 8 state that the current 

capacity is limited to 4 and 2 trains per day, respectively, due to constraints posed by the current 

signaling system, lack of double track and conflicts with passenger trains which have priority. 

Under the TCIF project alternative, the capacity of the rail facilities is expected to double. Under 

the TCIF alternative for project 4, modeling by the BNSF railroad estimates that capacity will be 

increased by 70%. The capacity expansions allows for 15 more trains per day which are up to 

2,000 feet longer than the current trains. The proposal for project 3 states that the current facility 

has a capacity of 40 million gross tons per year of freight rail traffic. The capacity could be 

45 Growth forecasts may be provided in the supporting HDR report; however, we were unable to acquire a 
copy of the report from Caltrans despite making numerous requests.  
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increased by 20 million gross tons per year if conflicts with passenger trains are eliminated with 

additional tracks and a 90 degree corner removed.  The proposal for project 2 estimates the Port 

of Oakland’s intermodal container throughput at 1,000,000 TEU per year. The proposed 

construction of a new intermodal facility would increase throughput capacity by 2,000,000 TEU. 

Finally, the proposal for project 6 states that under the TCIF project alternative the port of 

LALB’s rail capacity would be increased by 7 million TEU; however no estimate of the port’s 

current capacity was provided.  

4-4 Estimated TCIF project freight rail capacity improvements and modeling assumptions 

Project 
ID Rail Capacity Improvement Assumptions  
1 reduce delay by 1 hr per train per 

day 
none provided 

2 increase port intermodal container 
throughput by 2 million TEU 

based on designed capacity of new 
intermodal facility 

3 20 million gross tons annual freight 
rail traffic 

increase maximum speed from 20 mph to 30 
mph, avoid stopping for passenger trains 

4 70% increase in capacity based on BNSF modeling 
5 4 additional trains per day none provided 
6 7 million TEU none provided 
7 52% reduction in delay based on BNSF modeling 
8 2 additional trains per day none provided 
11 reduce delay by 15 minutes per train none provided 

 

 The remaining proposals do not quantify capacity, but rather estimate various measures 

of service quality. One method uses a level of service (LOS) approach (Cambridge Systematics 

2007) analogous to that used in the highway capacity manual (TRB 2000). Rather than measuring 

the actual capacity remaining the quality of the service is instead rated. LOS is divided into A 

through F (best to worst) based on a route's volume to capacity ratio. Volume to capacity ratios 

below 0.8 indicate the route is operating below capacity and generally has stable flows. As ratios 

approach one, traffic conditions become unstable and eventually break down at ratios at or above 
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1. Estimating LOS also requires estimating capacity. The Cambridge Systematics study used 

detailed data provided by the railroads to create a table that provides estimates of the maximum 

practical number of trains per day a rail corridor can accommodate as a function of the number of 

tracks, type of traffic control system and whether only a single type or multiple types of trains use 

the corridor. The study notes that the data used to create the table is not available and must be 

requested directly from the railroads, who consider it confidential business information. It would 

be difficult for public agencies to regularly replicate these methods.  

 A poor level of service (LOS E) is cited as a need for project 4 which adds numerous 

sidings and double track segments to a busy mountain rail pass. The LOS rating applied to the 

track segment was taken from a national rail capacity study (Cambridge Systematics 2007). 

Proposals for projects 1, 7 and 11 estimate reductions in delay, but do not quantify LOS or 

capacity. For example, under the TCIF project alternative, proposal 1 will reduce delay by 1 hour 

per train, proposal 7 will reduce delay hours by 52% and proposal 11 will reduce wait times at 

sidings by 15 minutes per train. Projects 9 and 10 propose new rail services and do not anticipate 

any capacity issues.  

 Several issues regarding the capacity and service quality estimates are apparent. First is 

the lack of a general definition of capacity. Rail capacity is commonly defined in terms of the 

number of trains per day or amount of delay for a track segment (Kozan and Burdett 2005), 

although there is no universally accepted method for determining the upper bound for these 

values (Abril, Barber et al. 2008). While several TCIF project proposals did estimate capacity in 

terms of trains per day or delay, other TCIF projects used gross tons, TEUs and LOS. By mixing 

different metrics of rail capacity, especially with those that are best described as service quality 

measures, it becomes difficult, if not impossible, to determine if and to what extent rail capacity 

fails to meet rail demand. Rail demand was generally expressed in the more or less standard units 

of TEUs or carloads, while capacity was expressed in a range of (generally non-comparable) 
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terms including number of trains, gross tons or service quality measures such as LOS and delay. 

Additionally, while a rail capacity constraint combined with increasing goods movement demand 

would result in either more goods moving by truck or not moving at all, this is not necessarily 

true for a reduction in service quality.   

 The LOS or amount of delay will increase as traffic volumes rise, but according to 

standard traffic theory, flow rate will also continue to rise until capacity has been reached. For 

example, although LOS C indicates a greater flow rate than LOS A, it is not until LOS F that 

capacity is reached. A lower quality of rail service should be expected to shift some goods 

movement to trucking, but the magnitude of the shift depends on the attributes of the shipments 

and each shippers preferences. A number of previous studies have explored shipper mode choice 

using stated preference methods (McGinnis 1989; Abdelwahab 1998; Oum, II et al. 2002; 

Norojono and Young 2003; Danielis, Marcucci et al. 2005; Witlox and Vandaele 2005; Fowkes 

2007) and cost minimization models (Beuthe, Jourquin et al. 2001; Ham, Kim et al. 2005; 

Hancock and Xu 2005). The mode choice studies generally find that speed and reliability are two 

of the most important factors while safety and cost are relatively less important. The specific type 

of commodity and geographic location also play an important role. The proposals which rely on 

advocating for the project using increase service quality did not conduct any mode choice 

modeling or reference the large body of literature on this topic to support claims that a poor 

quality of service would divert all future rail demand to trucking.  

 The TCIF proposals lacked sufficient documentation to support capacity and service 

quality estimates. Proposals for projects 2-5 and 8 quantified capacity (as the number of trains per 

day, gross tons per year and TEU per year), but provided little to no detail on how capacity was 

estimated. In one case, project 4, the capacity estimates were provided directly by the railroad, 

but lacked any detailed calculations. Railroad capacity, like highway capacity, is a function of 

many factors including the size of the infrastructure (road or number of tracks), traffic signaling 
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system, mix of vehicle speeds, hills and curves and speeds limits. In some sense, railroad capacity 

is more complex than highway capacity because it also depends on the location and number of 

sidings and crossovers which allow traffic to pass each other on the fixed guide-way, the 

efficiency of each railroad’s dispatching and management and the availability of enough 

locomotive power to move trains at an adequate speed (Kozan and Burdett 2005; Abril, Barber et 

al. 2008; Weatherford, Willis et al. 2008; Dingler, Lai et al. 2009; Lai and Barkan 2009).  Thus, 

the estimation of railroad capacity is not trivial and is in fact considered a very complex problem 

(Kozan and Burdett 2005; Abril, Barber et al. 2008; Weatherford, Willis et al. 2008). Similarly, 

proposals that quantified improvements in service quality were not supported with a description 

of calculation methods or data. Given the complexity of estimating railroad capacity and the 

general lack of even basic railroad operating data (Weatherford, Willis et al. 2008), combined 

with the seemingly ad-hoc approach applied by each TCIF project proposal, the estimates of rail 

capacity are doubtful and could easily lead to funding unnecessary rail capacity expansions 

projects. While we argue that the TCIF proposals lacked convincing analysis of rail capacity, the 

main problem is not necessarily a lack of good judgment but rather the inability of public 

planners to access better data and modeling tools. Typically, the data and models used to estimate 

a railroad's capacity are considered confidential business data.  

 As discussed previously and shown in Figure 4-1, rail capacity is also assumed to remain 

constant throughout the TCIF project analysis period (generally out to the year 2030). That is, 

under a no-build scenario rail capacity will remain at today’s level indefinitely. While simplifying 

the analysis, assuming that no new rail capacity will be built over the next 20 years is a very weak 

if not completely incorrect assumption.  The railroads have continuously upgraded their networks 

to current levels and it is unlikely they will simply stop investing in this development or in 

maintaining their networks. A recent study commissioned by the American Association of 

Railroads on railroad capacity and investment needs indicates that U.S. Class I railroads expect to 
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generate $96 billion in revenue to invest in an estimated $135 billion in capital improvements to 

maintain and improve LOS by 2035 (Cambridge Systematics 2007). One important note is that 

physically expanding rail infrastructure is not the only way to expand capacity. Improvements in 

train control and network management driven by advancements in operations research and 

communications technology can optimize trains to operate more efficiently over the network 

(Assad 1980; Petersen and Taylor 1982; Kraay, Harker et al. 1991) and potentially provide a 

more cost effective alternative to infrastructure expansion (McClellan 2006; Abril, Barber et al. 

2008). Increases in capacity due to advances in technology should be expected to continue. 

Positive Train Control (PTC) is one such technology that is expected to increase rail capacity 

over the next 30 years (Weatherford, Willis et al. 2008). 

 In short, missing methods and details on capacity and level of service calculations raise 

the question as to why the railroads would allow demand to exceed capacity where the railroads 

own the infrastructure or why the railroads are not willing to invest in expansion of public 

infrastructure to meet their business needs. Railroad revenue does not appear to be a limiting 

factor. For example, the Union Pacific railroad elected to move forward with a project to increase 

tunnel clearances allowing double stacked intermodal trains to travel over a shorter route46

46 See Union Pacific’s press release: 

 even 

though TCIF funding was denied. As mentioned above, the railroad industry is expecting to spend 

$96 billion on infrastructure improvements over the next 20 years. A report by the Congressional 

Budget Office (CBO 2006) on freight rail capacity issues also finds that U.S. railroads appear to 

be earning adequate returns on capital investments, though the health of the industry could be 

further improved though regulatory reform. As discussed in the introduction, there are numerous 

reasons why the railroads may not invest in the socially optimal level of rail capacity such as 

unfair subsidies, externalities and market power. However, none of these market failures were 

http://www.uprr.com/newsinfo/releases/service/2009/1123_donnerpass.shtml 
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identified by project proposals. If no serious market failures exist, there would be little reason to 

believe that a shortage of rail capacity exists now or will in the future.  

4.3.3 Latent Demand 
 Three TCIF proposals argue that the current demand for freight rail is not being met. In 

other words, there is a latent demand. Increasing port activity is assumed to further increase the 

latent demand. Two of the proposals are for new inland ports where currently no rail service 

exists (projects 9 and 10) and the remaining proposal is to expand the capacity of an existing rail 

corridor by extending a siding (project 11). These projects propose to divert a portion of current 

truck traffic to freight rail.  

 The San Joaquin Valley short haul rail proposal (project 9) estimates that there is 

sufficient demand to start new rail service with one or two trains per day between the Port of 

Oakland and the inland port at Crow's Landing. The demand projections are based on a market 

study that considered the amount of containers being shipped between the Port of Oakland and 

the Central valley and a survey of 60 large shippers asking about their willingness to use the rail 

service if it offered cost savings. The- survey of shippers found some interest in the proposed rail 

service provided it could offer service similar to current truck options. However, one of Crow's 

Landing's consultants47

47 Global Insight reviewed the Crow’s Landing short haul rail market study. The report is available at the 
Crows Landing website: 

 cautioned that the survey results are not conclusive. While the survey 

indicates interest in having the rail option available, this does not necessarily signal a 

commitment to use it. The survey along with a cost model developed by the project developer and 

updated by Global Insight indicated that rail rates would have to be subsidized to attract shippers. 

It is unclear how long and how large of a subsidy would be required. Global Insight’s cost model 

indicates subsidies ranging from a few hundred thousand dollars per year to over $2 million per 

year for the first 10 years. A previous study of the short haul rail market potential for the Central 

Valley, also referenced in the proposal, found that subsidies of several million dollars a year 

http://www.crowsbizpark.biz/Short%20Haul%20Rail%20and%20Analysis.pdf 
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would be required indefinitely (Tioga 2003). The proposal calls for initial service starting with 1 

train per day increasing to 6 trains per day by 2020.  

 The Shafter Intermodal proposal (project 6) appears to simply assume that due to 

highway and port congestion, particularly at the ports of LALB, and forecasts of increasing trade, 

there will be demand for its short haul rail service. The proposal involves diverting containership 

traffic from the port of LALB to the Port of Oakland, then moving the containers 315 miles from 

Oakland to Shafter using a new short haul rail service. Once in Shafter, the containers will be 

placed back on trucks and shipped 93 miles to Los Angeles (Figure 4-5). The proposal also notes 

that a significant volume of traffic from the Port of Oakland currently passes through the valley 

by truck for destinations in Los Angeles. Only a cursory market analysis appears to have been 

conducted. No cost estimates have been made, nor have shipper preferences been surveyed. 

Additionally, a report that describes the market potential of the proposal notes that operating 

subsidies of an unspecified amount will be required initially until a sufficient market is developed 

based on analysis completed for similar proposals (LECG 2004). The proposal calls for diverting 

600 truck trips per day to 2 train trips; there are no estimates of growth potential.  
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Figure 4-5 Schematic of Shafter short haul rail proposal 

 Finally, project 11 proposes expanding the capacity of an existing and currently in-use 

rail corridor to accommodate an existing demand for 5 more freight trains per day. Capacity is 

expanded by extending a siding to allow passenger trains which have priority to pass slower 

moving freight trains.  No details are provided about how the latent freight rail demand was 

estimated. 

 It is difficult to determine the actual modal diversion that could be expected from these 

projects. For the two projects that propose to shift truck traffic to rail by starting new short haul 

rail services, a convincing market analysis that identifies shipper preferences and then models the 

by rail 

by truck 

diverted ship traffic 
Ports of LALB 

Shafter 

Port of Oakland 
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mode choice decision is lacking. A rigorous analysis is especially important given the expected 

need for operating subsidies on top of the TCIF infrastructure subsidies which challenges the 

claim of unmet demand. Absolutely no information was provided about the estimated additional 

demand of 5 trains per day in the proposal for project 11. Similar to the other TCIF proposals, 

market failures that would explain why private firms or railroads are not willing to expand 

capacity or offer similar services to those proposed are not identified. Identifying the existence of 

any market failures would strengthen the case for subsidies.   

4.3.4 Estimating Public Benefits 
 As we noted earlier, two of the main public benefits expected by the project sponsors 

from these TCIF projects are reductions in highway congestion and improvements in air quality. 

Reductions in highway congestion were not directly estimated by the TCIF proposals, rather 

reductions in truck trips and VMT resulting from a mode shift to rail were considered. Air quality 

improvements were generally quantified as the difference in emissions of air pollutants between 

the TCIF project alternative and the no-build scenario. Under the no-build scenario all emissions 

were produced by trucks. Under the TCIF project alternative emission reductions were calculated 

as the difference between the no-build truck emissions and the emissions produced by additional 

train trips.  

4.3.4.1 Highway Congestion Relief 
 Diverting truck trips to rail is expected to reduce the number of truck trips and truck 

VMT, providing some highway congestion relief. The TCIF proposals did not calculate the 

magnitude of congestion relief, for example improvements in LOS or reduced delay, even though 

these are the standard metrics by which the benefits of highway projects are typically evaluated 

(TRB 2000). Truck trip reductions reported by the proposal were derived from the previously 

discussed demand forecasts. All future rail demand was assumed to travel by truck under the no-

build scenario for all proposals. Under the TCIF project alternative, the reduction in truck trips 

was estimated by converting the forecasted rail demand into truck trips using various conversion 
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factors. There is no standard method for making these conversions and as a result each proposal 

appears to have taken a different approach (a few proposals did not discuss how these conversion 

were made) (Table 4-5).  

4-5 Estimated TCIF project truck trip reductions and truck to rail conversion assumptions  

Project ID Truck trip reduction Truck to rail conversion assumptions 
  million trips/yr   

1 0 
increasing congestion does not result in mode shift to 
trucks 

2 1.44 520 containers are moved by either 750 trucks or 1 train 
3 0.67 15 gross tons freight rail per TEU, 2 TEU per truck trip 
4 1.12 none provided 
5 0.05 none provided  
6 9.9 none provided  
7 4.3 none provided  

8 0.03 
3.3 truck trips per mixed carload, 2 truck trips per 
intermodal carload, no information on carloads per train 

9 0.88 
115 containers per train trip, no information on truck 
trips per container 

10 0.22 300 trucks per train trip 
11 0.33 2 TEU per truck trip, no information on TEU per train 

 For example, the proposal for project 2 converted the Port of Oakland’s container 

throughput forecast of 2 million containers per year to 2.9 million truck trips by assuming 1 train 

carries 520 containers and 750 trucks carry the containers moved by 1 train. The ratio of truck 

trips to containers is greater than one to account for extra trips required to reposition truck trailer 

chassis and complete empty back hauls. These conversion factors were obtained from a report 

detailing the design of the new intermodal terminal (Parsons/JWD 2007); however, that report 

does not discuss how the conversions were estimated. The same conversion factors were also 

used in a study for the ports of LALB (PARSONS 2006), suggesting that they are not specific to 

any particular project. The proposal for project 3 converts a freight rail demand forecast of 

20,000,000 additional gross tons per year to 1,333,000TEU, then assuming 2TEU per truck, 

666,555 truck trips are estimated. No data or references are provided to support these 
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conversions. The proposal for project 8 converts the expected demand for 2 additional trains per 

day to rail carloads and then converts the carloads to truck trips. The conversion from rail 

carloads to trucks is based on the ratio of the average net weight of cargo carried by one truck to 

one rail car. Based on data obtained from a study of rail transportation in the state of 

Washington48

 The proposals for projects 9 and 10, which add new infrastructure to meet a latent 

demand, estimated the number of truck trips that could be shifted to rail based on market studies 

as previously discussed. Proposals 9 and 10 estimate that 2,400 and 600 truck trips per day could 

be shifted to rail respectively. Lastly, the proposals for projects 4 and 7 do not describe how 

reductions in truck trips were calculated; noting only that estimates were made by a consultant.  

 and the rail way bill sample, a ratio of 3.3 truck trips per rail carload was found; for 

intermodal containers a ratio of 2 truck trips per carload was assumed. No information is provided 

about how many rail cars make up the 2 additional trains. The proposal for project 11 converts a 

forecast of 5 additional intermodal trains per day to truck trips by assuming 2TEU per truck; 

however, the proposal does not state how many TEU the 5 additional trains are expected to carry.  

 The reduction in truck VMT is estimated by multiplying the average truck trip distance 

by the number of truck trips shifted to rail. For projects 2, 5, 6, 8, and 11, the truck trip distance 

was estimated based on the shortest truck route between the origin and destinations (ports, border 

crossings and intermodal facilities). The method used for project 4 was more detailed. Truck 

VMT was estimated by running a truck travel demand model with and without the diverted truck 

trips. The method used for project 10 was the most simple, assuming that truck and train distances 

were equivalent. It is unclear how the distances were estimated.  Finally, no information was 

available about how VMT was estimated for projects 3, 4 and 7.  

48 No reference was provided 
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 The various methods used by each proposal for estimating rail demand, rail capacity, the 

equivalency of a truck trip to rail trip and comparable truck and rail route distances add to the 

uncertainty of each proposal's estimates of reduced truck trips and VMT. For example, different 

methods of converting rail demand to truck trips will lead to different values. Many conversions 

did not account for extra truck trips that may be required to reposition equipment and account for 

empty backhauls. It is unclear how many extra trips should be expected; to some extent, freight 

rail faces similar issues of equipment positioning and imbalances in the flow of goods. Different 

methods for determining truck VMT will also lead to different results. However, the different 

methods used to forecast freight rail demand are likely the largest source of uncertainty.  

 Estimating the truck trips and corresponding truck VMT diverted to rail may also be a 

poor proxy for highway congestion improvement. There is some evidence that truck traffic tends 

to avoid morning and even peak hour congestion (Woudsma 2001). If truck traffic reductions 

occur during off-peak times, then there will be little congestion relief. Taking the additional step 

of running a travel demand model that has the ability to model truck trips would provide more 

useful congestion metrics such as LOS and delay by time of day. However, removing truck trips 

from the highway also effectively increases highway capacity and reduces travel time, therefore 

inducing additional vehicle trips (Goodwin 1996; Hansen and Huang 1997; Noland 2001; 

Cervero 2002). The magnitude of induced demand is uncertain (Mokhtarian, Samaniego et al. 

2002; Cervero 2003), but should be expected to offset some capacity gains.  

4.3.4.2 Air Pollutant Emission Reduction 
 Mobile source air pollutant emissions are generally modeled by multiplying a measure of 

vehicle activity by an emission factor. The method for trucks is fairly standard; every proposal 

used the California Air Resource Board’s EMFAC model49

49 EMFAC is freely available from CARB’s website: 

 which provides gram per mile 

emission factors. The EMFAC model requires the user to select an analysis year, geographic 

http://www.arb.ca.gov/msei/onroad/latest_version.htm 
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region and season at a minimum. Users may also enter more detailed information depending on 

data availability such as custom vehicle speed distributions. However, none of the TCIF 

proposals provided a complete description of which parameters were input or selected to run 

EMFAC. Emission estimates are produced by multiplying the EMFAC emission factors by the 

truck VMT estimates previously discussed.  

 In comparison, no standard method or modeling software exists for locomotives though 

several reports are available that provide guidance (Ireson, Germer et al. ; Battele 1973; BAH 

1991a; BAH 1992; EPA 1992; CARB 2004; Caretto 2004a; ERG 2005; Billings, Chang et al. 

2006). Not surprisingly, a variety of methods were used to estimate locomotive emissions. Table 

4-3 describes how activity was calculated and the source of the corresponding emission factors 

for the TCIF proposals that provided this information.  
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Table 4-6 Locomotive air pollutant emission calculation methods 

TCIF 
Project Activity Measure Calculation 

2 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 �𝑔𝑎𝑙
𝑦𝑟
�  

=
𝑟𝑎𝑖𝑙 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 �𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠

𝑦𝑟
� × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑖) ×

𝑤𝑒𝑖𝑔ℎ𝑡 � 𝑡𝑜𝑛
𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟

� × 𝑓𝑢𝑒𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 � 𝑔𝑎𝑙
𝑟𝑒𝑣𝑒𝑛𝑢𝑒 𝑡𝑜𝑛−𝑚𝑖𝑙𝑒

�  

3 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 �𝑇𝐸𝑈−𝑚𝑖𝑙𝑒𝑠
𝑦𝑟

�  = 𝑟𝑎𝑖𝑙 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 �𝑔𝑟𝑜𝑠𝑠 𝑡𝑜𝑛
𝑦𝑟

� × � 𝑇𝐸𝑈
𝑔𝑟𝑜𝑠𝑠 𝑡𝑜𝑛

� × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑖)  

9 𝑝𝑜𝑤𝑒𝑟 �ℎ𝑝
𝑦𝑟
�  

= 𝑟𝑎𝑖𝑙 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 �𝑡𝑟𝑎𝑖𝑛 𝑡𝑟𝑖𝑝𝑠
𝑦𝑟

� × 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 � ℎ𝑟
𝑡𝑟𝑖𝑝

� ×

𝑎𝑣𝑒. 𝑝𝑜𝑤𝑒𝑟 �ℎ𝑝
ℎ𝑟
�  

10 𝑓𝑟𝑒𝑖𝑔ℎ𝑡 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 �𝑡𝑜𝑛−𝑚𝑖𝑙𝑒𝑠
𝑦𝑟

�  unspecified  

5 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 �𝑔𝑎𝑙
𝑦𝑟
�  

= 𝑟𝑎𝑖𝑙 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 �𝑡𝑟𝑎𝑖𝑛 𝑡𝑟𝑖𝑝𝑠
𝑦𝑟

� × � 𝑙𝑜𝑐𝑜.
𝑡𝑟𝑎𝑖𝑛

� × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑖) ×

𝑠𝑝𝑒𝑒𝑑 �𝑚𝑖
ℎ𝑟
� × 𝑓𝑢𝑒𝑙 𝑟𝑎𝑡𝑒 �𝑔𝑎𝑙

ℎ𝑟
�  

 Emission Factor Source 

2 𝑡𝑖𝑚𝑒 𝑏𝑎𝑠𝑒𝑑 � 𝑔
ℎ𝑟
�  locomotive test data, test data source unspecified  

3 net rail advantage�
� 𝑔𝑚𝑖�
𝑇𝐸𝑈� unspecified 

9 𝑝𝑜𝑤𝑒𝑟 𝑏𝑎𝑠𝑒𝑑 � 𝑔
𝑏ℎ𝑝−ℎ𝑟

�   EPA Tier 4 Locomotive Emission Standards 

10 Unspecified OFFROAD 2007 

5 𝑓𝑢𝑒𝑙 𝑏𝑎𝑠𝑒𝑑 �
𝑔
𝑔𝑎𝑙� EPA 2020 in-use estimated locomotive emission rates (EPA, 

1997) 

 

 The main challenge in estimating locomotive emissions appears to be converting train 

activity into a form that can be used with the available emission factors. Locomotive emission 

factors are generally available in terms of fuel consumption, locomotive operating hours or 

locomotive power consumption while train activity was forecasted as the annual number of train 

trips or amount of gross tons or TEUs transported. In making the required conversions, the 

calculations in each proposal depend on various assumptions.  
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 For example, in project 2, the conversion of shipping containers to fuel consumption 

requires estimates of the average weight of a shipping container and intermodal train fuel 

intensity, assumed to be 11.79 tons and 2.41 gallons per 1,000 ton-miles respectively. No 

reference or supporting information was provided for the average weight of a shipping container. 

The fuel intensity is the system-wide average for the BNSF and UP railroads. Project 3 converts 

gross tons to containers, implying that some conversion rate was assumed; however, no 

information was provided about the conversion. The conversion of train trips to power 

consumption for project 9 requires estimates of average train travel time and hourly power 

consumption, estimated to be 3.3 hours and 1,206 hp-hr respectively. These values were derived 

from train energy modeling, no further details were provided. No information was provided to 

support the conversion of train trips to ton-miles in project 10. Finally, the conversion from train 

trips to fuel consumption in project 5 requires assumptions about the number of locomotives per 

train, train speed and the locomotive hourly fuel consumption rate, assumed to be 4 locomotives, 

50 mph and 110 gallons per hour respectively. The number of locomotives per train appear to 

have been provided by the BNSF railroad while the estimate of train speed and fuel consumption 

were provided by Caltrans.  

 The approaches used by each proposal in Table 4-3 are reasonable in that given the 

correct parameter values the calculations would result in an accurate conversion. In contrast to 

highway and traffic studies, however, there are no standard reference sources or calculation 

procedures for most of the required parameter values. Generally, each proposal made different 

assumptions, and many of these were unsupported by either data or reference to a reputable 

source. In at least one case the analysis notes that the parameters may be inaccurate; the analysis 

for project 550

50 Details about the locomotive emission calculations are provided in appendix 3.3-A of the project’s EIR 
completed in September 2007.  

 states that estimates of train speed and hourly fuel consumption were not verified 
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with the railroad that operates those trains. It is unclear how train speed or fuel consumption were 

estimated or if the values were borrowed from elsewhere.  

 The system-wide average fuel intensity used in the analysis of project 2 is also a concern. 

Approximately 50% of the BNSF’s and UP’s rail activity measured as ton-miles is moving coal 

in unit trains while just 10% is due to intermodal trains (AAR 2001).  Unit coal trains are 

generally extremely fuel efficient while intermodal trains are the least efficient (see chapters 2 

and 3). The system-wide average likely under estimates intermodal train fuel consumption. 

 The next step in estimating locomotive emissions is determining which emission factors 

to use. There are two main sources of emission factors: either estimates developed by EPA that 

are designed to represent the national locomotive fleet and account for EPA locomotive emission 

standards (EPA 2009), or emission test data that are available for some specific makes and 

models of locomotives (SwRI 1972; BAH 1991a; Fritz and Cataldi 1991; Fritz 1995; Fritz 2000; 

Smith, Sneed et al. 2006).  

 Each project proposal took a different approach to selecting emission factors. For project 

2, locomotive test data were used with information provided by the railroads to develop emission 

factors tailored to the specific fleet of locomotives operating to and from the Port of Oakland. The 

sources of these emission test data were not specified, but they appear to be from the sources 

referenced above. No information was provided about the gram per mile per TEU "net rail 

advantage" emission factors used by project 3. Project 9 used EPA tier 4 locomotive emission 

standards, rather than EPA's emission factors. Project 10 claims to have used emission factors 

from CARB's OFFROAD 2007 emission factor; however, OFFROAD 2007 does not provide 

locomotive emission factors. Project 5 uses EPA's average locomotive emission factors.  

 The concerns about emission factors are in many ways similar to those discussed for the 

activity conversions. Mainly, there was a lack of supporting information describing how emission 
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factors were chosen or where emission factor data were obtained. This is particularly concerning 

with regards to projects 3 and 10. A search of the rail literature and recent modeling studies did 

not reveal any previous estimates of a “net rail advantage” per TEU and it is completely unclear 

which emission factors were obtained from the OFFROAD 2007 model since OFFROAD does 

not contain any locomotive emission factors.  

 There are also two flaws in the approach used by project 9. The underlying assumption in 

the analysis is that the entire fleet of locomotives will meet EPA tier 4 locomotive emission 

standards by 2016. This is very unlikely since the standard only affects new locomotives 

manufactured after 2015, implying that the railroad will upgrade its entire fleet of locomotives in 

just one year. Locomotives have long lifetimes (over 30 years) and are fairly expensive; therefore, 

it is much more likely that the railroad will continue to use its current fleet of locomotive in 2016 

and gradually replace fleet over time. The analysis for project 9 also suffers from using regulatory 

emission standards as emission factors. The EPA estimates that manufacturers generally design 

locomotives with a 10% compliance margin (EPA 2008b). Using the regulatory standards will 

therefore over estimate emissions. A final concern involves the use of individual locomotive test 

data. Individual locomotive test data are attractive since project specific emission factors can be 

developed; however, they are potentially subject to a large degree of error. Much of the currently 

available locomotive test data has been derived from just a single test on a single locomotive (see 

section 2.2.2.3). The small number of tests performed on each locomotive and limited population 

of locomotives tested almost certainly  result in large errors and significant uncertainty.  

 Table 4-4 compares the emission factors for the three proposals that provided them. The 

emission factors vary because of the differences in data sources and assumptions as was 

explained. The values in the table show that the different assumptions can have a large affect on 

the emission factors, which will in turn have a large affect on the calculation of locomotive 

emissions. For example, the emission factors used for project 9 are just 1/6th and 1/8th the value of 
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those estimated by EPA for NOX and PM10, respectively, which were used in project 5. The 

emission factors derived from individual locomotive test data used in project 2 are also 

significantly smaller than EPA’s. 

Table 4-7 Comparison of locomotive emission factors 

Project ID 
NOX 
g/gal 

PM10 
g/gal 

CO2 
g/gal 

2 104 1.36 10,268 
9 23a 0.62a 10,070b 
5 136.9 4.8 10,115b 
aNOX and PM10 emission factors converted from g/bhp-hr to g/gal using EPA's recommended conversion 
factor of 20.8 bhp-hr/gal (EPA 1997). 
bCO2 emission factor converted from lb/gal to g/gal 
 
 It is also interesting to note that although the differences in the estimated CO2 emission 

rates for locomotives are relatively small, they should actually not vary at all since they are not 

impacted by the particular locomotive fleet or operating conditions, but are a function of fuel 

properties. According to EPA51

4.3.5 Analysis of Air Pollutant Emission Reductions 

 a gallon of diesel fuel produces 10,084 grams of CO2. 

 Section 4.3.4 described how truck trip, truck VMT and air pollutant emissions were 

calculated to support the TCIF proposals. About half of the proposals and their supporting 

documents did not contain enough detail to determine how these calculations were made. For the 

projects that did provide some details, a number of concerns were raised about the use of 

unsupported assumptions, modeling and data provided by consultants and the railroads, the 

details of which were not provided, and flawed methodologies. The result is that many estimates 

of reduced truck travel and reduced air pollutant emissions are at best unreliable and at worst 

clearly wrong.  The accuracy of these estimates is analyzed further by comparing the emissions 

reductions reported in the TCIF proposals to an estimated range of plausible emission reductions 

based on the best available data.  

51 http://www.epa.gov/oms/climate/420f05001.htm 
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 One of the main difficulties in quantifying the air pollutant benefits of a modal shift from 

trucks to rail or evaluating the plausibility of such estimates, is that emission rates for each mode 

are often expressed in units that are not directly comparable. This is why so many conversions 

were required in each TCIF proposal. To help evaluate the emission reductions claimed by the 

TCIF proposals, truck and locomotive emission factors are converted to a common basis so that 

they can be directly compared and the relative benefit of replacing truck trips with trains can be 

estimated.  

 Truck and locomotive emission factors are typically expressed in terms of grams per 

mile, gallon or brake horsepower hours. To make a fair comparison requires accounting for the 

differing fuel efficiency of each mode, we converted the emission factors to a grams per ton-miles 

basis as shown by equations 4-1 and 4-2,  

𝐸𝐹𝑡𝑟𝑢𝑐𝑘 �
𝑔

𝑡𝑜𝑛−𝑚𝑖𝑙𝑒
� = 𝐸𝐹𝐸𝑀𝐹𝐴𝐶 �

𝑔
𝑚𝑖
� × 𝐹𝐸𝑡𝑟𝑢𝑐𝑘 �

𝑚𝑖
𝑔𝑎𝑙
� × 1

𝐸𝑓𝑓𝑡𝑟𝑢𝑐𝑘�
𝑡𝑜𝑛−𝑚𝑖𝑙𝑒

𝑔𝑎𝑙 �
   eq 4-1 

where;  
EFtruck       =  calculated average heavy-duty diesel truck gram per ton-mile emission factor 
EFEMFAC = California state-wide average heavy-duty diesel truck gram per mile emission factor 

from EMFAC 2007 
FEtruck     = California state-wide average heavy-duty diesel truck miles per gallon fuel economy 

from EMFAC 2007 
Efftruck     = average heavy-duty truck ton-mile per gallon fuel efficiency 
 
𝐸𝐹𝑡𝑟𝑎𝑖𝑛 �

𝑔
𝑡𝑜𝑛−𝑚𝑖𝑙𝑒

� = 𝐸𝐹𝐸𝑃𝐴 �
𝑔
𝑔𝑎𝑙
� × 1

𝐸𝑓𝑓𝑡𝑟𝑎𝑖𝑛�
𝑡𝑜𝑛−𝑚𝑖𝑙𝑒

𝑔𝑎𝑙 �
     eq 4-2 

where;  
EFtrain        = calculated average intermodal train gram per ton-mile emission factor 
EFEPA     = EPA U.S. average locomotive gram per gallon emission factor 
Efftrain     = average train ton-mile per gallon fuel efficiency 
 

 Using equation 4-1, we converted the heavy-duty diesel truck emission factors from 

EMFAC for the years 2010 (16.2 g/mi NOX and 0.66 g/mi PM10) and 2030 (3.6 g/mi NOX and 

0.11 g/mi PM10) to a ton-mile basis. We assumed heavy-duty diesel truck fuel economy, EFtruck, 
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is 5.3 mi/gal based on output from EMFAC 2007. Heavy-duty truck fuel efficiency, Efftruck, was 

obtained from a recent FRA study which compared the fuel efficiency of moving freight by 

trucks and rail over 23 competitive routes (FRA 2009). The FRA study found that trucks achieved 

68 to 133 ton-miles/gal over the routes.  

 Similarly, using equation 4-2, we also converted locomotive emission factors from EPA 

(EPA 2009) for the year 2010 (157 g/gal NOX and 4.7 g/gal PM10) and 2030 (53 g/gal NOX and 1 

g/gal PM) to a ton-mile basis. Locomotive fuel efficiency, Efftrain, was also obtained from the 

FRA study, which found a range of values from 156 to 512 ton-miles/gal. Our standardized 

emission factors for trucks and trains are shown in Figure 4-6. 

 

 

Figure 4-6 Comparison of the range of EPA U.S. average line-haul locomotive emission 
factors and EMFAC California average heavy duty diesel truck emission factors on a ton-
mile basis for the years 2010 and 2030 

 The comparisons in Figure 4-6 challenge the common perception that freight trains offer 

a cleaner alternative to trucking in the forecasted build year. While this may be generally true for 

PM10 emissions, it is not for NOX emissions. Where trucking does offer a cleaner alternative, the 
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margins are not necessarily large. For PM10 emissions, the most efficient truck movements 

produce similar emission rates as the least efficient train movements. For NOX, a large range of 

truck and rail movements produce similar emission rates. By 2030, the penetration of new trucks 

into the in-use fleet, which must meet relatively more stringent emission standards than 

locomotives, results in goods movement by trucks and trains achieving similar emission rates. 

Comparing the difference in emission rates on a route by route basis for all 23 routes in the FRA 

study, using equations 4-1 and 4-2 and the year 2030 emission factors cited above, reveals that 

trucks emit 1.2 to 3.3 times more PM10 emissions than trains when traveling the same routes and 

carry the same type and amount of cargo. For NOX emissions the results are more varied; the 

range extends from trains emitting 1.4 times more NOX than trucks to trucks emitting 2 times 

more NOX than trains, depending on the route and commodities. While criteria emission rates are 

somewhat similar between trucks and trains, the FRA study does indicate that trains are always 

more fuel efficient than trucks and therefore are expected to emit relatively less CO2 emissions. 

 The maximum emission reduction possible from diverting truck trips to train trips is the 

amount emissions that would have been produced by the trucks had they not been diverted. In 

other words, the emission reductions gained by replacing truck travel with rail can never be 

greater than those from just eliminating truck travel. Actual emission reductions will be less 

because truck trips are replaced by train trips which also produce emissions. In Figure 4-7 the net 

emission reductions from diverting truck traffic to rail as reported by each TCIF proposal for the 

year 2030 is plotted against the reported reduction in truck VMT (these values are provided in 

Table 4-2). Also shown are three lines. The dashed line labeled “max” represents an estimate of 

the maximum emission reduction possible from replacing truck trips with train trips. The line is 

produced by equation 4-3,  

𝑚𝑎𝑥 �𝑡𝑜𝑛𝑠
𝑦𝑟
� = 𝑡𝑟𝑢𝑐𝑘 𝑉𝑀𝑇 �𝑚𝑖

𝑦𝑟
� × 𝑡𝑟𝑢𝑐𝑘 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 � 𝑔

𝑚𝑖
� × 1

1.1023×10−6
  eq 4-3 
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where, truck VMT is truck travel diverted to rail, the truck emission factor is the state-wide 

average heavy-duty diesel truck emission rate for the year 2030 from EMFAC 2007 and the last 

value is the conversion from grams to tons. The two solid lines, produced by equations 4-4 and 4-

5, enclose the area where the plotted data points are expected to be located,  

𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 �𝑡𝑜𝑛𝑠
𝑦𝑟
� =

𝑚𝑎𝑥�𝑡𝑜𝑛𝑠𝑦𝑟 �

𝑅𝑚𝑎𝑥
        eq 4-4 

𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 �𝑡𝑜𝑛𝑠
𝑦𝑟
� =

𝑚𝑎𝑥�𝑡𝑜𝑛𝑠𝑦𝑟 �

𝑅𝑚𝑖𝑛
        eq 4-5 

where; max is the value from eq 4-3, Rmax is the maximum ratio of truck emissions to rail 

emissions as reported above (2 for NOX and 3.3 for PM10) and similarly Rmin is the minimum 

ratio of truck emission to rail emissions (0 for NOX and 1.2 for PM10). The region between these 

two lines provides the expected emission reduction from diverting a given amount of truck VMT 

to freight rail based on FRA’s analysis of truck and train fuel efficiency, EPA’s locomotive 

emission factors and California average heavy-duty diesel truck emission factors from the 

EMFAC 2007 model.  
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    (a)      (b) 

Figure 4-7 Plots of reported TCIF project annual truck VMT replaced with freight rail by 
annual (a) NOX emission reductions and (b) PM10 emission reductions where u = upper 
bound and l = lower bound. 

 The plots in Figure 4-7 suggest that many the TCIF proposals have likely overestimated 

emission reductions.  We would expect the data points to fall between the two solid lines and 

certainly not above the max line. The data points should also form a relatively straight line since 

the marginal effect of replacing one mile of truck travel with rail should be roughly equal across 

projects. As Figure 4-7 indicates, several of the estimates are suspiciously large, falling above the 

predicted maximum, and even 10 times the predicted maximum, and there is wide range of 

marginal impacts since the points are scattered. Note that the axes are on a log scale.  

 Some of this variation is expected. Different distances between truck and rail routes could 

move the estimates up or down, but no estimate should ever appear above the max line in Figure 

4-7. Rail and highway distances should be similar for each of these projects since the major rail 

corridors parallel most of the major highway routes in California. Additionally, truck emission 

factors vary between regions due to differences in truck fleets, congestion and climate; 
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locomotive emission factors should also be expected to vary depending on local factors. 

However, regional difference in emission factors should not result in such large over predictions. 

Comparing the statewide EMFAC emission factors to those estimated for the San Joaquin Valley, 

San Francisco Bay Area and South Coast shows small variations. NOX emission factors vary by 

no more than ± 1% of the statewide value and PM10 emission factors vary from -16% to +12% of 

the statewide value.   

 These apparent errors could be caused by errors in the conversion of rail activity to truck 

activity, the conversion of rail activity to a form useful for estimating emissions or in the 

selection of particular locomotive emission factors as previously discussed. The results in Figure 

4-7 are likely a combination of all these factors.  

4.1 Summary and Conclusions 
 Proposals to expand freight rail capacity as a means to reduce truck traffic have seen 

significant gains in popularity with public planners and policymakers. At least one study (Bryan, 

Weisbrod et al. 2007) has provided examples and guidance for selecting the types of freight rail 

infrastructure projects where public involvement could provide public benefits. Additional studies 

have advocated for a greater public role in expanding freight rail infrastructure (Resor and Blaze 

2004; Gorman 2008). However, some have questioned this approach (TRB 1996; TRB 1998; 

TRB 2003), suggesting that correcting market failures by instituting more rational pricing policies 

and adopting taxes, fees or standards for reducing pollutant externalities offers the best solution.  

 While there is general consensus that a more rational approach to pricing transportation 

would solve many transportation related problems, the main argument against this is that it is 

considered politically difficult if not completely infeasible. While funding new projects may be 

relatively easier than rationalizing pricing, there are serious concerns about the ability of public 

planners and policymakers to select beneficial and cost effective freight rail projects. Due to a 

long history of planning almost exclusively for passenger transportation, and the fact that many 
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goods movement data are confidential, public planners and policymakers may simply lack the 

requisite technical information, skills, and modeling tools to effectively plan for goods 

movement. While Bryan, Weisbrod et al (2007) provide useful guidance on strategies to select 

beneficial freight rail projects, they do not consider whether or not public planning and 

transportation agencies have the technical ability or sufficient access to data to carry out the 

recommended analyses.  

 To fill this gap, this case study retrospectively examined California’s TCIF program 

which has the objective of reducing highway congestion and air pollutant emissions from 

increasing levels of goods movement though infrastructure investments. Eleven TCIF projects 

were submitted for review, all proposing to expand freight rail infrastructure owned or used by 

private railroads. The main findings of this study are that the analysis and calculations performed 

to support the need for each project and the expected magnitude of public benefits, in this case 

reductions in highway congestion and air pollutant emissions, are questionable and in some cases 

plainly incorrect (Table 4-8). These findings support our hypothesis that public planning and 

transportation agencies may not have the necessary data, tools and expertise to select beneficial 

and cost effective private goods movement infrastructure projects. 

4-8 Summary of the main TCIF project public benefit analysis flaws 

Analysis steps Main Problems Magnitude 
Rail demand forecast - forecast uncertainty serious 

 
- unsupported growth rate assumptions serious 

Rail capacity forecast - baseline assumes no expansion through 2035 very serious 

 
- calculation methods are not provided moderate 

  
- calculations are performed by the railroad, methods not 

provided 
minor 

 
- no standard definition of rail capacity moderate 

Mode shift  
- lack of documentation for truck trip to rail trip 

conversions 
moderate  

 
- different methods for comparing route distances minor 

Air quality benefits - use of inappropriate locomotive emission factors serious 

 
- unsupported assumptions in rail activity calculations  moderate 
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 Specifically, we show that goods movement demand growth estimates proposed by the 

submitters were highly uncertain; results were unacceptably influenced by methods and 

underlying assumptions used to complete the calculations. Many of the forecasts were nothing 

more than a continuation of past trends or were simply unsupported by any analysis or data. We 

also showed that the demand forecasts are crucial to the argument that the project is needed and 

for estimating the projects expected benefits: reductions in truck traffic and air pollutant 

emissions. The general assumption made by the proposers was that growing demand combined 

with a freight rail capacity shortage would lead to more goods moving by truck. In some cases 

proposers argued that too many goods are currently moving by truck due to the lack of freight rail 

infrastructure. In either case, rail capacity was assumed to remain constant under the no-build 

scenario while demand continued to rise. The assumption of constant rail capacity under the no-

build scenario is clearly flawed, and no justification for this assumption was provided by any of 

the proposals. Railroads have been continuously investing in their infrastructure so rail capacity 

should be expected to increase over time. It was also shown that at least one project denied TCIF 

funding has been privately built.  

 A more plausible argument is that demand for rail capacity is growing faster than supply. 

To support this argument rail demand and capacity should be modeled in similar terms (i.e., ton-

miles or containers) so that the two can be directly compared. Since the demand and supply 

forecasts are likely very uncertain, care should also be taken to express the uncertainty in the 

analysis. This can be accomplished by considering several plausible growth scenarios; for 

example, using each of the growth projections available for the ports of LALB or considering 

both linear and exponential growth trends for the Port of Oakland. If the argument holds up under 

each scenario that demand will exceed capacity, there will be greater confidence that something 

needs to be done. The analysis should also identify the root cause of any current or projected 

123



capacity shortfall. If a case can be made that a particular market failure exists, the main reason for 

a shortage of rail capacity, this provides additional support to the argument that demand may 

exceed capacity, but more importantly also provides additional options for solutions.  

 Given the difficulties and uncertainties in forecasting freight rail supply and demand, 

public planners and transportation agencies may be better off considering alternatives other than 

directly subsidizing freight rail infrastructure. If the cause of the expected shortage in rail 

capacity can be identified, which it should be in order to support the expenditure of public funds, 

the planner or agency may be able to correct the problem. For example, in many TCIF proposals 

it was claimed that trucks disproportionately add to highway congestion and maintenance costs 

considering the amount of taxes and fees they pay. However, a number of cost allocation studies 

(Balducci and Stowers 2008) have been conducted that estimate the implied subsidy that different 

classes of vehicles receive. It therefore seems relatively simple to eliminate the subsidy to trucks 

by increasing fees rather than attempting to counter the subsidy by building more freight rail 

infrastructure. Another reason given for subsidizing freight rail is that it is generally less polluting 

than trucking. However, it was shown that increasingly stringent vehicle emission standards are 

closing the gap between emissions of air pollutants from trucks and rail making this argument 

less relevant.  

 Vehicle emission standards also offer a much more certain environmental benefit than 

building more rail infrastructure. If we assume compliance, we know that emissions will be 

reduced below a scenario where no standards are adopted. By comparison, this case study has 

suggested that we know very little about the emission reductions expected from expanding freight 

rail capacity. Freight rail does offer a clear environmental benefit when considering CO2 

emissions; however, alternative policy solutions such as carbon cap and trade or carbon taxes 

would likely be much more efficient (Ellerman 2000; Stavins 2003; Tietenberg 2003) and may be 

available very soon. California has adopted climate change legislation (AB32, which became law 
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in 2006) which sets a target of reducing greenhouse gas emissions to 1990 levels by 2020 and 

80% below 1990 levels by 2050. A carbon cap and trade program is being considered to help 

achieve these reductions. If the cap and trade system is applied to transportation fuels, they 

should begin to internalize the cost of CO2 emissions, resulting in a more optimal distribution and 

level of goods movement by truck and freight rail. The monopoly position of most railroads could 

also cause a shortage of rail capacity; however, this does not seem to be the case for the TCIF 

projects. In most cases both the UP and BNSF railroads provide service to each region or port and 

are engaged in direct competition with trucking firms for the movement of containerized 

merchandise.  Finally, every option except for expanding infrastructure offers the option to adjust 

the policy over time or eliminate it altogether. While it may be difficult in practice to continually 

adjust taxes, fees and standards to achieve the desired public policy goals, it offers a degree of 

safety in the event that serious errors were made in adopting the policies.  

 Regardless of the policy solution adopted, there is likely a need to calculate the relative 

benefits of more goods moving by rail. The case study found that a variety of ad-hoc approaches, 

some which were clearly flawed, were used to estimate the equivalency of truck trips to train trips 

and calculate locomotive emissions.  It was also shown that most of the estimated emission 

reductions from the assumed diversion of truck trips to freight rail were inconsistent with our best 

estimates. The errors are not necessarily a result of poor judgment or biased agendas. Many of the 

problems result from the lack of data available to local and regional planning agencies and 

absence widely recognized methods for making the calculations. These findings point to the need 

for development of a standardized approach to evaluate the benefits of modal shifts from truck to 

freight rail.  

 Adopting a standard locomotive emission modeling framework, such as that developed in 

chapter 3, would streamline the locomotive emission modeling process much in the way EPA’s 

MOBILE6 model and CARB’s EMFAC model have for highway vehicles. The challenge will be 
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adopting standards for reporting rail activity. For example, highway vehicle activity is almost 

always reported as VMT. Gram per mile emission factors and mile per gallon fuel efficiency 

estimates are widely available for making calculations. Similar standards do not exist for rail.  

The TCIF projects reported activity as the number of containers transported, gross tons of train 

traffic, train trips, TEUs or carloads. None of these are very useful for estimating emissions or 

fuel consumption which are generally available in terms of grams per gallon, brake horse-power 

hours per gallon and ton-miles per gallon.  The general lack of data and inconsistent use of 

metrics is probably a result of federal laws which pre-empt states or other regional agencies from 

regulating railroads, therefore limiting their ability to request data. Adopting a standard 

locomotive modeling framework should lead to more standardized rail activity data. Converting 

truck and rail emission factors to a comparable basis, as described previously, offers a useful 

method for screening the relative air quality benefits of replacing trucks with trains.  
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5 SUMMARY AND CONCLUSIONS 

This dissertation has filled some important gaps in transportation planning and modeling. A 

new spatially detailed locomotive emission model was developed for California. The new model 

is based on a new framework which allows modelers to produce much more detailed locomotive 

emission estimates compared to the options currently available. The new model also incorporates 

updated rail activity data and can account for important factors which are known to affect 

locomotive emissions, such as route grade, the specific locomotive fleet and different types of 

trains.  A case study of the TCIF program revealed that many public planning and transportation 

agencies appear to currently lack the required data, models or expertise to evaluate the merits of 

publicly funded freight rail projects. Accordingly, better data, models and training must be 

provided or alternative policy options considered. Alternative policy options such as taxes and 

fees to internalize external highway congestion and road damage costs, vehicle emission 

standards to control air pollutant emissions and economy wide carbon tax or cap and trade 

systems to account for GHG emissions seem to offer more certain and cost effective approaches 

to ensuring a socially optimal level of freight rail service given the current constraints on public 

planning and transportation agencies. The new locomotive model developed in this dissertation 

should also help provide a more standardized approach to modeling locomotive emissions. 

Data, which were generally lacking, was a theme carried throughout the dissertation. 

Data constraints presented challenges to the development of the new locomotive emission model, 

to the many agencies who submitted TCIF proposals and to the evaluation of the estimates in the 

submitted TCIF proposals. Data collection is a challenge for goods movement, and particularly in 

the case of freight rail, for several reasons. Many passenger transportation data are collected 

through surveys, vehicle registration records and highway traffic sensors (Richardson, Ampt et al. 

1995; Ortuzar and Willumsen 2001). For the most part, passenger vehicle trips also are 

predictable. Most people go to work in the mornings and return in the afternoon. People use their 
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vehicles to go shopping, visit friends and travel on the weekends. A large amount of data has 

been collected on passenger vehicle emission rates and energy use to enforce compliance with tail 

pipe emission standards and fuel economy standards. Goods movement is a different story. Goods 

movement demand and mode choice are driven by extremely complex global supply chains and 

the very different needs of different industries (Ogden 1992; Woudsma 2001; Rodrigue 2006). 

Goods movement trips can range from a few miles to thousands of miles. Generally, surveys offer 

little help since most freight data are considered confidential business information which firms 

are unwilling to report. What is available though observation of the highway system is also 

limited; while trucks can be counted it is difficult to know what is in them and where they are 

going. Since the freight railroad system is privately owned and operated, even less data are 

available. Information about truck and locomotive emission rates and energy efficiency are also 

limited due to a shorter history of regulation (heavy duty truck emission standards were adopted 

15 years and locomotive emission standards were adopted 22 years, respectively after those for 

light-duty vehicles)52

Some standard data sources are available such as the commodity flow survey for trucks

 and the absence of fuel economy standards.  

53 

and the rail waybill sample for freight rail54.  However, standard approaches available to state, 

regional and local planning and transportation agencies to translate these data in to actual trips 

and those trips in to estimates of air pollutant emissions are not readily available. The full rail 

waybill sample is not available to agencies below the state level55

52 Light-duty vehicle standards were adopted under the 1970 Clean Air Act Amendments; heavy-duty truck 
standards were required by the 1977 Clean Air Act Amendments and adopted in 1985; and locomotive 
emission standards were required by the 1990 Clean Air Act Amendments and adopted in 1997. 

. Progress is being made to 

improve data collection and dissemination. The Federal Highway Administration has developed 

53 Data are available from the Bureau of Transportation Statistics website: 
http://www.bts.gov/publications/commodity_flow_survey/ 
54 Further information about access to this data is available from the Surface Transportation Board: 
http://www.stb.dot.gov/stb/industry/econ_waybill.html 
55 A public version of the waybill sample is available, but it provides very little geographic detail in order to 
maintain railroad data confidentiality.  
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the Freight Analysis Framework (FAF)56

 In addition to continuing to develop new and more reliable freight data resources, 

research should continue to develop models and policy solutions which are workable given the 

data constraints. This dissertation provides some good examples. The new locomotive model 

made use of a limited amount of confidential railroad data, which was very difficult to obtain, to 

create a modeling framework which requires only minimal data for periodic updates and which 

can incorporate more detailed data when they are available. The TCIF case study concluded that 

different policy options, which require less knowledge of railroad operations, future goods 

movement demand or shipper modal preferences, are available to satisfy a common policy goal.  

, a website which provides some analysis of data from 

the commodity flow survey and rail waybill sample and provides links to modeling and reports 

from other agencies and researchers. Much more work is need to provide up to date and user 

friendly goods movement data.  

 Finally, given that confidential data and modeling undertaken by private firms are likely 

to continue to be used to support public policy decisions regarding goods movement, and given 

the highly questionable analysis performed by public agencies described in this dissertation, an 

independent review system could offer substantial benefits. Ideally, an independent panel of 

expert reviewers could be assembled to review projects which grant public funds to the benefit of 

private firms based on the analysis of confidential data or modeling. Expert reviewers may not be 

able to access confidential data, but may be able to recognize inconsistent or implausible results 

or flawed analysis approaches based on their experience.  This would essentially be similar to the 

analysis undertaken for the case study conducted in Chapter 4.  

  

 

56 http://ops.fhwa.dot.gov/freight/freight_analysis/perform_meas/index.htm 
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APPENDICES 
 

Appendix A: Estimating Mobile Source Emission Factors 
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*Appendices C to E and I are in electronic form as MS Excel files and contain information 
deemed confidential business information by the UP and BNSF railroads. They may be 
available upon request from the California Air Resources Board. 

**Appendix F-2 is in electronic form and available upon request from the author. 
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Appendix A – Estimating Mobile Source Emission Factors 
 

There are two general methods to estimate mobile source emission factors: laboratory 

engine exhaust measurements and in-use exhaust measurements.  

Engine exhaust measurements performed in a laboratory setting provide a relatively 

straightforward approach. A test vehicle (or sometimes just its engine) is operated over a 

representative duty cycle, simulating real world acceleration and speed profiles. A dynamometer 

is used to provide resistance to the wheels or engine and enables measurement of engine torque 

and speed, from which the amount of work can be calculated. A variety of analytical equipment is 

used to measure the concentration of pollutants in the engine exhaust stream during the test. Most 

emission measurements are continuous with the exception of PM which is captured by a filter and 

weighed at the end of the test. Pollutant concentration measurements combined with 

measurements of the exhaust flow rate are used to estimate mass emission rates (mass/unit time). 

Typically fuel consumption, work and distance traveled are also measured which enable the 

emission rates to be converted to a more useful fuel, work or distance basis. The procedure for 

locomotives is similar expect that the locomotive’s dynamic brake is used to provide resistance to 

the engine. Locomotives without dynamic breaks are connected to a large resistor which absorbs 

the power generated by the locomotive similar to a dynamic brake.  

Potentially large errors in on-road vehicle emission models prompted calls for in-use 

measurement of emissions (Seinfeld 1989; NRC 2000) and as a result, many in-use measurements 

have now been made. For example, in-use, on-road measurements are being used to develop 

EPA’s next generation on-road mobile emission model (MOVES)(Younglove, Scora et al. 2005).  

In-use measurements provide an opportunity to measure actual in-use vehicle drive cycles and the 

actual in-use vehicle fleet, a major limitation to laboratory studies. Two common methods are 

road-side and tunnel studies.  
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Road-side studies instantaneously measure exhaust pollutants as a vehicle passes by a 

detector which measures the absorption of a beam of light by the exhaust plume (Bishop and 

Stedman 1996).  This method can determine the ratios of HC, CO and NO to CO2 in the exhaust, 

though not the concentration or mass of the pollutants directly. The concentration of emissions 

and mass emission rates per quantity of fuel use are estimated by solving a carbon mass balance. 

Simultaneous to the exhaust measurement, a camera records the passing vehicles. Vehicle 

attributes observed from the camera or from looking up vehicle registration records by license 

plate number allows the recorded emission measurements to be aggregated by vehicle class. The 

accuracy of road-side measurements has been found to be relatively good: CO, HC and NO are 

found to fall within ± 5%, ± 10%, and ± 5% of actual values, respectively (Lawson, Stedman et 

al. 1990; Popp, Bishop et al. 1999).  

Tunnel studies provide another measure of in-use emissions. Air pollutant concentrations 

are measured in the air flowing into and out of a highway tunnel, the difference in pollutant 

concentration being the contribution from vehicle exhaust (Pierson, Gertler et al. 1996). By 

measuring the air flow rate thought the tunnel, the tunnel distance and the number of vehicles 

traveling though tunnel, pollutant concentrations can be converted to a mass per unit distance 

emission factor. Using a carbon mass balance similar to road-side studies provides fuel based 

emission factors(McGaughey, Desai et al. 2004). Tunnel studies measure emissions generated by 

vehicles traveling a certain distance, offering a more realistic measure of actual vehicle operation 

as compared to the instant of vehicle operation captured by road-side methods. However, tunnels 

studies are opportunistic – a suitable tunnel must be present – making this approach unsuitable for 

developing emission factors for use in other locations. Tunnel studies are best suited for 

validation of emission models. 

More recent studies have begun to develop additional methods to measure in-use 

emissions. Given the right atmospheric and topographical conditions, a gentle breeze 

141



perpendicular to a flat roadway and no physical obstacles between the road and metrology 

equipment, it is possible to measure the concentration of pollutants from vehicle traffic alongside 

a roadway (Corsmeier, Imhof et al. 2005). Analogous to a tunnel study, the concentration of 

pollutants is measured upwind and downwind of a roadway, the difference being the contribution 

from vehicles. This method may be more representative of vehicle operation (travel in tunnels not 

being the norm); however, it is prone to error when conditions are not ideal. The introduction of 

more compact and portable analytical equipment now allows for onboard emission 

measurements(Younglove, Scora et al. 2005). Onboard emission measurement allows for 

laboratory type analytics to be used in the field, measuring emissions produced from actual 

vehicle operation rather than duty cycles on a dynamometer. Onboard methods are being used to 

develop EPA’s next generation mobile emission model (MOVES). Onboard emission 

measurement can be made by specifying a particular route for an instrumented vehicle to travel, 

specifying that the instrumented vehicle make certain maneuvers (such as hard accelerations) or 

simply instrumenting a large sample of vehicles in a number of different regions to develop 

representative measurements(Younglove, Scora et al. 2005).  

In-use measurements provide a valuable check on models based largely, if not entirely, 

on laboratory measurements and assumptions of typical driving conditions and vehicle fleets. But 

in use measurements of locomotive emission have not been made, or at least have not be 

published. Given the absence of in-use measurements to check the accuracy of locomotive 

emission models, this report critically examines the laboratory based exhaust emission 

measurements that have been made. 
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Appendix F-1 
 

Appendix F-1 Table of Contents 
 

   
Worksheet Description Source 

Power Brake horse power (bhp) by throttle notch for each locomotive model group Various sources, see Appendix F-2 

Fuel Consumption Factors Fuel consumption rate (lb/hr of diesel fuel) by throttle notch for each locomotive model group Various sources, see Appendix F-2 

C60 Fuel consumption data and estimates for GE C60 Locomotives Various sources, see Appendix F-2 

Dash9 Fuel consumption data and estimates for GE Dash-9 Locomotives Various sources, see Appendix F-2 

Dash8 Fuel consumption data and estimates for GE Dash-8 Locomotives Various sources, see Appendix F-2 

Dash7 Fuel consumption data and estimates for GE Dash-7 Locomotives Various sources, see Appendix F-2 

SD90 Fuel consumption data and estimates for EMD SD90 Locomotives Various sources, see Appendix F-2 

SD70 Fuel consumption data and estimates for EMD SD70 Locomotives Various sources, see Appendix F-2 

GP60 Fuel consumption data and estimates for EMD GP60 Locomotives Various sources, see Appendix F-2 

GP50 Fuel consumption data and estimates for EMD GP50 Locomotives Various sources, see Appendix F-2 

GP4x Fuel consumption data and estimates for EMD GP4x Locomotives Various sources, see Appendix F-2 

GP3x Fuel consumption data and estimates for EMD GP3x Locomotives Various sources, see Appendix F-2 

Switch Fuel consumption data and estimates for low powered switcher locomotives Various sources, see Appendix F-2 

UP National Roster UP 2008 Locomotive roster by make and model and model group UP website: http://www.uprr.com/aboutup/reference/locorost.shtml 
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Locomotive power by throttle notch (see individual worksheets for calculation details) 

             

  
DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

UID Model Group bhp bhp bhp bhp bhp bhp bhp bhp bhp bhp bhp 

1 Switch N 70 15 15 72 233 440 669 885 1,109 1,372 1,586 

2 Switch 0 70 15 15 72 233 440 669 885 1,109 1,372 1,586 

3 Switch 1 70 15 15 72 233 440 669 885 1,109 1,372 1,586 

4 Switch 2 70 15 15 72 233 440 669 885 1,109 1,372 1,586 

5 GP3x N 49 13 14 91 328 574 919 1,210 1,492 1,862 2,135 

6 GP3x 0 49 13 14 91 328 574 919 1,210 1,492 1,862 2,135 

7 GP3x 1 49 13 14 91 328 574 919 1,210 1,492 1,862 2,135 

8 GP3x 2 49 13 14 91 328 574 919 1,210 1,492 1,862 2,135 

9 GP4x N 69 17 17 105 395 686 1,034 1,461 1,971 2,661 3,159 

10 GP4x 0 69 17 17 105 395 686 1,034 1,461 1,971 2,661 3,159 

11 GP4x 1 69 17 17 105 395 686 1,034 1,461 1,971 2,661 3,159 

12 GP4x 2 69 17 17 105 395 686 1,034 1,461 1,971 2,661 3,159 

13 GP50 N 55 12 12 228 460 865 1,242 1,756 2,489 3,318 3,774 

14 GP50 0 55 12 12 228 460 865 1,242 1,756 2,489 3,318 3,774 

15 GP50 1 55 12 12 228 460 865 1,242 1,756 2,489 3,318 3,774 

16 GP50 2 55 12 12 228 460 865 1,242 1,756 2,489 3,318 3,774 

17 GP60 N 18 7 7 198 430 974 1,349 1,784 2,415 3,500 4,051 

18 GP60 0 18 7 7 198 430 974 1,349 1,784 2,415 3,500 4,051 

19 GP60 1 18 7 7 198 430 974 1,349 1,784 2,415 3,500 4,051 

20 GP60 2 18 7 7 198 430 974 1,349 1,784 2,415 3,500 4,051 

21 SD7x N 18 14 18 205 438 980 1,517 2,000 2,882 3,652 4,205 

22 SD7x 0 18 14 18 205 438 980 1,517 2,000 2,882 3,652 4,205 

23 SD7x 1 15 13 14 216 432 975 1,437 1,981 2,855 3,626 4,178 

24 SD7x 2 325 21 40 266 625 1,144 1,564 2,036 3,046 3,743 4,498 

25 SD90 N 20 20 18 382 781 1,544 2,232 2,831 4,027 5,560 6,444 

26 SD90 0 20 20 18 382 781 1,544 2,232 2,831 4,027 5,560 6,444 

27 SD90 1 20 20 18 382 781 1,544 2,232 2,831 4,027 5,560 6,444 

28 SD90 2 20 20 18 382 781 1,544 2,232 2,831 4,027 5,560 6,444 

29 Dash7 N 128 20 20 143 311 714 1,058 1,550 2,058 2,604 3,000 

30 Dash7 0 128 20 20 143 311 714 1,058 1,550 2,058 2,604 3,000 

31 Dash7 1 128 20 20 143 311 714 1,058 1,550 2,058 2,604 3,000 

32 Dash7 2 128 20 20 143 311 714 1,058 1,550 2,058 2,604 3,000 

33 Dash8 N 170 27 27 170 370 850 1,260 1,845 2,450 3,100 3,600 

34 Dash8 0 170 27 27 170 370 850 1,260 1,845 2,450 3,100 3,600 

35 Dash8 1 170 27 27 170 370 850 1,260 1,845 2,450 3,100 3,600 

36 Dash8 2 170 27 27 170 370 850 1,260 1,845 2,450 3,100 3,600 

37 Dash9 N 25 12 11 195 498 1,036 1,550 2,223 2,941 3,664 4,481 
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UID Model Group 
DB 
bhp 

LI 
bhp 

I 
bhp 

N1 
bhp 

N2 
bhp 

N3 
bhp 

N4 
bhp 

N5 
bhp 

N6 
bhp 

N7 
bhp 

N8 
bhp 

38 Dash9 0 27 13 12 209 489 1,021 1,541 2,211 2,916 3,345 4,487 

39 Dash9 1 35 5 5 191 503 994 1,516 2,071 2,735 3,422 4,219 

40 Dash9 2 28 10 17 268 587 1,187 1,683 2,296 3,046 3,773 4,454 

41 C60 N 36 17 16 276 708 1,471 2,202 3,158 4,178 5,204 6,365 

42 C60 0 36 17 16 276 708 1,471 2,202 3,158 4,178 5,204 6,365 

43 C60 1 36 17 16 276 708 1,471 2,202 3,158 4,178 5,204 6,365 

44 C60 2 36 17 16 276 708 1,471 2,202 3,158 4,178 5,204 6,365 
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Locomotive fuel consumption rates by throttle notch (see individual worksheets for calculation details) 

             

  
DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

UID Model Group lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr 

1 Switch N 80 26 26 41 95 167 249 332 419 529 630 

2 Switch 0 80 26 26 41 95 167 249 332 419 529 630 

3 Switch 1 80 26 26 41 95 167 249 332 419 529 630 

4 Switch 2 80 26 26 41 95 167 249 332 419 529 630 

5 GP3x N 70 27 30 52 134 223 347 456 572 727 861 

6 GP3x 0 70 27 30 52 134 223 347 456 572 727 861 

7 GP3x 1 70 27 30 52 134 223 347 456 572 727 861 

8 GP3x 2 70 27 30 52 134 223 347 456 572 727 861 

9 GP4x N 114 40 40 64 167 275 404 556 740 994 1,177 

10 GP4x 0 114 40 40 64 167 275 404 556 740 994 1,177 

11 GP4x 1 114 40 40 64 167 275 404 556 740 994 1,177 

12 GP4x 2 114 40 40 64 167 275 404 556 740 994 1,177 

13 GP50 N 93 44 44 115 191 334 463 634 868 1,143 1,313 

14 GP50 0 93 44 44 115 191 334 463 634 868 1,143 1,313 

15 GP50 1 93 44 44 115 191 334 463 634 868 1,143 1,313 

16 GP50 2 93 44 44 115 191 334 463 634 868 1,143 1,313 

17 GP60 N 87 22 25 88 166 354 482 634 842 1,175 1,361 

18 GP60 0 87 22 25 88 166 354 482 634 842 1,175 1,361 

19 GP60 1 87 22 25 88 166 354 482 634 842 1,175 1,361 

20 GP60 2 87 22 25 88 166 354 482 634 842 1,175 1,361 

21 SD7x N 46 26 77 91 170 355 536 697 973 1,195 1,375 

22 SD7x 0 46 26 77 91 170 355 536 697 973 1,195 1,375 

23 SD7x 1 43 23 32 91 167 357 517 701 988 1,203 1,367 

24 SD7x 2 134 24 54 107 234 432 600 760 1,093 1,305 1,525 

25 SD90 N 50 32 32 156 288 548 566 961 1,343 1,780 2,079 

26 SD90 0 50 32 32 156 288 548 566 961 1,343 1,780 2,079 

27 SD90 1 50 32 32 156 288 548 566 961 1,343 1,780 2,079 

28 SD90 2 50 32 32 156 288 548 566 961 1,343 1,780 2,079 

29 Dash7 N 228 31 39 61 118 267 385 547 695 857 986 

30 Dash7 0 228 31 39 61 118 267 385 547 695 857 986 

31 Dash7 1 228 31 39 61 118 267 385 547 695 857 986 

32 Dash7 2 228 31 39 61 118 267 385 547 695 857 986 

33 Dash8 N 299 43 66 76 141 320 455 647 819 1,004 1,154 

34 Dash8 0 299 43 66 76 141 320 455 647 819 1,004 1,154 

35 Dash8 1 299 43 66 76 141 320 455 647 819 1,004 1,154 

36 Dash8 2 299 43 66 76 141 320 455 647 819 1,004 1,154 

37 Dash9 N 43 20 25 81 188 392 571 795 1,009 1,236 1,521 

38 Dash9 0 43 20 28 81 183 381 553 830 1,026 1,275 1,597 

39 Dash9 1 55 20 20 86 185 373 512 725 945 1,169 1,470 

148



  
DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

UID Model Group lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr 

40 Dash9 2 44 17 20 102 210 449 615 830 1,067 1,319 1,609 

41 C60 N 61 28 36 115 266 557 812 1,129 1,433 1,756 2,161 

42 C60 0 61 28 36 115 266 557 812 1,129 1,433 1,756 2,161 

43 C60 1 61 28 36 115 266 557 812 1,129 1,433 1,756 2,161 

44 C60 2 61 28 36 115 266 557 812 1,129 1,433 1,756 2,161 
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Fuel consumption data and estimates for GE C60 Locomotives 
         

                 
No test data available 

      
Fuel Consumption (lb/hr) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

   
C60 6250 

 
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

                 

      
Power (bhp) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

   
C60 6250 

 
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

                 
Estimated Values 

      
Fuel Consumption (lb/hr) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

   
C60 6250 

 
60.55 27.71 36.05 115.15 266 556.97 811.7 1129 1433 1756 2161.1 

                 

      
Power (bhp) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

   
C60 6250 

 
35.51 16.79 16.01 276.34 708 1471.1 2202 3158.2 4178 5204 6365.3 

                 Adjustment 
factor 1.42 

              
Adjustment Factor: ((C60 HP -  44CW HP)/44CE HP)+1) 

          
Fuel Consumption Estimate: Adjustment factor*44CW Fuel Consumption 

       
Fuel Power Estimate: Adjustment factor*44CW Power 
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Fuel consumption data and estimates for GE Dash-9 Locomotives 
           

                 
Values from All Available Test Data 

      
Fuel Consumption (lb/hr) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

4 9 0.033 Dash-9 40C 4000 Pre 40 16 26 57 159 358 505 720 914 1114 1315 

4 4 0.033 Dash-9 40C 4000 Pre 41 16 22 59 160 359 506 719 913 1114 1315 

14 53 0.033 Dash-9 44CW 4400 Pre 47 21 25 82 189 384 569 789 1003 1221 1514 

14 54 0.033 Dash-9 44CW 4400 Pre 42 22 27 83 188 393 568 785 994 1216 1505 

14 55 0.033 Dash-9 44CW 4400 Pre 44 22 26 81 188 392 569 784 994 1220 1509 

13 56 0.033 Dash-9 44CW 4400 Pre 44 20 25 80 186 394 574 799 1020 1258 1553 

13 57 0.033 Dash-9 44CW 4400 Pre 41 16 27 81 184 393 575 807 1022 1256 1554 

13 58 0.033 Dash-9 44CW 4400 Pre 41 17 22 79 185 388 563 794 1009 1240 1518 

15 59 0.033 Dash-9 44CW 4400 Pre 41 20 27 83 188 392 578 797 1016 1241 1554 

15 60 0.033 Dash-9 44CW 4400 Pre 45 22 26 80 188 393 573 795 1011 1241 1547 

15 61 0.033 Dash-9 44CW 4400 Pre 43 19 25 80 191 399 577 808 1024 1260 1508 

1 1 0.033 Dash-9 44CW 4400 Pre 42 18 25 82 188 395 570 794 1003 1233 1493 

1 6 0.033 Dash-9 44CW 4400 Pre 40 18 25 80 187 391 570 792 1003 1214 1481 

10 23 0.2857 Dash-9 44CW 4400 0 43 20 28 81 183 381 553 830 1026 1275 1597 

11 24 0.2857 GE AC4400 4400 1 55 20 20 86 185 373 512 725 945 1169 1470 

12 25 0.2857 GE GEVO 4400 2 44 17 20 102 210 449 615 830 1067 1319 1609 

                 

151



      
Power (bhp) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

4 9 0.033 Dash-9 40C 4000 Pre 23 10 10 125 418 952 1399 2054 2734 3442 4101 

4 4 0.033 Dash-9 40C 4000 Pre 23 10 10 133 419 948 1400 2051 2734 3438 4105 

14 53 0.033 Dash-9 44CW 4400 Pre 26 14 14 196 500 1041 1550 2223 2941 3660 4499 

14 54 0.033 Dash-9 44CW 4400 Pre 23 12 12 197 495 1032 1549 2223 2942 3663 4490 

14 55 0.033 Dash-9 44CW 4400 Pre 33 16 16 196 496 1034 1555 2224 2946 3662 4498 

13 56 0.033 Dash-9 44CW 4400 Pre 25 11 11 197 497 1035 1551 2223 2941 3667 4495 

13 57 0.033 Dash-9 44CW 4400 Pre 25 11 11 179 507 1034 1549 2225 2942 3665 4478 

13 58 0.033 Dash-9 44CW 4400 Pre 22 10 10 196 499 1039 1550 2222 2939 3665 4495 

15 59 0.033 Dash-9 44CW 4400 Pre 22 16 10 201 497 1035 1552 2223 2942 3664 4504 

15 60 0.033 Dash-9 44CW 4400 Pre 23 10 10 190 497 1038 1549 2224 2941 3665 4506 

15 61 0.033 Dash-9 44CW 4400 Pre 30 10 10 194 497 1035 1549 2222 2938 3664 4325 

1 1 0.033 Dash-9 44CW 4400 Pre 23 10 10 197 498 1035 1548 2223 2941 3661 4499 

1 6 0.033 Dash-9 44CW 4400 Pre 23 10 10 197 499 1034 1550 2225 2941 3665 4504 

10 23 0.2857 Dash-9 44CW 4400 0 27 13 12 209 489 1021 1541 2211 2916 3345 4487 

11 24 0.2857 GE AC4400 4400 1 35 5 5 191 503 994 1516 2071 2735 3422 4219 

12 25 0.2857 GE GEVO 4400 2 28 10 17 268 587 1187 1683 2296 3046 3773 4454 
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Average Values 

      
Fuel Consumption (lb/hr) 

      Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

   
40C 4000 Pre 40 16 24 58 159 358 505 719 914 1114 1315 

   
44CW 4400 Pre 43 20 25 81 188 392 571 795 1009 1236 1521 

   
44CW 4400 0 43 20 28 81 183 381 553 830 1026 1275 1597 

   
GE AC4400 4400 1 55 20 20 86 185 373 512 725 945 1169 1470 

      GE GEVO 4400 2 44 17 20 102 210 449 615 830 1067 1319 1609 

                 

      
Power (bhp) 

      Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

   
40C 4000 Pre 23 10 10 129 419 950 1400 2053 2734 3440 4103 

   
44CW 4400 Pre 25 12 11 195 498 1036 1550 2223 2941 3664 4481 

   
44CW 4400 0 27 13 12 209 489 1021 1541 2211 2916 3345 4487 

   
GE AC4400 4400 1 35 5 5 191 503 994 1516 2071 2735 3422 4219 

      GE GEVO 4400 2 28 10 17 268 587 1187 1683 2296 3046 3773 4454 
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Fuel consumption data and estimates for GE Dash-8 Locomotives 
         

                 
Values from All Available Test Data 

      
Fuel Consumption (lb/hr) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

41 113   7FDL-16 3600 Pre N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

                 

      
Power (bhp) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

41 113   7FDL-16 3600 Pre 170 27 27 170 370 850 1260 1845 2450 3100 3600 

                 
Estimated Fuel Consumption Values 

      
Fuel Consumption (lb/hr) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

41 113   7FDL-16 3600 Pre 298.609 42.93 65.61 76.434 140.706 320.3605 454.842 646.5815 818.6083 1004.031 1153.97 

                 
Estimated method: ((Dash8 HP - Dash9 HP)/Dash9 HP)+1)*Dash 9 Fuel Consumption 
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Fuel consumption data and estimates for GE Dash-7 Locomotives 
          

                 
Values from All Available Test Data 

      
Fuel Consumption (lb/hr) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

42 114   7FDL-16 3000 Pre N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

                 

      
Power (bhp) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

42 114   7FDL-16 3000 Pre 128 20 20 143 311 714 1058 1550 2058 2604 3000 

                 
Estimated Fuel Consumption Values 

      
Fuel Consumption (lb/hr) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

42 114   7FDL-16 3000 Pre 228.049 30.91667 39.16667 61.28571 118.0379 266.5385 385.4706 546.7431 694.8968 856.6272 986.4714 

                 
Estimated method: ((Dash7 HP - Dash9 HP)/Dash9 HP)+1)*Dash 9 Fuel Consumption 
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Fuel consumption data and estimates for EMD SD90 Locomotives 
          

                 
No test data available 

      
Fuel Consumption (lb/hr) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

   
SD90 6250 

 
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

                 

      
Power (bhp) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

   
SD90 6250 

 
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

                 
Estimated Values 

      
Fuel Consumption (lb/hr) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

   
SD90 6250 

 
49.7093 32.12209 32.12209 155.6686 287.5 547.7471 565.5523 960.6105 1343.023 1779.506 2079.07 

                 

      
Power (bhp) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

   
SD90 6250 

 
20.49419 20.49419 18.31395 382.2674 781.25 1543.605 2231.831 2830.669 4026.89 5560.32 6444.041 

                 
Adjustment factor 1.453488 

              
Adjustment Factor: ((SD90 HP - SD75 HP)/SD75 HP)+1) 

           
Fuel Consumption Estimate: Adjustment factor*SD75 Fuel Consumption 

          
Fuel Power Estimate: Adjustment factor*SD75 Power 
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Fuel consumption data and estimates for EMD SD70 Locomotives 
            

                 
Values from All Available Test Data 

      
Fuel Consumption (lb/hr) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

16 44 0.033 EMD SD70MAC 4000 Pre 46.6 26.5 46.6 92.4 170.9 354.5 538.5 706.8 993.6 1214.4 1393.2 

16 45 0.033 EMD SD70MAC 4000 Pre 45.5 24.8 455.5 90 171.6 356 544 705.6 1002.8 1220.4 1396.8 

16 46 0.033 EMD SD70MAC 4000 Pre 48 26 48 91.8 172.3 358.5 542.6 711.3 1007.1 1225.5 1403.1 

17 47 0.033 EMD SD70MAC 4000 Pre 47.4 28.2 47.4 94.2 171 353 528.9 690 962.4 1182 1353.6 

17 48 0.033 EMD SD70MAC 4000 Pre 46 26.6 46 92.4 171.6 352.8 531.6 692.4 974 1189.2 1365.6 

17 49 0.033 EMD SD70MAC 4000 Pre 47.6 27.2 47.6 92.7 171 353.4 530.5 691.8 967.7 1190 1361 

17 62 0.033 EMD SD70MAC 4000 Pre 47.3 25.3 47.3 91.3 171.4 354 532.5 696 979.7 1196 1369.2 

18 50 0.033 EMD SD70MAC 4000 Pre 47 25.2 47 88 169.2 357.6 541.2 699.6 957.6 1182 1370.4 

18 51 0.033 EMD SD70MAC 4000 Pre 46.2 26.5 46.2 92 170 358 540 698 958 1184 1370 

18 52 0.033 EMD SD70MAC 4000 Pre 48.6 26 48.6 91 172 358 545 693 963 1194 1375 

2 2 0.033 EMD SD70MAC 4000 Pre 42.6 23.1 23.1 88.9 166.2 350.2 529 691.5 956.4 1183.8 1373.1 

2 7 0.033 EMD SD70MAC 4000 Pre 43.8 22.3 22.3 87.6 167.4 348.6 528 689.4 957 1184.2 1372 

8 21 0.2875 EMD SD70MAC 4000 1 43 23 32 91 167 357 517.2 700.8 987.6 1203 1366.8 

3 3 0.033 EMD SD75 4300 Pre 33.6 21.4 21.4 108 199.2 376.8 525.6 660 924 1224.6 1430.4 

3 8 0.033 EMD SD75 4300 Pre 34.8 22.8 22.8 106.2 196.4 376.9 252.6 661.8 924 1224 1430.4 

9 22 0.2875 EMD SD70ACe 4300 2 133.8 24 54.4 106.8 234 432 600 760 1093.4 1305 1525 
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Power (bhp) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

16 44 0.033 EMD SD70MAC 4000 Pre 19 14 19 205 437 980 1519 2005 2881 3655 4210 

16 45 0.033 EMD SD70MAC 4000 Pre 19 14 19 205 439 980 1519 2005 2881 3654 4206 

16 46 0.033 EMD SD70MAC 4000 Pre 19 14 19 205 439 980 1520 2008 2891 3652 4208 

17 47 0.033 EMD SD70MAC 4000 Pre 19 14 19 205 438 980 1515 2005 2883 3655 4210 

17 48 0.033 EMD SD70MAC 4000 Pre 19 14 19 205 439 980 1514 2004 2883 3657 4211 

17 49 0.033 EMD SD70MAC 4000 Pre 19 14 19 205 438 980 1515 2004 2883 3657 4211 

17 62 0.033 EMD SD70MAC 4000 Pre 19 14 19 205 439 980 1513 2005 2883 3654 4208 

18 50 0.033 EMD SD70MAC 4000 Pre 19 13 19 205 438 980 1519 1996 2883 3656 4210 

18 51 0.033 EMD SD70MAC 4000 Pre 18.9 13 18.9 205 438 980 1519 1995 2883 3656 4209 

18 52 0.033 EMD SD70MAC 4000 Pre 19 13 19 205 438 980 1519 1965 2881 3652 4197 

2 2 0.033 EMD SD70MAC 4000 Pre 13.9 13.9 10.8 202 435 979 1514 2003 2874 3640 4185 

2 7 0.033 EMD SD70MAC 4000 Pre 13.9 13.9 10.8 202 436 978 1514 2003 2879 3641 4189 

8 21 0.2875 EMD SD70MAC 4000 1 15.4 12.6 13.7 216 432 974.9 1437.4 1981.3 2854.8 3625.9 4177.9 

3 3 0.033 EMD SD75 4300 Pre 14.2 14.2 12.6 263 539 1062 1531 1940 2767 3824 4433 

3 8 0.033 EMD SD75 4300 Pre 14 14 12.6 263 536 1062 1540 1955 2774 3827 4434 

9 22 0.2875 EMD SD70ACe 4300 2 325 21 40 266 625 1144 1564 2036 3046 3743 4498 
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Average Values 

      
Fuel Consumption (lb/hr) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

      SD70MAC 4000 Pre 46.4 25.6 77.1 91.0 170.4 354.6 536.0 697.1 973.3 1195.5 1375.3 

   
SD75 4300 Pre 34.2 22.1 22.1 107.1 197.8 376.9 389.1 660.9 924.0 1224.3 1430.4 

   
SD70MAC 4000 1 43.0 23.0 32.0 91.0 167.0 357.0 517.2 700.8 987.6 1203.0 1366.8 

      SD70ACe 4300 2 133.8 24.0 54.4 106.8 234.0 432.0 600.0 760.0 1093.4 1305.0 1525.0 

                 

      
Power (bhp) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

      SD70MAC 4000 Pre 18.1 13.7 17.6 204.5 437.8 979.8 1516.7 1999.8 2882.1 3652.4 4204.5 

   
SD75 4300 Pre 14.1 14.1 12.6 263.0 537.5 1062.0 1535.5 1947.5 2770.5 3825.5 4433.5 

   
SD70MAC 4000 1 15.4 12.6 13.7 216.0 432.0 974.9 1437.4 1981.3 2854.8 3625.9 4177.9 

      SD70ACe 4300 2 325.0 21.0 40.0 266.0 625.0 1144.0 1564.0 2036.0 3046.0 3743.0 4498.0 
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Fuel consumption data and estimates for EMD GP60 Locomotives 
           

                 
Values from All Available Test Data 

      
Fuel Consumption (lb/hr) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

29 101 0.27 16-710G3A 3600 Pre 134 23 23 88 167 351 478 635 888 1147 1328 

7 20 0.2857 16-710G3A 3800 0 39 20 26 87 165 356 486 632 795 1202 1394 

                 

      
Power (bhp) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

29 101 0.27 16-710G3A 3600 Pre 23 5 5 198 430 975 1351 1817 2637 3496 4035 

7 20 0.2857 16-710G3A 3800 0 12.8 8 9.8 198.6 430.4 973.6 1347.3 1750.7 2192.6 3504.2 4067.7 

                 
Average Values 

      
Fuel Consumption (lb/hr) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

      16-710G3A   pre/0 86.5 21.5 24.5 87.5 166 353.5 482 633.5 841.5 1174.5 1361 

                 

      
Power (bhp) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

      16-710G3A   pre/0 17.9 6.5 7.4 198.3 430.2 974.3 1349.15 1783.85 2414.8 3500.1 4051.35 
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Fuel consumption data and estimates for EMD GP50 Locomotives 
          

                 
Values from All Available Test Data 

      
Fuel Consumption (lb/hr) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

23 98 0.28 16-645F3 3500 Pre 94 66 66 137 203 305 445 615 816 1150 1345 

25 99 0.23 16-645F3B 3600 Pre 91 22 22 92 179 363 480 652 919 1136 1281 

                 

      
Power (bhp) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

23 98 0.28 16-645F3 3500 Pre 74 15 15 250 444 725 1131 1635 2212 3182 3681 

25 99 0.23 16-645F3B 3600 Pre 36 9 9 205 475 1005 1353 1876 2766 3454 3866 

                 
Average Values 

      
Fuel Consumption (lb/hr) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

average           92.5 44 44 114.5 191 334 462.5 633.5 867.5 1143 1313 

                 

      
Power (bhp) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

average           55 12 12 227.5 459.5 865 1242 1755.5 2489 3318 3773.5 
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Fuel consumption data and estimates for EMD GP4x Locomotives 
           

                 
Values from All Available Test Data 

      
Fuel Consumption (lb/hr) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

19 96 0.24 16-645E3 (SD40) 3000 Pre 114 40 40 64 167 275 404 556 740 994 1177 

20 102 0.26 20-645E3 (SD45) 3800 Pre 157 47 47 68 187 310 468 665 865 1227 1432 

                 

      
Power (bhp) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

19 96 0.24 16-645E3 (SD40) 3000 Pre 69 17 17 105 395 686 1034 1461 1971 2661 3159 

20 102 0.26 20-645E3 (SD45) 3800 Pre 95 17 17 111 435 781 1219 1741 2299 3344 3819 
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Fuel consumption data and estimates for EMD GP3x 
Locomotives 

            

                 
Values from All Available Test Data 

      
Fuel Consumption (lb/hr) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

6 19 0.2857 16-645E (GP38) 2000 0 36 21 27.7 48.9 128.4 219.5 364.8 475.2 579.6 741.6 867.6 

38 110 0.29 16-645E (GP38) 2000 Pre 103 32 32 55 137 226 331 442 567 710 854 

21 92 0.33 12-645E3B (GP39-2) 2500 Pre 76 28 28 54 159 223 324 404 549 749 872 

                 

      
Power (bhp) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

6 19 0.2857 16-645E (GP38) 2000 0 17.6 10.3 13.4 82.9 314.7 557.1 970.3 1269.4 1516.6 1890.9 2115.4 

38 110 0.29 16-645E (GP38) 2000 Pre 82 15 15 98 333 589 871 1161 1465 1810 2124 

21 92 0.33 12-645E3B (GP39-2) 2500 Pre 36 11 11 111 417 594 878 1105 1517 2103 2451 

                 
UP Roster Weighted Average 

      
Fuel Consumption (lb/hr) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

   
UP GP3x 

  

69.8079
4 

26.5710
6 

29.7623
6 

52.0471
2 

133.94
6 

222.761
8 

346.767
7 

456.013
3 

572.148
8 

726.899
1 

861.330
6 

                 

      
Power(bhp) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

   
UP GP3x 

  

49.1462
2 

12.5718
3 14.0484 

91.4235
6 

328.26
3 

574.042
5 

918.629
4 

1209.97
9 

1492.04
1 

1862.41
5 

2135.39
5 

 

 

Fuel consumption data and estimates for low powered switcher locomotives 
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Values from All Available Test Data 

      
Fuel Consumption (lb/hr) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

37 91 0.22 12-645E 1500 (GP15) Pre 80 26 26 41 95 167 249 332 419 529 630 

                 

      
Power (bhp) 

Loco Test Sulfur Model HP Tier DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

37 91 0.22 12-645E 1500 (GP15) Pre 70 15 15 72 233 440 669 885 1109 1372 1586 
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UP 2008 Roster 
 
Model Group Count Proportion 

Dash8 4000 392 0.046 

Dash8 4100 199 0.023 

Dash9 4400 376 0.044 

GE C44AC 1488 0.173 

GEVO 4400 506 0.059 

GE AC60 80 0.009 

Other 362 0.042 

GP15 210 0.024 

GP20 40 0.005 

GP-38 5 0.001 

GP38-2 671 0.078 

GP39-2 37 0.004 

GP40 5 0.001 

GP40-2 196 0.023 

GP50 11 0.001 

GP60 186 0.022 

MP15 195 0.023 

SD38-2 68 0.008 

SD40 1 0.000 

SD40-2 996 0.116 

SD60 375 0.044 

SD70ACE 315 0.037 

SD70M 1755 0.204 

SD90 21 0.002 

SW1500 105 0.012 

Total 8595   

      

GP38x 744 0.953 

GP39x 37 0.047 

Total 781   
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Appendix G 
 

Appendix G Table of Contents 
 

   
Worksheet Description Source 

G-1 Railyard Locomotive Inventory, Average Fuel Consumption Rates and Fuel Efficiency UP and BNSF rail yard HRAs: http://www.arb.ca.gov/railyard/hra/hra.htm and Appendix G-2 

G-2 Switcher locomotive fuel consumption and fuel efficiency data and estimates Appendix F-2 

G-3 BNSF rail yard switcher locomotive duty cycles BNSF rail yard HRAs: http://www.arb.ca.gov/railyard/hra/hra.htm 

G-4 UP and BNSF rail yard annual operating hours UP and BNSF rail yard HRAs: http://www.arb.ca.gov/railyard/hra/hra.htm 
 

 

 

 

 

 

 

 

 

 

 

Appendix G-1: Railyard Locomotive Inventory, Average Fuel Consumption Rates and Fuel 
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Efficiency 

            

   
Major California BNSF Rail Yards - Locomotives per Rail Yard 

Yard 
Locoa FC Locob HP Barstow 

Commerc
e Eastern 

Commerce 
Mechanical Hobart Richmond 

San 
Bernadino 

San 
Diego Stockton 

Willmington
-Watson 

GP25 EMD 12-645E3B 2500 1 1 1 1 1 2 2 0 0 

GP30 EMD 12-645E3B 2500 6 3 3 3 0 2 1 0 1 

GP35 EMD 12-645E3B 2500 12 4 4 4 1 4 0 2 3 

GP38  EMD 16-645E 2000 0 0 0 0 0 1 0 0 0 

GP38-2B EMD 16-645E 2000 1 0 0 
 

0 1 0 1 2 

GP39-2 EMD 12-645E3B 2300 1 6 6 6 0 2 1 3 2 

GP39E EMD 12-645E3B 2300 1 1 1 1 0 0 0 0 0 

GP39M EMD 12-645E3B 2300 0 0 0 0 0 0 0 1 0 

GP9 1.167x EMD 12-645Ed 1750 1 0 0 0 1 0 0 0 0 

SD39 EMD 12-645E3B 2500 8 1 1 1 0 2 0 0 0 

SD9 1.167 x EMD 12-645E 1750 1 0 0 0 0 0 0 0 0 

SW1000N .67 x EMD 12-645Ed 1000 4 0 0 0 0 0 0 0 0 

SW1200 .8 x EMD 12-645Ed 1200 2 0 0 0 0 0 0 0 0 

SW1500 EMD 12-645E 1500 4 0 0 0 1 0 0 1 0 

MK1200G .8 x EMD 12-645E 1200 0 2 2 2 0 0 0 0 0 

Total     42 18 18 18 4 14 4 8 8 
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Locomotive Groups for Fuel Consumption Calculationc                 

 
EMD 12-645E3B 2500 29 16 16 16 2 12 4 6 6 

 
EMD 16-645E 2000 1 0 0 0 0 2 0 1 2 

 
EMD 12-645E 1500 4 0 0 0 1 0 0 1 0 

 
.8 x EMD 12-645E 1200 2 2 2 2 0 0 0 0 0 

 
.67 x EMD 12-645E 1000 4 0 0 0 0 0 0 0 0 

 
1.167x EMD 12-645E 1750 2 0 0 0 1 0 0 0 0 

  Total   42 18 18 18 4 14 4 8 8 

      Yard Fuel Consumption Rates (gal/hr) 

   
12.04 13.01 13.01 13.01 12.56 13.97 13.94 13.44 13.99 

      Yard Fuel Efficiency (bhp-hr/gal) 

      15.75 15.96 15.96 15.96 15.56 15.91 16.08 15.80 15.78 

  Average BNSF Rail yard fuel consumption Rate (gal/hr) 
      

12.87 

  Average BNSF Rail yard fuel efficiency (bhp-hr/gal)             15.86 

aActual yard locomotives 
          

bMost similar switcher locomotive with available fuel consumption data 
       

cLocomotive group fuel consumption rates, for data and calcualtions see tab F-2 
      

dFuel rate from an EMD 12-645E multiplied by the ratio of the "yard locomotive" bhp to EMD 12-645E bhp; used to estimate fuel consumption rates for locomotive model with no available test data 
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Appendix G-2: Switcher locomotive fuel consumption and fuel efficiency data and estimates 
          

                

                
Assumed specific gravity of diesel fuel 0.85 

             
Assumed density of water (lb/gal) 8.345 

             

     
fuel consumption (lb/hr) 

LocoID Engine Model Loco Model Tier Rated Power DB LI I N1 N2 N3 N4 N5 N6 N7 N8 

37 EMD 12-645E EMD 1500, MP15, GP15 P 1500 80 26 26 41 95 167 249 332 419 529 630 

21 EMD 12-645E3B EMD GP39-2 P 2500 76 28 28 54 159 223 324 404 549 749 872 

24 EMD 12-645F3B N/A P 2850 33 18 18 95 134 274 364 484 615 841 991 

6 EMD 16-645E EMD GP38 0 2000 36 21 27.7 48.9 128.4 219.5 364.8 475.2 579.6 741.6 867.6 

38 EMD 16-645E EMD GP38, GP38-2 P 2000 103 32 32 55 137 226 331 442 567 710 854 

          fuel consumption (gal/hr) 

37 EMD 12-645E EMD 1500, MP15, GP15 P 1500 11.28 3.67 3.67 5.78 13.39 23.54 35.10 46.81 59.07 74.58 88.82 

21 EMD 12-645E3B EMD GP39-2 P 2500 10.71 3.95 3.95 7.61 22.42 31.44 45.68 56.96 77.40 105.59 122.93 

24 EMD 12-645F3B N/A P 2850 4.65 2.54 2.54 13.39 18.89 38.63 51.32 68.23 86.70 118.56 139.71 

6 EMD 16-645E EMD GP38 0 2000 5.08 2.96 3.91 6.89 18.10 30.94 51.43 66.99 81.71 104.55 122.31 

38 EMD 16-645E EMD GP38, GP38-2 P 2000 14.52 4.51 4.51 7.75 19.31 31.86 46.66 62.31 79.94 100.10 120.40 

          Power (bhp) 

37 EMD 12-645E EMD 1500, MP15, GP15 P 1500 70 15 15 72 233 440 669 885 1109 1372 1586 

21 EMD 12-645E3B EMD GP39-2 P 2500 36 11 11 111 417 594 878 1105 1517 2103 2451 

24 EMD 12-645F3B N/A P 2850 15 8 8 222 339 735 993 1322 1704 2389 2823 

6 EMD 16-645E EMD GP38 0 2000 17.6 10.3 13.4 82.9 314.7 557.1 970.3 1269.4 1516.6 1890.9 2115.4 

38 EMD 16-645E EMD GP38, GP38-2 P 2000 82 15 15 98 333 589 871 1161 1465 1810 2124 

          Proportion Time-in-notch 

  EPA Switch Duty Cycle       0 0.30 0.30 0.12 0.12 0.06 0.04 0.04 0.02 0.00 0.01 
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Duty Cycle Weighted 
Fuel Consumption 

Duty Cycle 
weighted Power Fuel Efficiency 

LocoID Engine Model Loco Model Tier Rated Power (gal/hr) (bhp) (bhp-hr/gal) 

37 EMD 12-645E EMD 1500, MP15, GP15 P 1500 10.62 160.09 15.08 

21 EMD 12-645E3B EMD GP39-2 P 2500 13.94 224.04 16.08 

24 EMD 12-645F3B N/A P 2850 14.70 252.90 17.20 

6 EMD 16-645E EMD GP38 0 2000 13.61 212.47 15.62 

38 EMD 16-645E EMD GP38, GP38-2 P 2000 14.17 211.98 14.96 

 
.8a x EMD 12-645E 

  
1200 8.49 128.07 15.08 

 
.67a x EMD 12-645E 

  
1000 7.11 107.26 15.08 

  1.167a x EMD 12-645E     1750 12.39 186.82 15.08 

arated power/EMD 12-645E rated power; used to estimate fuel consumption rates and fuel efficiencies for locomotives types where no test data are avaiable 
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Appendix G-3: BNSF rail yard switcher locomotive duty cycles 
    

           

 
Proportion of Time-in-notch 

Rail Yard DB I N1 N2 N3 N4 N5 N6 N7 N8 

Wilmington-Watson 0.00 0.60 0.13 0.10 0.06 0.03 0.02 0.02 0.01 0.04 

Commerce Mechanical 0.00 0.60 0.13 0.15 0.07 0.04 0.01 0.00 0.00 0.00 

Stockton 0.00 0.60 0.16 0.12 0.05 0.03 0.01 0.01 0.00 0.02 

Commerce Eastern 0.00 0.60 0.13 0.15 0.07 0.04 0.01 0.00 0.00 0.00 

Richmond 0.00 0.60 0.13 0.14 0.06 0.03 0.01 0.01 0.00 0.01 

Los Angeles-Hobart 0.00 0.60 0.13 0.15 0.07 0.04 0.01 0.00 0.00 0.00 

Barstow 0.00 0.78 0.06 0.04 0.05 0.03 0.02 0.01 0.00 0.01 

San Diego 0.00 0.98 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

San Bernardino 0.02 0.87 0.04 0.03 0.02 0.01 0.01 0.00 0.00 0.01 

EPA Switch Duty Cycle 0 0.60 0.12 0.12 0.06 0.04 0.04 0.02 0.00 0.01 
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Appendix G-4: UP and BNSF rail yard annual operating hours 

    
UID Rail Yard Rail Road Annual Operating Hours (2007) 

1 Wilmington-Watson BNSF 4,200 

2 Commerce Mechanical Facility BNSF 730 

3 Stockton BNSF 19,612 

4 Commerce Eastern BNSF 2,808 

5 Richmond BNSF 17,520 

6 Los Angeles-Hobart BNSF 30,112 

7 Barstow BNSF 70,080 

8 San Diego BNSF 9,958 

9 San Bernardino BNSF 70,064 

10 Oakland UP 29,565 

11 City of Industry UP 31,390 

12 Colton UP 100,740 

13 Dolores/ICTF UP 66,430 

14 Commerce UP 23,360 

15 LATC UP 40,880 

16 Mira Loma UP 16,060 

17 Stockton UP 55,480 
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Appendix H 
 

Appendix H Table of Contents 
 

   
Worksheet Description Source 

H-1 2006 UC Davis line-haul inventory by county GeoRail V1.0 

H-2 2006 UC Davis line-haul inventory by air district GeoRail V1.0, see method in Appendix I 

H-3 2006 UC Davis line-haul inventory by air basin GeoRail V1.0, see method in Appendix I 

H-4 2006 UC Davis rail yard inventory GeoRail V1.0 

H-5 2007 CARB inventory by county (controled) Detailed locomotive inventory received from CARB (Todd Sax) on 9/3/2009 (File available in Appendix C) 
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Appendix H-1: UC Davis Class I Line-Haul Emission Inventory, Year 2007 
    

         
County FC HC CO NOx PM10 PM25 SO2 CO2 

  (gal/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr) 

Alameda 1,687,550 12 46 225 6 6 4 18,788 

Alpine 
        

Amador 
        

Butte 5,773,462 43 159 771 21 20 14 64,277 

Calaveras 
        

Colusa 
        

Contra Costa 1,930,352 16 53 293 8 8 5 21,491 

Del Norte 
        

El Dorado 
        

Fresno 3,305,973 29 91 528 15 14 8 36,806 

Glenn 
        

Humboldt 
        

Imperial 15,461,735 114 425 2,063 55 53 36 172,139 

Inyo 70,141 1 2 9 0 0 0 781 

Kern 23,243,381 186 640 3,345 91 89 55 258,774 

Kings 2,024,217 20 56 354 10 10 5 22,536 

Lake 
        

Lassen 4,183,042 36 115 643 18 17 10 46,571 

Los Angeles 14,761,211 113 406 2,033 55 53 35 164,340 

Madera 3,113,003 27 86 489 14 13 7 34,658 

Marin 
        

Mariposa 
        

Mendocino 
        

Merced 4,299,756 38 118 684 19 19 10 47,870 

Mono 
        

Modoc 1,498,093 15 41 262 8 7 4 16,679 

Monterey 1,540,702 11 42 206 5 5 4 17,153 

Napa 
        

Nevada 3,003,634 22 83 401 11 10 7 33,440 

Orange 2,847,543 28 78 497 14 14 7 31,702 

Placer 9,741,675 72 268 1,300 35 34 23 108,456 

Plumas 6,219,108 48 171 859 23 22 15 69,239 

Riverside 22,923,033 180 631 3,250 88 86 54 255,207 

Sacramento 4,531,114 33 125 605 16 16 11 50,446 

San Benito 24,183 0 1 3 0 0 0 269 

San Bernardino 118,793,016 1,107 3,268 19,859 568 551 279 1,322,550 

San Diego 
        

San Francisco 
        

San Joaquin 5,804,523 47 160 850 23 23 14 64,623 
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San Luis Obispo 959,255 7 26 128 3 3 2 10,680 

San Mateo 
        

Santa Barbara 1,382,542 10 38 185 5 5 3 15,392 

Santa Clara 819,051 6 23 109 3 3 2 9,119 

Santa Cruz 38,098 0 1 5 0 0 0 424 

Shasta 4,304,917 32 118 575 15 15 10 47,928 

Sierra 154,035 1 4 21 1 1 0 1,715 

Siskiyou 5,918,610 44 163 790 21 20 14 65,893 

Solano 1,612,451 12 44 215 6 6 4 17,952 

Sonoma 
        

Stanislaus 2,746,615 24 76 424 12 11 6 30,579 

Sutter 1,461,330 11 40 195 5 5 3 16,269 

Tehama 2,473,954 18 68 330 9 9 6 27,543 

Trinity 
        

Tulare 3,512,693 30 97 538 15 15 8 39,108 

Tuolumne 
        

Ventura 948,368 7 26 127 3 3 2 10,558 

Yolo 463,399 3 13 62 2 2 1 5,159 

Yuba 2,406,356 18 66 321 9 8 6 26,791 

Total 285,982,120 2,421 7,868 43,552 1,213 1,177 671 3,183,905 
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Appendix H-2: UC Davis Class I Line-Haul Emission Inventory by Air District, Year 
2007 

    

         

 
Fuel Consumption HC CO NOx PM10 PM25 SO2 CO2 

Air District gal/yr tons/yr tons/yr tons/yr 
tons/y
r 

tons/y
r 

tons/y
r tons/yr 

 
3,739 0 0 1 0 0 0 42 

Amador 0 0 0 0 0 0 0 0 

Antelope Valley 2,635,216 19 73 352 9 9 6 29,338 

Bay Area 5,230,761 41 144 733 20 19 12 58,235 

Butte 5,773,752 43 159 771 21 20 14 64,281 

Calaveras 0 0 0 0 0 0 0 0 

Colusa 0 0 0 0 0 0 0 0 

El Dorado 0 0 0 0 0 0 0 0 

Feather River 3,865,921 29 106 516 14 13 9 43,040 

Glenn 0 0 0 0 0 0 0 0 

Great Basin Unified 0 0 0 0 0 0 0 0 

Imperial 15,528,229 115 427 2,072 55 54 36 172,879 

Kern 12,974,516 103 357 1,852 51 49 30 144,448 

Lassen 4,172,263 36 115 641 18 17 10 46,451 

Mendocino 0 0 0 0 0 0 0 0 

Modoc 1,500,527 15 41 262 8 7 4 16,706 

Mojave Desert 101,636,917 955 2,796 17,124 491 476 238 
1,131,54

7 

Monterey Bay Unified 1,602,545 12 44 214 6 6 4 17,842 

North Coast Unified 0 0 0 0 0 0 0 0 

Northern Sierra 9,036,486 68 249 1,235 33 32 21 100,605 

Northern Sonoma 0 0 0 0 0 0 0 0 

Placer 10,093,538 75 278 1,347 36 35 24 112,374 

Sacramento Metro 4,526,398 33 125 604 16 16 11 50,393 

San Diego 0 0 0 0 0 0 0 0 

San Joaquin Valley Unified 35,071,013 298 965 5,358 149 145 82 390,454 

San Luis Obispo 959,537 7 26 128 3 3 2 10,683 

Santa Barbara 1,381,988 10 38 184 5 5 3 15,386 

Shasta 4,297,276 32 118 573 15 15 10 47,843 

Siskiyou 5,925,927 44 163 791 21 20 14 65,975 

South Coast 55,057,023 454 1,515 8,165 226 219 129 612,963 

Tehama 2,472,927 18 68 330 9 9 6 27,532 

Tuolumne 0 0 0 0 0 0 0 0 

Ventura 948,729 7 26 127 3 3 2 10,562 

Yolo-Solano 1,286,863 10 35 172 5 4 3 14,327 

Total 285,982,090 2,421 7,868 43,552 1,213 1,177 671 
3,183,90

4 
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Appendix H-3: UC Davis Class I Line-Haul Emission Inventory by Air Basin, Year 2007 
    

         

 
Fuel Consumption HC CO NOx PM10 PM25 SO2 CO2 

Air Basin gal/yr tons/yr tons/yr tons/yr tons/yr tons/yr tons/yr tons/yr 

  3,739 0 0 1 0 0 0 42 

GREAT BASIN VALLEYS 0 0 0 0 0 0 0 0 

MOJAVE DESERT 117,246,650 1,077 3,226 19,328 551 534 275 1,305,334 

MOUNTAIN COUNTIES 14,896,381 112 410 2,017 54 52 35 165,845 

NORTH CENTRAL COAST 1,602,545 12 44 214 6 6 4 17,842 

NORTH COAST 0 0 0 0 0 0 0 0 

NORTHEAST PLATEAU 11,598,718 94 319 1,694 47 45 27 129,131 

SACRAMENTO VALLEY 26,456,781 195 728 3,531 94 91 62 294,549 

SALTON SEA 27,311,634 202 751 3,645 97 94 64 304,067 

SAN DIEGO 0 0 0 0 0 0 0 0 

SAN FRANCISCO BAY AREA 5,230,760 41 144 733 20 19 12 58,235 

SAN JOAQUIN VALLEY 35,071,013 298 965 5,358 149 145 82 390,454 

SOUTH CENTRAL COAST 3,290,254 24 91 439 12 11 8 36,631 

SOUTH COAST 43,273,621 366 1,191 6,592 184 178 102 481,775 

Total 285,982,094 2,421 7,868 43,552 1,213 1,177 671 3,183,904 
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Appendix H-4: Class I Rail Yard Switcher Locomotive Emission Inventory, Year 2007 
    

            
YUID Rail Yard Rail Road County Fuel_Consumption HC CO NOx PM10 PM25 SO2 CO2 

        (gal/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr) 

1 Wilmington-Watson BNSF Los Angeles 54,054 0.96 1.73 16.48 0.33 0.32 0.006 602 

2 Commerce Mechanical Facility BNSF Los Angeles 9,395 0.17 0.30 2.87 0.06 0.06 0.001 105 

3 Stockton BNSF San Joaquin 252,406 4.47 8.10 76.97 1.53 1.48 0.026 2,810 

4 Commerce Eastern BNSF Los Angeles 36,139 0.64 1.16 11.02 0.22 0.21 0.004 402 

5 Richmond BNSF Contra Costa 225,482 3.99 7.23 68.76 1.36 1.32 0.023 2,510 

6 Los Angeles-Hobart BNSF Los Angeles 387,541 6.86 12.43 118.19 2.34 2.27 0.040 4,315 

7 Barstow BNSF San Bernardino 901,930 15.97 28.93 275.05 5.45 5.29 0.093 10,041 

8 San Diego BNSF San Diego 128,159 2.27 4.11 39.08 0.77 0.75 0.013 1,427 

9 San Bernardino BNSF San Bernardino 901,724 15.96 28.92 274.99 5.45 5.29 0.093 10,039 

10 Oakland UP Alameda 380,502 6.74 12.20 116.04 2.30 2.23 0.039 4,236 

11 City of Industry UP Los Angeles 403,989 7.15 12.96 123.20 2.44 2.37 0.042 4,498 

12 Colton UP San Bernardino 1,296,524 22.95 41.58 395.39 7.84 7.60 0.134 14,434 

13 Dolores/ICTF UP Los Angeles 854,954 15.13 27.42 260.73 5.17 5.01 0.088 9,518 

14 Commerce UP Los Angeles 300,643 5.32 9.64 91.68 1.82 1.76 0.031 3,347 

15 LATC UP Los Angeles 526,126 9.31 16.87 160.45 3.18 3.08 0.054 5,857 

16 Mira Loma UP Riverside 206,692 3.66 6.63 63.03 1.25 1.21 0.021 2,301 

17 Stockton UP San Joaquin 714,028 12.64 22.90 217.75 4.32 4.19 0.074 7,949 

18 Roseville UP Placer 1,127,412 19.96 36.16 343.82 6.82 6.61 0.117 12,552 

  Total     8,707,700 154 279 2,656 53 51 0.90 96,945 
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Appendix H-5: CARB Clas I Line-Haul Emission Inventory, Year 2007 
  

        

 
FUEL THC CO NOX PM SOX CO2 

County gal/yr tons/yr tons/yr tons/yr tons/yr tons/yr tons/yr 

Alameda 5,041,272 50.87 181.40 708.68 20.75 2.34 56,776 

Amador 306,428 5.73 21.81 90.48 2.72 0.50 3,451 

Butte 6,078,508 47.59 177.51 846.85 24.63 5.69 68,457 

Colusa 1,715,928 13.43 50.11 239.06 6.95 1.61 19,325 

Contra Costa 3,835,738 38.70 138.02 539.21 15.78 1.78 43,199 

Fresno 7,164,737 65.75 235.65 996.80 30.44 3.36 80,691 

Glenn 2,213,751 17.33 64.65 308.42 8.97 2.07 24,932 

Humboldt 1,097,268 10.78 36.80 151.24 15.43 0.07 12,358 

Imperial 8,498,515 163.79 586.05 1,927.72 66.17 12.34 95,712 

Kern 19,119,087 273.98 980.79 3,497.21 115.15 24.48 215,323 

Kings 2,228,762 20.45 73.30 310.08 9.47 1.04 25,101 

Lassen 1,545,551 40.36 154.81 720.02 21.82 6.01 17,406 

Los Angeles 32,786,179 371.57 1,329.27 4,765.56 155.24 31.85 369,244 

Madera 2,619,584 24.04 86.16 364.45 11.13 1.23 29,502 

Marin 270,874 2.73 9.75 38.08 1.11 0.13 3,051 

Mendicino 1,260,506 12.38 42.27 173.74 17.72 0.08 14,196 

Merced 4,343,582 39.86 142.86 604.30 18.45 2.03 48,918 

Modoc 1,378,799 36.01 138.10 642.34 19.47 5.36 15,528 

Napa 999,186 10.08 35.95 140.46 4.11 0.46 11,253 

Nevada 569,018 10.64 40.50 168.02 5.06 0.94 6,408 

Orange 7,928,599 84.18 301.15 1,094.91 35.39 6.93 89,293 

Placer 4,897,477 51.16 192.54 866.31 25.55 5.42 55,156 

Plumas 2,581,821 48.26 183.76 762.37 22.95 4.24 29,077 

Riverside 16,077,533 238.98 855.03 2,916.67 97.82 20.83 181,068 

Sacramento 7,880,982 61.70 230.15 1,097.97 31.93 7.38 88,757 

San Bernardino 50,266,808 850.41 3,042.70 10,153.55 344.46 86.82 566,115 

San Diego 381,638 4.43 15.80 52.40 1.72 0.36 4,298 

San Francisco 631,559 6.37 22.73 88.78 2.60 0.29 7,113 

San Joaquin 9,084,820 83.37 298.80 1,263.93 38.59 4.25 102,315 

San Luis Obispo 3,374,947 27.24 98.38 474.96 13.55 0.64 38,009 

San Mateo 1,138,057 11.48 40.95 159.98 4.68 0.53 12,817 

Santa Barbara 7,698,506 62.13 224.41 1,083.42 30.90 1.46 86,702 

Santa Clara 3,658,975 36.92 131.66 514.36 15.06 1.70 41,208 

Shasta 6,591,339 51.60 192.49 918.30 26.70 6.17 74,233 

Sierra 111,922 2.09 7.97 33.05 0.99 0.18 1,260 

Siskiyou 2,114,371 55.22 211.78 985.01 29.85 8.22 23,812 

Solano 2,751,916 24.81 90.15 385.21 11.24 1.90 30,993 

Sonoma 1,411,993 14.19 50.29 197.90 7.94 0.57 15,902 

Stanislaus 4,785,680 43.92 157.40 665.81 20.33 2.24 53,897 
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Sutter 1,698,348 13.30 49.60 236.61 6.88 1.59 19,127 

Tehama 3,593,566 28.13 104.94 500.65 14.56 3.37 40,471 

Trinity 111,773 1.10 3.75 15.41 1.57 0.01 1,259 

Tulare 7,499,728 68.82 246.66 1,043.40 31.86 3.51 84,463 

Tuolumne 429,742 8.03 30.59 126.90 3.82 0.71 4,840 

Ventura 4,364,702 35.22 127.23 614.25 17.52 0.83 49,156 

Yolo 4,349,301 34.05 127.01 605.94 17.62 4.07 48,983 

Yuba 3,008,353 23.55 87.85 419.12 12.19 2.82 33,881 

Total 261,497,729 3,227 11,652 44,510 1,439 280 2,945,039 
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Appendix H-6: EPA Line-Haul Emission Inventory, Year 
2007 

             

     
System-

wide Fuel 
Intentistyb 

EPA Emission Factors for 2007c 
 

Estimates From Applying EPA Method 

     
HC CO NOx PM10 

 

Fuel 
Consumption HC CO NOx 

PM1

0 CO2 

County Subdivision RailRoad 
GTM_

Aa 
GTM
_Da GTM/gal 

gram/
gal 

gram/
gal 

gram/
gal 

gram/
gal   gallons tons tons tons tons tons 

Los Angeles 
ALAMEDA 
CORRIDOR UP/BNSF 730 730 775 9.3 27.4 175 6.3 

 
1,884,418 19.3 56.9 363.5 13.1 21,223 

Los Angeles 
ALAMEDA 
CORRIDOR UP/BNSF 41 41 775 9.3 27.4 175 6.3 

 
105,629 1.1 3.2 20.4 0.7 1,190 

Los Angeles 
ALAMEDA 
CORRIDOR UP/BNSF 40 40 775 9.3 27.4 175 6.3 

 
102,799 1.1 3.1 19.8 0.7 1,158 

Riverside YUMA UP 4,324 3,834 793 9.3 27.4 175 6.3 
 

10,287,017 105.5 310.7 1,984.4 71.4 115,854 

Imperial YUMA UP 3,890 3,450 793 9.3 27.4 175 6.3 
 

9,256,068 94.9 279.6 1,785.5 64.3 104,244 
San 
Bernardino YUMA UP 533 473 793 9.3 27.4 175 6.3 

 
1,268,052 13.0 38.3 244.6 8.8 14,281 

Inyo YUMA UP 18 16 793 9.3 27.4 175 6.3 
 

42,807 0.4 1.3 8.3 0.3 482 

Lassen WINNEMUCCA UP 276 643 793 9.3 27.4 175 6.3 
 

1,158,897 11.9 35.0 223.6 8.0 13,052 

Plumas WINNEMUCCA UP 133 309 793 9.3 27.4 175 6.3 
 

557,220 5.7 16.8 107.5 3.9 6,276 

Los Angeles WILMINGTON UP 20 23 793 9.3 27.4 175 6.3 
 

54,375 0.6 1.6 10.5 0.4 612 

Santa Clara WARM SPRINGS UP 2 0 793 9.3 27.4 175 6.3 
 

2,918 0.0 0.1 0.6 0.0 33 

Alameda WARM SPRINGS UP 2 0 793 9.3 27.4 175 6.3 
 

2,788 0.0 0.1 0.5 0.0 31 

Ventura VENTURA UP 70 49 793 9.3 27.4 175 6.3 
 

149,775 1.5 4.5 28.9 1.0 1,687 

Los Angeles VENTURA UP 96 67 793 9.3 27.4 175 6.3 
 

205,610 2.1 6.2 39.7 1.4 2,316 

Los Angeles VALLEY SUB UP 20 37 793 9.3 27.4 175 6.3 
 

71,959 0.7 2.2 13.9 0.5 810 

Los Angeles VALLEY SUB UP 4 8 793 9.3 27.4 175 6.3 
 

15,039 0.2 0.5 2.9 0.1 169 

Shasta VALLEY UP 2,164 0 793 9.3 27.4 175 6.3 
 

2,729,354 28.0 82.4 526.5 19.0 30,739 

Butte VALLEY UP 1,490 0 793 9.3 27.4 175 6.3 
 

1,878,862 19.3 56.7 362.4 13.0 21,160 

Tehama VALLEY UP 1,244 0 793 9.3 27.4 175 6.3 
 

1,568,508 16.1 47.4 302.6 10.9 17,665 

Placer VALLEY UP 818 0 793 9.3 27.4 175 6.3 
 

1,031,858 10.6 31.2 199.0 7.2 11,621 

Yuba VALLEY UP 598 0 793 9.3 27.4 175 6.3 
 

754,449 7.7 22.8 145.5 5.2 8,497 
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Sutter VALLEY UP 347 0 793 9.3 27.4 175 6.3 
 

437,334 4.5 13.2 84.4 3.0 4,925 

Siskiyou VALLEY UP 77 0 793 9.3 27.4 175 6.3 
 

97,548 1.0 2.9 18.8 0.7 1,099 

San Joaquin TRACY UP 30 32 793 9.3 27.4 175 6.3 
 

77,684 0.8 2.3 15.0 0.5 875 

Contra Costa TRACY UP 14 15 793 9.3 27.4 175 6.3 
 

36,361 0.4 1.1 7.0 0.3 410 

Alameda TRACY UP 1 1 793 9.3 27.4 175 6.3 
 

1,464 0.0 0.0 0.3 0.0 16 

Stanislaus TIDEWATER UP 22 10 793 9.3 27.4 175 6.3 
 

40,181 0.4 1.2 7.8 0.3 453 
Santa 
Barbara 

SANTA 
BARBARA UP 472 328 793 9.3 27.4 175 6.3 

 
1,008,397 10.3 30.5 194.5 7.0 11,357 

Ventura 
SANTA 
BARBARA UP 204 142 793 9.3 27.4 175 6.3 

 
436,364 4.5 13.2 84.2 3.0 4,914 

San Luis 
Obispo 

SANTA 
BARBARA UP 107 74 793 9.3 27.4 175 6.3 

 
227,842 2.3 6.9 44.0 1.6 2,566 

Los Angeles SAN PEDRO UP 60 62 793 9.3 27.4 175 6.3 
 

153,318 1.6 4.6 29.6 1.1 1,727 

Yuba SACRAMENTO UP 314 583 793 9.3 27.4 175 6.3 
 

1,131,099 11.6 34.2 218.2 7.9 12,739 

Sacramento SACRAMENTO UP 238 442 793 9.3 27.4 175 6.3 
 

857,985 8.8 25.9 165.5 6.0 9,663 

Sutter SACRAMENTO UP 199 370 793 9.3 27.4 175 6.3 
 

717,440 7.4 21.7 138.4 5.0 8,080 

Butte SACRAMENTO UP 110 205 793 9.3 27.4 175 6.3 
 

397,345 4.1 12.0 76.6 2.8 4,475 

San Joaquin SACRAMENTO UP 88 164 793 9.3 27.4 175 6.3 
 

317,206 3.3 9.6 61.2 2.2 3,572 

Placer ROSEVILLE UP 1,250 1,355 793 9.3 27.4 175 6.3 
 

3,285,056 33.7 99.2 633.7 22.8 36,997 

Nevada ROSEVILLE UP 482 522 793 9.3 27.4 175 6.3 
 

1,266,697 13.0 38.3 244.3 8.8 14,266 

Sierra ROSEVILLE UP 25 27 793 9.3 27.4 175 6.3 
 

64,960 0.7 2.0 12.5 0.5 732 

Los Angeles 
RIVER EAST 
BANK LINE UP 2 2 793 9.3 27.4 175 6.3 

 
4,790 0.0 0.1 0.9 0.0 54 

Alameda OAKLAND UP 175 298 793 9.3 27.4 175 6.3 
 

595,558 6.1 18.0 114.9 4.1 6,707 

San Joaquin OAKLAND UP 138 234 793 9.3 27.4 175 6.3 
 

469,104 4.8 14.2 90.5 3.3 5,283 

Alameda NILES UP 89 82 793 9.3 27.4 175 6.3 
 

215,783 2.2 6.5 41.6 1.5 2,430 

Kern MOJAVE UP 3,249 2,658 793 9.3 27.4 175 6.3 
 

7,448,917 76.4 225.0 1,436.9 51.7 83,891 
San 
Bernardino MOJAVE UP 742 607 793 9.3 27.4 175 6.3 

 
1,700,713 17.4 51.4 328.1 11.8 19,154 

Los Angeles MOJAVE UP 542 443 793 9.3 27.4 175 6.3 
 

1,242,548 12.7 37.5 239.7 8.6 13,994 

Solano MARTINEZ UP 523 590 793 9.3 27.4 175 6.3 
 

1,403,461 14.4 42.4 270.7 9.7 15,806 

Sacramento MARTINEZ UP 485 547 793 9.3 27.4 175 6.3 
 

1,300,764 13.3 39.3 250.9 9.0 14,649 
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Contra Costa MARTINEZ UP 337 380 793 9.3 27.4 175 6.3 
 

903,363 9.3 27.3 174.3 6.3 10,174 

Yolo MARTINEZ UP 150 170 793 9.3 27.4 175 6.3 
 

403,338 4.1 12.2 77.8 2.8 4,542 

Placer MARTINEZ UP 105 119 793 9.3 27.4 175 6.3 
 

282,467 2.9 8.5 54.5 2.0 3,181 

Alameda MARTINEZ UP 67 75 793 9.3 27.4 175 6.3 
 

178,635 1.8 5.4 34.5 1.2 2,012 

Los Angeles LOS NIETOS UP 28 10 793 9.3 27.4 175 6.3 
 

48,011 0.5 1.5 9.3 0.3 541 

Los Angeles LOS ANGELES UP 1,811 814 793 9.3 27.4 175 6.3 
 

3,309,458 33.9 100.0 638.4 23.0 37,272 

Riverside LOS ANGELES UP 469 211 793 9.3 27.4 175 6.3 
 

856,910 8.8 25.9 165.3 6.0 9,651 
San 
Bernardino LOS ANGELES UP 326 147 793 9.3 27.4 175 6.3 

 
596,516 6.1 18.0 115.1 4.1 6,718 

Kern LONE PINE UP 86 70 793 9.3 27.4 175 6.3 
 

196,326 2.0 5.9 37.9 1.4 2,211 
San 
Bernardino LONE PINE UP 6 5 793 9.3 27.4 175 6.3 

 
13,975 0.1 0.4 2.7 0.1 157 

Los Angeles LA HABRA UP 8 2 793 9.3 27.4 175 6.3 
 

12,750 0.1 0.4 2.5 0.1 144 

San Joaquin FRESNO UP 1,323 882 793 9.3 27.4 175 6.3 
 

2,781,268 28.5 84.0 536.5 19.3 31,323 

Sacramento FRESNO UP 968 646 793 9.3 27.4 175 6.3 
 

2,035,375 20.9 61.5 392.6 14.1 22,923 

Tulare FRESNO UP 842 561 793 9.3 27.4 175 6.3 
 

1,769,619 18.1 53.4 341.4 12.3 19,930 

Merced FRESNO UP 750 500 793 9.3 27.4 175 6.3 
 

1,576,718 16.2 47.6 304.2 10.9 17,757 

Madera FRESNO UP 607 405 793 9.3 27.4 175 6.3 
 

1,275,482 13.1 38.5 246.0 8.9 14,365 

Stanislaus FRESNO UP 600 400 793 9.3 27.4 175 6.3 
 

1,261,447 12.9 38.1 243.3 8.8 14,207 

Fresno FRESNO UP 545 363 793 9.3 27.4 175 6.3 
 

1,145,344 11.7 34.6 220.9 8.0 12,899 

Kern FRESNO UP 529 353 793 9.3 27.4 175 6.3 
 

1,111,316 11.4 33.6 214.4 7.7 12,516 

Imperial EL CENTRO UP 9 3 793 9.3 27.4 175 6.3 
 

15,493 0.2 0.5 3.0 0.1 174 

Monterey COAST UP 514 388 793 9.3 27.4 175 6.3 
 

1,138,188 11.7 34.4 219.6 7.9 12,818 

Santa Clara COAST UP 251 190 793 9.3 27.4 175 6.3 
 

556,224 5.7 16.8 107.3 3.9 6,264 
San Luis 
Obispo COAST UP 216 163 793 9.3 27.4 175 6.3 

 
477,877 4.9 14.4 92.2 3.3 5,382 

Alameda COAST UP 119 90 793 9.3 27.4 175 6.3 
 

264,147 2.7 8.0 51.0 1.8 2,975 

Santa Cruz COAST UP 13 10 793 9.3 27.4 175 6.3 
 

28,144 0.3 0.9 5.4 0.2 317 

San Benito COAST UP 8 6 793 9.3 27.4 175 6.3 
 

17,865 0.2 0.5 3.4 0.1 201 

Santa Clara COAST UP 21 16 793 9.3 27.4 175 6.3 
 

46,259 0.5 1.4 8.9 0.3 521 

San CIMA UP 2,418 3,077 793 9.3 27.4 175 6.3 
 

6,929,632 71.0 209.3 1,336.7 48.1 78,043 
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Bernardino 

Plumas CANYON UP 753 1,599 793 9.3 27.4 175 6.3 
 

2,965,779 30.4 89.6 572.1 20.6 33,401 

Butte CANYON UP 399 849 793 9.3 27.4 175 6.3 
 

1,573,949 16.1 47.5 303.6 10.9 17,726 

Imperial CALEXICO UP 114 73 793 9.3 27.4 175 6.3 
 

235,598 2.4 7.1 45.4 1.6 2,653 

Siskiyou BLACK BUTTE UP 989 1,685 793 9.3 27.4 175 6.3 
 

3,372,351 34.6 101.9 650.5 23.4 37,980 

Los Angeles ALHAMBRA UP 435 1,175 793 9.3 27.4 175 6.3 
 

2,029,684 20.8 61.3 391.5 14.1 22,859 
San 
Bernardino ALHAMBRA UP 281 760 793 9.3 27.4 175 6.3 

 
1,312,755 13.5 39.6 253.2 9.1 14,785 

Merced STOCKTON BNSF 939 939 758 9.3 27.4 175 6.3 
 

2,479,553 25.4 74.9 478.3 17.2 27,925 

San Joaquin STOCKTON BNSF 641 641 758 9.3 27.4 175 6.3 
 

1,690,870 17.3 51.1 326.2 11.7 19,043 

Madera STOCKTON BNSF 631 631 758 9.3 27.4 175 6.3 
 

1,665,609 17.1 50.3 321.3 11.6 18,758 

Stanislaus STOCKTON BNSF 490 490 758 9.3 27.4 175 6.3 
 

1,294,680 13.3 39.1 249.7 9.0 14,581 

Fresno STOCKTON BNSF 339 339 758 9.3 27.4 175 6.3 
 

895,531 9.2 27.0 172.8 6.2 10,086 

Contra Costa STOCKTON BNSF 301 301 758 9.3 27.4 175 6.3 
 

793,374 8.1 24.0 153.0 5.5 8,935 

Orange 
SAN 
BERNARDINO BNSF 11 11 758 9.3 27.4 175 6.3 

 
28,080 0.3 0.8 5.4 0.2 316 

Riverside 
SAN 
BERNARDINO BNSF 1,263 1,263 758 9.3 27.4 175 6.3 

 
3,334,349 34.2 100.7 643.2 23.2 37,552 

Orange 
SAN 
BERNARDINO BNSF 767 767 758 9.3 27.4 175 6.3 

 
2,024,619 20.8 61.1 390.6 14.1 22,802 

San 
Bernardino 

SAN 
BERNARDINO BNSF 405 405 758 9.3 27.4 175 6.3 

 
1,069,186 11.0 32.3 206.2 7.4 12,041 

Stanislaus RIVERBANK BNSF 1 1 758 9.3 27.4 175 6.3 
 

2,325 0.0 0.1 0.4 0.0 26 
San 
Bernardino NEEDLES BNSF 13,396 

13,39
6 758 9.3 27.4 175 6.3 

 
35,365,223 362.5 

1,068.
1 6,822.0 

245.
6 398,290 

San 
Bernardino MOJAVE (BNSF) BNSF 946 946 758 9.3 27.4 175 6.3 

 
2,498,572 25.6 75.5 482.0 17.4 28,139 

Kern MOJAVE (BNSF) BNSF 932 932 758 9.3 27.4 175 6.3 
 

2,460,168 25.2 74.3 474.6 17.1 27,707 
San 
Bernardino 

LUCERNE 
VALLEY BNSF 10 10 758 9.3 27.4 175 6.3 

 
26,738 0.3 0.8 5.2 0.2 301 

Los Angeles HARBOR BNSF 10 10 758 9.3 27.4 175 6.3 
 

27,315 0.3 0.8 5.3 0.2 308 

Lassen GATEWAY BNSF 533 533 758 9.3 27.4 175 6.3 
 

1,407,101 14.4 42.5 271.4 9.8 15,847 

Modoc GATEWAY BNSF 389 389 758 9.3 27.4 175 6.3 
 

1,028,065 10.5 31.1 198.3 7.1 11,578 

Plumas GATEWAY BNSF 183 183 758 9.3 27.4 175 6.3 
 

483,134 5.0 14.6 93.2 3.4 5,441 
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San 
Bernardino CAJON BNSF 5,691 5,691 758 9.3 27.4 175 6.3 

 
15,023,495 154.0 453.8 2,898.1 

104.
3 169,198 

Kern BAKERSFIELD BNSF 1,032 1,032 758 9.3 27.4 175 6.3 
 

2,723,231 27.9 82.2 525.3 18.9 30,670 

Kings BAKERSFIELD BNSF 734 734 758 9.3 27.4 175 6.3 
 

1,937,066 19.9 58.5 373.7 13.5 21,816 

Tulare BAKERSFIELD BNSF 607 607 758 9.3 27.4 175 6.3 
 

1,602,636 16.4 48.4 309.2 11.1 18,049 

Fresno BAKERSFIELD BNSF 419 419 758 9.3 27.4 175 6.3   1,105,197 11.3 33.4 213.2 7.7 12,447 

Total         777d           179,752,700 1,843 5,429 34,675 
1,24

8 2,024,411 
aAnnual million gross ton-mile data reported by the railroads for acending and decending mile post directions. This is the same data used by the UC Davis 
method 

    
bSystem-wide fuel intensity factors (GTM/gallon) reported by UP (Detailed route data in Appendix C) and BNSF (Detailed route data in Appendix C) 

     cEPA estimated emission factors for 2007 (EPA (2009). Emission Factors for Locomotives, U.S. Environmental Protection Agency, Washington, D.C., 
EPA-420-F-09-025.) 

    

                 

 
Sum of BNSF GTM 

61339.
93 

              

 
Sum of UP GTM 

76678.
13 

              

 

dWeighted Average Fuel 
Intensity 

777.26
7 
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