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Abstract of the Dissertation

On Dynamic Traffic Assignment in Corridor Networks under

Heterogeneous Travelers and Modes

This dissertation investigates traveler heterogeneity for dynamic traffic assignment

(DTA) in the following four dimensions: travelers’ attributes (in the value of time and

the value of schedule delay), modal choice, parking choice and route choice. The main

focus is on obtaining analytical DTA solutions in simplified networks, particularly in

the context of the morning commute problem, with precise sensitivity analysis to derive

effective traffic congestion management policies.

First, we solve the morning commute problem with a heterogeneous traveling pop-

ulation whose early/late arrival penalty are continuously distributed. The distribution

of the value of schedule delay on each route, freeway or the arterial road, is discussed.

It is found that the assumption of homogeneity population overestimates the queuing

delay and the total travel time. Every commuter is better off if the freeway capacity

or arterial capacity is enlarged, but commuters with high values of early/late arrival

penalty generally benefit more than those with low values unless they switch to other

routes. We further study the multi-modal morning commute problem with three modes,

transit, solo-driving and carpool. Enlarging HOV facilities may reduce transit ridership

and increase auto travel, and it does not necessarily reduce the total travel cost when

the network is highly congested. The rise of gas price may first entice auto travelers to

carpool. However, as the gas price increases further, both carpoolers and solo-drivers

will eventually switch to use the transit. In addition, a flat freeway tool can also reduce

the total network travel cost.

In addition to the intrinsic distinction among travelers, we also discuss the manage-

ment measures that can distinguish travelers externally, using parking as an example.

The parking fee, parking capacity allocation and accessibility altogether can effectively

reduce both the system cost and the queuing delay. If parking lots are owned publicly,

then all travelers are better off under the optimal parking setting. This is an advantage

that cannot be realized by the system-optimum dynamic toll scheme. If they are owned

-x-



privately, then market regulations, such as price-ceiling and quantity tax/subsidy, are

suggested to improve the network performance and reduce the congestion.

We finally extend our research to the DTA problem in general networks. We propose

a hybrid route choice model for studying non-equilibrium traffic where travelers have

different preferences in choosing travel routes. It combines pre-trip route choice and

en-route route choice to solve dynamic traffic assignment (DTA) in large-scale networks.

We apply the hybrid route choice model in a synthetic medium-scale network and a large-

scale real network to assess its effect on the flow patterns and network performances,

and compare them with those obtained from Predictive User Equilibrium (PUE) DTA.

The proposed route choice model incorporating route choice heterogeneity is capable of

solving DTA efficiently in in a realistic size network with satisfactory results. Finally,

some suggestions are given on how to calibrate the hybrid route choice model in practice.
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Chapter 1

Introduction

1.1 Background and Motivation

Traffic congestion has been one of the major urban problems. 2010 Urban Mobility

Report and Appendices (2010) reported that traffic congestion, costing Americans 87.2

billion dollars in wasted fuel and lost productivity or $750 per traveler in 2009, is getting

worse since 1982. There is apparently no quick and easy solution to congestion. To

reverse this trend, Advance Transportation Management System (ATMS), Intelligent

Transportation System (ITS) and other dynamic traffic analysis tools are developed

intensively in the past decades. Although those systems are developed in a variety

of forms, they all require the ability to model the dynamic traffic flow, and they all

aim to accurately forecast/estimate traffic conditions on the network, assess the traffic

management measures, or evaluate infrastructure investments. The essential idea of

those tools is to either make improvement in network infrastructure, the supply side, or

manage traffic, the demand side.

Consequently, it is vital to model simultaneously both the demand side and supply

side as the foundation of dynamic traffic analysis. Dynamic Traffic Assignment (DTA)

serves as one of the fundamental tools. It is an estimation or prediction technique for

the time-spatial traffic flow distribution on the network.

From the supply point of view, urban networks, in particular corridor networks, are

usually the modeling focus. A corridor network is defined as “a largely linear geographic

band defined by existing and forecasted travel patterns involving both people and goods”

(FHWA 2006). It is a special network where parallel roadways and transit lines are the
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Figure 1.1. A general multi-modal corridor network

main facilities to serve the travel demand from residential areas to employment centers,

such as a Central Business District (CBD). Corridors often play an important role in

serving commuting travel demand and are often subject to moderate to severe congestion.

A corridor network, shown in Figure 1.1, combines various transportation assets, such as

freeway networks, arterial roads, local street and transit stations. The Origin-Destination

(O-D) nodes are mostly the centroids of CBD areas, industrial areas or residential areas.

The freeway connects those O-D nodes to the CBD, and the arterial roads, parallel to

the freeway, are local streets connecting those centroids together as well. However, the

arterial roads typically have much lower speed limits than the freeway, and thus offers

longer travel times for travelers. Besides the roadways for automobile travelers, bus

and/or light rail (LRT) services are often provided in a corridor network. Typically the

LRT service uses its own guideway but the bus lines share the same roadway network

with the private automobile.

On the travel demand side, travelers usually choose from different transportation

modes, such as private automobile (driving alone or carpooling) and public transit. A

traveler can choose any one or a combination of these modes in his trip, which brings

about competition for passengers across modes. Which mode a traveler chooses depends,

to a large degree, on the relative costs of using those different modes and the availabil-

ity/accessibility of transportation vehicles. Generally, the travel demand varies over time
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during the day, but is believed to be relatively stable after day-to-day adjustment unless

incidents occur.

Given the transportation network supply and traveler demand, DTA determines the

traffic flow for any physical location and travel times/costs for any traveler on the net-

work by a pre-determined rule of modal choice, departure time choice and route choice.

DTA also yields the overall assessment of the network performance, the information at

the aggregated level provided for decision makers. Numerous studies has been devoted

to DTA over the years, but most of them focus on the automobile travelers while as-

suming a traveler homogeneity in selecting routes and departure times. The deficiency

is obvious. Overlooking traveler heterogeneity with regards to population attributes

and travel behavior leads to a rough estimation of the network performance, and the

absence of multi-modal transportation modeling results in a heavy bias towards auto-

mobile networks. More importantly, the models with homogeneous travelers are only

capable of evaluating those traffic management measures applied to all travelers equally

and anonymously. In fact, group-specific traffic management measures could be much

more efficient in reducing the congestion, which also enables the analysis of social equity.

This dissertation aims to improve dynamic traffic assignment by considering several

critical issues of traveler heterogeneity in the scope of corridor networks. The reason

of choosing a corridor network, rather than general network or a complete set of urban

network, is simple. A corridor network, though concerning special transportation forms,

is a multi-modal network with general traffic management problems, and possess many

essential features of a general network. More importantly, it has several research advan-

tages: 1) The travel demand in the corridor network consists of mostly commuting traffic

during the rush hours, so it is very likely to be stable after day-to-day adjustment. 2)

Numerous data have been collected in corridor networks. Compared to general networks,

corridor networks are often equipped with sufficient detectors, which provides unique ad-

vantages for model calibration and verification. 3) Express transit lines and LRT lines

are most likely to be available along a corridor. 4) It makes possible the abstraction of

the network to a highly simplified network where we can derive analytical solutions and

unique insights.

Traveler heterogeneity in DTA can be categorized by the following criteria,



4

• Traffic modes. First, each traffic mode is preferred by certain travelers. Some

travelers may be captive to a traffic mode, while others may switch between modes

freely. Second, travelers using different modes take different routes. On top of the

modal choices of the transit and automobile, solo drivers, carpoolers and park-and-

ride drivers, either of which is also a separate mode, have different preference on

selecting routes and departure times. There might be network access restrictions

for travelers using different modes.

• Availability of network information to travelers. Travelers may have different

knowledge of the network and real-time traffic information.

• Vehicle attributes. This is also known in vehicle type in the literature. Vehicle

attributes is probably the most popular classification in the studies of microscopic

traffic models. Vehicles with different attributes can make significant difference

in the motion of traffic flow. They can be classified roughly by cars, light-duty

trucks and heavy-duty truck, or in more details by maximum speed, size and

acceleration/deceleration rates.

• Traveler attributes. Traveler attributes refer to not only the driving characteristics

(e.g., in terms of aggressiveness) but also travelers’ perception in travel costs.

Travelers naturally have their respective preferences on certain factors, such as

particular roads, locations, traffic delay, travel time, schedule delay, etc.

Although each type of heterogeneity may have been intensively studied as a separate

subject in transportation studies, the heterogeneity is not well considered in the context

of DTA. For instance, the modal choice is the focus of discrete choice models and vehicle

type heterogeneity is widely studied in microscopic simulation models. Nevertheless,

both types of heterogeneity has not received full consideration in DTA.

In addition to the intrinsic distinction among travelers, travelers can also be dis-

tinguished externally. Many transportation management measures attempt to separate

travelers using a variety of ways so as to increase the efficiency of the measures. One

example to distinguish travelers anonymously is to offset the office time for different

commuters to relieve the traffic peak. It is also believed that toll rationing, dividing
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travelers into groups and each group is charged a toll in certain days (Daganzo & Garcia

2000), could reduce the peak congestion. With travelers classified into different groups,

it is then even more natural to set different management measures for different groups

so as to achieve the least congestion possible.

Although there are many possible perspectives that one can use to look into the

traveler heterogeneity problem, this dissertation focuses on just a few crucial factors. The

essential idea of this dissertation is to build a more realistic DTA model by considering

traveler heterogeneity in the following four categories,

• Traveler modal choice preference

• Traveler attributes in value of time and value of schedule delay

• Traveler’s preference on routes

• Heterogeneity resulted from external management measures

The first three are intrinsic heterogeneity, while the last one is one type of management

measures that produce external heterogeneity. The objective of this research is to reveal

the connections between travelers’ choice and those four factors such that targeted man-

agement measures can be proposed to optimize the transportation network performance.

1.2 Problem Statement

For narrative convenience, we first introduce the basic notations in DTA. Let a di-

rected graph G(N,A) denote a general network, where N and A are the sets of nodes

and directed links respectively. Let R and S denote the set of origins and destinations

respectively, Krs the set of paths joining an OD pair rs, and K =
⋃
Krs, ∀r ∈ R, s ∈ S.

Let [0, T ] be an assignment horizon (i.e., the analysis period). The network is assumed

to be empty at t = 0, and only travel demands departing within the assignment horizon

are considered. Let qrs(t) be the travel demand between O-D pair rs departing at time

t, and the total demand for the whole assignment horizon is

qrs =

∫ T

0
qrs(t)dt (1.1)
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Further, we use ca(t) to denote the generalized travel cost on link a at the entry

time t, and ckrs(t) to denote the generalized travel cost on path k ∈ Krs departing at

time t. qt = {qtrs, r ∈ R, s ∈ S}∀t ∈ [0, T ] is the travel demand pattern at time interval

t. Let f = {fktrs , r ∈ R, s ∈ S, t ∈ [0, T ], k ∈ Krs} , x = {xta, a ∈ A, t ∈ [0, T ]} and

c(f) = {cktrs, r ∈ R, s ∈ S t ∈ [0, T ], k ∈ Krs} denote the time-dependent path flow

pattern, loading pattern and path cost pattern. The generalized path travel cost is

defined as,

ckrs(t) = αfft(t) + αw(t) + max{β(t∗ − t− w(t)), γ(t+ w(t)− t∗)}+
I∑
i=1

λiw
i,kt
rs (1.2)

where fft(t) denotes the free-flow travel time of a vehicle on path k departing at time t,

while w(t) denotes its travel delay. t∗ is the desired arrival time (work start time) for

this vehicle. Here α, β and γ measure the generalized cost of one extra minute of travel

time, early schedule delay and late schedule delay, respectively. In addition to schedule

delay cost and travel time cost, the generalized cost also consists of I number of terms

(wrs1,kt, w
rs
2,kt..., w

rs
I,kt) which represent other types of travel costs that travelers perceive

on path p of O-D pari rs departing at time t (such as tolls, gas fees, etc.) and each is

weighted by a scaler λi.

DTA is usually solved by imposing the user equilibrium (UE) constraints, also known

as the extension of the Wardrop’s first principle in the dynamic network (Wardrop 1952),

which states that every traveler of the network travels on the path and departs at the

time with the least cost and cannot unilaterally reduce his path cost by switching to any

other path or departure time. The UE condition reads,

if qt is known

 fktrs (cktrs − πtrs) = 0, ∀r, s, k, t ∈ [0, T ]

cktrs ≥ πtrs, fkrs ≥ 0
(1.3)

if qt is unknown

 fktrs (cktrs − πrs) = 0,∀r, s, k, t ∈ [0, T ]

cktrs ≥ πrs, fkrs ≥ 0

where πtrs is the least path travel cost between O-D pair r− s departing at time t, while

πrs is the least path travel cost between O-D pair r−s over the entire assignment horizon.

The above DTA problem using UE as the route choice and/or departure time choice

constraint can be casted into a variational inequality (VI) problem (Friesz et al. 1993),

Find f∗ ∈ Ω, such that ∀f ∈ Ω : 〈c(f∗)), f − f∗〉 ≥ 0 (1.4)
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Ω = {f ∈ Rl
+|Mf = q} (1.5)

where l = ma ×
∑

r

∑
s |Krs|. ma is the number of assignment time intervals and M is

the path-OD incidence matrix.

The traveler heterogeneity being discussed in this dissertation is essentially embedded

in the generalized travel cost function, i.e. Equation 1.2. First, the generalized travel

cost function is attached with different terms, wi,ktrs , for travelers using different modes.

On the other hand, even with the same traffic mode, a traffic management measure may

distinguish travelers externally, which attaches different cost terms for different travelers

in a similar fashion. We use parking as an example of such traffic management measures.

For each traveler, his generalized travel cost determines the probability of choosing each

mode, and furthermore the response to the traffic management measures (for example

detour or trip cancelation). Second, the value of time (VOT), α, and the value of

schedule delay, β and γ, are distinct across the travel population. Third, travelers have

different preference on certain factors. In other words, λi is also distinct across the

travel population. This dissertation will choose one particular problem for each of these

categories, discuss the effects of heterogeneity and further propose the policy indication

for decision makers.

According to the solution type, conventional DTA equipped with UE conditions, is

usually categorized into two classes, analytical DTA and simulation-based DTA. Analyt-

ical DTA looks into highly simplified networks. The solution of the analytical DTA, such

as time-varying path flow, can be expressed in explicit formulas, and thus the evaluation

of the network performance and sensitivity analysis over certain factors are precise. The

classic morning commute problem (Arnott et al. 1988) is a commonly studied analytical

DTA problem. The simulation-based DTA, on the other hand, usually do not have ana-

lytical solutions and rely on simulations to obtain numerical solutions, but are applicable

to general networks. When the network is large, the numerical solution could be very

rough since the solution algorithm does not guarantee the achievement of certain rout-

ing objectives, such as user equilibrium. Therefore, it is extremely difficult to conduct

precise sensitivity analysis for the simulation-based DTA.

Each type of DTA has its own advantages and weaknesses. The merit of the ana-

lytical DTA lies not in terms of methodological advancement, but in terms of deriving
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analytical solutions to study how different factors affect the flow pattern and network

performance, so that more insightful discussions can be carried out. Numerical DTA is

capable of solving practical problems and can be applied in real large-scale networks, but

its ability in capturing the effects of detailed factors is very limited. As a starting stage

of studying traveler heterogeneity, the majority of this dissertation follows the analyti-

cal DTA approach. It is desirable to learn precisely the effects of heterogeneity before

implementing new models for large networks. This dissertation will also study the het-

erogeneity of driving attributes in selecting routes for the simulation-based DTA because

the routing criteria being discussed is directly associated with the generalized travel cost

function, Equation 1.2. This will be the beginning of research in implementing traveler

heterogeneity in DTA for large-scale networks.

1.3 Contributions

This dissertation advances DTA in several ways.

• Multi-modal morning commute problem is solved analytically. The effects of a

variety of dynamic pricing schemes, such as HOV lane setting, transit fare, roadway

toll, gass fee and carpool impedance, are discussed intensively. This has many

significant policy indications for decision-makers.

• A general distribution of VOT and value of schedule delay are considered in the

DTA. This not only helps estimate flow and network performance more accurately,

but also enables the analysis of social equity issues, e.g., how different the infras-

tructure improvement can bring travel time reduction to different travelers.

• Using parking as a traffic management measure, the effects of parking accessibility,

availability and fees to both travelers and networks are revealed. We show that

parking is capable of reducing the congestion and improve system performance

efficiently.

• Last, but not least, the proposed heterogeneous route choice model may be real-

istic in describing travelers’ route choice. The relationship between route choices
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and queuing patterns was discussed in both theoretical and practical perspectives

This allows easy calibration and efficient computation of large-scale networks and

possible reproduction of realistic traffic conditions.

1.4 Organization

The structure of this dissertation is as follows. We first present an overview of DTA

problems in Chapter 2. The focus is on route choice models and its applications in

congestion pricing. We also review the studies on traveler heterogeneity in the litera-

ture, including multi-modal multi-class traffic assignment problems. Chapter 3 discusses

the distribution of value of time and value of schedule delay in the morning commute.

Chapter 4 looks into the DTA problem from the traffic mode point of view. We solve

the multi-modal morning commute problem and reveal its policy indications. Then, in

Chapter 5, we intensively discuss how the parking accessibility, availability and fees can

be used to induce travel heterogeneity and thus reduce the congestion efficiently. This is

further followed by Chapter 6 where we propose a new route choice model implemented

in large-scale networks. Finally, conclusions are drawn in Chapter 7 with possible future

research subjects.
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Chapter 2

Literature Review

Originated from the traffic UE definition (Wardrop 1952) and its equivalent mathemati-

cal optimization problem (Beckmann et al. 1956), traffic assignment problem has received

numerous attentions over the years. The steady-state traffic assignment models are gen-

erally used for transportation planning purposes by assuming the traffic conditions on

the network are constant. DTA can capture the flow propagation on the network dynam-

ically and thus is more accurate than the steady-state traffic assignment. However, the

accuracy does not come without a price. DTA models, if applied in large-scale networks,

are usually much more complicated than the steady-state ones and its solutions, even in

the context of UE, is not guaranteed. In this chapter, we review the main DTA models,

including analytical DTA for the morning commute problem and simulation-based DTA

for the general networks. It is common that both types of DTA models use UE as the

route choice model. We shall also review a few studies concerning disequilibrium route

choice model. Furthermore, focus is given to the three travel heterogeneity categories

to be discussed in this dissertation, multi-modal multi-class traffic assignment, VOT

heterogeneity, as well as parking regulation as one of the traffic management measures.
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2.1 Dynamic Traffic Assignment

2.1.1 Morning commute problem

The problem of eliminating congestion in the morning commute with a time-varying

congestion toll dates back to (Vickrey 1969). In his work, Vickrey considered travelers’

commuting pattern on a single route with a single bottleneck for a single mode. Suppose

the bottleneck has a capacity of s and the total travel demand is N . He showed that

there exists an equilibrium departure time pattern, shown in Figure 2.1, if commuters

all attempt to minimize their own travel costs, which include the travel time cost and

an early/late arrival penalty, and in this equilibrium pattern all commuters incur the

same travel cost no matter when he starts his trip. By making commuters choose their

departure time based on their marginal costs, which included a congestion externality,

he showed that congestion can be completely eliminated in the morning commute.

Figure 2.1. Cumulative curves derived from Vickrey’s morning commute model

Following this pioneering work, numerous efforts have been devoted to study various

extensions of Vickrey’s morning commute problem (Arnott et al. 1990, 1988, e.g.), mostly

focused on the single mode of auto travel. Henderson (1977) first established a speed-

density relationship model for a single-origin-single-destination (SOSD) network and
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then it was improved by Chu (1994). SOSD with two routes was proposed to study

the simultaneous departure time and route choices equilibrium (Mahmassani & Herman

1984), and thereafter, Kuwahara (1990) studied a problem with two origins and a single

destination with two continuous bottlenecks. In addition to those studies, another study

found a paradox, similar to Braess Paradox, that expanding bottleneck capacity can

raise total travel costs, if users only choose when to travel based on fixed routes (Arnott

et al. 1993).

2.1.2 General networks

2.1.2.1 A brief review

Route choice, departure time choice and traffic flow evolution are three essential

elements of a DTA problem. The traffic flow models will be briefly discussed in Section

2.1.2.4. According to the route/departure time choice criteria, DTA is categorized into

system optimal (SO) assignment and user equilibrium (UE) assignment. SO-DTA is to

find a temporal and spatial flow pattern that minimizes the total system cost (Merchant

& Nemhauser 1978a,b, Carey 1986, 1987, Friesz et al. 1989, e.g.). The formulation of

SO-DTA reads,

min
∑
a

∫ T ′

0
xa(t)dt (2.1)

s.t. f ∈ Rl
+,Mf = q,∆f = x

where ∆ is the link-path incidence matrix. SO-DTA yields the least total system cost and

optimal flow pattern. If travelers are left alone and there is no policy to guide them, SO-

DTA is usually not achievable in a network. However, it serves a benchmark of network

performance for traffic operational schemes and this problem is at the core of many

transportation applications ranging from day-to-day traffic management to emergency

evacuations.

In order to estimate or predict the realistic traffic flow pattern, the route choice

is usually formulated as a UE flow pattern, i.e. travelers simply choose the cheapest

or shortest route that is present to them. There are generally two types of UE in the

literature. One is the so-called Boston User Equilibrium (BUE) (Friesz et al. 1993), which
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is an adaption of the static Wardroppian UE. It assumes a traveler chooses the shortest

route only based on the prevailing traffic condition at the time of his choice decision (Ran

et al. 1993, Kuwahara & Akamatsu 2001), also known as the minimum instantaneous

cost path (Ghali 1995). The other UE type is the so-called Predictive User Equilibrium

(PUE). Under this behavioral assumption, travelers choose the shortest route based on

“anticipated” travel times, or travel times that they actually experienced from previous

days. The result is a UE in which the actual travel times/costs for travelers from any

O-D pair are minimal and identical (Friesz et al. 1993), regardless of the routes they

take.

2.1.2.2 BUE (en-route) route choice

The DTA in Boston User Equilibrium can be decomposed to all-or-nothing static

traffic assignment for each time interval (Kuwahara & Akamatsu 2001). In other words,

travelers will first determine their routes based on free-flow travel time of all the links

in the network, and then the network is loaded by the O-D demand according to the

route choices till the first assignment time interval ends. At the beginning of the next

time interval, travelers update their route choices by taking the shortest paths with

respect to the prevailing (instantaneous) travel times/costs at that time. Flow on and

travel cost of each link will then be updated based on the new route choice decisions.

Repeat this process where the update of route choices and network loading alternate

till all the travelers end their trips. Thus, only one network loading is needed and each

traveler act as if he makes en-route decisions of route to be taken at each assignment

time interval according to the instantaneous travel times/costs. Therefore, we also call

the route choice model embedded in the BUE en-route route choice.

The en-route route choice assumes that travelers only have real-time information

about the current network conditions, and since they do not predict traffic conditions

in the future, they always make the route choice decision that is most appealing at the

current time interval, although the chosen route can be far from the best route when the

actual travel time/cost is considered. This type of en-route route choice may describe the

travelers’ behavior in response to a sudden change of demand or roadway capacity where

travelers are unable to obtain historical day-to-day information and have to deviate from
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their pre-trip routes. With the adoption of variable message boards, highway advisory

radio and mobile internet devices such as smart phones, travelers nowadays can get up-

to-the-minute information in some travel market such that they can make en-route route

adjustments in response to changes in network traffic conditions rather than sticking to

their pre-determined routes.

2.1.2.3 PUE (pre-trip) route choice

PUE assumes travelers choose their routes prior to their departure, and then strictly

follow them till they reach their destinations. Their choices are based on the shortest

paths with respect to actual travel time/cost they experience. On one hand, a dynamic

network loading (DNL) procedure is used to determine the time-varying link flow and

the actual travel time/cost, and then to determine the routes traveled; On the other

hand, the DNL procedure requires knowing the route choices of all travelers prior to

their departure. Therefore, PUE usually requires an iterative process in which DNL

and shortest path calculation alternate until both the route choice and flow patterns

converge.

According to PUE, all travelers can perfectly predict the traffic conditions of the

entire network at any time based on their day to day experiences. They are aware of

their actual travel time/cost prior to their departure which is used to determine their

shortest routes, regardless of real-time traffic information. This type of route choice is

more suitable to model regular commuting traffic without disruptions such as incidents

for a prolonged period of time during which the total traffic demand remains relatively

constant.

PUE is usually formulated in a VI problem as shown in Equation 1.4. Many algo-

rithms have been developed to solve such a VI problem. One of the commonly used one

is projection-type algorithms. A VI problem V I(c,Ω) can be transformed to solve the

following problem (Nagurney 1999):

max
f∈Ω

θ(f) (2.2)

where θ(f) is defined as a nonnegative merit function (gap function):

θ(f) = min
g∈Ω
〈c(f),g − f〉 (2.3)
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Assume g∗ − f is a descent direction along which θ(f) can be reduced, where

g∗ = argming∈Ω〈c(f),g − f〉

Note that g∗ − f is exactly the direction used in F-W algorithm for separable link cost

cases. However, in the general case, it does not always hold. Given a possible descent

direction, we may apply some heuristic algorithms, such as MSA (Sheffi 1985), to get

a convergent solution. The gap function may not be differentiable (Facchinei & Pang

2003), we may define a regularized merit function (Fukushima 1992):

θr(f) = min
g∈Ω
{〈c(f),g − f〉+

λ

2
〈g − f , G(g − f)〉} (2.4)

Where λ is a positive scalar andG is a symmetric P.D. matrix. If c is Lipschitz continuous

and strongly monotone on Ω, then g∗r (f) − f is a strict descent direction for θr at f

whenever f is not a solution to V I(c,Ω), and

g∗r (f) = ProjΩ[f − 1

r
c(f)]

Similarly to the MSA, some projection-type algorithms may be applied to converge to

a solution, such as basic projection algorithm (BPA), extra-gradient method (EGM),

hyperplane projection method (HPM), and the like (Nagurney 1999, Nie 2003, 2006).

A PUE problem for general networks is typically solved following the steps below:

Step 0 Initialization. Select an initial flow pattern fν , ν = 0.

Step 1 Conduct dynamic network loading (DNL) based on fν . Obtain the time-varying

travel times for each link.

Step 2 Column generation. Solve the time dependent shortest path problem (or the least

costly path problem) for each O-D pair rs, [p∗rs, t
∗
rs] = argminp,tc

rs
pt .

Step 3 Update flow pattern fν+1 (e.g. the projection-type algorithms) based on the new

path set.

Step 4 Convergence criteria (e.g., ||fν+1−fν || < ε where ε is a small positive real number).

Terminate if convergent, go to Step 1 otherwise.
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2.1.2.4 Traffic flow models

Even with the same route/departure time choice model, various flow models could

result in considerably different flow patterns. In DTA, a dynamic network loading (DNL)

procedure incorporating a variety of traffic dynamics models is used to determine the

time-varying travel cost c(f). Such traffic dynamics models include microscopic models

and macroscopic models. Microscopic models represent each individual vehicles in terms

of position speed, acceleration/deceleration rate etc, and thus provide the most details

with, however, heavy computation. It is not computationally efficient, sometime even not

plausible, in solving DTA for large-scale networks under microscopic traffic flow models.

On the other hand, macroscopic models does not represent individual vehicles. Their

speed, acceleration/deceleration rate and other attributes are aggregated. This will be

the focus of this dissertation.

In the literature, several macroscopic flow models was introduced to formulate the

DTA problem, which include exit-flow function based traffic model (Merchant &

Nemhauser 1978a), the delay-function based model (Friesz et al. 1993), the point queue

(PQ) model (Smith 1993), the spatial queue (SQ) model (Kuwahara & Akamatsu 2001)

and kinematic wave (LWR) model (Daganzo 1994). Nie & Zhang (2005) compared these

various kinds of so-called link models and found that the kinematic wave model, which

models queue spillback in the form of shock waves, provides a realistic description of

traffic flow propagation. However, queue spillback in large-scale networks, though exists

in the real world, may propagate in an unexpected way that could lead to serious net-

work gridlock, which in most cases is caused by unrealistic route choices. Daganzo (1998)

explored the case of queue spillover with a PUE route choice under the spatial-queue

model, and showed that the results could be naturally chaotic in the sense that flow

patterns may be fairly sensitive to small changes in the network settings. This indicates

that the stability of the PUE state is closely related to route choice and queue spillback.

Therefore, for large-scale networks, it is crucial to analyze how a certain route choice

model interacts with the queue spillback mechanism such that it can be appropriately

calibrated in real world applications. A more detailed literature review of the traffic flow

propagation models can be found in Nie (2003).
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2.1.3 Non-equilibrium route choice model

In real life, travelers’ route choice behavior is likely to be more complex than what

was assumed in both BUE and PUE. For example, travelers may not consider all the

possible routes but have several pre-trip routes in mind prior to their departure, which

are selected from their day-to-day traveling experiences. Moreover, these pre-selected

routes may not be user-optimal ones. Although travel time and schedule delay costs

are dominant factors in travelers’ route choice decisions, several other factors, such as

road accessibility, pavement conditions, and so on, may influence their decisions as well.

Besides these factors, a traveler’s personality should also play an important role in his or

her route choice. For example, a conservative traveler may stick to his chosen route from

day to day while an adventurous traveler may be more willing to explore new routes

based on his actual travel experiences. Thus real traffic is more likely to be the product

of various types of choice decisions rather than cost-minimizing BUE or PUE applied

uniformly across the entire traveling population. It is therefore of particular interest to

develop a route choice model that combines various types of information and considers

various kinds of travelers. However, such route choice models, particularly in the context

of traffic disequilibria in large-scale dynamic networks, are rare in the literature.

Peeta & Mahmassani (1995) are among the few who analyzed the combination of

BUE and PUE. They distinguished travelers by their route choices following either of

system optimal, UE, historical and real-time information, in order to predict the future

O-D demands and to optimize the provision of real-time information. Pel et al. (2009)

also adopted route choices other than BUE/PUE. They introduced a hybrid route choice

model where all travelers have a pre-trip route, but they all consider real-time traffic

conditions in seeking the new routes. This model, however, requires path enumeration

and its application to large-scale networks is very limited. In addition, Kant (2008)

conducted an interesting study that combines BUE and PUE to form a new type of UE.

He assumes travelers’ travel cost consists of the actual travel costs and the expected

travel costs. Then the solution framework of a PUE is directly applied to solve the new

“combined” UE. However, this approach requires a pre-determined route set with very

limited number of routes for each O-D pair, and is thus also problematic in handling
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large-scale networks.

2.2 Multi-modal Multi-class Traffic Assignment

Multi-modal or multi-class traffic assignment has been well studied in the steady-state

context, but its extension in DTA is rare in the literature.

2.2.1 Morning commute problem

Tabuchi (1993) is among the first to study such extensions in the morning commute

problem. His network includes a roadway with a bottleneck and a railway considering

economies of scale. He obtained optimal transit fares and road tolls under different

system performance goals. Huang & Yang (1999b) investigates a parallel auto/transit

SOSD network using optimal control theory. Another work in this direction is Huang

(2000, 2002), where transit fares and road tolls were obtained to achieve system optimal

under a bi-logit modal choice model for two groups of commuters.

Limited research on the morning commute problem with HOV lanes has been done.

Based on an single-origin-single-destination network, Yang & Huang (1999) defined a

pair of interactive travel time function for two groups of people, and showed the op-

timal toll considering carpool is significantly different from the original one. This was

extended to compare different toll schemes in the presence of HOV lanes (Huang &

Yang 1999a). However, the network performances under different HOV configurations

were not directly compared in this study. In another study, a potential implementation

of High-Occupancy-Toll (HOT) lanes is evaluated using the morning commute model

(Dahlgren 2002).

2.2.2 General networks

For general networks, “multi-class” (i.e. a type of traveler heterogeneity) is addressed

by introducing traveling groups that have different travel time/cost functions.

In the steady-state context, some scholars (Dafermos 1971, Smith 1979, e.g.) gave

the general formulations of multi-class user equilibrium problems. Let M denote the
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set of user groups. Let xma be the flow on link a associated with group m and cma (x)

be the group-specific link travel cost function on link a, where x = (xm,m ∈ M)T

and xm = (xma , a ∈ A)T . Let Bm
rs(q) denote the OD benefit (inverse demand) functions

where q = (qm,m ∈M)T and qm = (qmrs)
T . A typical UE problem with multi-class users

can be formulated as the following VI (Yang & Huang 2005, Patriksson 1994, Nagurney

1999): determine (x∗,q∗) such that,

∑
m∈M

∑
a∈A

cma (x∗)(xma − xm∗a )−
∑
k∈K

∑
rs

Bm
rs(q)(qmrs − qm∗rs ) ≥ 0 ∀(x,d) ∈ Ω (2.5)

Ω = {(xm,qm),m ∈M |xm = ∆fm,qm = Mfm, fm ≥ 0,qm ≥ 0} (2.6)

This formulation is applicable for vehicle type classifications (e.g. fast vehicles vs. slow

vehicles, trucks vs. cars, high-duty vehicles vs. light-duty vehicles) and mode type

classifications (e.g. transit vs. private cars). Moreover, a multi-class traffic assignment

problem may be reduced to a single-group problem by constructing a new network with k

copies of the original network (Dafermos 1971, Nagurney 1999) where k is the number of

traveler groups. Following this approach, Palma & Lindsey (2004) formulated a bi-level

model with several toll schemes imposed to “reveal the separate influences of hetero-

geneity, network effects, fiscal effects and welfare-distributional weights”, and found that

assuming heterogeneity will significantly affect the social welfare in numerical examples.

This idea has been implemented for multi-class DTA by Bliemer (2000). He developed

a series of travel cost function for multi-class travelers as the delay-function based traffic

dynamics models, and introduced an additional dimension, traffic class indexed by m,

in the VI formulation Equation 1.4. However, due to the nature of UE, FIFO must be

maintained within each traveler class. The multi-class travel cost functions may violate

the FIFO principle.

Although multi-modal traffic assignment could be solved as a special case of multi-

class traffic assignment, it does overlook the characteristics of modal choice. One key

issue is that modal choice may not strictly follow the UE principle, simply because

travelers may be captive to some modes or they may have personal preference on a

particular mode. There are basically two ways to resolve this issue.

One way is that we split the transit O-D and auto O-D in passenger units before

we assign them separately to their own network. The two separate assignment methods
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are called auto assignment and transit assignment, respectively. Note that the transit

assignment is in the unit of passenger, while the auto assignment is in the unit of standard

vehicles. Here we simply apply a loading factor to covert the auto passenger flow into

auto standard vehicles. The auto assignment easily follows the steady-state assignment

and DTA discussed before, but the transit assignment is a bit different in terms of

network modeling and solution algorithms. This is mainly because the public transit has

fixed schedules unlike the arbitrary departure time for the automobile. In particular,

there are three features that should be taken into account in the transit assignment, 1)

waiting time at transit stations is a stochastic variable; 2) bus or trains normally stop

at particular locations, i.e. the transit stations; and 3) people may walk or drive to the

transit stations, and transfer between different lines. Steady-state transit assignment

has been intensively developed (Spiess & Florian 1989, Cea & Fernandez 1993, Wu et al.

1994, Nguyen et al. 1998, Lam et al. 1999, e.g.,). Most of those studies use “hyperpath” to

assign passenger flow, rather than a regular path in the auto assignment. A “hyperpath”

records not only the travel cost on a path, but also the probability of taking a particular

transit route and the “expected” travel cost of a path. Fortunately, dynamic transit

assignment can directly follow the methodology used in the automobile DTA without

adding the part of “hyperpath”, because each traveler, once departed and marked with

a particular time stamp, will take a transit vehicle that is also stamped with a departure

time. The route choice can be deterministic in a dynamic context rather than being

probabilistic as in the static case. Nevertheless, the DNL procedure for transit vehicles

should be modified slightly (Tong & Wong 1999).

The other way is to assign the total traffic O-D onto the combined network and

the transit O-D, and the auto O-D are determined internally by the assignment model

(Lam & Huang 1992, Ferrari 1999, Garcia & Marin 2005, e.g.). This way may be more

reasonable than the former way because the modal choice is essentially determined by

the perceived travel costs for each mode and those costs are the results of the traffic

assignment. Fernandez et al. (1994) gave a classic steady-state assignment model that

combines the binary modal choice and passenger flow assignment. They assume that the

probability of choose a traffic mode follows a logit model, which states:
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Gars(µrs) =
1

1 + e−(αac+β1(µcrs)−(µars))
(2.7)

where the superscript “c” denotes the transit mode, and “a” denotes the car mode.

Gars is the proportion of auto O-D demands for the rs−th O-D pair. Furthermore, they

assume that besides the modal choice, travelers can also choose different park-and-ride

stations, p, where they parking their car and take the transit line. An additional logit

model is introduced, which reads:

Gcrs,p(crs) =
e−(αcp+β2µcrs,p)∑
p′ e
−(αc

p′+β2µ
c
rs,p′ )

(2.8)

Therefore, the number of travelers using the transit between O-D pair is, qcrs,p =

qrs · Gcrs · Gcrs,p. This model has been later extended to the case with more general

network cases (Ferrari 1998, 1999, Ying & Yang 2005, Hamdouch et al. 2007, e.g.). In

a general steady-state combined network, road pricing and transit fare can be added as

part of the cost function in each network, which results in a VI problem equivalent to a

combined network UE (Ferrari 1999, Hamdouch et al. 2007).

To our best knowledge, multi-modal DTA that uses a stochastic modal choice model

is not seen in the literature. Also, carpool, as a single traffic mode along with HOV

facilities, has not been modeled in multi-modal traffic assignment problems.

2.3 Traveler Heterogeneity in VOT

In the context of traffic assignment, traveler heterogeneity can be represented by

travelers with different value of time (VOT) that is embedded in travel cost/time func-

tions. Travel cost and travel time can be converted with each other by VOT scaling.

Some studies used a bi-criteria objective to allow for tradeoff between time and monetary

cost of individuals with different VOTs. Travelers with continuously distributed VOTs

will only choose several so-called “efficient paths”, where no traveler can be better off

in both time and cost by unilaterally switching to any other path (Leurent 1993, 1996,

Dial 1996, 1997). All the “efficient paths”, if ordered by decreasing travel times, have

increasing monetary costs. Therefore, each efficient path is used by only those travelers
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whose VOTs fall within a certain range. Following this approach, Leurent (1993, 1996)

considered the heterogenous case with flow-dependent travel times, pre-determined tolls

and elastic demand, and showed that the assigned flows are significantly different from

those in the homogeneous case, especially when the tolls are set to be high. Dial (1996,

1997) studied the similar problem, but with fixed demand and flow-dependent tolls. He

showed that, in a numerical example, the homogeneous model overestimates toll road

usage when the toll charge is low and underestimates it when the toll charge is high.

This idea was further examined by Mayet & Hansen (2000) and Verhoef & Small (2004)

in a one-to-one network with two routes. The former derived analytical results of tolls,

user benefits and social benefits. The latter, by deriving second-best tolls, showed that

ignoring heterogeneity will underestimate the welfare benefits gaining from second-best

pricing, and it further performed a numerical sensitivity analysis to show how the pa-

rameters influence the tolls and their efficiency. Furthermore, Dial (1999a,b) shows that

with OD-dependent, continuously distributed VOTs, a tolling problem can be formu-

lated and transformed into an infinite-dimensional VI problem. The solution to this

problem reveals that when each traveler uses a path that minimizes his own particular

generalized cost, his cost equilibrates to the expected value of the social marginal cost.

Traveler heterogeneity has also been considered in modeling dynamic transportation

network problems, mostly concerning morning commute problems. In the case of general

networks, the idea of “efficient paths” was extended to time-space networks in dynamic

traffic assignment (DTA) (Mahmassani et al. 2005, Lu et al. 2006). However, the “effi-

cient paths” under simultaneous route choice and departure time equilibrium were not

obtained precisely as in the static context. In the case of the morning commute problem

with a special single-route, single-bottleneck network, Newell (1987) graphically showed,

as in the homogeneous case, a stable departure time equilibrium exists if travelers value

the early/late arrivals differently, but the resultant queuing pattern is significantly differ-

ent. Arnott et al. (1988) considered a finite number of traveler groups with non-identical

parameters in the morning commute problem, and compared some indicators of network

performances (such as total travel cost) under two groups to those in the homogeneous

cases. The results show notable differences between homogeneous and heterogeneous

cases. Zijpp & Koolstra (2002) provided a numerical algorithm for obtaining the equilib-
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rium solution of the problem discussed by Newell with general cost functions and a finite

number of groups of travelers. Recently, Ramadurai et al. (2008) developed a linear com-

plementarity formulation to solve Newell’s problem in discrete time with a finite number

of groups of travelers. None of these four papers deals with route choices, and nor do

they explicitly provide analytical formulae for the travel profiles. In another direction,

Lindsey (2004) investigates the existence and uniqueness of departure-time user equi-

librium in the morning commute problem with multi-user classes, applying generalized

travel cost functions.

2.4 Congestion pricing on parking

There are quite a few descriptive and empirical studies on parking (Thompson et al.

1998, Vianna et al. 2004, e.g.,), but theoretical studies on parking modeling associated

with the transportation network are few in the literature. Bifulco (1993) introduced sev-

eral parking types, fees and average walking times to the static traffic assignment model

so as to evaluate the efficacy of several regulatory parking policies in a general urban

network. Several others focused on the influences of parking fees to simplified networks.

Glazer (1992) analytically derived the social welfare with respect to the parking fees by

assuming a constant road-usage fee and constant travel cost for all the travelers. He

showed that a lump-sum parking fee may increase the welfare, but a parking fee per unit

time may influence travelers who can vary the length of time they park and thus does

not help increase the welfare. Verhoef et al. (1995) also assumed a constant travel cost,

inclusive of daily parking fee, for all the travelers from each origin node, and conducted

diagrammatic analysis on how parking affects the individual travel cost and the modal

split. Rather than assuming pre-determined parking demands and constant travel cost

for all the travelers, Arnott & Rowse (1999) developed a structural model of parking

for a ring-road network. They assumed travelers’ choice of parking lot is uniformly dis-

tributed on the ring-road, and thereafter derived the expected parking time, driving time

and cruising distance for searching available parking spaces. More recently, Anderson &

de Palma (2004) studied how drivers cruise and search to find parking spaces, assuming

those parking lots are privately owned. Their results are intriguing: “when cruising for
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parking congests both parkers and through traffic, the benefits from parking pricing are

substantially reduced”(p.1). All these studies focus on the daily parking in a steady-

state traffic network. Though static models provide a basic idea of traffic congestion

and network performance, they do overlook dynamic queuing of traffic flow and time-

varying traffic patterns. Also, the availability and accessibility of parking spaces are not

explicitly discussed in those models.

Among the few studies looking into the parking in the DTA, Arnott et al. (1991) first

studied how a combination of road toll and parking charge affect the morning commute

equilibrium pattern. They assumed the parking spaces are continuously distributed

along the freeway near the Central Business District (CBD), and the number of parking

spaces per unit distance from the CBD is constant. Both the provision and fee structure

of parking are centrally planned. Compared to the roadway tolls, parking fees do not

eliminate queuing, but can still be fairly efficient. Without parking fees, commuters

always occupy parking spots in the increasing order of distance from the destination.

An optimal dynamic parking fee scheme can change the order to be decreasing and thus

shorten the arrival time window in the CBD area. This thread was followed by Zhang

et al. (2008) to derive the dynamic traffic pattern of morning and evening commutes

based on road tolls and parking fees.
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Chapter 3

Value of Time Heterogeneity in The

Morning Commute

This chapter attempts to extend the previous studies in the morning commute problem

in two ways: 1) we consider an infinite number of commuter groups by adopting a

continuous distribution of parameters in commuters’ generalized travel time function;

and 2) we take into account both departure time and route choices under heterogeneous

cases. We shall first describe our problem set-up and assumptions in Section 2, which

also includes a detailed review of Arnott et al. (1988)’s analysis, because their results

are central to our study. We first derive the travel profiles and a number of network

performance indicators for a route with a single bottleneck. Further, we extend our

analysis to a two-route network and discuss its application to infrastructure planning.

Finally, we solve a multi-route network with heterogeneous travelers.

3.1 Morning Commute Problem with Continuously Dis-

tributed Parameters

In this section we first define the problem set-up and parameters to be used in this

chapter, introduce the basic assumptions adopted in our study and review some key

results from Arnott et al. (1988), on which our subsequent analysis is based.

As in a typical morning commute problem, a commuter’s generalized travel time is

composed of his actual travel time (including delay) and weighted early or late arrival

time. We first consider a finite number of commuter groups i = 1, 2, · · · , n. For a
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commuter in group i who departs at time t, his generalized travel time is expressed as,

Ci(t) = w(t) + max{βi(t∗ − t− w(t)), γi(t+ w(t)− t∗)} (3.1)

where w(t) denotes the commuting time, and t∗ the desired arrival time (the same work

starting time for all travelers). Here βi and γi are group i’s early arrival penalty (EAP)

and late arrival penalty (LAP), respectively1. Similarly, the generalized travel cost of a

commuter in group i departing at time t is defined as

TCi(t) = αi(w(t) + max{βi(t∗ − t− w(t)), γi(t+ w(t)− t∗)}) (3.2)

where αi is the VOT of commuters in group i. Here αiβi and αiγi are group i’s Values

attached to Early Schedule Delay (VESD) and Late Schedule Delay (VLSD). In addition,

w(t) reads,

w(t) =

∫ t

t0

r(x)

s
dx− (t− t0) (3.3)

where s denotes the bottleneck capacity and r(t) denotes the departure rate at time t.

t0 is the beginning time of the departure.

The proportionality assumption 1. Commuters’ preferences for early/late arrival

change proportionally, i.e. γi
βi

= η is constant for any group i.

This assumption may be reasonable because commuters with large/small VESD (αβ)

are more likely to have large/small VLSD (αγ). Based on the proportionality assumption,

and arranging the n groups in an order of increasing βi (i = 1, · · · , n), Arnott et al.

(1988) showed that under UE conditions, a fraction η/(1 +η) of each group arrives early

and the remainder 1/(1 + η) of it arrives late. For travelers who arrive early, Group 1

(with lowest β) departs first, then Group 2 and so on, until Group n (with highest β)

departs. For travelers who arrive late, the departing order is reversed: Group n departs

first, then Group n − 1 and so on until Group 1 departs. This is shown in Figure 3.1,

where travelers in Group i who arrive early depart from ti−1,i to ti,i+1 with queuing

delay linearly increasing from wi−1,i to wi,i+1, and those who arrive late depart from

ti+1,i to ti,i−1 with queuing delay linearly decreasing from wi+1,i to wi,i−1
2. Travelers

1Note that in this chapter β and γ represent the early arrival penalty (EAP) and late arrival penalty
(LAP) in the unit of travel time, rather than monetary cost of a unit of schedule delay in the previous
literature

2w0,1 = w1,0 = 0, wn,n+1 and wn+1,n reduce to wn. t0,1 and tn,n+1 reduce to t0 and tn accordingly,
and similarly, t1,0 and tn+1,n reduce to t1 and tn.
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departing from t0 to tn will arrive early and those departing from tn to t1 will arrive late.

Queue persists during the rush period given by [t0, t1]. Let N represent the total travel

demand. We define δ = η/(1 + η)3, φ = 1/(1 + η). It was shown by Arnott et al. (1988)

that t0 = t∗ − δN/s and t1 = t∗ + φN/s, and both times remain the same whether the

traveling population is homogeneous or not, because the total number of travelers who

arrive early and that for those who arrive late do not change.

w(t) is therefore a piece-wise linear function:

dw(t)

dt
=

βi
1− βi

for ti−1,i ≤ t ≤ ti,i+1 early arrival, or, (3.4a)

dw(t)

dt
= − γi

1 + γi
for ti+1,i ≤ t ≤ ti,i−1 late arrival (3.4b)

This result is fairly intuitive because under UE, a lower β (γ) means less weight on the

time loss due to early (late) arrival, hence travelers with lower β would prefer arriving

early (late) than waiting longer in the queue.

It is worth mentioning that the derivation of travel profiles under UE only relies on

generalized travel times which are independent of VOT α. Since our following analysis

only concerns UE, we consistently use generalized travel time, as expressed in Equation

3.1, rather than generalized travel cost, throughout the chapter.

Figure 3.1. Queuing delay with respect to the departure time

3In the previous literature, δ is defined to be βγ/(γ + β), which is not a constant any more in the
context of continuously distributed EAP β. Here, we define δ = γ/(γ + β) = η/(1 + η)
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3.2 The Case of A Single Route

3.2.1 Travel profiles

We first extend the aforementioned results from finite number of commuter groups

to infinite number of groups by considering a continuously distributed β and γ.

Let f be the probability density function (PDF) of β with a lower limit a and an

upper limit b (B = b − a). For the case with finite number of groups, groups are

ordered increasingly by βi, and the number of travelers in group i is approximated by

f(βi)·Bn ·N, i = 1, · · · , n. We divide the commuters into n groups, with n arbitrarily large.

Subsequently, Equation 3.4 can be used to derive the waiting times for each group i. By

letting the number of groups become infinitely large, we derive the desired waiting time,

and consequently the departure profile, for a continuously distributed heterogeneous

traveling population.

Differentiation with respect to t for both sides in Equation 3.3 yields:

dw(t)/dt = r(t)/s− 1 (3.5)

Substitute dw(t)/dt in Equation 3.4, we have:

r(t) =
1

1− βi
s for ti−1,i ≤ t ≤ ti,i+1 for early arrival (3.6)

Because a fraction δ of each group arrives early (Arnott et al. 1988), we have,

δf(βi)
B

n
N = (ti,i+1 − ti−1,i)r(t) = (ti,i+1 − ti−1,i)

1

1− βi
s (3.7)

Consequently, we get ti,i+1 by solving Equation 3.7 recursively

ti,i+1 = t∗ −N δ

s
+N

δ

s
· B
n

i∑
k=1

[(1− βk)f(βk)] (3.8)

Similarly, for late arrival, ti+1,i reads,

ti+1,i = t∗ +N
φ

s
−N φ

s
· B
n

i∑
k=1

[(1 + ηβk)f(βk)] (3.9)

The punctual departure time tn,

tn = t∗ −N δ

s
· B
n

n∑
k=1

[βkf(βk)] (3.10)
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Because

(ti,i+1 − ti−1,i) · dw(t)/dt = w(ti,i+1)− w(ti−1,i) for ti−1,i ≤ t ≤ ti,i+1 (3.11)

we have:

w(ti,i+1) = N
δ

s
· B
n

i∑
k=1

βkf(βk) (3.12)

w(tn) = N
δ

s
· B
n

n∑
k=1

βkf(βk) (3.13)

Therefore, generalizing Equation 3.8, 3.9 and 3.12 if n −→∞, i.e. infinite number of

traveler groups, yields that a traveler with EAP β(a ≤ β ≤ b) will depart at time

t(β) = t∗ −N δ

s
+N

δ

s

∫ β

a
(1− x)f(x)dx early arrival, or, (3.14a)

t(β) = t∗ +N
φ

s
−N φ

s

∫ β

a
(1 + ηx)f(x)dx late arrival (3.14b)

and experience a queuing delay

w(β) = N
δ

s

∫ β

a
xf(x)dx (3.15)

Let G1(β) =
∫ β
a (1 − x)f(x)dx, G2(β) =

∫ β
a (1 + ηx)f(x)dx and w(t) denotes the

queuing delay with respect to the departure time t similarly as the curve shown in

Figure 3.1, however, with β continuously distributed. We know that

dw

(
t0 +N

δ

s
G1(β)

)
/dt =

β

1− β
for early arrival, or, (3.16a)

dw

(
t1 −N

φ

s
G2(β)

)
/dt = − ηβ

1 + ηβ
for late arrival (3.16b)

Therefore, we can obtain the analytical formula of w(t) by solving the ordinary differen-

tial equation:

dw(t)/dt =
G−1

1 ( (t−t0)s
δN )

1−G−1
1 ( (t−t0)s

δN )
early arrival, or, (3.17a)

dw(t)/dt = −
ηG−1

2 ( (t1−t)s
φN )

1 + ηG−1
2 ( (t1−t)s

φN )
late arrival (3.17b)

where w(t0) = 0, w(t1) = 0

We further define β0 =
∫ b
a xf(x)dx, i.e. the expected value of β, for the following

sections.
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Proposition 3.1. If γ/β is assumed to be constant for all the commuters, then under

UE condition, only the travelers departing at t(b), t1 and t0 (i.e. the traveler with the

highest β, b, and the one with the lowest β, a) will experience the same queuing delay

as in the homogeneous case where β = β0 for all the travelers. The queuing delay with

respect to any other departure time t is overestimated by the assumption of homogeneity,

and thus, the total generalized travel time (TTT) is overestimated as well.

Proof. Here, we only present the proof for early arrival. A similar proof for late arrival

is omitted here to save space.

For the traveler with β = a, the queuing delay w(a) = 0 and the departure times

t(a) = t0 and t1 are the same in both homogeneous and heterogeneous cases. For the

traveler with β = b, w(b) = N δ
s

∫ b
a xf(x)dx = N δ

sβ0 and t(b) = t∗ − N δ
s + N δ

s

∫ b
a (1 −

x)f(x)dx = t∗ − N δ
s

∫ b
a xf(x)dx = t∗ − N δ

sβ0, the queuing delay and departure time

are the same as in the homogeneous case. For any other traveler with a < β < b in

early arrival, the queuing delay a traveler would experience in the homogeneous case is

(t(β)− t0) β0
1−β0 . Therefore, the second part of the proposition is equivalent to show that

(t(β)− t0) β0
1−β0 > w(β), ∀a < β < b. Let g(β) = (t(β)− t0) β0

1−β0 − w(β).

g′(β) = d{ β0

1− β0

∫ β

a
(1− x)f(x)dx−

∫ β

a
xf(x)dx}/dβ

=
β0

1− β0
(1− β)f(β)− β(f(β))

=
(β0 − β)f(β)

1− β0

g′(β) > 0 when a < β < β0, g′(β) = 0 when β = β0, and g′(β) < 0 when b > β > β0. In

addition, g(a) = g(b) = 0. Therefore, g(β) > 0,∀a < β < b. Furthermore, when β = β0,

g(β) reaches its maximum, i.e., assuming homogeneity of β across the population leads

to the maximum overestimation of queuing delay for a traveler departing at t(β0).

Proposition 3.2. If γ/β is assumed to be constant for all the commuters, then under UE

condition, every commuter is better off if the bottleneck capacity is enlarged. Commuters

with high values of β benefit more than those with low values.

Proof. The generalized travel time of the traveler with β(a ≤ β ≤ b) becomes,

C(β) = β(t∗ − t(β)) + w(β)(1− β) (3.18)
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Substitute t(β) and w(β) by Equation 3.14a and 3.15, we obtain,

C(β) = β(N
δ

s
−N δ

s

∫ β

a
(1− x)f(x)dx) + (1− β)N

δ

s

∫ β

a
xf(x)dx

= N
δ

s
[β −

∫ β

a
(β − x)f(x)dx] (3.19)

Therefore,

∂C(β)

∂s
= −Nδ

s2
[β −

∫ β

a
(β − x)f(x)dx] < 0

∂ ∂C(β)
∂s

∂β
= −Nδ

s2
(1−

∫ β

a
f(x)dx) < 0

which completes the proof.

3.2.2 System performance

In this section we derive the formulae for computing total generalized travel time.

Then we provide numerical examples to illustrate the magnitude of performance differ-

ence between that of a homogeneous population and that of a heterogeneous population.

Let the index e and o represent the heterogenous case and the homogenous case, respec-

tively.

The total generalized travel time (TTT) of all the heterogeneous travelers reads:

TTTe = N

∫ b

a
f(β)w(β)dβ

= N2 δ

s

∫ b

a
f(β)[

∫ β

a
xf(x)dx]dβ (3.20)

while TTT under homogeneous travelers is TTTo = δβ0N
2/2s.

Next we provide some numerical examples to illustrate the differences between these

network performance indicators under a homogeneous and three types of heterogeneous

populations. We consider two possible symmetric PDFs of β with expected value of

β, β0 = 0.5 (the limits of β are set to be a = 0.1 and b = 0.9). One is a truncated

normal distribution with mean 0.5 and standard deviation 0.12, and the other is a piece-

wise linear distribution, with the PDF f(β) = (β − 0.1) · 25/4 if 0.1 ≤ β ≤ 0.5 and

f(β) = (0.9− β) · 25/4 if 0.5 ≤ β ≤ 0.9. More realistically, the PDF of β may be skewed

to the left, as indicated by other empirical studies (Tseng & Verhoef 2008). Hence, we
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also consider a log-normal distribution of β, and the mean and standard deviation of lnβ

are −1 and 0.3, respectively (β0 = 0.3834). Other parameters are: η = 4, N = 10000

persons and s = 90 persons/min(approximately a three-lane freeway).

We plot in Figure 3.2 the changes in queuing delay with respect to the departure

time based on aforementioned three PDFs and an identical β(= β0). It can be seen that

the queuing delay is overestimated by the assumption of homogeneity, and thus TTT is

overestimated as well.

We find that compared with a normally distributed β, the homogeneity overestimates

TTT by nearly 15%. The maximum queuing delay under log-normal distribution does

not coincide with other distributions, because its β0 is less than others. In this numerical

example, “linear distribution” of β may lead to underestimate the total queuing delay,

by 5% compared to the normal distribution. This is because βs are more centralized in

the normal distribution than “linear distribution”, and the travel profiles derived from

normal distributions are more likely to be estimated towards the homogeneous case.

3.3 The Case of A Two-route Network

3.3.1 Travel profiles

In this section, we extend the results derived in Section 2 to the case with route

choice. We let a corridor freeway (capacity sf ) and arterial roads (AR) (capacity sa),

connecting an origin-destination pair, are open to all the travelers at any time, and

travelers make choices between the freeway and the AR to minimize their own travel

time/cost. The free flow travel time of the freeway is zero without loss of generality,

while that of the AR is set to be τ . Nf and Na denote the number of travelers on the

freeway and the AR, respectively. Nf + Na = N is assumed to be fixed. ff0 and fa0

are the normalized PDF of β for freeway and AR commuters, respectively. Therefore,

Nf ·ff0(x)+Na ·fa0(x) = N ·f(x),∀x ∈ [a, b]. Let ff and fa be the original distribution of

β for freeway and AR commuters, respectively, such that ff (x)+fa(x) = f(x),∀x ∈ [a, b].

Then we have the following results.

Proposition 3.3. If there are two routes connecting a one-to-one network and the free
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Figure 3.2. Queuing delay with respect to the departure time(N = 10000)

flow travel time on the AR is larger than that on the freeway, then the travelers with

highest β, b, will first shift to the AR, prompted by demand increase. The critical travel

demand N∗ when travelers start to use the AR remains the same as in the homogeneous

case.

Proof. From Equation 3.18, we know that:

dC(β)

dβ
= N

δ

sf

(
1−

∫ β

a
f(x)dx

)
> 0 (3.21)

when a ≤ β < b. Therefore, C(β) in monotonically increasing with respect to β. Hence,

the traveler with the highest β, b, will first shift to the AR when the total demand is

progressively increased. When β = b, C(b) = Nf
δ
sf

(b −
∫ b
a (b − x)f(x)dx) = Nf

δ
sf
β0.

Consequently, N∗ = τsf/(δβ0), which is consistent with N∗∗∗ derived by Arnott et al.

(1990).
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Figure 3.3. The β distribution splits at a′

The first part of the conclusion is somewhat expected because intuitively, travelers

who weigh the penalty of schedule delay more importantly are more likely to choose the

AR which takes longer time to reach the destination than the freeway but they suffer

less schedule delay as the AR is less congested than the freeway. When N > N∗ where

N∗ = τsf/(δβ0), some travelers with high values of β will start to use the AR.

Proposition 3.4. There exists a value of β, a′, such that a′ is the highest value of β

of all the travelers on the freeway and is the lowest value of β of all the travelers on the

AR. In other words, the β distribution splits, at a′, into two parts, as shown in Figure

3.3, such that all the travelers with β ≤ a′ choose the freeway and those with β > a′

choose the AR.

Proof. The proof is by contradiction.

Proposition 3.4 indicates that with the increase of total demand, travelers with high

values of β shift to the AR while travelers with low values of β stay in the freeway. If

Proposition 4 does not hold, the β distribution splits within an interval, not a single

point. We show that by contradiction there does not exist such a transition interval of

β within which some travelers take the highway and others take the AR.

We hence assume b′ is the highest value of β of all the travelers on the freeway and

a′ is the lowest value of β of all the travelers on the AR, b′ > a′, as shown in Figure
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3.3. The travelers with a′ ≤ β ≤ b′ can take either the freeway or the AR. Therefore,

Nf · ff0(x) = N · ff (x),∀a ≤ x ≤ b′. According to Equation 3.18, the travel time of the

travelers on the freeway with a′ ≤ β ≤ b′:

Cf (β) = Nf
δ

sf
[β −

∫ β

a
(β − x)ff0(x)dx]

= Nf
δ

sf
β −N δ

sf

∫ β

a
(β − x)ff (x)dx

= Nf
δ

sf
β −N δ

sf

∫ a′

a
(β − x)f(x)dx−N δ

sf

∫ β

a′
(β − x)ff (x)dx

The travel time of the travelers on the AR with a′ ≤ β ≤ b′:

Ca(β) = τ +Na
δ

sa
[β −

∫ β

a′
(β − x)fa0(x)dx]

= τ +Na
δ

sa
β −N δ

sa

∫ β

a′
(β − x)fa(x)dx

Because under User Equilibrium, Cf (β) = Ca(β) for a′ ≤ β ≤ b′, dCf (β)/dβ =

dCa(β)/dβ for a′ ≤ β ≤ b′. Now we have:

dCf (β)/dβ − dCa(β)/dβ = Nf
δ

sf
−Na

δ

sa
−N δ

sf

∫ a′

a
f(x)dx

−N δ

sf

∫ β

a′
ff (x)dx+N

δ

sa

∫ β

a′
fa(x)dx = 0

When β = a′ + dβ where dβ is an infinitesimal, the last two items becomes infinitesimal

as well:

Nf
δ

sf
−Na

δ

sa
−N δ

sf

∫ a′

a
f(x)dx+ o(β) = 0 (3.22)

On the other hand, Cf (a′) = Ca(a
′) yields

Nf
δ

sf
a′ −N δ

sf

∫ a′

a
(a′ − x)f(x)dx = τ +Na

δ

sa
a′ (3.23)

Compare Equation 3.23 and 3.22, we obtain that:

τ = N
δ

sf

∫ a′

a
xf(x)dx+ o(β) (3.24)

Because

Cf (a′ + dβ) = Nf
δ

sf
(a′ + dβ)−N δ

sf

∫ a′+dβ

a
(a′ + dβ − x)f(x)dx

= Nf
δ

sf
a′ −N δ

sf
a′
∫ a′

a
f(x)dx+N

δ

sf

∫ a′

a
xf(x)dx+ o(β) + o2(β)

= τ + o(β) + o2(β)
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and

Ca(a
′ + dβ) = τ +Na

δ

sa
a′ + o(β)

Ca(a
′ + dβ) > Cf (a′ + dβ), which contradicts our assumption, Cf (β) = Ca(β) for a′ ≤

β ≤ b′. Therefore, the β distribution splits at a single point a′ such that all the travelers

with β ≤ a′ choose the freeway and those with β > a′ choose the AR.

Based on this proposition, we can obtain a′ by solving the following equation which

rewrites Equation 3.23 by substituting Nf = N
∫ a′
a f(x)dx and Na = N

∫ b
a′ f(x)dx.

N
δ

sf

∫ a′

a
xf(x)dx = τ +N

δ

sa
a′
∫ b

a′
f(x)dx (3.25)

Proposition 3.5. (Existence and uniqueness of UE) There is at least one solution of

a′ in Equation 3.25. User Equilibrium (UE) solution is unique, i.e. there is only one

solution of a′ in Equation 3.25, if, 1) the PDF of β is differentiable, and, 2) there

exists v (a < v < b) such that f ′(a′) ≥ 0 for a′ < v and f ′(a′) < 0 for a′ > v, 3)∫ b
v f(x)dx ≤ vf(v)

Proof. Let ρ(y) = N δ
sf

∫ y
a xf(x)dx− τ −N δ

sa
y
∫ b
y f(x)dx. Then, ρ(a) = −τ −N δ

sa
a < 0,

and ρ(b) = N δ
sf
β0 − τ > 0. The existence of UE can be obtained immediately due to

the continuity of ρ(a′). Furthermore,

dρ(y)

dy
= N

δ

sf
yf(y)−N δ

sa
(

∫ b

y
f(x)dx− yf(y))

d2ρ(y)

dy2
= Nδ(

1

sf
+

1

sa
)(f(y) + yf ′(y)) +N

δ

sa
f(y)

Because d2ρ(y)
dy2

> 0 where y < v due to condition 2), ρ is convex where y < v. dρ(y)
dy > 0

where y > v due to condition 3), so ρ is strictly monotonically increasing where y > v.

Consequently, there is only one solution of y, which is a′, and a < a′ < v if ρ(v) > 0,

v ≤ a′ < b if ρ(v) ≤ 0.

Actually, the three conditions required for the uniqueness in this chapter could be

satisfied by many common distributions. We can first easily see that all symmetric

distributions satisfy them. For the log-normal distribution, they also hold when vf(v) =
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1√
2πσ

c−σ
2/2 ≥ 1 >

∫ b
v f(x)dx. The uniqueness of UE under more general distributions,

however, is not guaranteed and there would be worthy of further investigation.

Assuming the solution of a′ is unique, we obtain that dρ(a′)/dy > 0, because

dρ(a′)/dy ≤ 0 and continuity of β yield another solution of a′, and thus contradicts the

uniqueness of a′. Therefore,

dρ(a′)

dy
= (

1

sf
+

1

sa
)a′f(a′)− 1

sa

∫ b

a′
f(x)dx > 0 (3.26)

3.3.2 System performance

Once a′ is obtained from Equation 3.25, the β distributions on the freeway and AR

are known and we can calculate the TTT by rewriting Equation 3.20 for both the freeway

and AR.

The number of travelers on the freeway and on the AR under heterogeneity reads:

Nf,e = N

∫ a′

a
f(x)dx,Na,e = N

∫ b

a′
f(x)dx (3.27)

and the normalized PDF of β for freeway and AR commuters become,

ff0(x) = f(x)
N

Nf,e
, a ≤ x ≤ a′ (3.28a)

fa0(x) = f(x)
N

Na,e
, a′ ≤ x ≤ b (3.28b)

While the number of travelers on the freeway and on the AR under homogeneity is

(Arnott et al. 1990):

Nf,o =
sf
δβ
τ + (N −

sf
δβ
τ)

sf
sf + sa

(3.29a)

Na,o = (N −
sf
δβ
τ)

sa
sf + sa

(3.29b)

The total generalized travel time (TTT) of all the commuters under heterogeneity

reads:

TTTe = N2 δ

sf

∫ a′

a
f(β)[

∫ β

a
xf(x)dx]dβ +N2 δ

sa

∫ b

a′
f(β)[

∫ β

a′
xf(x)dx] (3.30)

+τN

∫ b

a′
f(x)dx
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while TTT under homogeneous commuters is :

TTTo =
δβ0N

2

2(sa + sf )
−

sasfτ
2

2(sa + sf )δβ0
+

sa
sf + sa

Nτ (3.31)

Next we provide some numerical examples to illustrate the differences in TTT be-

tween homogeneous and heterogeneous traveling populations. In this section, the AR is

not just one route but the aggregate of a collection of parallel arterials, so we assume that

sa = 180veh/min (approximately six lanes in total) ≥sf = 90 veh/min (approximately

a three-lane freeway). The free-flow travel time on the AR is set to be τ = 15min. N

changes from 10000 to 18000, where the AR will be used. A log-normal distribution,

with the mean −1 and standard deviation 0.3 of lnβ, is assumed to be the PDF of β.

We first plot in Figure 3.4 the number of travelers on the freeway and AR in both

homogeneous and heterogeneous cases, with respect to the total demand N . Generally,

considering heterogeneity leads to more travelers on the freeway and less travelers on

the AR, compared to not considering heterogeneity. When N = 17600, the number of

travelers on the freeway is the same as on the AR based on the assumption of homo-

geneity, since sa > sf and the AR serves sa/sf times as many travelers as the freeway

for the demand beyond N∗. However, for the heterogeneous case, the demand share

of the freeway, though slowly decreasing, is still 40% more than the demand share of

the AR. This is because the freeway will be used by travelers with low β who weigh

the queuing penalty more than early or late arrival penalty when the network is highly

congested. Those travelers are more likely to depart early or late to avoid long queuing

time. Consequently, the departure times on the freeway will be more spread out, and

thus the freeway will serve more travelers under heterogeneity.

Furthermore, we compare the TTT of the total network in both homogeneous and

heterogeneous cases with respect to the total demand N , as shown in Figure 3.5. Sim-

ilarly as in the case of a single-route network, homogeneity overestimates the TTT by

approximately 12%.
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Figure 3.4. Comparisons of the number of travelers on the freeway and AR in both
homogeneous and heterogeneous cases

3.4 Application to Infrastructure Planning

It is of particular interest to study, under heterogeneity, how facility improvement

will impact the system total travel time (TTT) and demand share of the freeway route,

and who would benefit most/least from such improvements. To do this, we examine the

marginal system time savings with respect to freeway capacity expansion (dTTT/dsf ),

arterial road capacity expansion (dTTT/dsa), and arterial free-flow travel time

(dTTT/dτ). Furthermore, we define the following quantities for later use: TTTf and

TTTa are the total travel times on the freeway and arterial road, respectively, and

bf =
∫ a′
a f(x)dx is the share of the demand from the freeway.
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Figure 3.5. Comparisons of TTT in both homogeneous and heterogeneous cases with
respect to N

3.4.1 Expanding freeway capacity

We first investigated the impact on the total travel time caused by freeway capac-

ity enlargement. The results are shown in Table 3.1 (please see Appendix B for the

derivations).

Table 3.1. Marginal system time savings with respect to freeway capacity enlargement
dTTTf
dsf

dTTTa
dsf

dTTT
dsf

dbf
dsf

Sign ± < 0 < 0 > 0

The results indicate that improving freeway capacity will always reduce the TTT

of the whole network and TTTa, and increase the demand share of the freeway. This
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conclusion under heterogeneity is consistent with that under homogeneity (see Appendix

A for those derivatives under homogeneity). Under homogeneity, TTTf increases with

the increase of freeway capacity if and only if sa > sf . However, under heterogeneity,

whether TTTf will be reduced or not with the increase of freeway capacity is depen-

dent on all the given parameters and the PDF of β, which may lead to quite different

conclusions as compared to the homogeneous case.

Now we use an example to illustrate those points. Let N = 10000 veh, τ = 15 min,the

AR capacity sa = 90 veh/min and the freeway capacity sf changes from 40 veh/min to

140 veh/min (we still adopt the aforementioned log-normal PDF). The changes of
dTTTf
dsf

and dTTT
dsf

, under both homogeneity and heterogeneity, are shown in Figure 3.6. In this

numerical example, the assumption of homogeneity will overestimate the impact on TTT

caused by the freeway capacity enlargement. Under heterogeneity, TTTf achieves the

minimum value of 101135 veh*min, i.e.,
dTTTf
dsf

= 0, when sf = 72 veh/min , while the

minimum value of TTTf is 107271 veh*min when sf = 90 veh/min under homogene-

ity. Therefore, the optimal freeway capacity and the desired total travel time under

heterogeneity could be considerably different from the homogeneous case.

3.4.2 Improving arterial road

Now we turn to investigate the impact of AR improvement in the manner of capacity

enlargement and free-flow travel time reduction. The results are shown in Table 3.2

(please see Appendix B for the derivations).

Table 3.2. Marginal system time savings with respect to AR improvement
dTTTf
dsa

dTTTa
dsa

dTTT
dsa

dbf
dsa

Sign < 0 ± < 0 < 0

dTTTf
dτ

dTTTa
dτ

dTTT
dτ

dbf
dτ

Sign > 0 ± > 0 > 0

The results in Table 3.2 indicate that improving AR capacity, or reducing the free-

flow travel time on the AR, will always reduce the TTT of the total network and TTTf ,

as well as the demand share of the freeway. This is consistent with the conclusion under

homogeneity. However, whether sa and τ have a positive effect on TTTa depends on all

the given parameters and the PDF of β. In fact, according to our numerical examples, we

can find some PDFs such that dTTTa/dsa > 0 and dTTTa/dτ > 0 for arbitrary values
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Figure 3.6. Changes of
dTTTf

dsf
and dTTT

dsf
with respect to sf

of N, sa, sf and τ , which implies that sometimes the EAP/LAP (i.e. β or γ) distribution

of the population has the dominant effect on changes in total arterial travel time when

an improvement is made to the arterial road.

3.4.3 Is the capacity enlargement Pareto-improving?

Since improving roadway capacity reduces total system travel time, we are particu-

larly concerned about whether it is a Pareto improvement, i.e. whether every commuter

is better off in regard to capacity enlargement. Let Cf (β) and Ca(β) denote the gener-

alized travel time of a commuter with EAP β on the freeway and AR, respectively.

∂Cf (β)
∂sf

and ∂Ca(β)
∂sf

represent the changes in generalized travel time with respect to

the freeway capacity improvement for a commuter (with EAP β) on the freeway and

the AR, respectively. Similarly,
∂Cf (β)
∂sa

and ∂Ca(β)
∂sa

represent the changes in generalized

travel time with respect to the AR capacity improvement for a commuter (with EAP β)
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on the freeway and the AR, respectively. Furthermore, by analyzing ∂ ∂Ci(β)
∂sj

/∂β (where

i = f or a, and j = f or a), we are able to show how the reduction of generalized travel

time varies for each commuter.

With respect to the freeway capacity improvement, we have (please see Appendix C

for the derivations),

∂Cf (β)

∂sf
< 0 (3.32a)

∂
∂Cf (β)
∂sf

∂β
|β=a < 0,

∂
∂Cf (β)
∂sf

∂β
|β=a′ > 0,

∂
∂Cf (β)
∂sf

∂β
is monotone w.r.t β (3.32b)

∂Ca(β)

∂sf
< 0,

∂ ∂Ca(β)
∂sf

∂β
= 0 (3.32c)

The derivatives imply that improving freeway capacity makes every commuter better off.

In particular, it equally benefits commuters on the AR in travel time reduction. However,

for commuters on the freeway, it benefits those with medium values of β more than those

with high or low values of β, in terms of travel time reduction. Now we illustrate these

with an example. Let τ = 15 min, sa = 90 veh/min, sf changes from 90 veh/min to

100veh/min. We plot the changes in generalized travel time of all commuters ordered by

the value of β in a mildly congested network (N = 10000) and a highly congested network

(N = 20000), as shown in Figure 3.7. The left vertical axis measures the travel time

reduction in the unit of minutes, while the right axis measures the reduction ratios(the

travel time reduction over the original travel time) in the unit of percentage.

When N = 10000, enlarging freeway capacity benefits commuters on the AR equally

by 1.4 minutes, whereas it benefits commuters on the freeway differently by ranging

from 0.5 minutes to 1.3 minutes. Due to freeway capacity enlargement, those commuters

on the AR with β ranging from 0.47 to 0.49 switch to the freeway, and receive less

benefits than those remaining on the AR. On the other hand, those commuters with low

values of β on the freeway obtain maximal travel time reduction ratios, while the travel

time reduction ratio of commuters on the AR keep relatively constant. The changes in

both the reduction and reduction ratios over all the commuters when N = 20000 seem

similar to those when N = 10000, only that N = 20000 generally yields more travel time

reduction with, however, less travel time reduction ratios.

When the capacity of the AR is expanded, we have (please see Appendix C for the
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derivations),

∂Cf (β)

∂sa
< 0,

∂
∂Cf (β)
∂sa

∂β
< 0 and is independent of β (3.33a)

∂Ca(β)

∂sa
< 0,

∂ ∂Ca(β)
∂sa

∂β
< 0 (3.33b)

The derivatives imply that improving AR capacity makes every commuter better

off as well. In particular, travelers with higher EAP β have a greater reduction in their

generalized travel time if they remain on the same route. Now we use a numerical example

to illustrate this. Let τ = 15 min, sf = 90 veh/min, sa changes from 90 veh/min to

100veh/min. We plot the changes in generalized travel time of all commuters ordered by

the value of β in a mildly congested network (N = 10000) and a highly congested network

(N = 20000), as shown in Figure 3.8. The left vertical axis measures the travel time

reduction in the unit of minutes, while the right axis measures the reduction ratios(the

travel time reduction over the original travel time) in the unit of percentage.

When N = 20000, enlarging AR capacity benefits commuters on the freeway linearly

from 0.3 minutes (where β = 0.1) to 1.4 minutes (where β = 0.41), whereas it benefits

commuters on the AR by ranging from 1.1 minutes to 1.7 minutes. Commuters with

β at approximately 0.41 switch from the freeway to the AR due to the AR capacity

enlargement. As expected, the marginal capacity enlargement is more helpful in a highly

congested network than the mildly congested one, because both the reduction of each

commuter’s travel time and the reduction ratio are more significant when N = 20000.

3.5 The Case of A Multi-route Network

Now, we consider a one-to-one network connected by n routes, including a freeway

route, and n−1 arterials. The routes are ordered by their free flow travel time. Suppose

the free-flow travel times and the capacity of route i is τi and si respectively. Hence,

τ1 < τ2 < · · · < τn. τ1 is set to be 0 without loss of generality. Proposition 3.4 can be

immediately extended in the case of multiple routes. Since only travelers with a critical

value of β will choose either of two neighbored routes, the domain of β will be split

into i intervals (suppose that the freeway route and i arterials are used, i + 1 < n),
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Figure 3.7. Changes in generalized travel time of all commuters in regards to freeway
capacity improvement

[a, a1], [a1, a2] · · · , [ai, b], such that the freeway route is used by travelers whose values of

β are within [a, a1] and the arterial road k is used by those within [ak, ak+1] (ai+1 = b).

The following i equations can be immediately obtained as an extension of Equation

3.25, in order to solve for a1, · · · , ai.

N
δ

sk

∫ ak

ak−1

xf(x)dx = τk+1 − τk +N
δ

sk+1
ak

∫ ak+1

ak

f(x)dx ∀k = 1, 2, . . . , i (3.34)

where ai+1 = b and a0 = a.

The bi-section method can be used to efficiently solve the multi-route morning com-

mute problem under heterogeneity.

Step 1: Initialization: a1,left = a and a1,right = b.

Step 2: Loop and stop criteria: If a1,right − a1,left > a small positive number, let

a1 = a1,left/2 + a1,right/2 and go to loop, otherwise stop.

Step 3: Sub-loop:
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Figure 3.8. Changes in generalized travel time of all commuters in regards to AR
capacity improvement

Step 3.1 k = 1

Step 3.2 Calculate ak+1 by substituting ak in Equation 3.34.

If ak+1 = b, stop the loop and solution found. i = k.

If N δ
sk

∫ ak
ak−1

xf(x)dx−(τk+1−τk) < 0, then a1,left = a1, stop the sub-loop.

If N δ
sk

∫ ak
ak−1

xf(x)dx > τk+1− τk +N δ
sk+1

ak
∫ b
ak
f(x)dx, then a1,right = a1,

stop the sub-loop.

Step 3.3 k = k + 1
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3.6 Summary

In this chapter, we study the morning commute problem with a heterogeneous trav-

eling population whose early/late arrival penalty parameters β/γ are continuously dis-

tributed. Following Arnott et al. (1988), where the ratio of β over γ is assumed constant

across the population and all the travelers have the same work starting time t∗, we de-

rive the user-optimal travel profiles and the corresponding total generalized travel time

(TTT) for a one-to-one network with a single route, where β and γ are continuously

distributed. We show that assuming homogeneity overestimates the queuing delay and

thus the total travel time. In addition, every commuter is better off if the bottleneck’s

capacity is enlarged, and commuters with high values of β benefit more than those with

low values.

We then extend our analysis to a network with two routes, a freeway and an AR

connecting a single Origin-Destination (O-D) pair. In this case, we find that the travelers

who dislike to arrive early/late more (corresponding to higher β/γ values) will first shift

to the AR with the increase of total demand. However, the critical travel demand N∗ at

which travelers start to use the AR remain the same whether the traveling population

is homogeneous or not. Interestingly, there exists a critical a′ such that the travelers

with β ≤ a′ all choose the freeway and those with β ≥ a′ all choose the AR. Our

numerical examples show that considering heterogeneity across the population leads to

an estimate of larger route share of the freeway than not considering heterogeneity. We

further investigate the impact of the facility improvement on the system and most results

are consistent with those under homogeneity with respect to changes in TTT. However,

unlike the homogeneous case, whether the marginal freeway(AR) improvement has a

positive effect on TTTf (TTTa) depends on all the parameters and β distributions, and

sometimes β distributions can dominate this effect. Additionally, we show that every

commuter is better off if either the freeway capacity or the AR capacity is enlarged.

As a matter of fact, we can easily extend our conclusion to solve a multi-route morning

commute problem under heterogeneity where a one-to-one network is connected by n

routes. Suppose those routes are ordered by their free flow travel time. Since only

travelers with a critical value of β can choose either of two adjacent routes in such an
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order, the domain of β will be split into i intervals where i is the number of used routes

and travelers with the value of β in each interval only use a certain route. This extension

allows applications in more general networks.
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Chapter 4

Traffic Mode Heterogeneity:

Multi-modal morning commute

In this chapter, we address the morning commute problem in a single-origin-single-

destination (SOSD) corridor network with three modes, driving-alone, carpool, and light

rail transit. Under the equilibrium framework, departure time patterns will be derived

for commuters of all three travel modes. The mode shares, on the other hand, are de-

termined by a nested-logit choice model. Analytical and numerical results will then be

obtained to study how mode shares and the performance of the corridor network are

affected by various “price signals”, such as changes in transit fare, road toll and fuel

cost.

4.1 Problem set-up

An SOSD corridor, comprised of a light rail line, a freeway route and an arterial

route, is shown in Figure 4.1. It is assumed that all the travelers have identical expected

work start time, t∗ say, 8:00am. The freeway and arterial roads are open to all the

travelers at any time, while the light rail line has a fixed schedule without running

delay. This is because a light rail route normally has its own physical facilities paralleled

with roadways, and the travel time on the railway route is independent of roadway

traffic conditions. The transit line is assumed to have several runs centered around the

scheduled work starting time t∗. Toll, if exists, is charged to freeway travelers only. The

time-varying passenger demand may exceed the capacity of the light rail line, but the
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light rail passengers are subject to an in-vehicle congestion or reliability penalty σ.

Figure 4.1. An SOSD multi-modal corridor network

Note that the generalized travel cost of a commuter departing at time t is defined

to be C(t) = αw(t) + max{β(t∗ − t − w(t)), γ(t + w(t) − t∗)}. Since we assume a

homogenous population with identical α, γ and β, the UE solution does not change if

we define C ′(t) = w(t) + max{β′(t∗ − t − w(t)), γ′(t + w(t) − t∗)} where β′ = β/α and

γ′ = γ/α. Here C ′(t) becomes the generalized travel time. In this chapter, we shall use

travel time as the measuring unit of travel cost.

Let the index a denote the transit route, b the freeway route, and c the arterial route.

The indices 1, 2, 3 denote the modes of transit, carpool and solo-driving respectively. Let

N1 be the transit passenger flow and Nauto = (N2,b, N2,c, N3,b, N3,c) the auto passenger

flow pattern for the two auto modes on the two routes. Consequently, Nc = N2c/m+N3c

and Nb = N2b/m + N3b are the number of vehicles traveling via the arterial road (AR)

and the freeway, respectively, where m denotes the average number of passengers in a

carpooling vehicle. Let N be the total passenger travel demand in the corridor, which

is known and fixed, then N = N1 +N2b +N3b +N2c +N3c.

Unlike in the auto mode where travelers depart continuously over time, a light rail

has a fixed schedule and departs in discrete intervals so its passengers can only depart

from their boarding stations at these fixed times, although they can depart from their

homes at any time. For instance, the scheduled departure time of the transit line is

approximately at five-minute intervals from 7:30am to 8:15am. The generalized travel
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time of a transit user at departure time t, c1(t), is defined as:

c1(t) = ta +max[γ(t+ ta − t∗), β(t∗ − t− ta)] + p+ σ(t) (4.1)

where ta is the sum of expected waiting time, walking time and in-vehicle time for a

transit passenger. ta is assumed to be fixed. max[γ(t + ta − t∗), β(t∗ − t − ta)] is the

early arrival or late arrival penalty as mentioned before. There is a uniform transit

fare p (denominated in time) for all travelers. σ(t) = η · vk · h can be considered as a

mode-specific cost related to actual or perceived inconveniences of the transit mode. η

is a scalar, h is the fixed transit headway during rush hours, and vk denotes the transit

passenger flow on the k-th run. This formula for σ(t) implies that 1) if the transit

demand is fixed, the higher the transit frequency, the less likely a passenger would miss

a train or waiting longer for a train, hence the less travel cost, and 2) if the transit

schedule is fixed, the higher the transit passenger flow on a run, the more crowded the

train cars would be, hence the less comfort of a train ride, which in itself is also a cost

to the passengers.

Let c2b(t) and c3b(t) be the generalized travel time of a private auto commuter at

departure time t via the freeway, for carpooling commuters and driving-alone commuters

respectively.

c2b(t) = wb(t) +max[γ(t+ wb(t)− t∗), β(t∗ − t− wb(t))] +
ξb
m

+ ∆ (4.2)

c3b(t) = wb(t) +max[γ(t+ wb(t)− t∗), β(t∗ − t− wb(t))] + ξb (4.3)

Where wb(t) is the waiting time at the bottleneck on the freeway departing at time

t. max[γ(t + wb(t) − t∗), β(t∗ − t − wb(t))] is the early arrival or late arrival penalty,

denominated in time. ξb consists of fuel cost and a uniform toll charge, all denominated

in time, on a vehicle basis. ∆ denotes the extra time cost of gathering the people together

for carpoolers. The capacity of the GP lanes and the HOV lanes of the bottleneck on the

freeway is given by sf and φ · sf , respectively. The free flow travel time on the freeway

is set to be 0 without loss of generality.

Similarly, let c2c(t) and c3c(t) be the generalized travel time of a private auto trip

at departure time t via the AR, for carpooling commuters and driving-alone commuters

respectively.

c2c(t) = tc + wc(t) +max[γ(t+ wc(t)− t∗), β(t∗ − t− wc(t))] +
ξc
m

+ ∆ (4.4)
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c3c(t) = tc + wc(t) +max[γ(t+ wc(t)− t∗), β(t∗ − t− wc(t))] + ξc (4.5)

Where wc(t), max[γ(t + wc(t) − t∗), β(t∗ − t − wc(t))], and ξc are defined similarly as

in the generalized travel time for travelers who use the freeway. The capacity of the

bottleneck on the AR is denoted by sar. The free flow travel time on the AR is set to

be tc.

When the freeway is not tolled, we should have ξc > ξb because the AR is usually

longer than the freeway and takes longer to travel as well (hence a vehicle travels on it

consumes more fuel). In this chapter, the AR is not just one arterial but the aggregate

of a collection of parallel arterials, we assume that sar ≥ sf holds. The AR, however,

have longer free-flow travel time than the freeway since it has a lower speed limit.

Once her generalized travel time is known, a commuter would choose her mode of

travel based on the relative travel time differences among the mode. The modal split of

the commuter population is given by a nest logit model:

N2c +N2b

N3c +N3b
= eθ(C2−C3) (4.6)

Define Γ = ln(eθ(C2−C3) + 1)

N1

N −N1
=

eθ
′C1

eθ′(C3+Γ/θ)
(4.7)

where C2 and C3 are the equilibrated generalized travel time of carpooler and solo-

drivers, respectively, and θ and θ′ are the parameters of the logit model, to be calibrated

and are given exogenously in this chapter. The equilibrium travel costs C2 and C3 for

the auto mode, on the other hand, are obtained from an user-equilibrium analysis based

on the dual-mode bottleneck model presented below.

4.2 The Dual-mode Bottleneck Model Considering Car-

pooling Lanes

In this section we develop a dual-mode morning commute model for an SOSD network

with HOV lanes. Note that in this chapter, HOV lanes are assumed to be present along

the entire freeway route connecting the origin to the destination. In addition, the capacity

of the general purpose lane is assumed not affected by the presence of HOV lanes besides
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them. As was done in the classical morning commute problem Arnott et al. (1988), the

generalized travel cost of a commuter departing at time t is given by

C(t) = αw(t) + max{β(t∗ − t− w(t)), γ(t+ w(t)− t∗)}

Assuming free-flow travel time is zero without loss of generality, where w(t) denotes the

commuting time cost, and t∗ the desired arrival time (work start time) for all the com-

muters. Here α, β and γ measure the generalized cost of one extra minute of queuing

delay, early schedule delay and late schedule delay, respectively. Solving this problem

under user equilibrium (UE) conditions for given fixed travel demand N yields the gen-

eralized travel cost for all the commuters, C = δN/s, where s is the bottleneck capacity

and δ = γβ/(γ + β).

We assume that the generalized travel cost applies to all the commuters and there

are K driving-alone vehicles that are only allowed to use only the general-purpose (GP)

lanes with the capacity sf , and J carpool vehicles that are free to use any freeway lanes,

including the GP lanes and HOV lanes. Furthermore, the capacity of the HOV lanes

is assumed to be φ · sf where φ is the capacity ratio of HOV facilities to the freeway.

Let J1 and J2 denote the number of carpooling vehicles using GP lanes and HOV lanes,

respectively. Under UE conditions, i.e. no commuter can choose any other departure

time to reduce his travel cost, we have:

CGP = δ
K + J1

sf
= CHOV = δ

J2

φ · sf
(4.8)

Therefore,

J1 =


J−φK
1+φ if J > φK

0 if J ≤ φK
(4.9)

When the demand share of carpool is larger than its share of capacity, i.e. φ < J/K,

the above formulae show that carpool commuters have to use GP lanes as well, hence

have no travel advantage over solo-drivers even when HOV lanes are provided, because

C = δ
K + J1

sf
= δ

J2

φ · sf
= δ

K + J

sf (1 + φ)
, (4.10)

i.e., the travel cost and equilibrated travel pattern with HOV lanes are exactly what

they would be if all the lanes were GP lanes.
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If the demand share of carpool does not exceed the share of its capacity in a freeway

facility, i.e. φ ≥ J/K, an equilibrium departure pattern is achieved if and only if car-

pooling commuters use only the HOV lanes. The equilibrated traffic patterns are shown

in Figure 4.2, and the travel cost of each group becomes:

C1 = δ
K

sf
, C2 = δ

J

φ · sf
(4.11)

As shown in Figure 4.2, solo-drivers commute from t0 to t1, and those departing at t2 are

subject to the largest queuing delay with punctual arrivals. Carpoolers commute from

t′0 to t′1, and those departing at t′2 are subject to the largest queuing delay with punctual

arrivals.

Figure 4.2. Travel profiles of solo-drivers and carpoolers

For the convenience of later exposition, we categorize the dual-mode morning com-

mute into two cases: the case where carpool offers an travel advantage (i.e., less travel

cost) and the case where carpool does not offer such an advantage. Case one corresponds

to J < φK. i.e. the share of carpool demand is less than its share of capacity, and case
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two corresponds to J ≥ φK, i.e. the share of carpool demand is greater than its share

of roadway capacity.

4.3 The Morning Commute Model for The Transit Mode

Since we assume that the transit line has several runs, transit passengers between

different runs should have the same generalized travel time under UE conditions. This

problem can be solved in the same fashion as for its counterpart in the auto mode (the

bottleneck in the latter is analogous to the item σ), and we obtain a similarly-shaped

passenger flow profile in a staircase form.

Following the Equation 4.1, let k+ denote the k-th run before the schedule time t∗,

and k− denote the k-th run after the schedule time. k = 0 is the run which is scheduled

exactly at the scheduled working time. Now the transit travel cost becomes:

c1(k) =


η · vk+ · h+ β(t∗ − t) early arrival

η · vk− · h+ γ(t− t∗) late arrival

η · v0 · h punctual arrival

(4.12)

Actually, t∗ − t = k+h and t − t∗ = k−h. We substitute t by k and h in the above

equation and have:

c1(k) =


η · vk+ · h+ β · k+h early arrival

η · vk− · h+ γ · k−h late arrival

η · v0 · h punctual arrival

(4.13)

According the the UE condition, i.e. no matter which run a transit passenger takes, she

experiences the same travel cost. Therefore,

vi+ − vj+ =
β(j+ − i+)

η
(4.14)

v0 − vj+ =
βj+

η
∀i, j

The passenger flow for the run before the scheduled office time is:

(v0 −
β

η
), (v0 −

2β

η
), (v0 −

3β

η
) . . . . . . (v0 −

n2β

η
)

n2 = int[
v0η

β
]
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vi− − vj− =
γ(j− − i−)

η
(4.15)

v0 − vj− =
γj−

η
∀i, j

The passenger flow for the run after the scheduled office time is:

(v0 −
γ

η
), (v0 −

2γ

η
), (v0 −

3γ

η
) . . . . . . (v0 −

n1γ

η
)

n1 = int[
v0η

γ
]

Given transit demand N1, v0 +
∑n2

k=1 vk+ +
∑n1

k=1 vk− = N1, we obtain passenger flow

v0. The flow of other runs are obtained through equations 4.14 and 4.15.

v0 =
N1 + β

η
n2
2+n2

2 + γ
η
n2
1+n1

2

1 + n1 + n2
(4.16)

where n1 = int[v0ηγ ] and n2 = int[v0ηβ ]. It is somewhat difficult to solve for v0 analytically,

but we can choose initially a large n1 and n2. If we obtain a negative flow for any of the

runs, n1 or n2 are then reduced. Such a process can be applied iteratively to obtain v0.

Finally, the generalized travel time for a transit passenger at departure-time equilib-

rium is,

C1 = ta + p+ v0 · η · h (4.17)

4.4 The Multi-modal Morning Commute Model

Given the fixed total passenger demand N , we would like to determine the transit

passenger flow N1 and the auto passenger flows N2b, N2c, N3b, N3c, as well as the total

travel cost (denomitated in travel time) of all the passengers in the multi-modal corridor

network:

TC = C1N1 + C2bN2b + C3bN3b + C2cN2c + C3cN3c (4.18)

and that in auto network:

TCauto = C2bN2b + C3bN3b + C2cN2c + C3cN3c (4.19)

Some observations can be made even before we go into any detailed analysis. 1)

Theoretically, there will always be commuters for each mode because the choice of mode
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is determined by a logit choice model, no matter how small or large N would be; 2)

since the AR has higher travel cost even there is no congestion, it will not be used for

sufficiently small N , and 3) from the dual-mode bottleneck model we know that carpool

may not always has a travel advantage over solo-driving, hence cases where carpool does

have an advantage will be analyzed separately. From these observations, we shall analyze

the multi-modal morning commute problem under the four following conditions: 1)the

arterial road is not used and carpool offers no travel advantage, 2)the arterial road is used

and carpool offers no travel advantage, 3)the arterial road is not used and carpool offers

travel advantage and 4)the arterial road is used and carpool offers travel advantage.

4.4.1 Arterial road not used, carpool offers no travel advantage

In this case, we have

N2c = N3c = 0, N2b/mφ ≥ N3b, Nb = N2b/m+N3b.

N1 +N2b +N3b = N (4.20)

C2b = δ
Nb

(1 + φ)sf
+
ξb
m

+ ∆ (4.21)

C3b = δ
Nb

(1 + φ)sf
+ ξb (4.22)

N2b

N3b
= eθ(C2b−C3b) = eθ(ξb/m−ξb+∆) (4.23)

Define eθ(ξb/m−ξb+∆) = µ1 and Γ = ln(µ1 + 1),

N1

N2b +N3b
=

eθ
′C1

eθ′(C3b+Γ/θ)
=

eθ
′(ta+p+η·h·v0(N1))

e
θ′(δ

Nb
(1+φ)sf

+ξb+Γ/θ)
(4.24)

Solving equations 4.20, 4.23 and 4.24 we would get the three unknown variables,

N1, N2b, N3b. However, this solution makes sense only when, 1) carpool offers no travel

advantage, i.e. µ1 ≥ mφ, and 2) the AR is not used, i.e.

C2b = δ
Nb

(1 + φ)sf
+
ξb
m

+ ∆ ≤ C2c =
ξc
m

+ ∆ + tc (4.25)

C3b = δ
Nb

(1 + φ)sf
+ ξb ≤ C3c = ξc + tc (4.26)

Because (C2c−C2b)−(C3c−C3b) = (1/m−1)(ξc−ξb) < 0 given m > 1, ξc > ξb, checking

Equation 4.25 is sufficient to find if the AR is not used.



58

If µ1 < mφ or Equation 4.25 does not hold, we must consider other cases to solve for

the passenger flows.

4.4.2 Arterial road not used, carpool offers travel advantage

In this case, we have

N2c = N3c = 0, N2b/mφ < N3b, Nb = N2b/m+N3b.

N1 +N2b +N3b = N (4.27)

C2b = δ
N2b

mφsf
+
ξb
m

+ ∆ (4.28)

C3b = δ
N3b

sf
+ ξb (4.29)

N2b

N3b
= eθ(C2b−C3b) (4.30)

Define Γ = ln(eθ(C2b−C3b) + 1),

N1

N −N1
=

eθ
′C1

eθ′(C3b+Γ/θ)
=
eθ
′(ta+p+η·h·v0(N1))

e
θ′(δ

N3b
sf

+ξb+Γ/θ)
(4.31)

Solving Equations 4.27, 4.30 and 4.31 we obtain N1, N2b, N3b.

Note that this solution requires the following two conditions to be true: 1) carpool

offers a travel advantage, i.e. N2b/mφ < N3b, and 2) the AR is not used, i.e.

C2b = δ
N2b

mφsf
+
ξb
m

+ ∆ ≤ C2c =
ξc
m

+ ∆ + tc (4.32)

C3b = δ
N3b

sf
+ ξb ≤ C3c = ξc + tc (4.33)

Checking both 4.32 and 4.33 is necessary before finding a solution for this case.

4.4.3 Arterial road used, carpool offers no travel advantage

Under these conditions, we have

N2b/mφ ≥ N3b, Nb = N2b/m+N3b, Nc = N2c/m+N3c.

C2b = δ
Nb

(1 + φ)sf
+
ξb
m

+ ∆, C2c = δ
Nc

sar
+
ξc
m

+ ∆ + tc (4.34)
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C3b = δ
Nb

(1 + φ)sf
+ ξb, C3c = δ

Nc

sar
+ ξc + tc (4.35)

(C2c − C2b) − (C3c − C3b) < 0 given m > 1, ξc > ξb. Therefore, C2c = C2b and

C3c = C3b cannot hold simultaneously. We shall discuss the following circumstances:

1) If C2c = C2b, then C3c > C3b. This shows continuity following the case of “AR not

used, carpool offers no travel advantage” with the increase of N . 2) If C3c = C3b, then

C2c < C2b, i.e. N2b = 0. This conflicts with the condition of carpool offering no travel

advantage N2b/mφ > N3b, and thus it will never occur. 3) C2c > C2b and C3c < C3b

obviously conflict with (C2c−C2b)− (C3c−C3b) < 0. 4) C2c < C2b and C3c > C3b cannot

occur because N2b = 0.

Consequently, we show that C2c = C2b and C3c > C3b given that ξc > ξb. Moreover,

N3c = 0, if the AR is used and carpool offers no travel advantage. Now we obtain the

following:

δ
Nb

(1 + φ)sf
+
ξb
m

= δ
Nc

sar
+
ξc
m

+ tc (4.36)

N1 +N2b +N3b +N2c = N (4.37)

N2b +N2c

N3b
= eθ(C2b−C3b) = eθ(ξb/m−ξb+∆) (4.38)

Define eθ(ξb/m−ξb+∆) = µ1 and Γ = ln(µ1 + 1),

N1

N −N1
=

eθ
′C1

eθ′(C3b+Γ/θ)
=

eθ
′(ta+p+η·h·v0(N1))

e
θ′(δ

Nb
(1+φ)sf

+ξb+Γ/θ)
(4.39)

Solving Equations 4.36, 4.37, 4.38 and 4.39, we would get N1, N2b, N3b, N2c.

The result shows that in this case, only carpool vehicles travel on the arterial route

when traffic on the freeway is getting so congested that the HOV lanes on the freeway

no longer offer a travel advantage over the general purpose lanes. This result may

seem counter-intuitive. Yet once considering the factor of fuel cost, which is shared

among carpoolers in each vehicle, one can easily understand why this happens: the cost

difference between the AR and the freeway for solo-drivers can be considerably larger

than that for carpoolers, so there is less incentive for solo-drivers to travel on the arterial

route, yet the equilibrium solution under this scenario requires that some travelers would

use the arterial route, and they must the carpoolers.

However, as the total passenger demand N increases, even solo-drivers may be forced

to take the arterial route to reduce their travel cost. Under certain circumstances, this
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may create a situation where taking the HOV lanes become advantageous again, as can

be seen from the following analysis.

Express Nc = N2c/m with Nb by solving Equation 4.36, then substitute it in Equation

4.38, we get:

N2b

N3b
=

δµ1
msar

− δ
(1+φ)sf

δ
m(1+φ)sf

+ δ
msar

+
ξc−ξb
m + tc

( δ
m(1+φ)sf

+ δ
msar

)N3b

(4.40)

From Equation 4.38 we know that N2b/N3b < µ1. With the increase of N3b, N2b/N3b may

decrease and approach φm ( we can always find a large N such that N3b is large enough

to make N2b/N3b less or equal to mφ if δµ1
msar

< δ
(1+φ)sf

). Once it’s less than φm, i.e.

with the increase of N , more solo drivers on the margin are assigned to the freeway than

carpoolers so that carpool offers travel advantage on the freeway, the increase rate of

the travel time on the freeway will be less than the AR for carpooling commuters. Since

carpooling commuters can take this advantage, the freeway becomes more attractive

to them. As more carpoolers take the freeway, the arterial route now becomes more

attractive to solo-drivers and some of them will take it, which is exactly the case in the

next subsection.

4.4.4 Arterial road used, carpool offers travel advantage

In this case, we have N2b/mφ < N3b, Nb = N2b/m+N3b, Nc = N2c/m+N3c.

C2b = δ
N2b

mφsf
+
ξb
m

+ ∆, C2c = δ
Nc

sar
+
ξc
m

+ ∆ + tc (4.41)

C3b = δ
N3b

sf
+ ξb, C3c = δ

Nc

sar
+ ξc + tc (4.42)

There are five sub-cases,

1. C2c = C2b, C3c > C3b. Thus, N3c = 0, i.e. no solo drivers will choose the AR.

C2b = δ
N2b

mφsf
+
ξb
m

+ ∆ = C2c = δ
Nc

sar
+
ξc
m

+ ∆ + tc (4.43)

N2c +N2b

N3b
= eθ(C2b−C3b) (4.44)

N1 +N2b +N3b +N2c = N (4.45)

Solving Equations 4.43, 4.44, 4.45 and 4.31, we obtain N1, N2b, N3b and N2c.
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2. C2c = C2b, C3c < C3b or C2c > C2b, C3c < C3b. N3b = 0 conflicts with the condition

N2b/mφ < N3b.

3. C2c > C2b, C3c = C3b. N2c = 0, i.e. no carpoolers will choose the AR.

C3b = δ
N3b

sf
+ ξb = C3c = δ

Nc

sar
+ ξc + tc (4.46)

N2b

N3c +N3b
= eθ(C2b−C3b) (4.47)

N1 +N2b +N3b +N3c = N (4.48)

Solving Equations 4.46, 4.47, 4.48 and 4.31, we obtain N1, N2b, N3b and N3c.

4. C2c < C2b, C3c = C3b or C2c < C2b, C3c > C3b. N2b = 0. This case will never occur

because C2b = ξb/m+ ∆ < C2c = δ Ncsar + ξc/m+ ∆ + tc

5. C2c = C2b, C3c = C3b, i.e. carpoolers and solo drivers will choose both the AR and

the freeway.
N2c +N2b

N3c +N3b
= eθ(C2b−C3b) (4.49)

N1 +N2b +N3b +N2c +N3c = N (4.50)

Solving Equations 4.43, 4.46, 4.49, 4.50 and 4.31, we obtain N1, N2b, N3b, N2c and

N3c.

Note that N2b/mφ < N3b always holds for the solution in this condition, given that

eθ(ξb/m−ξb+∆) = µ1 < φm. This is because N2b/N3b ≥ mφ > µ1 conflicts with the

conclusion that N2b/N3b < µ1 given no solution in the case where “carpool offers no

travel advantages”, i.e. Sections 4.4.1 and 4.4.3.

4.5 Sensitivity Analysis

In this section, we numerically solve the multimodal morning commute model and

study how network performance and the mode split are influenced by several key factors

in the model, such as total passenger demand, the existence of HOV lanes, the capacities

of the bottlenecks and fuel costs.
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The basic model parameters used in the later analysis are: η = 0.02/veh/person,

h = 5min, p = 2min (of time equivalent), ta = 20min, n1 and n2 are set to be no

larger than 3 and 8 respectively, β = 0.5, γ = 2, tc = 15min, φ = 0.15, N = 5000

persons, sf = 40veh/min, sar = 60veh/min, ξb = 10min (of time equivalent), ξc = 20min

(of time equivalent), ∆ = 10min (of time equivalent), m = 2person/veh, θ = −0.1,

θ′ = −0.2. These parameters are fixed in the following numerical calculations unless

noted otherwise.

Before presenting our numerical results, we first describe the solution procedure for

the multi-modal morning commute model.

4.5.1 Solution procedure

Given a network and the total travel demand N , first we calculate eθ(ξb/m−ξb+∆) = µ1

and compare it with φm. 1) If µ1 ≥ φm, we first assume AR is not used and carpool

offers no travel advantage to solve the problem. Then check the solution by Equation

4.25. If Equation 4.25 holds, calculation terminates, otherwise, re-solve the problem

under the condition of “AR used, carpool offers no travel advantage”. If N2b/N3b ≥ φm

holds, calculation terminates, otherwise, turn to 2). 2) If µ1 < φm or no solution exists

for µ1 ≥ φm, we first assume “AR is not used and carpool offers a travel advantage” to

solve the problem. If Equation 4.32 and 4.33 hold for the solution, calculation terminates,

otherwise, re-solve the problem under the condition of “AR used, carpool offers a travel

advantage”. The calculation terminates finally.

From equations in all four cases listed in Section 4.4, it’s easy to show that, given a

total demand N , the solution N1, N2b, N2c, N3b, N3c exists and is unique.

4.5.2 The influence of total demand on route choice and mode split

Figure 4.3 and 4.4 show the transit passenger flow and auto passenger flow with re-

spect to the total passenger demand N with different HOV capacities. Here the capacity

of the general purpose lane is fixed, and as φ increases the both the capacity of the HOV

lanes and the entire freeway also increases.

When φ = 1, i.e. the share of the HOV capacity is sufficient to support its share
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of demand, the number of commuters who do carpool is obviously more than that of

non-carpool commuters when N > 2000, and is nearly the same between N = 1000 and

2000. Except for the carpoolers on the AR, the passenger flow of each group on each

route increases at a relatively fixed rate after N > 7000, meaning that the market share

of each route and each mode remains steady after that point. Also, commuters do not

use the AR until N > 6400. Moreover, carpoolers never choose the AR since the HOV

facility can serve them with a travel advantage. On the other hand, solo-drivers start

to choose between the freeway and the AR after N = 6400. In terms of mode share,

carpool has slightly higher share than solo-driving, while transit has the lowest share

among all three modes, because of a large ta. It is noted that about N = 2000, the share

of carpool roughly equals that of solo-driving.

When φ = 0.15, i.e. the share of the HOV capacity is not sufficient to support its

share of demand, solo-driving has the largest mode share. As discussed earlier, it is

carpool commuters that would first travel on the arterial route because solo-drivers have

less incentive to travel on the arterial route. With the increase of N , the increase in the

proportion of carpooling commuters is more pronounced on the AR than on the freeway,

and only a small percentage of them chooses to travel via the freeway. Although after

N = 4150 the HOV lanes offer a travel advantage to carpoolers, it is still not enough to

attract them back to the freeway, since their travel costs on the freeway would be higher

if they switch to it. It can be seen that the mode shares of carpooling and solo-driving

remain nearly constant with the increase of N . But the freeway’s route share of solo-

driving commuters keeps decreasing. In addition, compared to the case with φ = 0.15,

the number of transit commuters in the case with φ = 1 decreases by nearly 25%, this is,

adding more HOV capacity (hence the overall freeway capacity)reduced transit ridership

and increased auto travel.

4.5.3 The influence of HOV’s capacity share on mode shares and total

travel cost

Figures 4.5, 4.6 and 4.7 show the relationship between the passenger flow of three

travel modes and the total travel cost with respect to φ, while keeping the total freeway

capacity, (1 +φ)sf = 40veh/min, constant. Recall that φ measures the capacity share of
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Figure 4.3. Changes in passenger flow with respect to the total demand (φ = 1)

the HOV lanes on the freeway. From Figure 4.5, we can see that the capacity share of

HOV lanes has only minor effect on transit ridership, but significant effect on the mode

share between solo-driving and carpool, and on the route share between the freeway and

the arterial road.

Undoubtedly, the advantages of carpooling, i.e. a large φ, will lead carpoolers to

shift from the AR to the freeway, and solo drivers to shift from the freeway to the AR.

Evidently, based on the case with N = 10000, when φ changes from 0.05 to 1, the

carpoolers on the AR decreases from 3750 to 300, and so does the solo drivers on the

freeway from 3750 to 2000. Similarly, the carpoolers on the freeway increases from 300

to 3500, so does the solo drivers on the AR from 300 to 2000. As a matter of fact,

the mode share does not change much, regardless of route choices. Figure 4.6 indicates

that, for a mildly congested network where no AR unused (N = 2000), providing more

carpool advantages will significantly reduce the travel cost of the total network and the
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Figure 4.4. Changes in passenger flow with respect to the total demand (φ = 0.15)

auto network. Nevertheless, for a highly congested network with AR highly used (e.g.

N = 8000), increasing the HOV lanes’ capacity share would increase the total travel, as

shown in Figure 4.7. This latter paradoxical situation may occur when the total extra

cost to the solo drivers who shifted from the freeway to the AR is less than the total

cost saved by the carpoolers who shifted in the reverse direction. This implies that,

providing more HOV capacity in this case may not necessarily improve the network’s

overall performance.

We also plotted the passenger flow of three travel modes with respect to ∆, as shown

in Figure 4.8. The results indicate that reducing the time of picking up fellow carpoolers

from 20min to 5min will increase the mode share of carpooling from 20% to 48% and

reduce share of solo-driving from 58% to 37%. The increase of this inconvenience ’cost’

also increases transit ridership, from a share of 15% to 23%, because some carpoolers
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may switch to transit when facing a rising inconvenience ’cost’.

Figure 4.5. Changes in passenger flow of three traffic modes with respect to φ (N =
10000)

4.5.4 The influence of transit fare and headway on transit ridership

We first investigate the changes in transit ridership N1 with respect to the transit

fare p (of time equivalent) and the headway h with N = 10000. When N = 10000, the

corridor network is heavily congested. p varies from 1min to 3min (of time equivalent).

The results show that increasing an uniform transit fare from 1 min-equivalent to 3

min-equivalent will reduce the transit percentage by 7%. When h changes from 3 min

to 15 min, and the transit ridership sharply falls from 2550 persons to 490, by about

80%. This may be a strong indication that the service frequency of a transit line is very

crucial to transit ridership. A transit line with more frequent runs in the rush hour may
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Figure 4.6. Changes in total travel cost with respect to φ (N = 2000)

Figure 4.7. Changes in total travel cost with respect to φ (N = 10000)
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Figure 4.8. Changes in passenger flow of three traffic modes with respect to ∆ (N =
10000)

lead to much higher mode share, which is expected.

4.5.5 The influence of fuel cost on mode split

In Figure 4.9, we plot the passenger flow of three travel modes with respect to fuel

cost ξb (of time equivalent) when N = 10000. Note that both ξb and ξc will increase

proportionally if gas price rises, assuming that toll is not charged on the freeway. Let

ξc = 2ξb and ξb vary from 4 min to 16 min (of time equivalent) 1. When the fuel cost is

below a certain level (12min-equivalent in this case), many solo-drivers switch to carpool

and some even shift to transit as fuel cost increases. On average, the number of non-

carpooling commuters reduces by about 10% on the current percentage basis, when the

gas price rises by 50% on the current price basis. When the gas price rises from 4 min

per trip (of time equivalent) to 12 min per trip (of time equivalent), the mode share

of non-carpooling commuters reduces from 55% to 37% (a 32% reduction) and that of

carpool commuters and transit commuters increase from 30% to 44% (a 47% increase)

1Note that under this assumption, ξc ≥ ξb, the necessary condition as we discussed before, still hold.
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and from 15% to 19% (a 27% increase), respectively. However, when the fuel cost exceeds

12 min (of time equivalent), both non-carpooling and carpooling commuters simply shift

to transit. At this point, no solo-driving commuters change to carpool any more. This

implies that the rise of gas prices may entice commuters to carpool in the first place,

but as the price increases further, auto commuters who drive will eventually shift to the

transit, rather than carpooling.

Figure 4.9. Changes in passenger flow of three travel modes with respect to fuel cost
ξb (of time equivalent)

4.5.6 The influence of bottleneck capacity on network travel cost

To reduce the congestion delay in the network, we may attempt to improve the road-

way facilities, such as building extra lanes for the freeway or arterial roads. We therefore

investigate the changes in total travel cost with respect to the bottleneck capacity of the

freeway and AR. The expansion of the bottleneck capacity of the freeway almost linearly

decrease the travel cost of the whole network and the auto network. For a sufficiently

high passenger demand (N = 12000) that congested the network while maintaining the

travel advantage of the HOV lanes, changing the bottleneck capacity of the freeway from
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30 veh/min to 50 veh/min, will reduce the network cost TC by 81000 (min·veh) (14%)

and the auto network TC by 18000 (min·veh) (7%), while the corresponding numbers

are 22000 (min·veh) (3.5%) and 1500 (min·veh) (1%) in a mildly congested network with

carpool facilities offering no travel advantage(N = 4000). That is, the capacity expan-

sion on the freeway is more beneficial under heavy travel demand (heavier congestion).

Expanding the bottleneck capacity on the arterial route, however, has much less impact

on the reduction of total travel cost, because the number of commuters travel on it is

considerably lower than on the freeway. On the other hand, the improved traffic condi-

tions on the roads through expanding their capacities attract more commuters to travel

by private auto. The reduction of the travel cost (of time equivalent) in the auto network

TC is, therefore, not as pronounced as that in the total network.

4.5.7 The influence of a flat freeway toll on network travel cost

Let ξb represent the sum of a fixed fuel cost and a uniform freeway toll, u, which is

anonymous to all the commuters, on the vehicle basis. Therefore, from the point view

of social welfare, the total travel cost in the total network and auto network, defined

previously as Equation 4.18 and 4.19, becomes:

TC = C1N1 + C2bN2b + C3bN3b + C2cN2c + C3cN3c − uNb (4.51)

TCauto = C2bN2b + C3bN3b + C2cN2c + C3cN3c − uNb (4.52)

because toll revenues will to some extent be returned to transportation systems by various

redistribution schemes.

Assuming the fixed fuel cost is 10 min (of time equivalent), and the flat toll changes

from 0 min to 10 min(of time equivalent), we plot the network travel cost (of time

equivalent) with respect to the toll, as shown in Figure 4.10. The uniform toll applied to

all the vehicles is unable to eliminate the queuing delay, but does reduce the total travel

cost (exclusive of toll). Since carpooling can reduce the per-person cost by sharing this

toll burden, this may attract some solo-drivers to carpool. With such a cost advantage,

carpoolers are more likely to use the freeway over the AR, than the solo drivers do.

These mode and route shifts under the flat toll lead to less total travel cost.
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Figure 4.10. Changes in network travel cost (of time equivalent) with respect to the
toll (N = 10000)

4.6 Eliminating Freeway Queuing With a Time-varying Toll

In this section we derive a time-varying freeway toll to eliminate all the queuing delay

on the freeway. To do this, the definitions of C2b(t) and C3b(t) are changed accordingly.

C2b(t) = max[γ(t− t∗), β(t∗ − t)] +
u(t)

m
+
ξb
m

+ ∆ (4.53)

C3b(t) = max[γ(t− t∗), β(t∗ − t)] + ζ(t) + ξb (4.54)

where ζ(t) is the toll charged at time t (of time equivalent).

1)If N2b ≥ N3bmφ, then carpool offers no travel advantage. The time-varying toll,

ζ(t), should be imposed uniformly for all the automobiles. Based on the UE conditions,
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carpooling commuters will choose to travel in the middle of the rush hour, while non-

carpooling commuters at the beginning and end of the rush hour Arnott et al. (1988)2.

We readily obtain that:

C2b(t) = δ
N3b

m(1 + φ)sf
+ δ

N2b

m(1 + φ)sf
+
ξb
m

+ ∆ (4.55)

C3b(t) = δ
N3b

(1 + φ)sf
+ δ

N2b

m(1 + φ)sf
+ ξb (4.56)

ζ(t) =



β(t− t0) t ∈ [t0, t12]

δN3b
sf

+mβ(t− t12) t ∈ [t12, t
∗]

δN3b
sf

+mγ(t21 − t) t ∈ [t∗, t21]

γ(t1 − t) t ∈ [t21, t1]

(4.57)

where t0 = t∗−δNb/βsf , t1 = t∗+δNb/βsf , t12 = t∗−δN2b/mβsf , t21 = t∗+δN2b/mβsf .

2)If N2b < N3bmφ, carpool offers a travel advantage. We are able to impose time-

varying tolls, u3(t) on the GP lanes, and u2(t) on the HOV lanes respectively.

ζi(t) =


β

1−β (t− ti,1) t ∈ [ti,1, t
∗]

γ
1+γ (ti,2 − t) t ∈ [t∗, ti,2]

(4.58)

where i = 2 or 3. t2,1 = t∗− δN2b/mβφsf , t2,2 = t∗+ δN2b/mγφsf , t3,1 = t∗− δN3b/βsf ,

t3,2 = t∗ + δN3b/γsf .

Following the same solution procedure proposed in this chapter, we can obtain the

market share of all the three modes, as well as network performances after applying the

time-varying toll.

4.7 Summary

In this chapter, we studied the morning commute problem with three modes, car-

pooling, transit and driving-alone, in a network with two auto routes (a freeway and an

arterial road) and one dedicated transit route. We simultaneously established equilibrium

within each mode and the mode split through applying a nested logit model. Four types

of solutions were identified and discussed, and a solution procedure to obtain them

2Refer to Arnott et al. (1988) for the case of multiple groups with identical β/γ but different α and β
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was also proposed. Various factors, such as transit fares, fuel cost, a flat toll on the

freeway and HOV lane capacity, were examined with respect to their effects on network

performance, route choices and mode shares.

We found that carpoolers always choose the freeway when carpool offers suffi-cient

travel cost savings over solo-driving. When carpoolers no longer save travel cost by

using HOV lanes, they are more likely to use the arterial route than solo-drivers. It was

also found that when a flat toll is applied, more carpoolers would use the freeway than

solo-drivers, because they can share the toll, which reduces their travel cost.

When the capacity of the HOV lane is expanded, hence the overall capacity of the

freeway, auto traffic volume would rise significantly while transit ridership would decrease

when traffic demand is sufficiently high. When the total capacity of the freeway is fixed

but the share of the HOV capacity increases, transit ridership would increase slightly,

and carpoolers shift from the arterial to the freeway, and solo-drivers from freeway to

the arterial. In addition, expanding HOV capacity may not necessarily reduce the total

travel cost on the network.

Our results indicated that the rise of gas price may entice auto commuters to car-pool

in the first place. However, the further increase of gas price beyond a certain threshold

would force some auto commuters to shift to the transit mode.
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Chapter 5

Heterogeneity of Parking Choices:

Managing Morning Commute Traffic

with Parking

Downtown parking has been a challenging issue in urban transportation system. The

price, availability and accessibility of parking spaces may considerably influence com-

muters’ travel behavior. Therefore, parking could be used to manage travel demand and

change travel patterns so as to mitigate traffic congestion. Compared to charging a road-

way toll, using parking to manage traffic demand can be less controversial. The goal of

this chapter is to model parking choices in the morning commute, and to investigate how

parking would affect the travel patterns and the network performance in a linear city,

and thereafter proposes optimal parking-based pricing schemes or parking regulations

that can reduce both travel cost and traffic delay.

Unlike Arnott et al. (1991) where parking is centrally provided and continuously

distributed, in this chapter we model morning commute parking from a different per-

spective. We assume a finite number of parking clusters (areas) in the CBD area, instead

of pre-determined continuous distribution of parking spaces towards the CBD area. This

setting has two features in addition to Arnott et al. (1991)’s model. First of all, the ca-

pacity and the accessibility (as measured by the access distance/time from the parking

lots to the final destinations) of the parking lots become variables, rather than pre-

determined as in Arnott et al. (1991)’s paper. As a matter of fact, both factors can

substantially change the commuting pattern and commuting cost. The capacity and

access time may be abstracted to more general concepts. For example, outlying parking
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lots offer a low parking fee and provide shuttle bus service to attract commuters, the

“access time” becomes the average travel time of the shuttle bus plus the actual walking

time from the bus station to the office, and the capacity becomes the total parking spaces

available serving commuters in the outlying parking area. In order to mitigate conges-

tion, the parking lots may be constructed in desired locations with desired capacity such

that the network performance of morning commute can be improved or optimized. Sec-

ond, parking spaces in a CBD area can be clustered, because most commuters have an

expected parking cost (inclusive of parking fee and access time) for each cluster and per-

ceive all the parking spaces in that cluster indifferently. Overall, parking spaces within

each cluster are assumed to be identical, that is, they cost the same amount to park and

have the same access time from the lots to the offices.

We model the parking market in two cases. One is that all the parking lots are city-

owned or publicly owned, and the regulatory agency has full control over the parking fee,

parking capacity and access time of those parking lots and aims to maximize the social

welfare and/or minimize traffic congestion. We show how adjusting the parking fee,

capacity and access time can enlarge the social welfare and mitigate congestion. From

this perspective, we are able to evaluate the parking as a manner of traffic management

compared to other manners (such as a roadway toll) in terms of effectiveness. Also, the

best possible settings of parking can serve as the benchmark of cases where a regulatory

agency has certain influence on a competitive parking market. The other case is that

we assume all the parking lots are privately owned and there exists a parking market

where each private parking operator determines the parking fee, parking capacity and

accessibility to compete with others. Since such parking provision may not produce the

most desirable market outcome in terms of system performance or traffic congestion,

we also consider several market regulations and study their effects on the travelers’

travel cost and operators’ profit/cost in the morning commute. A parking model is first

proposed below and then used to discuss both cases.
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5.1 The Parking Model

In this section, we first define the problem setup and parameters to be used in this

chapter, and introduce the basic assumptions adopted in our study.

As in the classical morning commute problem, in this dissertation we consider a

simplified network as depicted in Figure 5.1. It consists of a major highway and multiple

clusters of parking lots, connected by local streets. For simplicity we again assume the

travel times on the local streets are zero. Moreover, we limit our investigation to the

case of two parking clusters, with each cluster represents one or multiple parking lots in

either the central area of the city (the central cluster) or a peripheral location of the city

(the peripheral cluster). The central cluster usually charges a higher fee but has shorter

access time to one’s office, compared with the peripheral cluster.

We assume that parking spaces within each cluster are identical, that is, they cost

the same amount to park and have the same access time from the lots to the offices in the

CBD. This assumption may be reasonable because, 1) from the traveler point of view,

most commuters have an expected parking cost (inclusive of parking fee and access time)

when they determine a parking area prior to their trips. Although the actual parking fee

or access time may vary slightly dependent on the space chosen within an area (cluster),

commuters may perceive all the parking spaces in that cluster indifferently. Moreover,

the access times among parking spaces within a cluster may vary, but the differences are

usually small compared with the overall commuting time; 2) If all the parking lots are

owned by private operators, from the parking operator side, even though parking spaces

within each cluster may be operated by a number of private companies, the parking

prices of those parking lots locating at approximately the same distance from the offices

are likely to be the same. This is because those private operators within one cluster offer

similar services, so the competition among them would equilibrate their prices. Moreover,

they are more likely to cooperate to compete with parking lots located at other clusters.

Based on this assumption, if parking market is competitive, then it can be viewed as

an “oligopolistic” market where the union of parking operators in the central cluster

competes with the union of those in the peripheral cluster.

Here, parking cluster 1 and 2 can be two real parking lots if the targeted offices



77

are within a fairly small area. They could also be two areas of parking spaces if we

consider a CBD area where the parking fee and access time within each cluster (zone)

is indistinguishable.

Figure 5.1. A simplified network with a choice of two parking clusters

In the morning rush hour, a total demand of N commuters heading for the CBD

area (their offices) first go though a bottleneck, then choose to park his vehicle in either

the central parking cluster or the peripheral parking cluster, and finally walk (or use

other modes, e.g., take the parking shuttle) to their offices. We use K1 and K2 (all in

vehicle units) to represent the effective capacity of the central and peripheral clusters,

respectively, i.e. the number of parking spaces used by the travelers. p1 and p2 denote

the parking fees, and l1 and l2 the access times of the respective parking clusters (l1 < l2).

Here, access time measures the accessibility of parking spaces and may not be walking

time alone. For example, the farther parking lots offer a lower charge and provide shuttle

bus service to attract commuters, the access time in this case consists of the average travel

time of the shuttle bus plus the actual time from the bus station to the office on foot. In

addition, the cost of providing a parking space per day in the two clusters is denoted by

a1 and a2, respectively. It is assumed that a1 < p1, a2 < p2, i.e., both parking clusters

are profitable. Since l1 < l2, it is reasonable to assume that p1 ≥ p2 (that is, the parking

fee inside of the CBD is usually no less than in the peripheral area) and a1 > a2 (that

is, it is cheaper to provide a parking space in the peripheral than inside of the CBD).

Adding the costs associated with parking to a commuter’s travel cost, a commuter

departing at time t and choosing the parking cluster i has the following generalized travel

cost,

Ci(t) = αw(t) + max{β(t∗ − t− w(t)− li), γ(t+ w(t) + li − t∗)}+ pi + λli (5.1)
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where i = 1, 2 and λ is the equivalent monetary cost of one unit of access time. We

assume β < λ, which is consistent with Arnott et al. (1991) and supported by empirical

evidence. Although in reality commuters may value travel time, schedule delay and

access time differently, we do not differentiate the commuters in terms of their values of

time. Their work starting time t∗ is also assumed to be identical for all commuters.

The dynamic user equilibrium (UE) that Vickrey (1969) and Arnott et al. (1990) de-

fined is actually a day-to-day equilibrium. In other words, in a typical morning commute

problem where the bottleneck capacity is given, all commuters are aware of the traffic

conditions after sufficient experiences of the commute, and the eventual travel patterns

(i.e., commuters’ choices of departure times) are such that their generalized travel costs

are the same after their day-to-day adjustments. Following this definition of UE, we

define a day-to-day user equilibrium incorporating parking choices as follows.

Definition 5.1. Day-to-day User Equilibrium. Given the bottleneck capacity, parking

facilities and parking pricing, the commuters in morning commute achieve a day-to-day

user equilibrium if, 1) all commuters are aware of the traffic conditions, parking facilities

and parking pricing after a sufficiently long time and they choose their departure times

and parking spots such that their generalized travel costs are the same after day-to-day

adjustments. 2) No commuter can unilaterally change his parking choice or his departure

time to reduce his generalized travel cost.

Whenever the bottleneck capacity, the parking fee, location or capacity are changed,

we assume that a new day-to-day user equilibrium will eventually be reached after a

sufficiently long adjustment period. Later on, we derive the travel patterns and network

total travel cost under such day-to-day equilibria.

In addition, we use total cost and network queuing delay to measure the performance

of the system. If all the parking lots are publicly owned, then a regulator is assumed in

charge of managing all parking spaces, and has full control over the parking locations,

fees, available parking spaces. We assume that the goal of the regulator is to maximize

the social welfare and mitigate traffic congestion (in terms of queuing delay) to the most

degree. The social welfare can be represented by the social gains minus travelers’ actual

travel cost. The social gains are the revenue collected from the parking fee, and can

be re-distributed to the public in some way. A traveler’s perceived travel cost consists
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of queuing delay, schedule delay, access time to the office and the parking fee he pays.

Therefore, maximizing the social welfare is equivalent to minimizing the total travel cost

(exclusive of parking fee) which reads

minTC = NC −K1p1 −K2p2 (5.2)

where C is the identical generalized travel cost of all travelers under the day-to-day UE,

given by Equation 5.1.

One the other hand, if parking lots are owned by private operators, we define the

total travel cost that is slightly different from the case with publicly owned parking. The

total commuter travel cost (TCC), represented by the total queuing delay and schedule

delay of all travelers, plus the total parking fees paid by those travelers, is given by

TCC = N × C (5.3)

The total system cost (TSC) is the total queuing delay and schedule delay of all travelers,

plus the total investment cost of those private operators. Therefore,

TSC = (TCC − p1K1 − p2K2) + (a1K1 + a2K2)

= TCC − ((p1 − a1)K1 + (p2 − a2)K2) (5.4)

where the second term of the RHS is exactly the profits of private operators.

5.2 Parking Location Preference

For a given set of parking location and charge, commuters would adjust their de-

parture times accordingly based on their preference over parking locations or vice versa.

Overall, there are five types of parking location preference. By introducing the following

composite “prices”,

v1 = p1 + λl1 − βl1

v2 = p2 + λl2 − βl2

u1 = p1 + λl1 + γl1

u2 = p2 + λl2 + γl2
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the generalized travel cost of a traveler choosing the central parking cluster becomes,

C1(t) =

 αw(t) + β (t∗ − t− w(t)) + v1 if early arrival

αw(t) + γ (t+ w(t)− t∗) + u1 if late arrival
(5.5)

and the generalized travel cost of a traveler choosing the peripheral parking cluster

becomes,

C2(t) =

 αw(t) + β (t∗ − t− w(t)) + v2 if early arrival

αw(t) + γ (t+ w(t)− t∗) + u2 if late arrival
(5.6)

We can characterize five types of parking preference as follows,

1. Strongly outward. If v2 > v1 i.e. p1−p2 < (λ−β)(l2−l1), which ensures u2 > u1,

then C1(t) < C2(t) in both early arrival and late arrival. In this case, commuters

will prefer the central parking cluster (i.e. cluster 1) in both early arrival and late

arrival. The peripheral one (i.e. cluster 2) will not be used unless the central cluster

is used up. Because commuters choose to use the central cluster first and then the

peripheral one, parking cluster 1 is strongly preferred and we call this type

of parking preference strongly outward parking. This usually occurs when the

peripheral parking cluster is not sufficiently competitive, possibly because either

its parking fee is not sufficiently low or it is unacceptably inconvenient to the office.

In particular, p1 = p2, where two parking clusters charge the same parking fee, and

thus the central cluster is always strongly preferred.

2. Weakly outward. If v2 = v1 i.e. p1 − p2 = (λ − β)(l2 − l1), which ensures

u2 > u1, then C1(t) = C2(t) in early arrival but C1(t) < C2(t) in late arrival.

In this case, the parking fees and access times of the two parking clusters are

such that commuters are indifferent to both clusters in early arrival. Since late

arrival is weighed more than the early arrival (γ > β), the central cluster offers an

advantage in generalized travel cost over the peripheral one in late arrival. Thus

the central parking cluster is overall weakly preferred. This type of parking

preference is defined as weakly outward parking. In early arrival where travelers

are indifferent to the two parking clusters, we assume using either parking cluster

is equally likely for any traveler.
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3. Strongly inward. If u2 < u1 i.e. p1 − p2 > (λ + γ)(l2 − l1), which ensures

v2 < v1, then C1(t) > C2(t) in both early arrival and late arrival. In this case,

commuters will prefer the peripheral parking cluster in both early arrival and late

arrival. The central cluster will not be used unless the peripheral one is used up.

Because commuters choose to use the farther parking cluster first and then the

closer one, the peripheral cluster is strongly preferred and we call this type of

parking preference strongly inward parking. This usually occurs when either the

central parking charges unacceptably high parking fee or the access time of the

peripheral cluster is reasonably close to the central one.

4. Weakly inward. If u2 = u1 i.e. p1 − p2 = (λ+ γ)(l2 − l1), which ensures v2 < v1,

then C1(t) > C2(t) in early arrival and C1(t) = C2(t) in late arrival. In this

case, the parking fees and access times of the two parking clusters are such that

commuters are indifferent to both clusters in late arrival. Since early arrival is

weighed less than the late arrival (β < γ), the peripheral parking cluster offers an

advantage in generalized travel cost over the central one in early arrival. Thus, the

peripheral cluster is overall weakly preferred. This type of parking preference is

defined as weakly inward parking. In late arrival where travelers are indifferent

to the two parking clusters, we assume using either parking cluster is equally likely

for any traveler.

5. Hybrid. If v2 < v1 and u2 > u1, i.e. (λ− β)(l2 − l1) < p1 − p2 < (λ+ γ)(l2 − l1),

then C1(t) > C2(t) in early arrival but C1(t) < C2(t) in late arrival. In this case,

commuters will prefer the peripheral cluster in early arrival and the central one in

late arrival. We call this type of parking preference hybrid, since it is a hybrid

of inward parking and outward parking over the entire commuting period. Hybrid

parking may occur when the farther parking cluster offers a sufficient advantage for

commuters in early arrival, but such an advantage is yet not sufficient in attracting

commuters in late arrival (commuters’ penalty in late arrival is far larger than in

early arrival). In the case of late arrival, travelers would rather pay an additional

but reasonable parking fee in the closer cluster than being subject to a high late-

arrival penalty by using the farther cluster.
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The preference on a parking cluster is essentially determined by parking fees and ac-

cess times of both parking clusters, regardless of availability of parking spaces. However,

parking capacity plays an important role in determining a certain travel pattern and

the market shares between the two parking clusters. For example, in strongly inward

or strongly outward parking, if sufficient parking spaces (> N) in the preferred parking

cluster are provided, then the other parking cluster will never be used. If the parking

spaces in the preferred parking cluster are limited and cannot accommodate all the trav-

elers, then the travel pattern under user equilibrium is such that travelers who use the

preferred parking cluster must depart home earlier than those who use the other. There-

fore, three factors of parking, fee, access time and capacity, altogether determine the

travel pattern, and each of them influences travelers’ departure times and thus system

performance.

5.3 Travel Profiles and Their Properties Under User Equi-

librium

5.3.1 Overview of parking profiles

By applying the user equilibrium principle, we study all possible travel patterns for

each parking location preference. There are in all 20 possible travel patterns, whose

conditions of validity and total travel cost (TC) are shown in Table 5.1 1, and departure

and arrival patterns (travel profiles) are drawn in Appendix D. Though those profiles

only hold under certain conditions with respect to three parking factors and vary case-

by-case, their derivations follow the same logic which we demonstrate using an example

in strongly outward parking in Appendix E. Due to space limitation, the derivation of

other profiles are omitted. However, there are two possible profiles in hybrid parking

worth further discussion. This is because not only do the solutions of those two profiles

interestingly differ from those of other profiles, but also the two profiles are central to

solve the optimal parking settings in later sections. In the following subsection, we solve

1Profile 19 and 20 are the cases where one of the two clusters has zero space while the other accom-
modates all travelers. These two extreme cases resemble the typical morning commute without parking
choices, and can exist for all five parking preferences. Therefore, we do not include them in Table 5.1.
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for two possible profiles in hybrid parking.

Each profile is achieved under a certain condition with respect to parking capacity,

fee and access time, which is expressed by an inequality in terms of capacity bounds in

the second column of Table 5.1. Those conditions can also be rewritten as an inequality

in terms of bounds of either fee or access time.

Note that the effective capacity of one parking cluster equals to its actual capacity

only if this cluster is preferred. In the table we only use the capacity of the preferred

location to express the profile’s condition as well as in the TC formula. For example,

in strongly outward parking, the closer cluster is always preferred. In other words, the

profiles and TC-s under strongly outward parking are dependent on the capacity of the

closer cluster (i.e. cluster 1), while the other one does not take effects as long as it can

provide sufficient spaces for the total demand2. Therefore, in strongly outward parking,

we use K1 to express all the inequality conditions and TC-s, although the effective

capacity of the farther cluster, K2 = N − K1, can do the same job. In each profile of

hybrid, weakly outward and weakly inward parking, both K1 and K2 may be preferred

under certain conditions. In those cases, the conditions and TCs are expressed in terms

of either K1 or K2, whichever effectively determines the profile.

5.3.2 Two interesting profiles in hybrid parking

Now we solve for two interesting profiles in hybrid parking. In hybrid parking, a

traveler who departs at such a time that he arrives earlier than t∗ using either of the two

clusters prefers the farther parking cluster due to v1 > v2, while a traveler who departs

at such a time that he arrives later than t∗ using either either of the two clusters prefers

the closer one, due to u1 < u2. However, some travelers may depart the bottleneck in

such a time that they are subject to early arrival if choosing the closer cluster, and late

arrival if choosing the farther cluster. We first analyze the parking preferences of those

travelers.

Let y denote the duration from the arrival time to the office of the first traveler using

2We assume there are always enough parking spaces for all the commuters provided by the public
regulator
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Table 5.1. An overview: 20 travel profiles and TCs for five types of parking preference
Parking

prefer-

ence

Condition Total travel cost (TC) Profile

0 ≤ K1 ≤
s(v2 − v1)

β

Nβγ

s

N −K1

β + γ
+ λl2N −K1(p1 − p2) 1

Outward
s(v2 − v1)

β
≤ K1 ≤

s(v2 − v1) +Nγ

β + γ
2

(strong)
s(v2 − v1) +Nγ

β + γ
≤ K1 ≤

s(u2 − u1) +Nγ

β + γ

Nβ

s

s(u2 − u1) +Nγ

β + γ
+ (N −K1)(p1 − p2) + λNl1 3

N > K1 ≥
s(u2 − u1) +Nγ

β + γ
4

0 ≤ K2 ≤
1

2

s(u1 − u2) +Nγ

β + γ

N2βγ

s(β + γ)
+ λl1N +K2(p1 − p2) 12

Outward
1

2

s(u1 − u2) +Nγ

β + γ
≤ K2 ≤

1

2

Nγ

β + γ

Nβ

s
2K2 + λl2N − (N −K2)(p1 − p2) 13

(weak)
u2 − u1

β + γ
s+

1

2

Nγ

β + γ
≤ K1 ≤ N −

1

2

Nγ

β + γ
14

1

2

Nγ

β + γ
≤ K1 ≤

u2 − u1

β + γ
s+

1

2

Nγ

β + γ

N2βγ

s(β + γ)
+ λl2N −K1(p1 − p2) 15

0 ≤ K1 ≤
1

2

Nγ

β + γ
16

0 ≤ K2 ≤
s(v1 − v2)

β

Nβγ

s

N −K2

β + γ
+ λl1N +K2(p1 − p2) 5

Inward
s(v1 − v2)

β
≤ K2 ≤

s(u1 − u2) +Nγ

β + γ
6

(strong)
s(u1 − u2) +Nγ

β + γ
≤ K2 ≤

s(v1 − v2) +Nγ

β + γ

Nβ

s

s(u1 − u2) +Nγ

β + γ
− (N −K2)(p1 − p2) + λNl2 7

N > K2 ≥
s(v1 − v2) +Nγ

β + γ
8

0 ≤ K2 ≤
s(v1 − v2)

β

Nβγ

s

N −K2

β + γ
+ λl1N +K2(p1 − p2) 5

Inward
s(v1 − v2)

β
≤ K2 ≤

Nγ

β + γ
6

(weak)
Nγ

β + γ
≤ K2 ≤

Nγ + s(v1 − v2)

β + γ

N2βγ

s(β + γ)
− (N −K2)(p1 − p2) + λNl2 7

Nγ + s(v1 − v2)

β + γ
≤ K2 ≤ N −

1

2

Nβ − s(v1 − v2)

β + γ
17

0 ≤ K1 ≤
1

2

Nβ − s(v1 − v2)

β + γ

N2βγ

s(β + γ)
−K1(p1 − p2) + λNl2 18

Hybrid

0 ≤ K2 ≤
s(v1 − v2)

β

Nβγ

s

N −K2

β + γ
+ λl1N +K2(p1 − p2) 5

s(v1 − v2)

β
≤ K2 ≤

s(u1 − u2) +Nγ

β + γ

Nβ

s

s(u1 − u2) +Nγ

β + γ
− (N −K2)(p1 − p2) + λNl2 6

s(u1 − u2) +Nγ

β + γ
≤ K2 ≤

s(u1 − u2) +Nγ + s(v1 − v2)

β + γ
7

Nβ − s(v1 − v2)

β + γ
≤ K1 ≤

Nβ + s(u2 − u1)− s(v1 − v2)

β + γ

Nβ

s
(N −K1 −

s(v1 − v2)

β + γ
)−K1(p1 − p2) + λNl2 9

(u2 − u1)s

β + γ
≤ K1 ≤

Nβ − s(v1 − v2)

β + γ

N2βγ

s(β + γ)
−K1(p1 − p2) + λNl2 10

0 ≤ K1 ≤
(u2 − u1)s

β + γ
11

Note: dependent on the magnitude of parameters, some profiles may not occur under certain conditions. For

example, Profile 2 may not occur if
s(v2 − v1)

β
>
s(v2 − v1) +Nγ

β + γ
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cluster 1 through t∗. The travel cost of such a traveler is,

αw + p1 + λl1 + βy

where w is the travel delay. The duration from t∗ through the arrival time to the office

of the last traveler using cluster 2 is then l2 − l1 − y. 0 ≤ y ≤ l2 − l1. The travel cost of

this traveler is,

αw + p2 + λl2 + γ(l2 − l1 − y)

The critical value of y, ȳ, such that a traveler is indifferent to the two parking clusters is

αw + p1 + λl1 + βȳ = αw + p2 + λl2 + γ(l2 − l1 − ȳ)

which yields,

ȳ =
u2 − u1

β + γ

Therefore, for those whose arrival time to the office is such that ȳ < y ≤ l2 − l1, the

farther cluster is preferred, and for those whose arrival time to the office is such that

0 ≤ y < ȳ, the closer cluster is preferred. This implies that there exists a transition

period during which travelers’ preference gradually changes from parking cluster 2 to

cluster 1, with the elapse of departure time from the bottleneck (thus also the elapse of

arrival time to the bottleneck due to first-in-first-out).

Figure 5.2(a) depicts one possible profile in hybrid parking where travelers choose the

farther parking cluster until its spaces are used up, and thereafter they have to choose

the closer one instead. The capacity of the farther cluster is such that its spaces are

used up before travelers change their preference during the transition period. Therefore,

ȳ ≤ y ≤ l2 − l1. During period CA, travelers still prefer the farther cluster and they are

subject to late arrival, and thus the slope of the arrival curve to the bottleneck is α
α+γ s

3.

When travelers start to use the closer cluster, they arrive at their office earlier than t∗.

Therefore, the slope of EF equals α
α−β s. After the traveler whose arrival time to the

bottleneck is tF , travelers arrive later than t∗ again, and the slope of the arrival curve

to the bottleneck changes to α
α+γ s again.

3This is a direct application of the typical morning commute model (Vickrey 1969). Travelers who
arrive earlier than t∗ have the same travel costs (i.e. summation of queuing delay and schedule delay) as
long as they arrive the bottleneck in the arrival rate of α

α−β s. Similarly, travelers who arrive later than

t∗ have the same travel costs as long as they arrive the bottleneck in the arrival rate of α
α+γ

s.
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Figure 5.2. Two travel profiles in hybrid parking

Under user equilibrium, the last traveler using parking cluster 2 has the same gener-

alized travel cost as the first traveler using parking cluster 1. Thus,

C1(tE)− C2(tA) = 0 (5.7)
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where tE and tA denote the departure times of the first traveler using parking cluster 1

and the last traveler using parking cluster 2, respectively. Substitute C1(tE) and C2(tA)

by Equation 5.5 and 5.6 into Equation 5.7,

α(EB −AB) + [(p1 + λl1)− (p2 + λl2)] + [βy − γ(l2 − l1 − y)] = 0 (5.8)

where α(EB−AB), (p1 +λl1)− (p2 +λl2) and βy−γ(l2− l1−y) represent the difference

in queuing delay cost, parking-related cost and schedule delay cost between the two

marginal travelers, respectively.

On the other hand, the geometry of the profile yields,

EB = FG− yβ
α

(5.9)

FG =
N −K2 − ys

s

γ

α
(5.10)

AB = CD − N

s

γ

α
(5.11)

CD =
K2 − x

s

β

α
(5.12)

x

s
= l2 − l1 − y (5.13)

Solving for y by Equations 5.8, 5.9, 5.10, 5.11, 5.12 and 5.13, yields,

s(l2 − l1 − y) = K2 −
s(u1 − u2) +Nγ

β + γ

Because ȳ ≤ y ≤ l2 − l1, we have

s(u1 − u2) +Nγ

β + γ
≤ K2 ≤

s(u1 − u2) +Nγ + s(v1 − v2)

β + γ
(5.14)

One can also show that

EB =
N −K2

s

γ

α
> 0 (5.15)

given the range of K2 expressed by Equation 5.14. This ensures the existence of the

profile.
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Since all commuters are subject to the same generalized travel cost, the generalized

travel cost can be computed in terms of an arbitrary traveler, e.g. the traveler departing

at time tC with punctual arrival,

αCD + (p2 + λl2)

Thus, the total travel cost excluding parking revenue is

TC = (αCD + p2 + λl2)N −K2p2 − (N −K2)p1

=
Nβ

s

s(u1 − u2) +Nγ

β + γ
− (N −K2)(p1 − p2) + λNl2 (5.16)

If K2 is larger than the right-hand side of Inequality 5.14, the travel profile will then

look like Figure 5.2(b). The profile in Figure 5.2(b) considers a similar case as in 5.2(a)

where the farther cluster is never used after travelers prefer the closer cluster, but the

spaces in the farther cluster are used up exactly by the traveler who treats both clusters

indifferently. On the other hand, for this profile to hold, K2 must also have an upper

bound. This is because if K2 is sufficiently large and the effective K1 is relatively small,

then the closer cluster has insufficient capacity to accommodate all travelers who depart

after travelers’ parking preference is changed to cluster 1.

In this profile, the spaces in the farther cluster are used up exactly at the departure

time from the bottleneck, t∗ − ȳ − l1, when travelers are indifferent to both clusters but

prefer the closer one thereafter. As shown in Figure 5.2(b), the last traveler using the

farther cluster arrives at his office at t∗+(l2−l1− ȳ) and the first traveler using the closer

cluster arrives his office at t∗ − ȳ. Because the two marginal travelers are indifferent to

both clusters, they have the same queueing delay under user equilibrium. Thus, in the

profile depicted in Figure 5.2(b), there is no such line of AE as in Figure 5.2(a) during

which no travelers depart from their homes.

We next show that under the user equilibrium of this profile, there exists a queuing

delay (with the duration of z) for the last traveler. Under the day-to-day user equilibrium,

the last traveler will not wait to depart until the queue vanishes or dissipates, because

if he does, a traveler choosing the farther cluster can reduce his travel cost by departing

a bit earlier than the “last traveler” and using the closer one instead. In that case, the

“last” traveler has to use the remaining space in the farther cluster that was originally

used by the traveler who switched, and thus he will have higher travel cost. Therefore,
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the last traveler will not risk his chances by departing at the end (or anywhere in the

middle) of the queue. Rather, he will depart following the second last traveler to ensure

his parking space in cluster 1 will not be occupied by another traveler. Such a queuing

delay of the last traveler cannot occur in a typical morning commute problem, because

if a traveler is not restricted by the parking capacity of cluster 1, then he does indeed

can reduce his travel cost by departing at the end of the queue without any risk of being

affected by any other travelers. Note that although the equilibrium with the existence

of a queuing delay of the last traveler satisfies our equilibrium definition in Section 2, it

is not a Nash Equilibrium because the last traveler does not take the departure times

of other travelers as given. Rather, he takes the queuing time as given, and anticipates

possible changes in other travelers’ departure times.

On the other hand, the queuing delay z is also upper bounded. Under user equi-

librium, the travel cost of a traveler using the farther cluster equals to that of the last

traveler using the closer cluster, which is αz + u1 + γt′ where t′ is the last traveler’s

departure time from the bottleneck. If αz + u1 > u2, then for a traveler using the far-

ther cluster, by switching to depart at the end of the queue (i.e. t′) and still using the

farther one, his travel cost becomes γt′ + u2. This traveler can reduce his travel cost

by changing this departure time, without any risk of being affected by another traveler.

Consequently, 0 ≤ z ≤ u2−u1
α .

In addition, K1 effectively determines this profile. On one hand, keeping K1 constant,

increasing the actual capacity of the farther cluster (> K2) will not change the profile,

because all travelers departing after tA prefer the closer parking cluster and they will

not use the farther one unless spaces in cluster 1 are used up. On the other hand, if

we enlarge the closer parking cluster by an additional parking space, then a traveler

choosing the farther cluster can reduce his travel cost by following the “last” traveler (in

the current profile) and using the additional space in the closer cluster, without affecting

any other travelers. In this case, when the network achieves UE, eventually one traveler

switches from the farther cluster to the closer one. Since K1 effectively determines the

profile, we express TC and capacity bounds in terms of K1.

In the profile of Figure 5.2(b), we express z in terms of K1, and letting 0 ≤ z ≤ u2−u1
α
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yields,
Nβ − s(v1 − v2)

β + γ
≤ K1 ≤

Nβ + s(u2 − u1)− s(v1 − v2)

β + γ
(5.17)

The derivation of Inequality 5.17 follows a similar procedure as in the derivation of the

profile depicted in Figure 5.2(b), and thus is omitted here to save space. The identical

generalized travel cost can be obtained by computing the travel cost of an arbitrary

traveler, e.g. the traveler departing at time tC with punctual arrival,

αCD + (p2 + λl2)

Thus, the total travel cost exclusive of parking revenue is

TC = (αCD + p2 + λl2)N − (N −K1)p2 −K1p1

=
Nβ

s
(N −K1 −

s(v1 − v2)

β + γ
)−K1(p1 − p2) + λNl2 (5.18)

5.4 The Case of Parking Lots Operated By Public Agen-

cies

5.4.1 The effects of accessibility, capacity and fee settings

Since we obtain all possible travel profiles with corresponding conditions in terms

of parking fee, capacity and access time, we are able to examine the effects of all three

factors on the system performance. More importantly, we show how each one, when

fixing the other two, should be set to achieve the minimum total travel cost.

In the following subsections, we define ∆p = p1 − p2 ≥ 0, ∆l = l2 − l1 > 0, and

suppose l1 and p2 are fixed without loss of generality. The derivatives of total travel cost

with respect to parking fee, capacity and access time are listed in Appendix D.

5.4.1.1 Parking capacity

The parking location preference, outward, inward or hybrid, is determined by the

parking fee and access time. Parking capacity will not change the type of parking

preference. However, once the parking fee and access time, and thus the type of parking
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preference, are determined, the changes in the capacity of both parking clusters will

change the travel profiles within a certain type of parking preference.

In most profiles, if K1 determines a profile, then we have ∂TC/∂K1 < 0, and if K2

determines a profile, then we have ∂TC/∂K2 > 0. This indicates that in most profiles,

enlarging the effective capacity of the closer parking cluster, or equivalently reducing the

effective capacity of the farther parking cluster, generally reduces the total travel cost,

regardless of the type of parking preference. However, there are two exceptions. One is

when K2 ≤ s(v1−v2)
β in inward parking and hybrid parking. In that case, enlarging the

effective capacity of the farther cluster reduces the total travel cost if Nβγ
s(β+γ) > p1 − p2.

Intuitively, this is because when the farther parking cluster offers some advantage over

the closer one, providing more parking spaces in the farther cluster can induce some

commuters to switch from cluster 1 to 2 and reduce the total parking-related travel

cost, with merely minor increase in queuing delay and/or schedule delay. This exception

implies that enlarging the outer parking spaces may sometimes benefit the social welfare

when the parking fee in the outer cluster is sufficiently low. The other exception is

when p1 = p2, a special case of strongly outward parking. When both parking clusters

charge the same parking fees, the network travel cost is independent of the capacity of

the closer cluster when K2 >
s(v1−v2)

β . In this case, if we enlarge the capacity of the

preferred parking cluster (i.e. cluster 1), the reduction in total parking-related travel

cost is exactly offset by the increase in queuing delay and schedule delay. This implies

that if the parking fee of the closer cluster and outer cluster are the same, building more

spaces in closer cluster does not help reduce the total travel cost.

According to the derivatives listed in Appendix D, for any given parking fee and

access time of both parking clusters, the desired optimal profile in terms of minimum

TC is given as follows,

1. If parking fee and access time are such that parking are outward (strongly or

weakly), the optimal profile occurs when the closer cluster can accommodate all

travelers4, i.e.,K1,opt = N,K2,opt = 0.

2. If parking fee and access time are such that parking preference are otherwise, the

4Though TC is not differentiable when K1 = N in strongly outward parking, it is easy to show that

TCK1=N = N2βγ
(β+γ)s

+ λl1N is less than TC of all other profiles
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optimal profiles occur when5

K1,opt = N,K2,opt = 0, if ∆p >
Nβγ

s(β + γ)
(5.19)

i.e. the closer cluster accommodates all travelers, or when

K2,opt =
s(v1 − v2)

β
=
s (∆p− (λ− β)∆l)

β
, if ∆p <

Nβγ

s(β + γ)
(5.20)

as shown in Figure 5.3 which is a special case of Profile 5 where the departure curve

from the bottleneck is continuous (also a special case of Profile 6 where the first

traveler using the closer parking cluster does not have queuing delay). In addition,

the optimal profile is not unique when ∆p = Nβγ
s(β+γ) , which is depicted in Profile 5

0 ≤ K2,opt ≤
s (∆p− (λ− β)∆l)

β
, if ∆p =

Nβγ

s(β + γ)
(5.21)

Equations 5.20 and 5.21 imply that when the central parking area charges an overly

high fee or it does not offer too large an accessibility advantage over the outer area,

it is clearly that enlarging the closer parking cluster may not be desirable in terms of

the total travel cost. Unless the outer parking area is too far inconvenient, we should

consider restricting the capacity of central parking, and meanwhile offer some incentives

to induce more travelers to use the outer parking.

5.4.1.2 Parking fee

Now we turn to investigate how parking fee affects the travel profile and total travel

cost when holding the parking capacity and access time constant. Weakly outward

and weakly inward parking hold if and only if ∆p takes a single real value, and TC is

not differentiable with respect to p1 (or ∆p) for these two types of parking preference.

Therefore, we only have ∂TC/∂∆p for strongly outward, strongly inward and hybrid

parking choices in Appendix D. We first give a transition order of travel profiles with

the increase of ∆p (from zero to infinity), and discuss the effects of ∆p on the TC. Based

on the transition order, we show that the TC reaches minimum at certain profiles during

the transition so that the optimal ∆p can be solved.

5Though TC is not differentiable when K2 = N in strongly inward parking, it is easy to show that

TCK1=N = N2βγ
(β+γ)s

+ λl1N is less than TCK2=N = N2βγ
(β+γ)s

+ λl2N
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Figure 5.3. Optimal travel profile

A transition order of travel profiles with the increase of ∆p

We first rewrite the conditions for all profiles in Table 5.1 in terms of ∆p rather than

K1 or K2. For example, the condition for Profile 1 becomes,

p1 − p2 ≤ (λ− β)(l2 − l1)− K1β

s

Starting from p1 = p2, with the increase of p1, outward parking gradually transitions

to hybrid parking, and finally inward parking. By checking the bounds of p1−p2 for each

profile, we show that this transition process consists of several profiles in the following

order: 1 → 2 → 3 → 4 → (one of 12 ∼ 16) → 11 → 10 → 9 → 8 → 7 → 6 → 5.

Note that Profiles 5, 6 and 7 may occur in both inward parking and hybrid parking. For

instance, dependent on the magnitudes of parameters (such as total demand, parking

capacities, access times), if we gradually increase ∆p so as to induce hybrid parking to

switch to inward parking, the critical ∆p that changes the parking preference may be

such that the condition of one profile of Profiles 7, 6 or 5 is satisfied, i.e. inward parking

starts at one of those profiles. If inward parking starts at Profile 6, then Profile 7 in the

profile order must occur in hybrid parking and Profile 5 must occur in inward parking.
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Dependent on the magnitudes of parameters (such as total demand, parking capac-

ities, access times), the required conditions of ∆p may never hold for some profiles. In

that case, those profiles do not necessarily occur in this transition order. For example, if

the hybrid parking choice is converted to inward parking at Profile 9 with the increase

of p1, then Profile 8 must not occur because the condition of Profile 9 in hybrid parking

and Profile 8 in strongly inward parking are mutually exclusive. However, if the increase

of ∆p is such that the hybrid parking is switched to inward parking at Profile 10, then

Profile 9 cannot occur, and Profile 10 in hybrid parking is followed directly by Profile

8 in inward parking. Another example is that if given K2 <
Nγ
β+γ , then Profiles 10 and

11 in hybrid parking must not occur since K2 <
Nγ
β+γ and the conditions of Profile 10

or 11 are mutually exclusive. In this case, the transition order is such that Profile 4 in

outward parking is followed by Profile 9 in hybrid parking.

The signs of ∂TC/∂∆p of those profiles are (see ∂TC/∂∆p in Appendix D),

Profile 1 → 2 → 3 → 4 → 11 → 10 → 9 → 8 → 7 → 6 → 5

Derivative sign < 0 U U U < 0 < 0 < 0 U U U > 0

where U stands for “uncertain” or “to be determined”. The signs of Profiles 2, 3, 4 are

dependent on Nγ
β+γ − K1, while those of profiles 8, 7, 6 dependent on K2 − Nγ

β+γ . For

inward, outward and hybrid parking, there exists certain conditions where increasing p1

may have positive and negative effect on the total travel cost, respectively. This indicates

that increasing the parking fee in the closer cluster so as to induce travelers to park at

the outer cluster may not always be desirable in terms of total travel cost.

Optimal parking prices

We now derive the optimal travel profiles with respect to the parking fee. First, we

show that the optimal profile falls in neither Profiles 2, 3 and 4 of strongly outward park-

ing nor Profiles 12∼16 of weakly outward parking (the proof is provided in Appendix F),

even though their signs of derivatives are parameter-dependent. Therefore, the optimal

profile must be the case of hybrid parking or inward parking.

We now discuss the optimal parking fee in hybrid parking or inward parking with
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respect to the sign of K2 − Nγ
β+γ .

If 0 < K2 <
Nγ
β+γ , then the derivatives of Profile 6, 7 and 8 are negative. In addition,

Profiles 5 and 6 must occur. This is because in hybrid parking, when ∆p changes from

(λ − β)(l2 − l1) to (λ + γ)(l2 − l1), the required condition of Profile 6 changes from

0 ≤ K2 ≤ Nγ
β+γ − s∆l to s∆l γ+β

β ≤ K2 ≤ Nγ
β+γ which necessarily includes ∀K2 ∈ [0, Nγβ+γ ].

Meanwhile, the upper bound required for Profile 5 to exist can be arbitrarily large as

∆p increases, and thus the condition for Profile 5 can always include such a K2. Since

Profiles 5 and 6 must occur, we conclude that the optimal travel profile is achieved in

inward or hybrid parking, at the boundary between Profiles 5 and 6, i.e.,

∆popt =
K2β

s
+ (λ− β)(l2 − l1) (5.22)

In this case, the optimal profile is shown in Figure 5.3.

If K2 = Nγ
β+γ , the derivatives for Profiles 6, 7 and 8 are zero. The ∆p achieving the

optimal profile is not unique. Because K1 = Nβ
β+γ and the upper bound of Profile 10

is always less than Nβ
β+γ in hybrid parking, Profiles 10 and 11 in hybrid parking cannot

occur. In fact, K1 = Nβ
β+γ satisfies the required condition of Profile 9 with the increase

of ∆p. To see this, replace K1 by Nβ
β+γ in the required condition of profile 9,

Nβ − s(v1 − v2)

β + γ
≤ Nβ

β + γ
≤ Nβ + s(u2 − u1)− s(v1 − v2)

β + γ

The left inequality always holds due to the required condition of hybrid parking, v1 > v2.

Rewriting the right inequality yields,

(u2 − u1)− (v1 − v2) ≥ 0

⇒ ∆p ≤ 2λ+ γ − β
2

(l2 − l1) < (λ+ γ)(l2 − l1)

Because hybrid parking requires (λ − β)(l2 − l1) ≤ ∆p ≤ (λ + γ)(l2 − l1), we always

have hybrid parking when ∆p changes from (λ − β)(l2 − l1) to 2λ+γ−β
2 (l2 − l1) where

the right inequality also holds. Similarly, we also show that K1 = Nβ
β+γ also satisfies the

required condition of Profile 7 in hybrid parking when ∆p changes from 2λ+γ−β
2 (l2 − l1)

to (λ + γ)(l2 − l1). Also, it satisfies the required conditions of Profile 5 or 6 in inward

parking. Therefore, in the transition order, Profile 9 in hybrid parking is followed by

Profile 7 in hybrid parking (Profile 8 cannot occur), and Profiles 6 and 5 must occur in
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inward parking. The critical ∆p that converts the hybrid parking to inward parking is

such that the inward parking starts at Profile 6 or 5. The upper bound of ∆popt is the

bound between Profiles 5 and 6 in inward parking, and its lower bound is the bound

between Profile 9 and 7 in hybrid parking. Expressing ∆p in terms of parking fee and

access time, we have,

2λ+ γ − β
2

(l2 − l1) ≤ ∆popt ≤
Nβγ

s(β + γ)
+ (λ− β)(l2 − l1) (5.23)

If N > K2 >
Nγ
β+γ , i.e. 0 < K1 <

Nβ
β+γ , the derivatives of Profiles 6, 7 and 8 are

positive. In hybrid parking, when ∆p changes from (λ − β)(l2 − l1) to (λ + γ)(l2 − l1),

the required condition of Profile 9 changes from Nβ
β+γ ≤ K1 ≤ Nβ

β+γ + s∆l to Nβ
β+γ − s∆l ≤

K1 ≤ Nβ
β+γ − s∆l. Therefore, Profile 9 must occur for ∀K1 ∈ [ Nββ+γ − s∆l,

Nβ
β+γ ). In that

case, the optimal travel profile achieves when ∆p is such that the upper bound of the

required condition of Profile 9 equals K1 or equivalently N −K2, i.e.

∆popt =
2λ+ γ − β

2
(l2 − l1) +

K2(β + γ)−Nγ
2s

,∀K2 ∈ (
Nγ

β + γ
,
Nγ

β + γ
+ s∆l]

However, Profile 9 may not occur for ∀K1 ∈ (0, Nββ+γ − s∆l), i.e. ∀K2 ∈ ( Nγβ+γ + s∆l, N).

In that case, only Profiles 10 and 11 may occur in hybrid parking. When ∆p gradually

increases in the way that hybrid parking transitions to inward parking, Profile 10 or 11

in hybrid parking then transitions to one of Profile 5, 6, 7 and 8. Therefore, the optimal

profile achieves weakly inward parking where

∆popt = (λ+ γ)(l2 − l1),∀K2 ∈ (
Nγ

β + γ
+ s∆l, N)

Combing the two cases of N > K2 >
Nγ
β+γ yields,

∆popt = min

(
2λ+ γ − β

2
(l2 − l1) +

K2(β + γ)−Nγ
2s

, (λ+ γ)(l2 − l1)

)
(5.24)

The optimal profile achieves in either weakly inward parking or the special case of Profile

9 (i.e., Figure 5.2(b) where z = 0) in hybrid parking.

In addition, if K2 = 0,K1 = N or K1 = 0,K2 = N , then ∆popt can be arbitrary

since ∂TC/∂∆p = 0.

In a nutshell, if the parking facilities (locations and capacities of both parking clus-

ters) are pre-determined, the minimum total travel cost is achieved in hybrid or inward
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parking unless K2 = 0,K1 = N or K1 = 0,K2 = N . If both parking clusters have

parking spaces available, increasing the parking fee of the closer parking cluster in such

a way that outward parking switches to hybrid or inward parking, can always reduce

the total travel cost. Compared to outward parking, inward parking can shorten the

arrival time window. As a result, this concentrates travelers’ arrivals to the office closer

to the work starting time. Therefore, inward parking reduces the total schedule delay

cost without changing much the queuing delay and therefore yields a significantly less

total travel cost than outward parking. This conclusion is consistent with that under

the assumption of continuous parking spaces (Arnott et al. 1991). However, increasing

the parking fee of the closer parking cluster in a small vicinity, as reflected by the sign

of ∂TC/∂∆p, may not necessarily reduce the total travel cost.

5.4.1.3 Access time

Access time from a parking spot to one’s office also plays an important role in deter-

mining parking preference and travel departure times. To examine the effect of access

time on the system performance, we suppose that parking fees and capacities of both

parking clusters are fixed. Weakly outward and weakly inward parking hold if and only if

l2 equals a single real value, and TC is not differentiable with respect to l2 (or ∆l). It is

easy to verify that given K1, K2 and ∆p, the total travel cost of weakly outward (inward)

parking is always larger than that of strongly outward (inward) parking. Therefore, we

only need to consider the derivatives, ∂TC/∂∆l, for strongly outward, strongly inward

and hybrid parking as shown in Appendix D.

As indicated by the signs of those derivatives with respect to access time, reducing the

access time of the farther parking cluster can always reduce the total travel cost in inward,

outward and hybrid parking with only one exception. The exception is associated with

K2 ≤ s(v1−v2)
β in hybrid and inward parking, where TC is independent of l2. Intuitively,

this is because the farther cluster is preferred at the beginning of the commuting period,

and the reduction in parking-related travel costs by only shortening its access time is

offset by the increase in queuing delay or schedule delay caused by travelers taking

advantage of this accessibility improvement. Similarly, reducing the access time of the

closer parking cluster can reduce the total travel cost in all types of parking preference
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with the exception that K2 ≤ s(v1−v2)
β where TC is independent of l1.

The access time in this dissertation refers to the actual time spent on the way from

the parking lot to the office by any traffic mode, such as shuttle buses or walking.

Our analysis indicates that, in order to obtain the optimal travel pattern in the sense

of minimum total travel cost, the public parking operators should always improve the

accessibility of parking spaces, i.e., reduce the access times of both parking clusters, by

providing more frequent shuttle bus services or locate the parking lots closer to offices,

for instance.

5.4.2 Optimal provision of parking

We already discussed how an individual factor, when holding the other two factors

constant, should be set to induce the travel profile that minimizes total travel cost. In

this section, we show how all three factors, parking capacity, fee and access time, should

be set jointly to obtain the optimal travel pattern by a parking operator who has full

control over parking supply.

5.4.2.1 Optimal parking fees, capacities and access times

First of all, the access time of both parking clusters should always be shorten to

achieve the optimum as discussed in Section 5.4.1.3. In reality, the access time is usually

restricted by the locations of the parking clusters and thus can only be reduced up to a

certain level. In order to obtain the optimal travel profile, l2 and l1 will always be set to

the lowest possible values, l̂2 and l̂1, which we consider as given.

If the parking fee and access time are given, Equations 5.19, 5.20 and 5.21 indicates

that the optimal K2 is always smaller than Nγ
β+γ . Therefore, Equations 5.23 and 5.24

never hold in the optimal profile where all three factors can be jointly adjusted. As a

result, the optimal parking fee, capacity and access time must be such that Equation

5.22 holds, i.e.

∆popt =
K2,optβ

s
+ (λ− β)(l̂2 − l̂1) (5.25)

and the minimum total travel cost is always achieved in inward or hybrid parking unless

K2 = 0,K1 = N or K1 = 0,K2 = N . Let TC(∆p,K2) represent the total travel cost in
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terms of parking fee (∆p = p1 − p1) and the effective capacity of the farther cluster.

If (λ−β)(l̂2− l̂1) ≥ Nβγ
s(β+γ) , then K2,opt = 0. To see this, for any K ′2 6= 0 and any ∆p,

since
K ′2β

s
+ (λ− β)(l̂2 − l̂1) is the optimal parking fee for any given K ′2, thus,

TC(∆p,K ′2) ≥ TC(
K ′2β

s
+ (λ− β)(l̂2 − l̂1),K ′2)

Because
K ′2β

s
+ (λ− β)(l̂2 − l̂1) > Nβγ

s(β+γ) and Equation 5.19, we have,

TC(
K ′2β

s
+ (λ− β)(l̂2 − l̂1),K ′2) > TC(

K ′2β

s
+ (λ− β)(l̂2 − l̂1), 0)

Therefore, in this case,

K2,opt = 0,K1,opt = N,∆popt >
Nβγ

s(β + γ)
(5.26)

and the optimal profile is shown as Profile 20 in Appendix D. When the closer parking

cluster offers an overwhelming advantage in the access time, the optimal network per-

formance achieves when all travelers park in the closer parking cluster and the closer

parking cluster charges a relatively high parking fee.

Now we turn to the case where (λ − β)(l̂2 − l̂1) < Nβγ
s(β+γ) . If ∆popt >

Nβγ
s(β+γ) , then

K2,opt = 0,K1,opt = N and Equation 5.25 cannot hold, the corresponding total travel

cost is thus,

TC(∆popt, 0) =
N2βγ

s(β + γ)
+ λl̂1N (5.27)

If ∆popt ≤ Nβγ
s(β+γ) , then Equation 5.25 holds and the corresponding total travel cost

becomes,

TC(∆popt,K2,opt) =
N2βγ

s(β + γ)
+ λl̂1N +K2,opt(∆popt −

Nβγ

s(β + γ)
)

which is always no larger than the TC in Equation 5.27 under ∆popt ≤ Nβγ
s(β+γ) . Therefore,

the case with ∆popt >
Nβγ
s(β+γ) never occurs in the optimal travel profile. Express ∆popt

in terms of K2,opt by Equation 5.25, and then substitute it in the total travel cost,

TC(∆popt,K2,opt) =
s

β
∆p2

opt −
s

β
∆popt

(
Nβγ

s(β + γ)
+ (λ− β)(l̂2 − l̂1)

)
+ C

where C is a term independent of ∆popt. Solving for ∆popt by ∂TC/∂∆popt = 0 and

∂TC2/∂2∆popt > 0 yields,

∆popt =
Nβγ

2s(β + γ)
+

1

2
(λ− β)(l̂2 − l̂1) (5.28)

K2,opt =
Nγ

2(β + γ)
− s

2β
(λ− β)(l̂2 − l̂1) (5.29)
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The resulting optimal profile is shown in Figure 5.3. It is easy to check that the obtained

∆popt and K2,opt satisfy that ∆popt ≤ Nβγ
s(β+γ) and N > K2,opt > 0 given that (λ− β)(l̂2−

l̂1) < Nβγ
s(β+γ) .

When the farther parking cluster offers a reasonable access time compared to the

closer one, the optimal travel profile is achieved in inward or hybrid parking where the

optimal capacities and parking fees are determined by Equations 5.28 and 5.29 such that

both parking clusters will be used.

As can be seen from the optimal profile, the traffic at the bottleneck now has two

peaks, instead of one overly concentrated arrival peak in the case without parking choices.

Each of the two peaks is caused by traffic demand targeting a particular parking area.

Therefore, the traffic congestion at the bottleneck has been mitigated by shifting traffic

demand and directing them to different parking choices. In particular, in order to achieve

the best system performance, the traffic targeting the closer parking cluster does not

depart until the queue of the traffic targeting the farther one vanishes in the middle of

the rush hour. Meanwhile, no bottleneck capacity waste should occur (i.e. the bottleneck

discharging rate should always be the maximum flow rate so as to fully utilize the roadway

facility).

To sum up, when the closer parking cluster offers overwhelming advantages in acces-

sibility, the optimal travel pattern is achieved by having all travelers park in the closer

parking cluster. When the farther parking cluster offers competitive accessibility com-

pared to the closer one (or the closer parking cluster does not offer a far advantageous

accessibility than the farther one), the optimal travel profile is such that both parking

clusters should be used and the resulting total travel cost is less than the case without

parking choices.

In addition, we also show that,

∂TC(∆popt,K2,opt)

∂s
= − 1

s2

N2βγ(4β + 3γ)

4(β + γ)2
− λ− β

2β
(l̂2 − l̂1) < 0

It is interesting to see from Equations 5.28 and 5.29 that if such an optimal travel

profile is obtained given a travel demand and a bottleneck capacity, and thereafter the

bottleneck capacity is able to be enlarged, then the parking operators should accordingly

reduce the actual capacity of the farther cluster and meanwhile increase the parking fee

of the farther parking cluster, in order to maintain optimal network performance. Such
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a setting of parking capacities and fees ensure that the enlargement of the bottleneck

capacity will always reduce the total travel cost.

5.4.2.2 Properties of the optimal parking setting

In the typical morning commute problem, the system-optimal dynamic toll scheme

can completely eliminate all the queuing delay, but such a optimal toll does not reduce

travelers’ individual travel cost. We now examine whether the optimal settings of parking

location, fee and capacity can lead to less queuing delay than the case without parking

choices (i.e. the typical morning commute problem), and how it affects individual travel

cost which includes the parking fee.

The optimal parking fees and capacities by Equations 5.28 and 5.29 can effectively

reduce the travel delay as compared to the case where all travelers park in the same

cluster. To see this, we derive the travel delay cost under such an optimal setting (the

optimal profile is shown in Figure 5.3),

TD =
β

2sα

(
K2

2,opt + (N −K2,opt)
2 γ

β + γ

)
Arnott et al. (1990) gives that the travel delay of a typical morning commute problem

is N2βγ
2(β+γ)sα . Therefore,

TD
N2βγ

2(β+γ)sα

= 1− K2,opt

N

(
2− K2,opt

N

(
2 +

β

γ

))
On the other hand, substitute K2,opt by Equation 5.29, we have

K2,opt

N

(
2 +

β

γ

)
=

(
γ

2(β + γ)
− s(l̂2 − l̂1)(λ− β)

2βN

)(
2 +

β

γ

)
<

1

2
× 3 < 2

Therefore,

TD
N2βγ

2(β+γ)sα

< 0

and the reduction in queuing delay achieved by the optimal setting of parking fee and

capacity, as compared to the case where parking is not used to manage the travel demand,

is up to

1

(2 + β
γ )
× 100%, which is achieved when

K2,opt

N
=

1

(2 + β
γ )
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If γ = 5β (this relationship of β and γ is usually adopted in the literature), then the

reduction in queuing delay is fairly significant. For example, when K2,opt equals half of

the demand N , the reduction of total delay is 40%. Although the optimal setting of

parking is unable to completely eliminate all the queuing delay, it can indeed reduce the

congestion effectively.

Under such an optimal travel profile, the total travel cost inclusive of parking fee is,

TC(∆popt,K2,opt) =
N2βγ

s(β + γ)
+ λl̂1N +Np1,opt −

NK2,optβγ

s(β + γ)

<
N2βγ

s(β + γ)
+ λl̂1N +Np1,opt (5.30)

The right side of Inequality 5.30 is the total travel cost inclusive of parking fee, p1,opt, if all

travelers use the closer parking cluster. This implies that instead of having all travelers

park at the closer parking cluster, encouraging some travelers to use the farther one can,

as a matter of fact, reduce the total system travel cost (inclusive of parking fee) even

if the revenue collected from the parking fee is not re-distributed to the public. Thus,

compared to the case where parking is not used to manage the travel demand, every

traveler is better off under such an optimal parking policy. Unlike the system-optimal

dynamic toll under which the individual travel cost remains the same as a typical morning

commute problem, the optimal parking is able to reduce travelers’ individual travel cost.

This implies that using parking to manage traffic may be welcomed by travelers and less

controversial than toll schemes.

5.4.3 Numerical examples

Next we use a numerical example to illustrate how the optimal capacity and parking

fee should be set under a realistic setting in the morning commute. The basic model

parameters are as follows: A total demand of N = 10, 000 vehicles commute in morning

peak hour and go through a freeway bottleneck with capacity s = 80 veh/min (approxi-

mately a three-lane freeway), so that the morning peak commuting time lasts around 2

hours. α = 10$/hour, β = 4$/hour, γ = 20$/hour, λ = 10$/hour are chosen according

to the literature. The closer parking cluster is on average 2 minutes away from the office,

while the outer parking cluster is about 20 minutes away from the office (probably by

shuttle bus, or walking) for free.
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Figure 5.4. The changes in the optimal K2 and optimal TC with respect to pre-
determined ∆p

Figure 5.4 depicts the changes in the optimal capacity of the outer parking cluster

and optimal TC with respect to pre-determined parking fees. When the central parking

cluster charges a small amount of fee that is less than $1.8 (in this case, the closer parking

is preferred, and parking is outward) or a high parking fee larger than $6.9, one should

build a sufficiently large lot in the central cluster to accommodate all travelers to obtain

an optimal performance. In both cases, the TC exclusive of parking fees is $436,667,

since the resulting travel profile is independent of parking fees. When the parking fee

changes from $1.8 to $6.9, the optimal parking capacity of the outer cluster is non-zero

and ranges from 0 to 6,174 out of the required 10,000 parking spaces. Moreover, in

some cases, more parking spaces in the peripheral cluster should be provided than in

the central cluster to achieve optimal outcome. Meanwhile, if parking fee is medium

such that both parking clusters are used, then the resultant optimal TC is less than that

when it is set too high or too low, and the reduction in optimal TC can be as much as
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11%. In this numerical example, because Nβγ
s(β+γ) = 6.9 < 9 = (λ+ γ)∆l, all the optimal

profiles with non-zero outer parking capacity are in the form of hybrid parking.

Figure 5.5. The changes in the optimal ∆p and optimal TC with respect to pre-
determined parking capacity for the peripheral (farther) parking cluster

We also plot Figure 5.5 to show how the optimal parking fee of the central cluster

and the optimal TC change with respect to pre-determined parking capacities. When

the outer parking cluster has up to K2 = Nβγ
s(β+γ) = 8, 333 parking spaces, the optimal

parking fee for the central cluster ranges from $1.8 to $8.7, and the resultant optimal

travel profiles are in the form of hybrid parking. If the outer parking cluster provides

exactly 8,333 parking spaces, then the optimal parking fee of the central cluster could

vary from $5.4 to $8.7. The optimal profiles occur in weakly inward parking only when

K2 > 9, 773, i.e. the outer parking cluster overwhelmingly dominates the parking market.

With the increase of (pre-determined) K2, the TC decreases in the first place, reaches
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the minimum when K2 = 3, 087 and then increases up to $616,667. Adjusting parking

fee to obtain the optimal profile when K2 = 3, 087 can get up to 37% reduction of TC

compared to the optimal TC when no parking spaces are provided in the central parking

cluster.

Overall, if the parking operators can adjust both parking capacity and parking fee,

then optimal network performance achieves when K2 = 3, 087 and ∆p = $4.4. The

minimum TC is $389,027, a 11% reduction of travel cost compared to the case where all

travelers use the central parking cluster. Meanwhile, such an optimal parking capacity

and fee can yield 40.8% reduction of queuing delay and every traveler is better off in the

sense of a 5.2% reduction in individual travel cost.

5.5 The Case of Parking Lots Owned Privately

5.5.1 Travel profiles and total commuter cost

As discussed before, there are in all 20 possible types of travel profiles (i.e. cumulative

departure curve and arrival curve) under those five types of parking preference. The

travel profiles and their corresponding TCCs are listed in Table 5.2 (TSC will simply be

the sum of TCC and operators’ investment cost). Note that both TCC and TSC are

used particularly for the case with privately owned parking, which is different from the

TC in the case with publicly owned parking. In all five types of parking preference, if

K1 = 0,K2 = N (K2 = 0,K1 = N), then the profile and its TCC are shown in the row

of “other” in the table.

5.5.2 The combined parking/departure-time equilibrium model

Now we are ready to give the definition of the equilibrium, the competitive parking

equilibrium associated with the parking market defined above, based on the day-to-

day dynamic user equilibrium defined in Section 5.1.

Definition 5.2. In a parking market, the allocation of parking capacities, K̄1, K̄2, park-

ing fees, p̄1, p̄2, and access times, l̄1, l̄2, constitute a competitive parking equilibrium
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Table 5.2. An overview: 20 travel profiles and TCCs for five types of parking preference

Parking

prefer-

ence

Condition Total commuter cost
Profile

type

0 ≤ K1 ≤
s(v2 − v1)

β

Nβγ

s

N −K1

β + γ
+ λl2N +Np2 1

Outward
s(v2 − v1)

β
≤ K1 ≤

s(v2 − v1) +Nγ

β + γ
2

(strong)
s(v2 − v1) +Nγ

β + γ
≤ K1 ≤

s(u2 − u1) +Nγ

β + γ

Nβ

s

s(u2 − u1) +Nγ

β + γ
+ λNl1 +Np1 3

N > K1 ≥
s(u2 − u1) +Nγ

β + γ
4

0 ≤ K2 ≤
1

2

s(u1 − u2) +Nγ

β + γ

N2βγ

s(β + γ)
+ λl1N +Np1 12

Outward
1

2

s(u1 − u2) +Nγ

β + γ
≤ K2 ≤

1

2

Nγ

β + γ

Nβ

s
2K2 + λl2N +Np2 13

(weak)
u2 − u1

β + γ
s+

1

2

Nγ

β + γ
≤ K1 ≤ N −

1

2

Nγ

β + γ
14

1

2

Nγ

β + γ
≤ K1 ≤

u2 − u1

β + γ
s+

1

2

Nγ

β + γ

N2βγ

s(β + γ)
+ λl2N +Np2 15

0 ≤ K1 ≤
1

2

Nγ

β + γ
16

0 ≤ K2 ≤
s(v1 − v2)

β

Nβγ

s

N −K2

β + γ
+ λl1N +Np1 5

Inward
s(v1 − v2)

β
≤ K2 ≤

s(u1 − u2) +Nγ

β + γ
6

(strong)
s(u1 − u2) +Nγ

β + γ
≤ K2 ≤

s(v1 − v2) +Nγ

β + γ

Nβ

s

s(u1 − u2) +Nγ

β + γ
+ λNl2 +Np2 7

N > K2 ≥
s(v1 − v2) +Nγ

β + γ
8

0 ≤ K2 ≤
s(v1 − v2)

β

Nβγ

s

N −K2

β + γ
+ λl1N +Np1 5

Inward
s(v1 − v2)

β
≤ K2 ≤

Nγ

β + γ
6

(weak)
Nγ

β + γ
≤ K2 ≤

Nγ + s(v1 − v2)

β + γ

N2βγ

s(β + γ)
+ λNl2 +Np2 7

Nγ + s(v1 − v2)

β + γ
≤ K2 ≤ N −

1

2

Nβ − s(v1 − v2)

β + γ
17

0 ≤ K1 ≤
1

2

Nβ − s(v1 − v2)

β + γ

N2βγ

s(β + γ)
+ λNl2 +Np2 18

Hybrid

0 ≤ K2 ≤
s(v1 − v2)

β

Nβγ

s

N −K2

β + γ
+ λl1N +Np1 5

s(v1 − v2)

β
≤ K2 ≤

s(u1 − u2) +Nγ

β + γ

Nβ

s

s(u1 − u2) +Nγ

β + γ
+ λNl2 +Np2 6

s(u1 − u2) +Nγ

β + γ
≤ K2 ≤

s(u1 − u2) +Nγ + s(v1 − v2)

β + γ
7

Nβ − s(v1 − v2)

β + γ
≤ K1 ≤

Nβ + s(u2 − u1)− s(v1 − v2)

β + γ

Nβ

s
(N −K1 −

s(v1 − v2)

β + γ
) + λNl2 +Np2 9

(u2 − u1)s

β + γ
≤ K1 ≤

Nβ − s(v1 − v2)

β + γ

N2βγ

s(β + γ)
+ λNl2 +Np2 10

0 ≤ K1 ≤
(u2 − u1)s

β + γ
11

Other
K1 = 0,K2 = N

N2βγ

s(β + γ)
+ λNl2 +Np2 19

K1 = N,K2 = 0
N2βγ

s(β + γ)
+ λNl1 +Np1 20



107

if,

1. Private parking operators in each cluster locally maximize their profits by setting

their own parking fee, capacity and access time, given the price of the other cluster,

i.e. maxKipi −Kiai (i = 1, 2)

2. Travelers maximize their utilities (i.e. minimize the generalized travel cost in this

case) by choosing a departure time and parking location, given the parking fees,

capacity allocations and access times of both clusters, which is represented by a

day-to-day dynamic user equilibrium defined in Section 5.1.

3. Market clearing, i.e. K1 +K2 = N . Each of the commuters will choose one of the

parking cluster to park his car.

5.5.3 Parking provision without regulations

In this section, we study the case of a parking market without regulatory interven-

tion. We first solve the competitive parking equilibrium based on the UE traffic profiles

presented in Section 5.5.1, then discuss its properties and finally examine how changes

in parking fee, access time and parking capacity affects market performance through a

sensitivity analysis. Because access time is a less flexible control factor than parking fee

and capacity, we first assume it is fixed in the short term in deriving the competitive

parking equilibrium (that is, the parking operators adjust the parking fees and effective

capacities to achieve the competitive equilibrium, taking the access time as given in the

short term), then we can show how it affects the competitive equilibrium when it changes

in the long term.

5.5.3.1 The competitive parking equilibrium

Let ∆l = l2 − l1 > 0 and ∆p = p1 − p2 ≥ 0. p̄1, p̄2 and K̄1, K̄2 denote the parking

fee and capacity allocation of the central and peripheral clusters under the competitive

equilibrium, respectively. We will show that there are in all four equilibria: Type I in

strongly outward parking, Type II in weakly outward parking, Type III in weakly inward

parking, and Type IV in hybrid parking. We now discuss the competitive equilibria under

each of the five types of parking location preference.
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As can be seen from Table 5.1, if the competition leads to parking fees and access

times such that the strongly outward or strongly inward parking occurs, then there exists

a preferred parking cluster where the private operators who manage it will always build

N parking spaces so that all the travelers will use their parking spaces and their profits

are maximized. Since the private operators in the other cluster will never have any

consumers in that case, under such a parking market, they can always attract consumers

by reducing their parking charge to induce a transition from the strongly outward or

inward parking to other types of parking under which their lots are preferred by some

travelers. However, there is one (and the only) case that the less favored cluster is

unable to secure a market share no matter how its spaces are priced. This occurs when

p1 ≤ (λ − β)∆l. If the parking charge of the closer cluster is set to be sufficiently low,

say p1 < (λ−β)∆l, then the farther parking cluster will not attract any commuters even

if its spaces are free. When p1 = (λ − β)∆l, the private operators will not build any

lot in the farther cluster because they will not make any profit, although travelers are

indifferent to parking locations in early arrival when p2 = 0. Therefore, we show that a

competitive equilibrium of Type I occurs when,

K̄1 = N (5.31a)

K̄2 = 0 (5.31b)

p̄1 = (λ− β)(l2 − l1) (5.31c)

where the operators in the closer cluster set a low parking price so that it can attract all

the travelers and the farther parking cluster is never used, and meanwhile the profits of

the operators in the closer parking cluster are locally maximized.

When the parking fee in the closer cluster is priced higher than (λ − β)∆l, the

operators in the farther cluster can always set a price to get a market share with some

profits. Therefore, both strongly inward and strongly outward parking cannot occur in

the competitive equilibrium other than Type I.

Weakly outward or weakly inward parking may occur in the competitive equilibrium.

For weakly outward parking, in Profiles No. 12 and 13, K2 effectively determines the

parking usage and thus, the operators in the farther cluster are always willing to build

as many parking spaces as possible to attract commuters so as to increase their profits;
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while in Profiles No. 14, 15 and 16, K1 similarly determines the parking usage and the

operators in the closer cluster will also build as many parking spaces as possible. There

exists a capacity allocation at the boundary between Profiles No. 13 and 14 such that

the operators in both clusters cannot further increase their market share by building

more spaces and keeping a constant relative parking price (i.e. ∆p = (λ− β)(l2 − l1) as

the required condition of weakly outward parking), which satisfies the definition of the

competitive parking equilibrium. Therefore, a competitive equilibrium of Type II occurs

when,

K̄1 = N − 1

2

Nγ

β + γ
(5.32a)

K̄2 =
1

2

Nγ

β + γ
(5.32b)

p̄1 − p̄2 = (λ− β)(l2 − l1) (5.32c)

Similarly, a competitive equilibrium of Type III occurs in weakly inward parking at the

boundary between Profiles No. 17 and 18,

K̄1 =
1

2

Nβ − (β + γ)(l2 − l1)s

β + γ
(5.33a)

K̄2 = N − 1

2

Nβ − (β + γ)(l2 − l1)s

β + γ
(5.33b)

p̄1 − p̄2 = (λ+ γ)(l2 − l1) (5.33c)

Note that the type III competitive equilibrium may not exist if Nβ < (β + γ)(l2 − l1)s.

More importantly, a competitive parking equilibrium of Type IV occurs in hybrid

parking at the boundary between Profiles 7 and 9 where,

K1 =
Nβ + s(u2 − u1)− s(v1 − v2)

β + γ
(5.34)

K2 =
Nγ − s(u2 − u1) + s(v1 − v2)

β + γ
(5.35)

In this case, the competition leads to a situation where the parking fees are priced to

be such that each parking cluster is preferred in a certain time period, i.e., the farther

parking cluster is preferred in early arrival, and the closer parking cluster is preferred

in late arrival. Meanwhile, the number of parking spaces built in both clusters are such

that a further increase in the capacity in either cluster will not increase its the market

share and profits.
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We now turn to solve the Type IV competitive parking equilibrium. Given the

equilibrated price of the closer parking cluster, p̄1, the profit maximization problem of

the farther cluster reads,

max
p2

K2(p2 − a2) = max
p2

(
Nβ + s(u2 − u1)− s(v1 − v2)

β + γ
(p2 − a2)

)
= max

p2

(
− 2s

β + γ
p2

2 +
Nγ + 2sp̄1 + 2sa2 − (2λ+ γ − β)s∆l

β + γ
p2 + C

)
where C is a term independent of p2. Therefore,

p̄2 = argmaxp2K2(p2 − a2) =
Nγ

4s
− 2λ+ γ − β

4
∆l +

p̄1 + a2

2
(5.36)

and substitute p2 in Equation 5.35 by p̄2 in Equation 5.36, we have

K̄2 =

Nγ

2
+ s(p̄1 − a2 −

2λ+ γ − β
2

∆l)

β + γ
(5.37)

Similarly, maximizing the profits of the operators who own the closer cluster, given the

equilibrated price of the farther cluster, p̄2, yields,

p̄1 =
Nβ

4s
+

2λ+ γ − β
4

∆l +
p̄2 + a1

2
(5.38)

K̄1 =

Nβ

2
+ s(p̄2 − a1 +

2λ+ γ − β
2

∆l)

β + γ
(5.39)

Adding up Equations 5.37 and 5.39 should satisfy the market clearing condition,

p̄1 + p̄2 =
N

2s
(β + γ) + a1 + a2 (5.40)

Combining Equations 5.40 and 5.38 (or 5.36) solves the competitive equilibrium,

p̄1 =
N

6s
(2β + γ) +

2λ+ γ − β
6

∆l +
2a1 + a2

3
(5.41a)

p̄2 =
N

6s
(β + 2γ)− 2λ+ γ − β

6
∆l +

a1 + 2a2

3
(5.41b)

K̄1 =
N(γ + 2β) + s(2λ+ γ − β)∆l − 2s(a1 − a2)

3(β + γ)
(5.41c)

K̄2 =
N(2γ + β)− s(2λ+ γ − β)∆l + 2s(a1 − a2)

3(β + γ)
(5.41d)

Because the Type IV competitive equilibrium is the result of hybrid parking, (λ−β)∆l <

(p̄1 − p̄2) < (λ+ γ)∆l. It exists only if

N

2s
(γ − β)− (γ + 2β − λ)∆l < a1 − a2 <

N

2s
(γ − β) + (2γ + β + λ)∆l (5.42)
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In other words, if the difference in the investment cost between the two clusters is too

small or too large, Type IV equilibrium will not exist. This is somewhat expected. An

extremely high investment cost in the farther cluster can lead to a high parking price set

by those operators (as a result of Equation 5.36). When the farther cluster is overpriced,

travelers are not willing to use the farther parking spaces and consequently the parking

preference becomes outward, which destroys the equilibrium. On the other hand, if those

operators who own the farther cluster set a lower price so that they do make some profits

(still under hybrid parking) but the profits are not maximized, they can increase the

parking fee to make more profits. This, however, place them into the risk of losing their

market share because a fee increase beyond a certain threshold can eventually change

travelers’ parking preference. In this sense, such a Type IV competitive equilibrium may

not be reachable and the parking market may be unstable in terms of parking prices and

capacity allocations. The same logic applies to the case where the operators who own

the closer cluster are subject to an extremely high investment cost. In both cases where

a Type IV equilibrium is not stable, regulations can be used to create a stable market

in the manner of, for instance, restricting the parking fee or capacity of both clusters.

This can ensure the private operators in both clusters earn reasonable profits in a stable

parking market. More importantly, market regulation may help further increase the

system performance and reduce congestion than what would be achieved if the market

is left alone, as will be discussed later.

5.5.3.2 Stability of the equilibria

There are in all four types of competitive parking equilibrium. Not all of them,

however, are stable. We examine them here one by one.

The Type II and Type III equilibrium occurs when the parking preference is weakly

outward or weakly inward, and the two types of preference only hold when ∆p equals a

single real value, i.e. ∆p = (λ− β)∆l or ∆p = (λ+ γ)∆l. Such equilibria are obviously

not stable because a slight price change in either parking cluster can result in a change

in parking preference and thus completely changes the travel profile and market shares.

Both types of competitive equilibrium are unlikely to occur in reality since their traffic

patterns are unstable.
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Type I occurs where p̄1 = (λ− β)∆l. This type of equilibrium is theoretically stable

in the sense that the operators in the closer cluster can set a reasonable price and build

N spaces such that they attract all the commuters and locally maximizes their profits,

no matter how the farther cluster lowers its price or changes its capacity. However, Type

I may not exist (or sometimes may not be stable/desired) in a practical sense for the

following reasons: 1) The fixed investment cost per parking space is normally high in

the closer cluster. It is very likely that p̄1 = (λ − β)∆l < a1. Under this condition the

operators in the closer cluster make no profit. To make a profit they have to increase the

parking fee, but this destroys the Type I equilibrium; 2) Even if p̄1 = (λ−β)∆l > a1 and

the operators in the closer cluster can make profits by setting a low price and achieving

Type I equilibrium, the profits they make under Type I (since locally maximized) may

be less than what they can make under a Type IV equilibrium in which they can charge a

substantially higher price, and a smaller market share. Therefore, a Type IV equilibrium

is more desirable; and 3) now we only consider the case where ∆l is fixed in the short

run. In reality, if the farther parking cluster manages to improve its accessibility in the

long run, it can easily destroy the Type I equilibrium to get a market share, which leads

to fundamentally different flow patterns. Type I equilibrium, therefore, is unlikely to

occur in practice.

The Type IV competitive parking equilibrium is stable both in theory and in prac-

tice, because its travel preference and profile exists under a broad range of prices and

capacities, and it offers the opportunity for operators in both clusters to make a profit.

Since this type of equilibria is most likely to occur in practice, we focus on the analysis

of the Type IV equilibrium in the rest of the chapter.

5.5.4 The Type IV competitive parking equilibrium

In this section, we examine in detail the properties of the Type IV equilibrium from

several perspectives: market share, profits, and system performance.
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5.5.4.1 Market share, profits and travel profile

As can be seen from Equation 5.41, given the attributes of the commuter population

(i.e. β, λ, γ) and travel demand N , improving the accessibility of parking lots (i.e.,

reducing the “access time”) is desired for both parking clusters since a shorter access

time in one cluster can, holding the access time of the other cluster constant, increase

both its market share and equilibrated parking fee, hence its profit. Therefore, the

private operators in both clusters have the incentive to reduce their access times through

providing frequent shuttle bus services or other means.

As for the investment cost, a higher investment cost of one cluster can lead to a

smaller market share and profit for this cluster, but higher profit for the other cluster.

Therefore, private operators in both clusters have the incentive to reduce their investment

costs. In addition, an increase in the investment cost of one cluster indeed can lead to

higher parking fees for both clusters, which does not favor travelers. This is because the

operators in this cluster have to raise the parking price to pay off a higher investment

cost, and therefore the competitors will also raise their parking fee, however not as much

as the former (by a half of the increased fee of the former to be exact), which is proven

to enlarge their market shares and profits.

We plot the travel profile of the Type IV equilibrium in Figure 5.6 before we show

several of its features.

This profile is actually a special case of both Profiles No. 7 and 9. As discussed before,

in hybrid parking, a traveler who departs at such a time that he arrives earlier than t∗

using either cluster prefers the farther parking cluster due to v1 > v2, while a traveler

who departs at such a time that he arrives later than t∗ using either cluster prefers the

closer one, due to u1 < u2. However, some travelers may depart the bottleneck in such a

time that they are subject to early arrival if choosing the closer cluster, and late arrival

if choosing the farther cluster. For those travelers, there exists a transition period (i.e.

the time period from D to B on the departure curve from the bottleneck) during which

travelers’ parking preference switches gradually from the farther cluster to the closer

one. The traveler who departs home at time tA (the departure time of the traveler

marked by A in the profile) is indifferent to both clusters and ȳ = u2−u1
β+γ , and the travel

profile under competitive market equilibrium is such that this exact traveler fills up the
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Figure 5.6. The travel profile under Type IV competitive equilibrium

farther parking cluster. As can be seen from the profile, during the morning commute,

the queue at the bottleneck has two peaks. The first peak is due to the demand for

parking at the farther cluster when it is preferred, while the second one is caused by

those travelers parking at the closer cluster when the preference on the farther cluster is

later transferred to the closer one.

The travel pattern achieved under the competitive equilibrium indicates that com-

pared to the morning commute without parking choices, a parking market has the ability

to mitigate the congestion in the middle of the rush hour, i.e. ACEF in Figure 5.6 is the

queuing delay saved by such a competition between parking clusters. While it may not

necessarily reduce the schedule delay cost (as the departure curve from the bottleneck

can move along the time axle within a certain range, dependent on the value of ȳ), it

can always reduce the queuing delay. Incorporating parking choices in the morning com-

mute essentially distinguishes travelers in groups such that each group of commuters will

travel within a certain time period different from others, and hence the queue can be

shortened without necessarily reducing the travel demand nor spreading the peak time.

This has the same effect as tolling travelers selectively. In the latter, each of the trav-

elers is charged a toll in a fraction of working days so as to change travelers’ departure

times (Daganzo & Garcia 2000). However, using parking choices to distinguish travelers
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during the morning commute may be less controversial since travelers can change their

own departure times voluntarily in a parking market, rather than being selected to be

tolled in certain days.

5.5.4.2 Total travel cost and total queuing delay

Now we compute the total travel cost and total queuing delay of a Type IV equilib-

rium, and compare them to the case where all travelers use either the closer or farther

cluster. Let TCC (TSC), TCCo,1 (TSCo,1) and TCCo,2 (TSCo,2) denote the total com-

muter cost (total system cost) under the Type IV equilibrium and the cases without

parking choices where all travelers use parking cluster 1 or 2, respectively.

Under the travel profile as shown in Figure 5.6, if the parking fees of the two clusters

are set to be p1 and p2 and Equation 5.34 and 5.35 hold, then the total commuter travel

cost is6,

TCC =
N2βγ

s(β + γ)
+ λNl2 +

N

β + γ
(βp1 + γp2 − β(λ+ γ)∆l) (5.43)

=
N2βγ

s(β + γ)
+ λNl1 +

N

β + γ
(βp1 + γp2 + γ(λ− β)∆l)

and the total system cost is,

TSC =
N2βγ

s(β + γ)
+ λNl2 −

N

β + γ
β(λ+ γ)∆l + a1K1 + a2K2 − ∆ps(2ȳ − ∆l) (5.44)

=
N2βγ

s(β + γ)
+ λNl1 +

N

β + γ
γ(λ− β)∆l + a1K1 + a2K2 − ∆ps(2ȳ − ∆l)

where K1 and K2 are determined by Equation 5.34 and 5.35, and

ȳ =
(λ+ γ)∆l − (p1 − p2)

β + γ

Since the parking market reaches a competitive equilibrium such that p̄1, K̄1 and p̄2, K̄2

can be represented by Equation 5.41, then,

TCC =
N2βγ

s(β + γ)
+ λNl2 +

N

β + γ
(βp̄1 + γp̄2 − β(λ+ γ)∆l) (5.45)

=
N2βγ

s(β + γ)
+ λNl1 +

N

β + γ
(βp̄1 + γp̄2 + γ(λ− β)∆l)

6We first solve the geometry of the profile and then compute the TCC and TSC. The derivation is
fairly lengthy and is omitted here.
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TSC =
N2βγ

s(β + γ)
+ λNl2 −

N

β + γ
β(λ+ γ)∆l + a1K̄1 + a2K̄2 − ∆p̄s(2ȳ − ∆l) (5.46)

=
N2βγ

s(β + γ)
+ λNl1 +

N

β + γ
γ(λ− β)∆l + a1K̄1 + a2K̄2 − ∆p̄s(2ȳ − ∆l)

If all the travelers use either the closer or the farther cluster, then,

TCCo,1 =
N2βγ

s(β + γ)
+ λNl1 +Npo,1

TCCo,2 =
N2βγ

s(β + γ)
+ λNl2 +Npo,2

TSCo,1 =
N2βγ

s(β + γ)
+ λNl1 +Na1

TSCo,2 =
N2βγ

s(β + γ)
+ λNl2 +Na2

Due to monopoly, the parking fee charged by the monopolistic cluster is usually higher

than what is achieved under the competitive market equilibrium, i.e. po,1 ≥ p̄1 and

po,2 ≥ p̄2. It is easy to verify that TCC < TCCo,1 and TCC < TCCo,2 given the

required condition of hybrid parking, i.e. (λ − β)∆l < p̄1 − p̄2 < (λ + γ)∆l. However,

the sign of TSC − TSCo,1 (or TSC − TSCo,2) is actually undetermined, and depends

on the values of the parameters, such as the access times and investment costs. This

implies that such a competitive equilibrium, naturally, can reduce the commuter travel

cost compared to the case where all travelers use the same parking cluster, due to the

competition among private parking operators. But it does not necessarily reduce the

total social cost. Therefore, a competitive parking market, under certain conditions can

lead to an undesirable market outcome.

We already show graphically that the competitive equilibrium can reduce the queuing

delay as compared to the typical morning commute problem without parking choices. Let

TD and TDo denote the total queuing delay under the Type IV competitive equilibrium

and the typical morning commute problem, respectively. Under the travel profile shown

in Figure 5.6, if the parking fees of the two clusters are set to be p1 and p2, then the

queuing delay is,

TD =
N2γβ

2αs(β + γ)
− ȳ(∆l − ȳ)

s

α
(β + γ) (5.47)

where ȳ =
(λ+ γ)∆l − (p1 − p2)

β + γ

TDo =
N2γβ

2αs(β + γ)
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Therefore, when a Type IV equilibrium is achieved,

TD − TDo = −ȳ(∆l − ȳ)
s

α
(β + γ) < 0 (5.48)

Given the access times of both clusters, ∆l, we show that the parking fees that

minimize the queuing delay, denoted by ∆p∗∗, are such that ȳ = 1
2∆l, i.e.

∆p∗∗ =
2λ+ γ − β

2
∆l (5.49)

This can serve as one of the targeted parking prices for a regulatory agency in order to

achieve minimum queuing delay.

5.5.4.3 The effects of investment cost, parking fee and access time

Now we perform a sensitivity analysis to study how changes in parking fee, access

time and investment cost affect TSC, TCC and TD. The derivatives of TSC, TCC

and TD with respect to all three factors are shown in Appendix G. First we examine

the effect of investment cost. The investment cost, including the real estate value/tax

and maintenance cost, may be adjusted by both the private operators and the public

regulator. Because

dTCC

da2
>
dTCC

da1
> 0

lowering the investment cost per parking space in either parking cluster can always reduce

the commuter travel cost as it reduces the parking fee, and it seems such a reduction in

investment cost in the farther cluster can be more efficient than it is in the closer cluster.

However, reductions in the investment cost may not necessarily reduce both the total

system cost and queuing delay. This is because the savings in operators’ cost may not

pay off the increase in the queuing delay or schedule delay cost that travelers are subject

to.

When the difference of parking fee between the two clusters is not large (i.e. 2∆p̄ <

(2λ + γ − β)∆l), the regulator can set a higher investment cost in the central cluster

or lower it in the outer cluster in order to reduce the queuing delay. On the other

hand, a higher investment cost in the central area or a lower cost in the outer area can

lead to less total social cost only if the difference of investment cost is sufficiently large.
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In other words, to achieve a better system performance, the regulator should consider

enlarging the difference of investment cost only if it indeed already makes sufficiently

large difference.

Now we examine the effect of access time. Whether or not reducing access time of

the farther parking cluster can benefit the commuter cost is dependent on the population

attributes, i.e. β, γ, λ. In addition, under a certain condition, shortening the access time

may not necessarily reduce the queuing delay nor the system cost: the outcome depends

on not only the population attributes but also some other parameters, such as total

demandN and the bottleneck capacity s. Therefore, under the Type IV equilibrium,

improving the accessibility of the parking lots may not benefit the commuters nor the

entire system, but it would benefit some parking operators because lowering access times

can attract more customers and bring in higher profits.

Finally, by differentiating Equation 5.43 with respect to p1 and p2, we have,

∂TCC

∂p1
> 0,

∂TCC

∂p2
> 0 (5.50)

implying that reducing the parking fee in both clusters under the Type IV competitive

equilibrium can always benefit commuters. While if the difference of parking fee between

the two clusters is sufficiently high, then reducing the parking fee of the farther cluster

(and hence also the difference of parking fee) can benefit the overall system. If the market

is regulated, a regulator can require one cluster to reduce its parking fee, then the other

cluster will also lower its price in order to remain competitive. This results in a lower

cost for commuters but probably less profits for parking operators (as we can see later),

and can benefit the entire system under certain conditions.

To summarize, a parking market can result in less queuing delay than the morning

commute without parking choices. However, a parking market without regulation can

lead to a market equilibrium where the total system cost and commuter cost are higher

than the case without parking choices and can be further reduced. This can be remedied

through market regulation, such as a price ceiling or capacity floor, as we shall discuss

in the next section. It is worth noting that reducing the access times of both clusters

may not benefit the travelers in terms their travel costs, but can bring more profits to

the operators.
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5.5.5 The regulated parking market

Since the competitive parking equilibrium may not produce the best market outcome,

we explore in this section how market regulation can be used to improve the market

outcome in terms of total cost and congestion. Several types of regulations will be

discussed, they include price-ceiling, capacity-floor or ceiling, quantity tax or subsidy.

Each of these regulations is introduced to achieve the following objectives: 1) reduce the

total system cost; 2) reduce the queuing delay (i.e. network congestion); 3) reduce the

commuters’ total cost (or equivalently, commuters’ individual travel cost), particularly

the parking fee; and 4) maintain a certain level of profitability for the private operators.

The resultant total cost and queuing delay are expected to be reduced compared to the

following two cases, 1) the morning commute without parking choices (i.e. the typical

morning commute problem) and 2) competitive equilibrium without regulation.

5.5.5.1 The price-ceiling regulation

As shown in the previous section, a price-ceiling applied to the farther parking cluster

can reduce the parking fees of both clusters, and consequently the total commuter travel

cost. It can also ensure a stable market when a competitive equilibrium does not exist.

Suppose that a regulator sets a price ceiling, p′2, for the farther cluster, we have

p2 ≤ p′2 (5.51)

Let p̄1,c, p̄2,c and K̄1,c, K̄2,c denote the parking fee and capacity allocation of the closer

and farther cluster under the Type IV competitive market equilibrium with the price-

ceiling regulation, respectively. Given the equilibrated price of the closer cluster, p̄1,c,

the profit maximization problem for the farther cluster reads,

max
p2∈[0,p′2]

K2(p2 − a2) = max
p2∈[0,p′2]

(
− 2s

β + γ
p22 +

Nγ + 2sp̄1,c + 2sa2 − (2λ+ γ − β)s∆l

β + γ
p2 + C

)
where C is a term independent of p2. In order to let such a p′2 take effect in reducing

the equilibrated price on the farther cluster, we have

p′2 < p̄2 =
N

6s
(β + 2γ)− 2λ+ γ − β

6
∆l +

a1 + 2a2

3
(5.52)
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Therefore,

p̄2,c = argmaxp2∈[0,p′2]K2(p2 − a2) = p′2 (5.53)

K̄2,c =
Nγ +

Nβ

2
− s(p′2 +

2λ+ γ − β
2

∆l − a1)

β + γ
(5.54)

Similarly, maximizing the profits of private operators in the closer cluster, given the

equilibrated price of the farther cluster, p′2, yields,

p̄1,c =
Nβ

4s
+

2λ+ γ − β
4

∆l +
p′2 + a1

2
(5.55)

K̄1,c =

Nβ

2
+ s(p′2 +

2λ+ γ − β
2

∆l − a1)

β + γ
(5.56)

and the condition of market clearing is satisfied. Because such an equilibrium only exists

in hybrid parking, i.e. (λ − β)∆l < p̄1,c − p̄2,c < (λ + γ)∆l, we solve for p′2 by combing

Equation 5.55 and 5.53, which yields

Nβ

2s
− ∆l

2
(2λ+ 3γ + β) + a1 < p′2 <

Nβ

2s
+

∆l

2
(γ − 2λ+ 3β) + a1 (5.57)

Inequality 5.52 and 5.57 altogether determine an appropriate range for p′2 that the reg-

ulator can choose from. If p′2 is out of this range, the market does not attain a stable

equilibrium, or the regulation may not take effect.

Compared to the unregulated parking market, in the market with the price-ceiling

regulation, private operators in the closer cluster also lower their parking fee in order to

compete with the farther cluster. Although the closer parking cluster now has a higher

market share, its operators make less profits than in the unregulated market. To see

this, we note that

∂maxK1(p1 − a1)

∂p2
= − s

β + γ
(p2 −

Nβ

2s
− a1 −

2λ+ γ − β
4

∆l)

∂maxK1(p1 − a1)

∂p2
|p2=p′2

> 0 due to Inequality 5.57.

∂maxK1(p1 − a1)

∂p2
|p2=p̄2 > 0 due to Equality 5.36.

As a consequence, the farther parking cluster has a smaller market share with a lower

parking fee, and therefore also earns less profits.

Because the competitive parking equilibrium under the price-ceiling regulation is

achieved under the same profile type (i.e. Figure 5.6) as in the unregulated market, we
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can compute the total commuter cost using Equation 5.43 and total system cost using

Equation 5.44,

TCCc =
N2βγ

s(β + γ)
+ λNl2 +

N

β + γ
(βp̄1,c + γp̄2,c − β(λ+ γ)∆l) (5.58)

TSCc =
N2βγ

s(β + γ)
+ λNl2 −

N

β + γ
β(λ+ γ)∆l + a1K̄1,c + a2K̄2,c −∆pcs(2ȳc −∆l)

From this we can obtain the derivatives of the total cost with respect to the price bound

and access time as follows:

dTCCc
dp′2

=
N

β + γ

(
1

2
β + γ

)
> 0

dTSCc
dp′2

=
s

β + γ
(p′2 − a2)− Nβ

2(β + γ)

As long as the price ceiling p′2 is set to be such that the competitive parking equilib-

rium still exists, the regulator may want to lower the ceiling as this can always reduce

the total commuter cost. If the net profit per parking space for the farther cluster is

beyond a threshold (i.e. Nβ
2s ), then a lower p′2 is also desirable from the system point of

view. A lower pricing ceiling p′2 can also reduce both the commuters’ individual travel

costs and parking charge (in both clusters). However, the ceiling may not be set too

low because, 1) a low ceiling p′2 does not necessarily produce less queuing delay than a

high ceiling; 2) a low ceiling p′2 can squeeze the profits of operators in both clusters and

in fact result in a higher total system cost; and 3) the ceiling has a lower bound given

by Equation 5.57. Although p′2 can be set to be asymptotically approaching the lower

bound or Nβ
2s + a2 to further reduce the total travel cost, whichever comes smaller. Such

a minimum cannot be achieved due to the discontinuity of the travel profile at the lower

bound. The price ceiling regulation transfers the benefits from operators to commuters

through a lower parking fees rather than less queuing delay. Hence a too low price bound

may not be desirable if the regulator’s objective is to use it to manage traffic congestion.

We show that dTDc
dp′2

can take any sign. Therefore, the price-ceiling regulation may not

necessarily reduce the total queuing delay as compared to the case without regulation.

However, we can set a p′∗∗2 to minimize the queuing delay. Such an optimal price bound

can be obtained by combining Equation 5.53, 5.55 and 5.49,

p′∗∗2 = a1 +
Nβ

2s
− 2λ+ γ − β

2
∆l (5.59)
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p′∗∗2 satisfies Inequality 5.57 but may or may not satisfy Inequality 5.52. Therefore, it

is possible that such a minimum-queuing-delay inducing bound may not exist in some

cases.

5.5.5.2 The capacity-floor or capacity-ceiling regulation

Since the price-ceiling regulation can efficiently reduce the social cost and commuter

cost, and ensure a stable parking market, a question naturally arises, can a capacity-floor

or capacity-ceiling regulation achieve the same goal?

First, the capacity-ceiling regulation will not work. This is because if a cluster is

regulated to build a certain number of spaces that must not exceed such a “ceiling”, then

the operators in the other cluster can increase the parking price as much as possible to

maximize their profits. This may lead to an unreasonably high parking fee in the other

cluster and market failure.

On the other hand, a capacity-floor regulation sets a minimum number of parking

spaces for a cluster, e.g. K2 ≥ K ′2. We would expect the competitive equilibrium

(hopefully with less total travel cost) achieves when the regulation takes effect, i.e., the

equilibrated capacity K̄2,cf = K ′2. However, if K ′2 ≤ K̄2, then the equilibrium with

the capacity-floor regulation still achieves at K̄2 so it does not take effect. If otherwise

K ′2 > K̄2, then the equilibrium is such that only K̄2 spaces will be used by commuters

and the effective equilibrated capacity is still K̄2. Therefore, the capacity-floor regulation

does not work either.

Unfortunately, restriction on only the capacity of parking clusters seems not effective

or sometimes unnecessary. This is essentially because the regulator can only influence

the actual parking capacities, rather than the effective parking capacities, while the

competitive equilibrium determines the effective parking capacities, not the actual one.

5.5.5.3 The quantity tax/subsidy regulation

In addition to the price-ceiling regulation, taxation may also be an option for the

public regulator to adopt in pursuit of a desired market outcome. A tax/subsidy can

sometimes be more efficient than the price-ceiling regulation as the tax collected can be

re-distributed to the public, or the subsidy paid to the private operators can reduce the
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deadweight loss. We note that a lump-sum tax or subsidy imposed on operators in either

of the two parking clusters does not change the parking fee and capacity allocation at

the competitive equilibrium.

Suppose the regulator imposes a quantity tax/subsidy π1 and π2 per space (per

vehicle) on the closer and farther parking clusters, respectively. If the tax/subsidy is set

in favor of the farther cluster, then π1 > π2 > 0 in the case of a tax, and π2 < π1 < 0

in the case of a subsidy. When the tax/subsidy is set in favor of the closer cluster, then

π1 and π2 exchange their positions in the above inequalities. A quantity tax/subsidy

scheme is equivalent to changing investment costs under the competitive equilibrium.

Therefore, by replacing a1 with a1 + π1 and a2 with a2 + π2 in Equation 5.41, we have

(let the subscript “t” to represent the case of the quantity tax regulation),

p̄1,t = p̄1 +
2π1 + π2

3
(5.60a)

p̄2,t = p̄2 +
π1 + 2π2

3
(5.60b)

K̄1,t = K̄1 −
2s

3(β + γ)
(π1 − π2) (5.60c)

K̄2,t = K̄2 +
2s

3(β + γ)
(π1 − π2) (5.60d)

Also, such an equilibrium must satisfy the condition for hybrid parking, i.e., (λ−β)∆l <

p̄1 − p̄2 < (λ+ γ)∆l. We have,

N

2s
(γ − β)− (γ + 2β − λ)∆l − (a1 − a2) < π1 − π2 (5.61)

<
N

2s
(γ − β) + (2γ + β + λ)∆l − (a1 − a2)

Now we can compare this new equilibrium under the tax/subsidy regulation with

the competitive market equilibrium without regulation. Let us first consider a quantity

tax/subsidy regulation in favor of the farther cluster, π1 > π2. By introducing a quantity

tax (subsidy), the equilibrated parking prices in the closer cluster and the farther cluster

increase (decrease) by 2π1+π2
3 and π1+2π2

3 , respectively. The closer parking cluster will

have a smaller market share and some commuters may switch to use the farther one.

Both operators increase their prices to transfer the regulatory tax to their customers,

or both operators reduce their prices to compete for more customers and some of the

benefits of the subsidy will also be transferred to the commuters. The profitable parking
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fee exclusive of tax/subsidy, p2 − π2, in the farther cluster actually increases by π1−π2
3 .

Since its market share also increase, its operators earn more profits than the case without

regulation. However, such a taxation/subsidy reduces both the market share and the

parking fee of the closer cluster, and the private operators in the closer cluster are

made worse off by this regulation. Therefore, a tax/subsidy in favor of the farther

(closer) cluster can efficiently reduce (increase) traffic demand to the central city (CBD).

Additionally, as indicated by Equation 5.61, the tax/subsidy must be appropriately set

in order to ensure the existence of the competitive equilibrium (also a stable parking

market).

According to the derivatives of TSC, TCC and TD with respective to a1 and a2, we

show that a tax in either of the clusters can increase the parking fee, which essentially

increase the commuter travel cost, while a subsidy in contrast can benefits commuters.

If the difference of the investment cost between the two clusters is significant, then the

regulator should set a quantity tax/subsidy that favors the farther cluster, i.e. π1 > π2,

to produce a lower total system cost than in the unregulated parking market. Not only

does such a regulation tend to balance the profits of both clusters in the market, it also

can reduce the total system travel cost. In contrast, if the difference of the investment

cost between the two clusters is insignificant, and hence the farther cluster has a more

advantageous investment cost than a certain threshold, then the regulator should tax

(or subsidize) the closer cluster less (or more) heavily, i.e. π1 < π2.

We also obtain a ∆π∗∗ that minimizes the queuing delay and in the same time

guarantees less congestion than the case without regulation (given ∆l) by combining

Equations 5.60a, 5.60b and 5.49,

∆π∗∗ =
N

2s
(γ − β) +

2λ+ γ − β
2

∆l − (a1 − a2) (5.62)

Any setting of tax/subsidy towards ∆π∗∗ is desirable in terms of reduced congestion.

Because ∆π∗∗ satisfies Inequality 5.61, such a tax/subsidy can always be achieved, but

it normally does not entail a minimum total social/commuter cost.

Finally, from the travelers’ perspective, a subsidy to the operators can reduce the

parking fees of both clusters in addition to its capability of reducing total commuter

(individual) travel cost, whereas a tax in contrast increase the parking fees. Thus,

though both a subsidy and a tax may be able to achieve a better market outcome in
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terms of total commuter/social cost, a subsidy may be more preferred by the commuters

more than a tax.

5.5.6 Numerical examples

In this section we present numerical examples of competitive market equilibrium un-

der realistic network parameters, and show how a price-ceiling regulation and quantity

tax regulation can influence the parking market, social welfare and the network conges-

tion.

The basic model parameters are as follows: a total demand of N = 10, 000 vehicles

commute in the morning rush hour and go through a freeway bottleneck with capac-

ity s = 120 veh/min (approximately a six-lane freeway with three lanes per direction).

α = $10/hour, β = $4/hour, γ = $20/hour are set to be consistent with the literature.

We assume λ = $15/hour. The central parking cluster is fairly convenient and it only

takes 2 minutes on average to reach the office from the parking space, while the far-

ther parking cluster is about 20 minutes away from the office. Suppose the investment

cost of the closer cluster and the farther one is a1 = $10/commuting peak/space and

a2 = $1/commuting peak/space respectively. In order to have a stable competitive

equilibrium in cases with or without regulations, (λ − β)∆l < ∆p < (λ + γ)∆l (i.e.,

3.3$ < ∆p < 10.5$).

First we solve the competitive market equilibrium without regulation. The equi-

librated parking price of the closer cluster and the farther cluster is $15.8 and $11.9,

respectively. Under such an equilibrium, the closer cluster is used by 3,469 travelers,

and the rest 6,531 travelers use the farther one. The total travel cost is $204,142, and

the total queuing delay cost of the network is $2,196. The resultant queuing delay cost is

less than the queuing delay cost of the case without parking choices, $2,315, by around

5%. As a matter of fact, if no regulation is imposed to the parking market, the parking

price can be surprisingly higher than what travelers can accept in practice. Overall, such

a market may under-provide parking services. In order to further reduce the total travel

cost and queuing delay, and preferably the parking fee as well, a regulator may introduce

into the market a price-ceiling or a quantity tax/subsidy regulation.

Figure 5.7 gives the changes in parking prices, capacity, profits, total travel cost
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Figure 5.7. The changes in parking prices, capacity allocations, profits, TSC, TCC and
TD in a regulated market with respect to a price ceiling

and queuing delay with respect to the price ceiling p′2. Inequality 5.52 and 5.57 gives

that $1 < p′2 < $11.9 to ensure the existence of an equilibrium. When the price ceiling

decreases so that the parking fee of the farther cluster changes from $11.8 to $1.1, the

number of travelers using the closer cluster reduces from 3,469 to nearly only 200, its

parking fee from $15.8 to $10.2, and its profits from $19,761 to $91. Meanwhile, although

the farther cluster tends to dominate the parking market with the decrease of the price

ceiling, its profits also reduce from $70,812 to nearly $976 due to the decreasing parking

fee. Therefore, as proved in previous sections, the profits of private operators in both

clusters are squeezed due to the price ceiling. However, from the system point of view, the
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price-ceiling regulation is very promising. It can reduce the total travel cost, compared to

the unregulated market, by up to 10% at a $3.78 price ceiling. It reduces total commuter

cost by nearly half when the price ceiling is $1.1 and by a quarter when it is $6.2. In

addition, the congestion is also mitigated. When the ceiling is $5.88, the congestion is

minimized with a reduction in delay by 58%. Therefore, the regulatory agency may want

to first set a price ceiling ranging from $1.1 to $5.88 for the farther cluster, then choose

a ceiling based on the tradeoffs between social/commuter cost and congestion.

Figure 5.8. The changes in parking prices, capacity allocations, profits, TSC, TCC and
TD in the regulated market with respect to a quantity tax/subsidy

We also plot in Figure 5.8 the changes in parking prices, capacity, profits of both

clusters, total cost and queuing delay with respect to a quantity tax/subsidy. Without
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loss of generality, we assume the regulator only charges a tax to or subsidizes travelers

of the farther cluster. Inequality 5.61 gives that −$19.2 < π2 < $1.87 to ensure the

existence of a competitive market equilibrium. A tax charged on the farther cluster favors

the closer cluster, while a subsidy favors the farther cluster. Overall, by reducing the tax

on the farther cluster from $1.8 to zero, and further subsidizing travelers from zero up to

$10, the farther cluster tends to dominate the market. However, it makes the operators

in the farther cluster gain profits (unlike the price-ceiling regulation) while the closer

cluster loses profits. Unfortunately, it is unable to reduce the total travel cost effectively.

When a $1.2 tax is charged on the farther cluster, the reduction in the total commuter

cost achieves the maximum, but by merely $221 (around 1.1%). Meanwhile, tax on

the farther cluster can yield up to 8% reduction in the system cost. When a subsidy is

offered, it always increases both the total system cost (by up to 80%) and commuter cost

(by up to 12%), which is not desired from the public’s perspective. Although a quantity

tax/subsidy is unable to effectively reduce the social cost, the subsidy can mitigate

congestion compared to the case of no regulation. The queuing delay can be reduced

up to approximately the same amount as in the price-ceiling regulation. Consequently,

under a subsidy (to the farther cluster), travelers can suffer less congestion and pay lower

parking fee with, however, a considerably higher schedule delay cost.

To sum up, in our numerical example, the price-ceiling regulation overall outperforms,

in terms of market efficiency, the quantity tax/subsidy regulation in this experiment.

The price-ceiling regulation favors travelers over private operators, while the quantity

tax/subsity regulation favors some operators over the travelers who will pay a higher

travel cost under this regulation. Even when it offers reduction in the social cost, the

latter regulation may not be welcome by the traveling public because a tax is charged on

the farther cluster will raise the parking fee and queuing delay cost substantially while

it reduces the travel cost only slightly7.

7Note that the quantity tax/subsidy may effectively reduce the total travel cost in other cases, de-
pendent on the network parameters, such as total demand, population attributes and so forth
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5.6 Summary

This chapter discusses how parking affects the morning commute patterns and how it

can be used to manage traffic in the morning commute. The parking lots in the city are

first abstracted to a finite number of parking clusters with each parking cluster capaci-

tated. Within each parking cluster, the same fee is charged for each space and the access

time (used to measure the accessibility) from each parking space to the office is assumed

to be identical. Dependent on parking fee and access time of the closer and farther park-

ing cluster, there are five types of parking location preference, strongly inward, weakly

inward, strongly outward, weakly outward and hybrid. Given parking allocations, fees

and access times, we derive all 20 possible travel profiles and corresponding total travel

cost under UE, and we study how each factor influences the network performance and

the commuting patterns. The cases of parking owned by the public or owned by private

operators are discussed separately.

5.6.1 Publicly owned parking

The optimal value of each of parking capacity, fee and access time, holding the other

two constant, is extensively discussed. If parking fee and access time are given and only

the parking capacity is adjustable, the optimal capacity of the father parking cluster

is either 0 or s(v1−v2)
β . Under certain conditions, enlarging the closer parking cluster is

not desirable. We may consider restricting its capacity and offering some advantages for

the farther parking cluster so as to reduce the total travel cost. If parking capacity and

access time are given and only the parking fee is adjustable, the minimum total travel

cost is achieved in inward or hybrid parking (unless K2 = 0 or N), and both parking

clusters should be used. Changing the types of parking location preference, from the

outward parking to hybrid or inward parking, in the manner of increasing the parking

fee of the closer one, can always reduce the total travel cost. However, increasing the

parking fee of the closer parking cluster in a small range may not necessarily reduce

the total travel cost. In addition, a shorter access time of both parking lots is always

desirable in all travel profiles.
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More importantly, from the parking regulator point of view, we show how all three

factors should be set altogether in order to obtain the optimal network performance.

When the closer parking cluster offers overwhelming advantages in the access time, the

optimal travel pattern is achieved by having all travelers park in the closer parking

cluster. When the farther parking cluster offers competitive access time compared to the

closer one, the optimal travel profile is such that both parking clusters should be used.

In the latter case, the traffic congestion at the bottleneck can be mitigated by shifting

traffic demand and directing them to different parking choices. Compared to the case

where parking is not used to manage traffic, such an optimal setting can effectively reduce

both total travel cost and queuing delay. Although it can neither reduce the total travel

cost by more than a half nor eliminate all the queueing delay as can be realized by a

time-varying toll, the optimal setting of parking can reduce the total cost (inclusive of

parking fee) and thus individual travel cost, i.e. every traveler can be better off under

parking regulations. This feature is more advantageous to the travelers than an optimal

time-varying toll.

5.6.2 Privately owned parking

When the parking lots are owned privately, we first derived the competitive equilib-

rium for a parking market. There are in all four types of competitive market equilibrium

and only one is proven to be stable, but its existence is not always guaranteed. The

stable competitive market equilibrium can yield less total commuter cost and less queu-

ing delay than the case without parking choices, but not necessarily less total social

cost. Our sensitivity analysis indicates that the reduction of access times of the parking

lots benefits private operators, but does not necessarily reduce the total system cost

and congestion. In addition, lowering the investment cost per parking space in either

parking cluster can always reduce the commuter travel cost as it reduces the parking

fees. To achieve a better system performance, the regulator should consider raising the

investment cost of the closer cluster only if there is sufficiently large difference in the

investment costs between the two clusters.

Overall, we showed that both total commuter/social cost and queuing delay can be

further reduced by introducing regulations on the market, and the regulations can also be
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used to ensure a stable parking market, to influence the market in favor of the commuters

and to balance the profits of private operators.

We considered three types of market regulation, price-ceiling, capacity-floor or

capacity-ceiling and quantity tax/subsidy to ensure market stability, improve market

outcome, and balance the interests of operators and the traveling public. The price-

ceiling regulation looks promising as it can effectively reduce the total commuter cost

as compared to no regulation, and the lower the pricing ceiling is, the lower the total

commuter cost it achieves. Although the price ceiling regulation does not necessarily

reduce traffic congestion when it is compared to the case of no regulation, we showed

that there always exists a range of the ceiling where queuing delay is reduced. Under

such a price-ceiling regulation, improvement of accessibility of the farther cluster is always

desirable from both the regulator’s and private operators’ perspective. In addition, since

it can reduce travelers’ individual travel cost and the parking fees charged by both

parking clusters, it is also desirable from the travelers’s perspective. However, the price-

ceiling regulation always squeezes the private operators’ profits. Unlike the price-ceiling

regulation, a quantity tax/subsidy always favors one parking cluster over the other. It

may be able to reduce the total commuter/social cost, and the queuing delay when

the tax/subsidy is set in a certain range. Compared to taxation, travelers may favor a

subsidy scheme since it can reduce the parking fees charged by both clusters.
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Chapter 6

Route Choice Heterogeneity: A New

Hybrid Route Choice Model

Now we turn to study DTA for large-scale networks. As discussed in the literature

review, most studies assume a route choice model satisfying UE conditions, either BUE

or PUE. In real life, travelers’ route choice behavior is likely to be more complex than

what was assumed in both BUE and PUE. For example, travelers may not consider all

the possible routes but have several pre-trip routes in mind prior to their departure,

which are selected from their day-to-day traveling experiences. Moreover, these pre-

selected routes may not be user-optimal ones. Although travel time and schedule delay

costs are dominant factors in travelers’ route choice decisions, several other factors, such

as road accessibility, pavement conditions, and so on, may influence their decisions as

well. Besides these factors, a traveler’s personality should also play an important role

in his or her route choice. For example, a conservative traveler may stick to his chosen

route from day to day while an adventurous traveler may be more willing to explore new

routes based on his actual travel experiences. Thus real traffic is more likely to be the

product of various types of choice decisions rather than cost-minimizing BUE or PUE

applied uniformly across the entire traveling population. It is therefore of particular

interest to develop a route choice model that combines various types of information and

considers various kinds of travelers.

Rather than treating all travelers identically, this chapter speculates that some trav-

elers are likely to follow their pre-determined routes while others update their routes

en-route in response to real-time information. Following this, we propose a hybrid route
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choice model coupled with the CTM implementation of the kinematic wave traffic flow

model (Lighthill & Whitham 1955, Richards 1956), and show how route choices and

queue spillback affect the resulting flow patterns. Computational procedures to imple-

ment the models are explored with several numerical examples, and issues related to

model calibration are also discussed.

6.1 A Hybrid Route Choice Model

6.1.1 The general model

Let [0, T ] be an assignment horizon (i.e., the analysis period). The network is assumed

to be empty at t = 0. Corresponding to the assignment period, we define a loading

horizon [0, T ′], where T ′ marks the time when the network is empty. Furthermore, let φa

denote an assignment interval, a discrete duration during which the departure flow rate

for any O-D pair is assumed to be constant (ma is the number of assignment intervals,

i.e., T = maφa). φl is the loading interval, a discrete duration during which network

conditions are assumed to be stationary (a loading horizon consists of ml loading intervals

of uniform length, i.e., T ′ = mlφl). φa must be a multiple of φl.

We introduce two groups of travelers: travelers who are willing to deviate from their

pre-determined routes and those who are not. The reason is simple. Some conservative

travelers, once they determine which routes to take and get familiar with those particular

routes, would rather stick to them than risking on finding new (or unknown) routes that

may actually turn out to be worse than their previous routes, unless the congestion

they experience in their current routes becomes unacceptable to them. Those travelers

are normally reluctant to deviate from their prescribed routes. We call this group of

travelers habitual travelers (the proportion of this type of travelers is 1 − θ). On

the other hand, some adventurous travelers are more willing to explore new routes in

response to their travel experience and/or up-to-date traffic information. They may be

equipped with devices that offer real-time navigation, or they may be familiar with the

entire network and are able to change their routes to avoid the congestion. We call this

group of travelers adaptive travelers (the proportion of this type of travelers is θ). In
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a real network, the proportion θ, also referred to as the Diversion Ratio, may not be a

constant and may change with respect to network conditions. For example, the diversion

ratio can increase in the event of a major accident or highway reconstruction project.

Nevertheless, we expect the diversion ratio to be relatively stable for a network at least

in the short run barring the occurrences of various major incidents.

For the habitual travelers, their routes are determined based on a number of factors,

such as travel distance, historical travel times, and personal preference for major streets

and freeways. These routes, however, may not be the same as the DUE routes when

everyone is a habitual traveler, since now some of the travelers are adaptive travelers,

PUE is no longer achievable. Let P rst denote the set of those routes that habitual travelers

departing at time t between O-D pair rs strictly follow (The generation of P rst will be

discussed in Section 6.1.2). The proportion of travelers who use a path p ∈ P rst in the

group of habitual travelers, also known as the prescribed route rate (Pel et al. 2009), is

assumed to follow the Logit model with respect to the generalized travel cost,

ξp(t) =
exp(−cp(t))∑

p′∈P rst
exp(−cp′(t))

(6.1)

Therefore, the number of habitual travelers who depart at time t between O-D pair

rs and use path p ∈ P rst is,

qp(t) = (1− θ)qrss ξp(t) (6.2)

For adaptive travelers, we assume that they always take their respective shortest path

with respect to the instantaneous travel cost at each time interval. Adaptive travelers

behave in a similar way as in the en-route route choice embedded in BUE, but the time

period at which travelers update their shortest paths using the instantaneous travel cost

can be relaxed from the assignment interval, φa in the BUE, to an arbitrary time interval

in multiples of the loading time interval, i.e. γφl (where γ is an integer). γφl indicates

how frequent the adaptive travelers are able to obtain up-to-date traffic information and

choose an alternative route if necessary. It is easy to see that if all the travelers are

adaptive travelers (i.e. θ = 1) and let λ = φa/φl, then the hybrid route choice model

essentially solves BUE.

It is crucial to define the instantaneous travel time of link a at entry time t, τa(t),

which equals la/sa(t) where sa(t) is the instantaneous travel speed of link a at entry
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time t and la the length of link a. Given the density of link a at time t, ka(t), sa(t) is

estimated by,

sa(t) =


ua if ka(t) ≤ ka,m

ka,j − ka(t)
ka,j − ka,m

qm
ka(t)

if ka(t) > ka,m
(6.3)

where ka,j is the jam density of link a, ka,m the critical density and qm the maximum

flux of link a (also known as the capacity). If the density of link a at time t is smaller

than ka,m, then the instantaneous travel speed is the free-flow speed of link a, i.e. ua;

otherwise, it equals the division of the flux of link a at time t by its density at time t

where the flux can be solved using the triangular fundamental diagram of link a given

ka(t).

A DTA with this hybrid route choice model no longer requires an iterative solution

procedure and the resultant flow pattern does not satisfy user equilibrium conditions in

any sense. Instead, a one-shot DNL is applied to perform the assignment. During the

DNL process, a shortest path calculation is needed in every assignment interval to obtain

the new routes for those adaptive travelers, and the DNL is finished when every traveler

reaches her destination.

6.1.2 Generating pre-trip route sets

We discuss in this subsection how those habitual travelers choose their pre-trip routes

prior to the execution of the DTA.

An easy and reasonable way of generating pre-trip routes is to include the K shortest

paths (with respect to free-flow travel time) in the set of pre-trip routes for each O-D

pair rs, and then apply Equation 6.2 to stochastically assign some habitual travelers

with one of those routes. This method is referred as “ordinary K shortest path (KSP)

generation” in the rest of the chapter.

Though the ordinary KSP generation provides several alternative routes for habitual

travelers, it usually does not result in a realistic route set because 1) those travelers

may have a special affinity to the freeway and major arterial streets, and 2) they may

use their travel experiences in addition to the free-flow travel times to determine their

routes. To address these problems, we proposed two modifications to the the ordinary

KSP generation method.
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6.1.3 Road-hierarchy-based route set generation

Habitual travelers, being conservative, may prefer the freeway and major arterials

over minor streets even if the latter may have shorter travel times. Some empirical

observations seem to support this statement. For example, when a freeway is highly

congested but both the on-ramp and off-ramp adjacent to the congested section are not

used, one can bypass the congestion by first taking the off-ramp then use the on-ramp

to get back to the freeway to save travel time. However, few travelers actually do this

in reality, because most travelers would rather not bother to make extra efforts (such

as changing lanes, switching to unfamiliar links, etc.) to reduce their delay unless this

reduction is significant. Furthermore, when travelers select their own set of possible

routes, they may mainly look at those major roadways and those minor streets are

negligible. For instance, the least costly (first best) route choice of a traveler is a freeway

connecting his house and office. Although a route consisting of the same freeway and

with, however, other minor links from house/office to the freeway is theoretically his

second least costly choice in terms of travel time/cost, he may take the route with the

major arterial connecting his house and office as the second best choice. When the

first best route is highly congested, one may consider the major arterial rather than

the theoretical second best route. Now, various navigation tools also provide alternative

routes that differ in terms of freeways and major arterials, rather than those that only

differ in minor streets.

The above empirical evidence suggests that habitual travelers’ route choice may be

hierarchical, that is, they divide the network into multi-level networks, with freeways

and major arterials constitute the high-level network and minor streets the lower-level

network. They’ll favor links in the high-level network over links in the lower-level network

when they choose their routes.

To implement this route choice hierarchy, one can use free-flow speed and/or lane

capacity to separate links into different levels (for example, 45 miles per hour and 3

lanes each way). An easy way of implementing such a two-level hierarchical route choice

model is to weight significantly less on those major links than those minor links, so

that the major links can attract more flow as compared to the case where links in both
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levels are weighted equally. Therefore, in a network with hierarchical roadway facilities

(such as freeway, major arterials, minor arterials, collectors and so forth), we construct

the following static travel cost for habitual travelers (on path p) when using KSP to

generate their pre-trip route sets,

crsp =
∑
a∈A

δapλaca (6.4)

where δap is the link-route incidence indicator, equal to 1 if link a is on path p (equal

to 0 otherwise). ca is the generalized travel cost on link a. In particular, if only travel

time is concerned, then ca is the free-flow travel time of link a at time t. Let ε represent

a small positive number. λa = ε < 1 if link a is a major link and λa = 1 if link a is a

minor link. This method is referred as “hierarchical KSP generation”. The choice of the

parameter ε is by trial-and-error so as to produce the DNL results that best match the

reality. The effect of ε deserves further investigation, but it is beyond the scope of this

dissertation.

6.1.4 PUE route set generation

The KSP generation methods discussed above use free-flow travel times to generate

the route set for habitual travelers. This may be reasonable if the habitual travelers have

no knowledge of actual travel times on those routes. In reality, however, those travelers

often experience longer travel times on free-flow travel times due to traffic congestion,

and will not determine their routes solely on free-flow travel times. In order to generate

such a route set that incorporates historical traffic information, we can first perform a

PUE-DTA and use the resultant routes as the pre-trip route set for habitual travelers.

We assume the proportions of flow that are assigned to each route under the PUE will

be applied to the group of habitual travelers. This method is referred as “PUE route set

generation”.



138

6.2 Queue Spillback in The Hybrid Route Choice

In this section, we use an example to show that under the CTM implementation of

the LWR kinematic wave model, queue spillback is closely related to the route choice

and the diversion ratio is crucial in determining queuing patterns. For simplicity, we

assume the travel time is the sole factor in constructing the generalized travel cost.

The LWR model considers the physical space a vehicle takes, so queues in this model

takes up space and can block traffic from entering a downstream link if space runs out

on that link. Moreover, the LWR model describes queue growth in a more realistic way

through its shock wave mechanism. Here we adopt the CTM implementation of the LWR

model for traffic movement on links Daganzo (1994). For traffic flow through junctions,

we use a general node traffic model given in Nie & Zhang (2007). It should be pointed

out that node models play an important role in determining queuing spillback.

Suppose there are M approaches at an intersection and those approaches are marked

as 1, 2, 3, ...M . Flows leaving any exit will diverge to any other approaches and mean-

while, any approach also serves as a merge point of flow from any other approaches.

Therefore, merges and diverges of all the approaches occur simultaneously. Let vij be

the number of vehicles moving from approach i to j during a loading time interval. In

order to describe traffic movements through intersections, we first define the demand

(supply) of a link at time t, D(t) (S(t)), as the maximum number of vehicles that are

allowed to leave (enter) the link at t. Assume the vehicle proportion at upstream link i

heading for downstream link j, aij , is known according to the vehicles in the last cell of

link i under the LWR model, and demand and supply for each cell is computed based

on the fundamental diagram. vij reads (Nie & Zhang 2007),

virtual demand vdi(t) = min

(
Di(t),min

j
{ Sj(t)
aij(t)

}
)

(6.5)

virtual supply vsi(t) = min

Si(t),∑
j

aij(t)Djt


vij(t) = min

(
vdi(t)aij(t), vsj(t)

vdi(t)aij(t)∑
k vdk(t)akj(t)

)
which is a generalization or streamlined version of several node models (Daganzo 1994,

1995, Lebacque 1996, Jin & Zhang 2003, 2004). As a matter of fact, Equation 6.5 does
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not strictly enforce FIFO at diverge nodes (Nie 2006), but since we do not pursue PUE

in this chapter, the FIFO condition can be relaxed.

Now consider the network of Figure 6.1 (b), where travelers from link 0 heading for

the destination can choose either link 1 or link 3 to go through an intermediate node.

Link 1 has a lower free-flow travel time than link 3 and it is preferred by travelers under

slight congestion. Link 2 serves as a bottleneck due to a lane drop and a queue may grow

and back up to both link 1 and link 3. Figure 6.1 (a) gives the fundamental diagram of

link 1 with the capacity Cm, free-flow speed uf and jam density kj .

Figure 6.1. (a) The fundamental diagram of link 1; (b) A sample network

Due to the shorter free-flow travel times on link 1 than link 3, habitual travelers will

take link 1 rather than link 3. There could be a case that all adaptive travelers also use
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link 1 regardless of the diversion ratio. To see this, suppose a worst case on link 1 where

the outflow rates of link 1 achieves minimum when it equals to the capacity of link 2

(i.e. Ci = Cm,2) and link 4 is not used, so that the travel speed on link 1 achieves the

minimum. Therefore, flow on link 1 is at density ki and the traversal speed is ui. Link 3

will never be used if its free-flow travel time is larger than the travel time on link 1, i.e.

l1
ui
<

l3
uf,3

(6.6)

Therefore, link 1 is over-saturated (i.e. the queue regulates its inflow) and a queue could

spillover to upstream links. In this case, the queue may spill back upstream, and this can

be unrealistic when link 3 is not that much longer than link 1 and in practice it may be

an acceptable choice to some travelers. No diversion ratio can reduce such oversaturation

under this setting.

Even though Equation 6.6 does not hold (i.e. link 3 offers relatively competitive

free-flow travel time), there is still a case that the queue on link 1 spills over and link 3 is

not used, if the diversion ratio is not properly set. If the diversion ratio is low, then most

of demands will be loaded on the pre-trip route, i.e. link 0 to link 1 to link 2. It is easy

to see that the queue spills back to link 0 due to the low diversion ratio. On the other

hand, if the diversion ratio is high, most travelers are willing to switch to a route with

shortest instantaneous travel time. Suppose both links 2 and 4 are used and link 2 is

still a bottleneck link. In this case, the outflow rates of link 1 becomes Cj and Cj > Ci.

Therefore, the instantaneous travel speed on link 1 is now uj . Link 3 will never be used

if its free-flow travel time is larger than the travel time on link 1, i.e.

l1
uj

<
l3
uf,3

(6.7)

Only if the diversion ratio is in a reasonable range, not too low and not too high, then

both links 1 and 3 will be used and the queue on link 1 will not spill back. One can also

find other examples to illustrate a similar phenomenon. Therefore, an appropriate diver-

sion ratio is crucial in determining queuing patterns, and should be carefully calibrated

in practice.
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6.3 Numerical Experiments

In this section, we perform several numerical experiments to evaluate the proposed

hybrid route choice model with different diversion ratios and with three methods of

generating pre-trip route sets for the habitual travelers: ordinary KSP, hierarchical KSP

and PUE route set generation. As a benchmark case, the PUE route choice will also

be implemented and its results are used to assess the performance of the hybrid route

choice model. The numerical experiments are carried out in two networks, one medium-

size synthetic network and another large-size real network. We also assume the travel

time is the sole factor in constructing the generalized travel cost.

6.3.1 A synthetic network

We synthesize a corridor network which consists of three residential areas and a

Central Business District (CBD) connected by a three-lane freeway and two-lane major

arterial road, as shown in Figure 6.2.

Figure 6.2. A synthetic corridor network

We assume in the morning peak hour (1 hour assignment horizon), travelers commute,

either from the residential area or the external area (represented by the origin at the

beginning of the freeway), to the CBD area. The external origin has a total demand of

400 vehicles to each of the residential areas, 1200 vehicles to the CBD and 100 vehicles

to the external destination (at the end of the freeway). Each residential area also has

a total demand of 400 vehicles to other residential areas, 1280 vehicles to the CBD and

200 vehicles to the external destination. Further, we allocate the total demands to 12

five minute assignment intervals following a trapezoidal flow pattern to mimic the flow
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profile in the peak hour.

Each residential area and the CBD area are represented by 9 × 9 grid subnetworks

and four origins and four destinations. Each link of the grid subnetworks stands for a

minor local street and is set to have an identical capacity of 1500 vehicles per hour and

a speed limit of 25 mile per hour, but its length is randomly chosen from a uniform

distribution within [0.08, 0.12] (miles). The grid subnetwork connects the origins and

destinations to the freeway ramps and the major arterial road, so that travelers have

choices of choosing either the freeway or the arterial to go to the CBD in the morning

commute. There are in all 478 nodes, 1528 links and 129 O-D pairs. Each segment of

the freeway and the arterial has the same length, but the freeway has a total capacity of

6000 vph and 65 mph speed limit, while the arterial road has a total capacity of 3600 vph

and a speed limit of 40 mph. For each segment, the free-flow travel time via the ramps

and the freeway and via the arterial road is set to be 3 min and 5 min, respectively, so

that the freeway is a preferred route and the arterials may also be used if the freeway is

congested.

For all the scenarios studied, the loading time interval is 5 sec, and adaptive travelers

update their travel information/routes every 90 seconds. The diversion ratio is set to

be 0.2, 0.5 or 0.8 to represent a low, medium or high proportion of adaptive travelers.

For those habitual travelers, we let K = 2 in the KSP computation. The results in total

travel cost and total delay1 for all scenarios are shown in Table 6.1.

TTT(hr) TD(hr)

PUE 812 166

Diversion ratio=0.2 Diversion ratio=0.5 Diversion ratio=0.8

TTT(hr) TD(hr) TTT(hr) TD(hr) TTT(hr) TD(hr)

PUE generation 749 104 842 191 935 261

Ordinary KSP generation 1719 1070 961 302 992 312

Hierarchical KSP generation 1514 843 980 302 1007 321

Table 6.1. The total travel time and total delay of selected scenarios (TTT: Total travel
time; TD: Total delay)

1Total delay equals the total vehicle-hour-traveled (VHT), subtracted by the total free-flow travel
time of all vehicle trips taking the same routes as where VHT is computed
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6.3.1.1 The effects of diversion ratio

As seen from Table 6.1, under the KSP route set generation, a 0.2 diversion ratio leads

to significantly larger total travel time and total delay than a 0.5 or 0.8 diversion ratio.

On the other hand, a high diversion ratio yields slightly higher total free-flow travel time

(which equals TTT−TD) than a low diversion ratio, because more travelers may deviate

to a longer route with less congestion under a higher diversion ratio. Interestingly, a 0.5

diversion ratio yields less queuing delay then a 0.2 or 0.8 diversion ratio, which may

be explained by the following: 1) as explained in Section 6.2, a medium diversion ratio

can prevent queuing spillback under certain conditions; and 2) intuitively, a diversion

ratio, if too small, can lead to severe queuing on the freeway due to the high demand

of habitual travelers. If the diversion ratio is set to be too high, then compared to a

medium diversion ratio, some bottleneck links are used more intensively by adaptive

travelers after they update their routes. This explains why in practice, a moderate

diversion ratio may produce a flow pattern with less queuing delay than a too high or a

too low one.

We plot in Figure 6.3 and 6.4 the time-varying volumes on a freeway link and an

arterial link in the middle section against three diversion ratios under the ordinary KSP

route set generation. All four scenarios yield approximately the same time-varying vol-

umes in the first 200 loading intervals (around 20 min). This is because when the network

is not congested or mildly congested, travelers within the same O-D pair, regardless of

their willingness to switch routes, will use the same routes that are preferred in terms of

free-flow travel time. However, the volumes of four scenarios start to differ significantly

after the network is loaded with high demands. Under the low diversion ratio, a large

percentage of travelers will still follow the freeway, which leads to much more severe

congestion on the freeway than the case of a high diversion ratio where most travelers

will switch routes and the case of PUE. The freeway link cumulates up to 600 vehicles

when the diversion ratio is 0.2, as compared to 400 vehicles when the diversion ratio 0.5,

and 200 vehicle when it is 0.8 or in PUE. The low diversion ratio also results in a long

loading tail after the assignment horizon ends, i.e. the network does not clear up until

25min after the assignment horizon ends, while the network clears up within 6 minutes

in all other scenarios.
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Note: The vertical line indicates the time when the assignment horizon ends

Figure 6.3. Time-varying volumes on a freeway link w.r.t. different diversion ratio

Generally, of all four scenarios, PUE yields the highest share of arterial road usage,

while the low diversion ratio has the lowest share. By checking the cumulative number

of vehicles on the arterial link, PUE almost triples the number of travelers who use the

arterial as compared to the case of 0.2 diversion ratio. Because PUE assumes all travelers

can predict the network condition after day-to-day experience, such a user optimum leads

to less congestion and higher usage of the arterial than the hybrid route choice model.

For the hybrid route choice model, a medium diversion ratio has substantially higher

arterial share than a low one, slightly higher arterial share than a high diversion ratio.

This is consistent with the result that a medium diversion ratio produce less overall

congestion than a high or low one.

As can be seen from Figure 6.4, compared to the PUE, the hybrid route choice model

yields less volumes on the arterial road during the time (from 200th interval to 240th
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Note: The vertical line indicates the time when the assignment horizon ends

Figure 6.4. Time-varying volumes on a arterial link w.r.t. different diversion ratio

interval) when the congestion on the freeway starts to propagate quickly, and it also yields

more volumes during the time (the 610th interval to the end) when the queue on the

freeway starts to dissipate. This is because in PUE, travelers can predict the actual traffic

congestion on all links and can therefore better respond to the congestion propagation.

As for the hybrid route choice model, because travelers make en-route route choices

and their prediction is based on instantaneous travel time, they may underestimate the

congestion on the freeway when the queue builds up and overestimate the congestion

when the queue starts to dissipate. Thus, compared to PUE, the route diversion in the

hybrid route choice model always lags behind the time they would divert to optimize

their travel cost in response to the actual congestion propagation, and obviously such a

route choice may be far from user optimal.

We also observe a large fluctuation of volumes on both the freeway and the arterial

road when the diversion ratio is set to be high. Because travelers will update their
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current traffic information every 18 loading time intervals, if the diversion ratio is high,

then a large number of adaptive travelers will deviate to a certain route (e.g. the arterial

road) at the beginning of certain time intervals and result in unexpected congestion

of the new route. This congestion may spread quickly and makes the freeway route

advantageous again, which leads a large number of adaptive travelers to again switch

back to the freeway route. Thus, under a high diversion ratio, a large number of travelers

intermittently choose either the freeway or the arterial, and that is why we see a large

fluctuation of volumes on both links.

6.3.1.2 The effects of pre-trip routes

We plot in Figure 6.5 and 6.6 the time-varying volumes and travel times on a freeway

link in the middle section against the three methods of generating pre-trip route sets for

habitual travelers where the diversion ratio is set to be 0.5. The weighting factor on the

major links (freeway links and arterial links) are set to be λa = 0.01 in the hierarchical

KSP calculation.

Generally, if half of the travelers are aware of the historical information and follow

their pre-trip routes, then time-varying flows on this freeway link is close to the results

obtained from PUE. However, if those travelers only use the free-flow travel time to

determine their pre-trip routes so that the freeway is overwhelmingly used, then the

freeway could be far more congested than the case where the historical information is

used to determine the pre-trip routes, particularly after the 400th time interval where

the congestion becomes severe on the freeway. Compared to the maximum 60 seconds in

the case of PUE or the case where the historical information is used by habitual travelers,

using KSP to generate pre-trip route sets yields up to 135 seconds travel time on the

freeway link, and thus the TTT and TD of the network are significantly larger as well.

An interesting result is that using the hierarchical KSP generation indeed signifi-

cantly reduce the queuing as compared to the case with only the ordinary KSP genera-

tion. When such a hierarchical way of generating pre-trip routes is considered, habitual

travelers commuting from the residential area to the CBD have choices of either the

freeway or the arterial road. However, if no hierarchical road preference is incorporated,

then the first two shortest paths for most O-D pairs will always be such that the freeway
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Note: The vertical line indicates the time when the assignment horizon ends

Figure 6.5. Time-varying volumes on a freeway link w.r.t. different methods of gener-
ation pre-trip route sets

is chosen in both routes with distinctions on some local streets. Therefore, by using the

hierarchical KSP to generate the route sets, more habitual travelers will use the arterial

road instead of the freeway than the ordinary KSP generation.

As seen from Table 6.1, the PUE route generation with a 0.2 diversion ratio has less

TTT and TD than PUE. This indicates that if we only provide real-time information

to a small proportion of travelers and meanwhile assume that most of travelers use

the historical information to travel, then this may considerably benefit the network.

However, if the real-time information is offered to a large number of the travelers, then

the network performance may be worse off. This is because the optimal route at the

current time interval, if used by an excessive number of travelers, may build up an

unexpected queue and sometimes this is not desirable.
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Note: The vertical line indicates the time when the assignment horizon ends

Figure 6.6. Time-varying travel times on a freeway link w.r.t. different methods of
generation pre-trip route sets

6.3.2 The Sacramento Metropolitan Area Network

We also applied the hybrid route choice model to a large network which covers the

Sacramento metropolitan area. The network consists of 2556 nodes, 7221 links and 729

O-D pairs. We collected 5 min traffic counts for a period of 24 hours on 25 segments of

major freeways and 32 major arterials on the periphery of downtown Sacramento. The

time-varying counts are then used to estimate a morning peak 6-hour (6:00am-12:00pm)

time-dependent O-D demands by a logit path flow estimator algorithm Bell et al. (1997).

Other parameters are: loading time interval 10 seconds; K = 3 in the KSP calculation;

and the traffic information will be updated every 5 minutes. The weighting scaler on the

major links is set to be 0.2 in the hierarchical KSP route generation. Table 6.2 shows

the average travel time, average travel delay and average travel distance using different
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diversion ratios and pre-trip route generation methods2.

DR 0.3 0.4 0.45 0.5 0.55 0.6 0.7

Ordinary KSP generation

ATT(min) G 41.53 38.87 37.74 35.61 G G

AD(min) G 15.65 12.87 11.58 9.36 G G

ADS (mile) G 25.49 25.49 25.46 25.51 G G

Hierarchical KSP generation

ATT(min) 63.93 47.13 42.77 38.18 37.16 37.58 G

AD(min) 37.67 20.92 16.49 12.01 10.84 10.96 G

ADS (mile) 25.72 25.67 25.70 25.60 25.61 25.67 G

Table 6.2. The total travel time and total delay of the Sacramento network w.r.t
DR (DR: Diversion ratio; ATT: Average travel time; AD: Average travel delay; ADS:
Average travel distance; G: Gridlock)

As discussed before, the diversion ratio, if set too high or too low, may cause serious

queuing. In this case, the DTA procedure terminates without gridlock only when the

diversion ratio is within a certain range, i.e., from 0.35 ∼ 0.55 if the ordinary KSP

generation is used, or from 0.25 ∼ 0.65 if the hierarchical KSP generation is used.

The wider range of the acceptable diversion ration provided by the hierarchical KSP

generation indicates that it can better prevent excessive concentration of queuing than

the ordinary KSP generation. Overall a 0.55 diversion ratio looks reasonable in the

sense that the resultant ATT and AD and time-varying link flow on designated links (25

segments of freeways and 32 major arterials) approximately match the actual observation.

When the diversion ratio is less than 0.55, less travelers are willing to switch routes and

travelers are subject to more queuing delay on average. In contrast, when the diversion

ratio is larger than 0.55, more travelers respond to real-time information and switch

routes, but this may cause excessive queuing on certain routes or links due to herding,

which may even produce a gridlock.

If hierarchical KSP is used to generate the route sets, then for most O-D pairs,

the second or the third shortest path is more likely to include the arterial links as an

alternative to the preferred freeway route, as compared to the ordinary KSP generation.

It assigns more travelers on the major arterials, which tends to distribute the flow more

evenly for those major links (i.e. those weighed less in computing shortest paths, freeway

or major arterials) and prevent excessive queuing that leads to gridlock. Given the same

2We do not include the results from PUE because a gridlock occurs during the iterative procedure of
DNL, and solving the issue of gridlock in the DTA algorithm is beyond the scope of the dissertation.
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diversion ratio, using hierarchical KSP always yields longer average distance and larger

average delay and cost than the ordinary KSP. This is because hierarchical KSP induces

travelers to travel more on major links rather than the minor links (e.g. local streets),

which generally take slightly longer distances. In addition, under hierarchical KSP, it

is more likely that flows are concentrated on those major links with fewer minor links

assigned with flows, which results in a larger queuing delay, as compared to the ordinary

KSP.

6.4 Summary

Travelers’ route choice behavior in real life is neither Boston UE or Predictive UE.

Rather, the route choice may be such that they used both real-time information and

historical experience. This chapter proposes a hybrid route choice model where travelers

are divided into two groups, habitual travelers and adaptive travelers. Habitual travelers

strictly follow their pre-trip routes. We speculate that route choice of habitual travelers

may be such that the major links, such as the freeway or major arterials, are favored

over minor road links and they also consider historical traffic information based on their

day-to-day driving experiences. Therefore, we propose two new methods of generating

their pre-trip route sets, hierarchical K shortest path and Predictive-UE generation. On

the other hand, adaptive travelers are responsive to real-time information and willing

to change routes. The hybrid model may be more realistic in describing travelers’ route

choices in regards to travel costs. Unlike the PUE, the new hybrid model requires only

one shot dynamic network loading.

We study how the choice of diversion ratio and generation methods for habitual

travelers’ route set affect the resulting flow and queuing patterns and found that,

• The hybrid model is easy to calibrate and can work efficiently for large-scale net-

works. It is likely to produce realistic results as indicated by the large-scale nu-

merical example.

• A medium diversion ratio can reduce excessive concentration of queuing compared

to a high or low diversion ratio. If it is set too high or too low, then queues tend



151

to concentrate on certain links, which can eventually lead to gridlock.

• In most cases, PUE yields significantly less congestion and queue spillovers than

the hybrid route choice model, because travelers in the former can anticipate what

would happen for their entire trip and hence can make better choices, while in the

latter the adaptive travelers make myopic choice decisions based on the prevailing

traffic conditions that may prove to be a bad choice as traffic conditions change.

• Pre-trip routes generated by PUE (i.e. using historical information) for habitual

travelers tend to yield considerably less delay and queues in the network than by

ordinary KSP which only uses free-flow travel time information. Pre-trip routes

generated by hierarchical KSP may reduce queuing compared to those generated

by ordinary KSP, thanks to the former’s ability to spread demand among freeways

and major arterials.

• When habitual travelers use historical information to determine their pre-trip

routes, offering real-time information to a small portion of travelers can actually

achieve better network performance than PUE where all travelers are assumed to

have perfect information all the time. However, if the majority of travelers are of-

fered with real-time information, network performance may actually become much

worse than offering no one real-time information.

It is hoped that these findings can help practitioners choose a route choice model and

calibrate its parameters against real data. While more experiments need to be carried

out to confirm these initial findings, it does seem that the use of historical information,

hierarchial network, and moderate level of diversion can help spread congestion and avoid

excessive concentration of queuing and gridlock.
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Chapter 7

Conclusions

This dissertation investigates traveler heterogeneity for DTA from four perspectives,

travelers’ attributes (in value of time and value of schedule delay), modal choice pref-

erence, parking choice preference and route choice preference. We derived analytical

DTA solutions in simplified networks, particularly in the context of the morning com-

mute problem, and analyzed the effects of various factors to both the flow solutions and

network performance. Some intriguing findings are obtained.

We first study the morning commute problem with a heterogeneous traveling popula-

tion whose early/late arrival penalty parameters are continuously distributed. The ratio

of Value of Early Schedule Delay (VESD) over Value of Late Schedule Delay (VLSD)

is assumed to be constant across the population. In the context of the morning com-

mute problem, assuming homogeneity overestimates the queuing delay and thus the total

travel time. The travelers who weigh schedule delay high will first shift to the arterial

road, prompted by an increase in total demand. However, the critical travel demand at

which travelers start to use the arterial road remains the same if the common EAP for

homogeneous users is equal to the expected value of EAP distribution for heterogeneous

users. Interestingly, there exists a critical value of EAP parameter, such that all the

travelers whose EAP is less than it choose the freeway, and those whose EAP is larger

than it choose the arterial road. Sensitivity analysis on total travel time (TTT) indicate

that enlarging freeway (AR) capacity will always reduce the TTT of the whole network

and the TTT of the AR (freeway), and increase the demand share of the freeway (AR).

We also show that every commuter is better off if either the freeway capacity or the AR

capacity is enlarged.
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Second, we study the morning commute problem with three modes: transit, driving

alone and carpool. The transit mode uses its own separate guideway, but the auto modes

can access two parallel routes to reach the destination, a freeway and an arterial road

(AR). Carpoolers are assumed to share their fuel costs and road tolls, in addition to

their advantage of using specially provided facilities (HOV lanes). However, there is an

added cost of carpooling: the cost associated with pick-up and drop-off. We analyze

the interactions among the three modes and how different factors affect their mode

shares and network performance. This is achieved by first deriving the departure time

equilibrium for the transit mode (in the same fashion as is done for the auto modes), then

establishing equilibrium within each mode. The shares among the modes are determined

by a nested logit model. Finally, a time-varying toll on the freeway is proposed to

completely eliminate the congestion on the freeway. Some intriguing findings of this

study include, 1) enlarging HOV facilities, which offers a travel advantage for carpoolers

over solo-drivers, may reduce transit ridership and increase auto travel, and it does

not necessarily reduce the total travel cost on the network when the network is highly

congested; 2) the rise of gas price may first entice auto commuters to carpool. But as

the gas price increases further, both carpoolers and solo-drivers will eventually switch to

use the transit mode; and 3) a flat freeway toll is capable of reducing the total network

travel cost.

Furthermore, we investigate how parking regulations can be implemented to mitigate

traffic congestion, as well as to improve the system performance. The parking lots in the

downtown area of a city are first abstracted to two parking clusters (areas) according to

their distances to travelers’ destination. Dependent on parking fees and access times (or

accessibility) of parking clusters, there are five types of parking location preference in the

morning commute. Travel patterns under different parking capacities, parking fees and

accessibility to the destination are derived. We then discuss the parking management in

two cases.

One case is where all the parking lots are publicly owned. Our analysis indicates that

under certain conditions, enlarging the central parking lots is not desirable. In terms of

total travel cost, an inward or hybrid parking preference and a shorter access time are

always preferred. Finally, we derive the optimal parking fee, capacity and access time



154

which altogether yield the minimum total travel cost. When the closer parking cluster

does not have too large an accessibility advantage over the farther one, the optimal travel

profile is such that both parking clusters should be used. As a result, the optimal parking

setting can effectively reduce both the system cost and the queuing delay. Even more

intriguing is that, compared to the case without parking choices, all travelers are better

off under the optimal parking setting, which cannot be realized by the system-optimal

dynamic toll scheme. The other case is that private operators own the parking lots

and they compete each other to attract travelers and maximize their profits. We found

only one stable solution for the competitive parking market. Under it, each parking

area is preferred by the commuters during certain time periods. Compared to the case

without parking choice, provision of parking through a competitive market is able to

reduce commuters’ travel cost and queuing delay, but it does not necessarily lead to

the most desirable market outcome that minimizes social cost or commuter cost. This

issue can be addressed through market regulations, such as price-ceiling, capacity-floor

or capacity-ceiling, and a quantity tax/subsidy regulation. It is found that both price-

ceiling and quantity tax/subsidy regulations can efficiently reduce both the system cost

and commuter cost under certain conditions, and help ensure the stability of the parking

market. Overall, parking is capable of managing traffic efficiently to improve the system

performance and to reduce the congestion.

We finally extend our research to the DTA in general networks. We focused our scope

to the traveler heterogeneity in their preference on route choices. Previous studies usually

suggest network user equilibrium or user optimum as the route choice model, which is

an ideal state that can hardly be achieved in real traffic. More often than not, every day

traffic tends to be in disequilibrium rather than equilibrium, thanks to uncertainties in

demand and supply of the network. We propose a hybrid route choice model for studying

non-equilibrium traffic. It combines pre-trip route choice and en-route route choice to

solve dynamic traffic assignment (DTA) in large-scale networks. Travelers are divided

into two groups, habitual travelers and adaptive travelers. Habitual travelers strictly

follow their pre-trip routes which can be generated in the way that major links, such as

freeways or major arterial streets, are favored over minor links, while taking into account

historical traffic information. Adaptive travelers are responsive to real-time information
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and willing to explore new routes from time to time. We apply the hybrid route choice

model in a synthetic medium-scale network and a large-scale real network to assess its

effect on the flow patterns and network performances, and compare them with those

obtained from Predictive User Equilibrium (PUE) DTA. The results show that PUE-

DTA usually produces considerably less congestion and less frequent queue spillback

than the hybrid route choice model. The ratio between habitual and adaptive travelers

is crucial in determining realistic flow and queuing patterns. Consistent with previous

studies, we found that supplying a small number of travelers real-time information is

more beneficial to network performance than supplying the majority of travelers with

real-time information. Finally, some suggestions are given on how to calibrate the hybrid

route choice model in practice.

There are several other issues concerning heterogeneity in morning commute problem

that are worthy of further investigation, for instance, when both traffic modal choice and

VOT/VOS heterogeneity are concerned, it is of interest to know how a heterogeneous

population will be split in terms of modal choices and route shares. Would a pricing

scheme, such as transit fare, gas fee, carpool impedance etc., improve the system per-

formance and meanwhile achieves Pareto-improvement? When toll schemes other than

the system optimal toll is implemented, it is very likely that the orders of departure

time will change as well. It would be interesting to find out what kind of performance

improvement such schemes can achieve and who will benefit most/least from them.

While the proposed parking model yields interesting results, it made many simpli-

fying assumptions that we hope to address in our future research. First, we did not

consider commuters’ time spent on searching for parking spaces. The search for avail-

able parking spaces constitutes a wasteful commuting component that contributes to

congestion. Future work should take into account the search time into travelers’s com-

mute cost. Second, in the real world, parking is supplied by both private firms and

public entities. It would be interesting to study this mixed market and compare it with

the two extreme cases of either private-only or public-only parking provision. Third, it

would be of particular interest to extend this model to consider other traffic modes, for

instance transit. Travelers may be able to avoid the congestion at the bottleneck by

taking transit at park-and-ride stations. A combination of transit fares and parking fees
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can be used to achieve a desired market outcome.

Our future work will turn attention to modeling heterogeneity in general networks.

There seems a great need to build a realistic DTA framework for general networks incor-

porating traveler heterogeneity in vehicle attributes, traveler attributes, modal choices

and parking choices. With such an analysis model, we are able to evaluate in real net-

works a variety of traffic operations (such as transit subsity/fare, capacity enlargement,

congestion tolls, parking management, work zones and other operational schemes), to

estimate or predict network traffic delay, Vehicle-Miles-Traveled/Vehicle-Hours-Traveled

(VMT/VHT) and emissions, and to assess social equity issues.
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Appendix A

Sensitivity Analysis of Capacity

Improvement for Homogeneous Travelers

Based on Arnott et al. (1990)’s derivations, we compute the impact on the total travel

time (TTT) caused by the roadway capacity improvement in a two-route network under

a homogeneous population. dTTT/dsf , dTTT/dsa and dTTT/dτ represent the system

time savings of marginal improvement of freeway capacity, arterial road capacity, arterial

road free-flow travel time, respectively. Let TTTf and TTTa denote the total travel time

on the freeway and the arterial road, respectively. Assuming that both the freeway and

the AR are used by the commuters, we have N − sf τ
δβ0

> 0.

TTTf =
δβ0

2

sf
(sf + sa)2

(N + sa
τ

δβ0
)2

TTTa =
δβ0

2

sa
(sf + sa)2

(N − sf
τ

δβ0
)2 +

sa
sf + sa

(N − sf
τ

δβ0
)τ

dTTT

dsf
= − δβ0

2(sa + sf )2
(N + sa

τ

δβ0
)2 < 0

dTTTf
dsf

=
δβ0

2

sa − sf
(sf + sa)3

(N + sa
τ

δβ0
)2

dTTTa
dsf

= − saδβ0

(sf + sa)3
(N + sa

τ

δβ0
)2 < 0

Under homogeneous commuters, improving freeway capacity will always reduce the

TTT of the whole network and the TTTa. However, whether or not TTTf increases is
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only dependent on sa and sf .

dTTT

dsa
= − δβ0

2(sa + sf )2
(N − sf

τ

δβ0
)2 < 0

dTTTf
dsa

= −δβ0
sf

(sf + sa)3
(N + sa

τ

δβ0
)(N − sf

τ

δβ0
) < 0

dTTTa
dsa

=
δβ0

2(sf + sa)3
(N − sf

τ

δβ0
)(Nsf +

τ

δβ0
s2
f +

3τ

δβ0
sfsa −Nsa)

Under homogeneous commuters, improving AR capacity will always reduce the TTT

of the whole network and the TTTf . However, whether or not TTTa increases is depen-

dent on all the parameters.

dTTTa
dτ

=
sa

(sf + sa)2
(Nsa − s2

f

τ

δβ0
− 2sfsa

τ

δβ0
)

dTTTf
dτ

=
sfsa

(sf + sa)2
(N + sa

τ

δβ0
) > 0

dTTT

dτ
=

sa
sf + sa

(N − sf
τ

δβ0
) > 0

Under homogeneous commuters, reducing the free-flow travel time on the AR will

always reduce the TTT of the whole network and the TTTf . However, whether or not

TTTa increases is dependent on all the parameters.
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Appendix B

Sensitivity Analysis of Capacity

Improvement for Heterogeneous

Travelers

We derive the impact on the total travel time caused by roadway capacity improvement.

In order to solve for dTTT/dsf , dTTT/dsa and dTTT/dτ , we first define a function

g(a′, sf , sa, τ),

g(a′, sf , sa, τ) = N
δ

sf

∫ a′

a
xf(x)dx− τ −N δ

sa
a′
∫ b

a′
f(x)dx

According to Equation 3.25, g(a′, sf , sa, τ) = 0. We also define λ = ( 1
sf

+ 1
sa

)a′f(a′) −
1
sa

∫ b
a′ f(x)dx > 0 by Equation 3.26. Hence,

∂a′

∂sf
= −

∂g(·)
∂sf

∂g(·)
∂a′

=

1
s2f

∫ a′
a xf(x)dx

λ
> 0

Similarly,

∂a′

∂sa
= −

∂g(·)
∂sa
∂g(·)
∂a′

= −
1
s2a
a′
∫ b
a′ f(x)dx

λ
< 0

∂a′

∂τ
=

1

λ
> 0
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Therefore, the derivatives with respect to freeway capacity are:

dTTTf
dsf

=
∂TTTf
∂a′

∂a′

∂sf
+
∂TTTf
∂sf

(B.1)

=
N2 δ

s3f
f(a′)(

∫ a′
a xf(x)dx)2

λ
− N2δ

s2
f

∫ a′

a
f(β)(

∫ β

a
xf(x)dx)dβ

dTTTa
dsf

=
∂TTTa
∂a′

∂a′

∂sf
+
∂TTTa
∂sf

(B.2)

= −
N2 δ

s3f
f(a′)(

∫ a′
a xf(x)dx)2

λ
< 0

dTTT

dsf
=

dTTTf
dsf

+
dTTTa
dsf

(B.3)

= −N
2δ

s2
f

∫ a′

a
f(β)(

∫ β

a
xf(x)dx)dβ < 0

dbf
dsf

=
∂bf
∂a′

∂a′

∂sf
= f(a′)

∂a′

∂sf
> 0 (B.4)

The derivatives with respect to AR capacity are:

dTTTf
dsa

=
∂TTTf
∂a′

∂a′

∂sa
+
∂TTTf
∂sa

(B.5)

= −
N2 δ

s2asf
a′f(a′)(

∫ a′
a xf(x)dx)(

∫ b
a′ f(x)dx)

λ
< 0

dTTTa
dsa

=
∂TTTa
∂a′

∂a′

∂sa
+
∂TTTa
∂sa

(B.6)

=
N2 δ

s2asf
a′f(a′)(

∫ a′
a xf(x)dx)(

∫ b
a′ f(x)dx)

λ
− N2δ

s2
a

∫ b

a′
f(β)(

∫ β

a′
xf(x)dx)dβ

dTTT

dsa
=

dTTTf
dsa

+
dTTTa
dsa

(B.7)

= −N
2δ

s2
a

∫ b

a′
f(β)(

∫ β

a′
xf(x)dx)dβ < 0

dbf
dsa

=
∂bf
∂a′

∂a′

∂sa
= f(a′)

∂a′

∂sa
< 0 (B.8)
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The derivatives with respect to AR free-flow travel time are:

dTTTf
dτ

=
∂TTTf
∂a′

∂a′

∂τ
+
∂TTTf
∂τ

(B.9)

=
N 1

sf
f(a′)

∫ a′
a xf(x)dx

λ
> 0

dTTTa
dτ

=
∂TTTa
∂a′

∂a′

∂τ
+
∂TTTa
∂τ

(B.10)

= N

∫ b

a′
f(x)dx−

N 1
sf
f(a′)

∫ a′
a xf(x)dx

( 1
sf

+ 1
sa

)a′f(a′)− 1
sa

∫ b
a′ f(x)dx

=
[ 1
sf
a′f(a′)− 1

sa

∫ b
a′ f(x)dx]

∫ b
a′ f(x)dx− f(a′) τ

Nδ

λ
(B.11)

dTTT

dτ
=

dTTTf
dτ

+
dTTTa
dτ

(B.12)

= N

∫ b

a′
f(x)dx > 0

dbf
dτ

=
∂bf
∂a′

∂a′

∂τ
= f(a′)

∂a′

∂τ
> 0 (B.13)
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Appendix C

Derivation of Pareto-improving

Here, we show that capacity enlargement on either the freeway or AR is Pareto-improving

and how commuters benefit differently from the capacity enlargement.

Let Cf (β) and Ca(β) denote the generalized travel time of a commuter with EAP β

on the freeway and AR, respectively. By Equation 3.19,

Cf (β) = Nf
δβ

sf
−N δβ

sf

∫ β

a
f(x)dx+N

δ

sf

∫ β

a
xf(x)dx a ≤ β ≤ a′

Ca(β) = τ +Na
δβ

sa
−N δβ

sa

∫ β

a′
f(x)dx+Na

δ

sa

∫ β

a′
xf(x)dx a′ ≤ β ≤ b

We first show that by Equation 3.25,

sa
sf

=
saτ
Nδ + a′

∫ b
a′ f(x)dx∫ a′

a xf(x)dx
>
a′
∫ b
a′ f(x)dx∫ a′

a xf(x)dx
>

∫ b
a′ f(x)dx

a′f(a′)
(C.1)

Now we investigate how the changes in freeway capacity sf affect the individual

generalized travel time.

∂Cf (β)

∂sf

s2
f

Nδ
= βf(a′)

1
sf

∫ a′
a xf(x)dx

( 1
sf

+ 1
sa

)a′f(a′)− 1
sa

∫ b
a′ f(x)dx

−
∫ β

a
xf(x)dx− β

∫ a′

β
f(x)dx

∂
∂Cf (β)
∂sf

∂β

s2
f

Nδ
= f(a′)

∂a′

∂sf
sf −

∫ a′

β
f(x)dx

Therefore,

∂
∂Cf (β)
∂sf

∂β
is monotone with respect to β

∂
∂Cf (β)
∂sf

∂β
|β=a < 0,

∂
∂Cf (β)
∂sf

∂β
|β=a′ > 0
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∂Cf (β)

∂sf

s2
f

Nδ
|β=a =

a
a′

∫ a′
a xf(x)dx

sa
sf

+ 1−
∫ b
a′ f(x)dx

a′f(a′)

− a
∫ a′

a
f(x)dx

<
a
a′

∫ a′
a xf(x)dx

sa
sf

+ 1−
∫ b
a′ f(x)dx

a′f(a′)

− a

a′

∫ a′

a
xf(x)dx

=
a

a′

∫ a′

a
xf(x)dx(

1

sa
sf

+ 1−
∫ b
a′ f(x)dx

a′f(a′)

− 1)

< 0 by Equation C.1

Hence,

∂Cf (β)

∂sf

s2
f

Nδ
< 0

∂Cf (β)

∂sf

s2
f

Nδ
|β=a′ =

∫ a′

a
xf(x)dx(

sa
sf

sa
sf

+ 1−
∫ b
a′ f(x)dx

a′f(a′)

− 1)

< 0 by the assumption in Proposition 3.5

∂Ca(β)

∂sf
= − ∂a

′

∂sf

Nδ

sa
a′f(a′) < 0

∂ ∂Ca(β)
∂sf

∂β
= 0

Now we investigate how the changes in AR capacity sa affect the individual general-

ized travel time.

∂Cf (β)

∂sa
=

∂a′

∂sa

Nδ

sf
βf(a′) < 0

∂
∂Cf (β)
∂sa

∂β
=

∂a′

∂sa

Nδ

sf
f(a′) < 0 is independent of β

∂Ca(β)

∂sa

s2
a

Nδ
= a′f(a′)

1
sa
a′
∫ b
a′ f(x)dx

( 1
sf

+ 1
sa

)a′f(a′)− 1
sa

∫ b
a′ f(x)dx

−
∫ β

a′
xf(x)dx− β

∫ b

β
f(x)dx

∂ ∂Ca(β)
∂sa

∂β

s2
a

Nδ
= −

∫ b

β
f(x)dx < 0
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Because,

∂Ca(β)

∂sa

s2
a

Nδ
|β=a′ = a′f(a′)

1
sa
a′
∫ b
a′ f(x)dx

( 1
sf

+ 1
sa

)a′f(a′)− 1
sa

∫ b
a′ f(x)dx

− a′
∫ b

a′
f(x)dx

= a′
∫ b

a′
f(x)dx(

1

sa
sf

+ 1−
∫ b
a′ f(x)dx

a′f(a′)

− 1) < 0 by Equation C.1

therefore,

∂Ca(β)

∂sa
< 0
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Appendix D

Travel profiles and the total travel cost

with parking choices

All possible 20 travel profiles are shown in Figure D.1, D.2 and D.3. In all five types

of parking preference, if K1 = 0,K2 = N (K2 = 0,K1 = N), then the travel profile is

shown in profile 19 (20).

The derivatives of total travel cost with respect to the parking capacity, parking fee

and access time are as follows.

For strongly outward parking (where p1 = p2 is a special case),

∂TC

∂K1
=


−(p1 − p2) ≤ 0 if K1 ≥

s(v2 − v1)

β
,K1 6= N

− Nβγ

s(β + γ)
− (p1 − p2) < 0 if K1 ≤

s(v2 − v1)

β

(D.1)

∂TC

∂∆p
=


N

γ

β + γ
−K1 if K1 ≥

s(v2 − v1)

β

−K1 < 0 if K1 ≤
s(v2 − v1)

β

(D.2)

∂TC

∂∆l
=


N

β

β + γ
(λ+ γ) > 0 if K1 ≥

s(v2 − v1)

β

λN > 0 if K1 ≤
s(v2 − v1)

β

(D.3)

For strongly inward parking where p1 > p2,

∂TC

∂K2
=


p1 − p2 > 0 if K2 ≥

s(v1 − v2)

β
,K2 6= N

− Nβγ

s(β + γ)
+ (p1 − p2) if K2 ≤

s(v1 − v2)

β

(D.4)
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Figure D.1. Travel profiles of strongly outward parking and strongly inward parking
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Figure D.2. Travel profiles of hybrid parking and weakly outward parking
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Figure D.3. Travel profiles of weakly inward parking

∂TC

∂∆p
=


−N γ

β + γ
+K2 if K2 ≥

s(v1 − v2)

β

K2 > 0 if K2 ≤
s(v1 − v2)

β

(D.5)

∂TC

∂∆l
=


−N β

β + γ
(λ+ γ) + λN =

Nγ

β + γ
(λ− β) > 0 if K2 ≥

s(v1 − v2)

β

0 if K2 ≤
s(v1 − v2)

β

(D.6)

For hybrid parking where p1 > p2,

∂TC

∂K1
=


−Nβ

s
− (p1 − p2) < 0 if

Nβ − s(v1 − v2)

β + γ
≤ K1 ≤ Nβ − s(v1 − v2) + s(u2 − u1)

β + γ

−(p1 − p2) < 0 if K1 ≤ Nβ − s(v1 − v2)

β + γ

0 otherwise

(D.7)

∂TC

∂K2
=


− Nβγ

s(β + γ)
+ (p1 − p2) if K2 ≤ s(v1 − v2)

β

p1 − p2 > 0 if
s(v1 − v2)

β
≤ K2 ≤ Nγ + s(v1 − v2) + s(u1 − u2)

β + γ

0 otherwise

(D.8)
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∂TC

∂∆p
=



K2 > 0 if K2 ≤ s(v1 − v2)

β

− Nγ

β + γ
+K2 if

s(v1 − v2)

β
≤ K2 ≤ Nγ + s(v1 − v2) + s(u1 − u2)

β + γ

− Nβ

β + γ
−K1 < 0 if

Nβ − s(v1 − v2)

β + γ
≤ K1 ≤ Nβ − s(v1 − v2) + s(u2 − u1)

β + γ

−K1 < 0 if K1 ≤ Nβ − s(v1 − v2)

β + γ

(D.9)

∂TC

∂∆l
=



0 if K2 ≤ s(v1 − v2)

β
Nγ

β + γ
(λ− β) > 0 if

s(v1 − v2)

β
≤ K2 ≤ Nγ + s(v1 − v2) + s(u1 − u2)

β + γ

λN +
Nβ

β + γ
> 0 if

Nβ − s(v1 − v2)

β + γ
≤ K1 ≤ Nβ − s(v1 − v2) + s(u2 − u1)

β + γ

λN > 0 if K1 ≤ Nβ − s(v1 − v2)

β + γ

(D.10)

For weakly outward parking where p1 > p2,

∂TC

∂K1
=


−(p1 − p2) < 0 if K1 ≤ N −

1

2

Nγ

β + γ

0 otherwise
(D.11)

∂TC

∂K2
=


p1 − p2 > 0 if K2 ≤

1

2

s(u1 − u2) +Nγ

β + γ

(p1 − p2) +
2Nβ

s
> 0 if

1

2

s(u1 − u2) +Nγ

β + γ
≤ K2 ≤

1

2

Nγ

β + γ

0 otherwise

(D.12)

For weakly inward parking where p1 > p2,

∂TC

∂K1
=

 −(p1 − p2) < 0 if K1 ≤
1

2

Nβ − s(v1 − v2)

β + γ

0 otherwise

(D.13)

∂TC

∂K2
=


(p1 − p2)− Nβγ

s(β + γ)
if K2 ≤

s(v1 − v2)

β

(p1 − p2) > 0 if
s(v1 − v2)

β
≤ K2 ≤ N −

1

2

Nβ − s(v1 − v2)

β + γ

0 otherwise

(D.14)

In all parking patterns,
∂TC

∂∆p
= 0 if K1 = 0 or K2 = 0.
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Appendix E

An example of deriving travel profiles

with parking choice

Recall that in strongly outward parking, the closer parking cluster, i.e. parking cluster

1, is always preferred in both early arrival and late arrival. Given parking fees and access

times of two parking clusters that leads to strongly outward parking, the travel profile

is determined by the actual (also effective) capacity of parking cluster 1, K1. This is

because the farther cluster will not be used unless the closer one is used up. Overall,

there exist four patterns in strongly outward parking:

1. After the closer cluster is used up by travelers with early arrival, the first traveler

using the farther cluster also arrives earlier than t∗. The capacity of cluster 1 is

so low that the queuing delay of the last traveler using cluster 1 is fairly small,

and the first traveler using cluster 2 would rather depart after the queue vanishes

(i.e. this traveler has no queuing delay). This profile occurs when K1 is low and is

shown in Profile 1.

2. After the closer cluster is used up by travelers with early arrival, the first traveler

using the farther cluster also arrives earlier than t∗. However, the queuing delay of

the last traveler using cluster 1 is sufficiently long so that the first traveler parking

in cluster 2 is willing to wait in the queue to arrive. Therefore, the first traveler

parking in cluster 2 has a queuing delay. This profile occurs when K1 is low but

larger than it is in Profile 1, and is shown in Profile 2.

3. After the closer cluster is used up by early-arrival travelers, the first traveler using
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the farther cluster arrives later than t∗. This profile occurs when K1 is medium

and is shown in Profile 3.

4. The closer cluster is used by travelers with both early arrival and late arrival, and

all travelers using the farther cluster thereafter arrive later than t∗. This profile

occurs when K1 is high, and is shown in Profile 4.

In this example, we derive the departure/arrival curves and TC of Profile 3 (shown

in Figure E.1), where all the travelers choosing the closer cluster experience early arrival

(or punctual arrival) and all the travelers choosing the farther cluster experience late

arrival (or punctual arrival).

We first consider only the early arrival. In a typical morning commute problem,

travelers have the same travel cost (i.e. summation of queuing delay and schedule delay)

as long as they reach the bottleneck at the arrival rate of α
α−β s. In this example, because

travelers using the closer cluster in early arrival have identical additional cost (parking

fee and access time) as compared to the travel cost in the typical morning commute

problem, the arrival curve to the bottleneck for those travelers follows the same slope,

i.e., α
α−β s. The similar logic applies to all travelers arriving later than t∗, their arrival

curve to the bottleneck also follows the same slope α
α+γ s as in the late arrival of a

typical morning commute problem. Because the bottleneck is always used throughout

the morning peak, the departure curve to the bottleneck is always continuous with the

slope of s (bottleneck capacity). It takes l1 and l2 amount of time for travelers choosing

parking clusters 1 and 2 to walk to their offices, respectively, which is depicted by the

arrival curve to the office in Figure E.1. Let y represent the duration from the arrival

time to the office of the last traveler using the closer cluster to t∗. Thus, the duration

from t∗ to the time the first traveler using the farther cluster is l2 − l1 − y.

Under user equilibrium, since all commuters, regardless of parking choices and de-

parture times, have the same generalized travel cost, the travel cost of the last traveler

using parking cluster 1, C1(tC), must equal that of the first traveler using the farther

cluster, C2(tA), i.e.,

C1(tC)− C2(tA) = 0 (E.1)
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Figure E.1. A travel profile in outward parking: Profile 3

Substitute C1(tC) and C2(tA) by Equation 5.5 and 5.6 into Equation E.1,

α(CD −AD) + [(p1 + λl1)− (p2 + λl2)] + [βy − γ(l2 − l1 − y)] = 0 (E.2)

where α(CD−AD), (p1 +λl1)− (p2 +λl2) and βy−γ(l2− l1−y) represent the difference

in queuing delay cost, parking-related cost and schedule delay cost of the two marginal

travelers, respectively. Because

CD =
K1

s

β

α

AD =
N −K1

s

γ

α

solving y in Equation E.2 yields,

y = −K1

s
+
Nβ

s

s(u2 − u1) +Nγ

β + γ

Since 0 ≤ y ≤ l2 − l1 according to the condition of this profile, we have

s(v2 − v1) +Nγ

β + γ
≤ K1 ≤

s(u2 − u1) +Nγ

β + γ
(E.3)

Because all commuters are subject to the same generalized travel cost, the identical

generalized travel cost can be computed in terms of an arbitrary traveler, e.g. the



173

traveler departing at time tC ,

αCD + (p1 + λl1) + βy

Therefore, the total generalized travel cost of all commuters, exclusive of revenues

from parking fees, becomes

TC = (αCD + p1 + λl1 + βy)N −K1p1 − (N −K1)p2

=
Nβ

s

s(u2 − u1) +Nγ

β + γ
+ (N −K1)(p1 − p2) + λNl1 (E.4)

Though the effective capacity of the farther cluster, K2 = N −K1, can also be used

to express Equation E.3 and E.4, we rather use K1 since the closer cluster essentially

determines the profile.
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Appendix F

Proof: The optimal profile will not be

achieved in outward parking

This section proves that the optimal profile will not be achieved in outward parking.

Without loss of generality, let l1 = 0, p2 = 0. l2 is fixed. Let p1 and p′1 denote the

parking fee of the closer parking cluster in outward and inward (or hybrid) parking,

respectively. Due to the conditions of outward parking, (λ− β)l2 > p1. Let TC denote

the total travel cost of Profiles 2, 3 or 4 in outward parking, and TC ′ denote the total

travel cost of Profiles 6, 7 or 8 in inward (or hybrid) parking. By eliminating l1 and p2,

TC and TC ′ become,

TC =
Nβ

s(β + γ)
[−sp1 + s(λ+ γ)l2 +Nγ] + (N −K1)p1

TC ′ =
Nβ

s(β + γ)
[sp′1 − s(λ+ γ)l2 +Nγ]− (N −K2)p′1 + λl2N

TC − TC ′ =
Nβ

β + γ
[2(λ+ γ)l2 − p1 − p′1] +N(p1 + p′1) + λl2N +K2p

′
1 −K1p1

Because p1 < (λ− β)l2 < λl2

TC − TC ′ >
Nβ

β + γ
[2(λ+ γ)l2 − p1 − p′1] +N(p1 + p′1) + p1N +K2p

′
1 −K1p1

>
Nβ

β + γ
2(λ+ γ)l2 + (p1 + p′1)

Nγ

β + γ
+K2p

′
1 + p1(N −K1)

> 0

Since given K1 and K2, the total travel cost of Profiles 2, 3 or 4 is always larger than

that of Profiles 6, 7 or 8, the optimal profile never falls in strongly outward parking.
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Similarly, it is easy to verify that given K1 and K2, the total travel cost of Profiles

12 ∼ 16 is also larger than that of Profiles 6, 7 or 8. Therefore, the optimal profile will

not be achieved in weakly outward parking. Overall, the optimal profile must be the

case of inward parking or hybrid parking.
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Appendix G

Sensitivity analysis of investment cost,

parking fee and access time

Here, we derive the derivatives of TSC, TCC and TD under Type IV competitive equi-

librium with respect to the investment cost, parking fee and access time, respectively.

By Equation 5.41 and 5.48, we have (let ∆p̄ = p̄1 − p̄2),

dTCC

da1
=
∂TCC

∂p̄1

∂p̄1

∂a1
+
∂TCC

∂p̄2

∂p̄2

∂a1
=

N(2β + γ)

3(β + γ)
> 0

dTCC

da2
=
∂TCC

∂p̄1

∂p̄1

∂a2
+
∂TCC

∂p̄2

∂p̄2

∂a2
=

N(β + 2γ)

3(β + γ)
> 0

Similarly,

dTSC

da1
=
−8s(a1 − a2) +N(8β + γ) + 4s∆l(2λ+ γ − β)

9(β + γ)

dTSC

da2
=

16s(a1 − a2) +N(5β + 4γ)− 2s∆l(2λ+ γ − β)

9(β + γ)

The sign of dTSC
da1

and dTSC
da2

is dependent on the values of all parameters.

We also have,

dTD

da1
=

dTD

d∆p̄

d∆p̄

da1
=

2

3

s

α(β + γ)
(2∆p̄− (2λ+ γ − β)∆l)

dTD

da2
=

dTD

d∆p̄

d∆p̄

da2
= −2

3

s

α(β + γ)
(2∆p̄− (2λ+ γ − β)∆l)

The sign of dTD
da1

and dTD
da2

is dependent on the values of all parameters.

Suppose l1 is fixed in the closer cluster, and the private operators in the farther
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cluster may improve the accessibility so as to reduce l2. Our derivation yields,

dTCC

dl2
=

N

6(β + γ)
((β + γ)(2λ− γ − β) + 2γ(λ− β))

dTSC

dl2
=

Nγ(β + λ)

β + γ
+

2λ+ γ − β
9(β + γ)

(
2s∆a− 2s∆l(2λ+ γ − β)− N(γ − β)

2

)
dTD

dl2
=

2(γ + 2β − λ)(λ+ 2γ + β)

9
+ (

N(β − γ)

2s
+ ∆a)

γ + 2λ− β
9

The sign of dTCC
dl2

, dTSC
dl2

and dTD
dl2

is dependent on the values of all parameters.

Finally, by differentiating Equation 5.43 and 5.44 with respect to p1 and p2, we get,

dTCC

dp1
=

Nβ

β + γ
> 0

dTCC

dp2
=

Nγ

β + γ
> 0

dTSC

dp1
=

s

β + γ
(4∆p− (2λ+ γ − β)∆l − 2∆a)

dTSC

dp2
=

s

β + γ
(−4∆p+ (2λ+ γ − β)∆l + 2∆a)
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and Modes

Abstract

This dissertation investigates traveler heterogeneity for dynamic traffic assignment

(DTA) in the following four dimensions: travelers’ attributes (in the value of time and

the value of schedule delay), modal choice, parking choice and route choice. The main

focus is on obtaining analytical DTA solutions in simplified networks, particularly in

the context of the morning commute problem, with precise sensitivity analysis to derive

effective traffic congestion management policies.

First, we solve the morning commute problem with a heterogeneous traveling pop-

ulation whose early/late arrival penalty are continuously distributed. The distribution

of the value of schedule delay on each route, freeway or the arterial road, is discussed.

It is found that the assumption of homogeneity population overestimates the queuing

delay and the total travel time. Every commuter is better off if the freeway capacity

or arterial capacity is enlarged, but commuters with high values of early/late arrival

penalty generally benefit more than those with low values unless they switch to other

routes. We further study the multi-modal morning commute problem with three modes,

transit, solo-driving and carpool. Enlarging HOV facilities may reduce transit ridership

and increase auto travel, and it does not necessarily reduce the total travel cost when

the network is highly congested. The rise of gas price may first entice auto travelers to

carpool. However, as the gas price increases further, both carpoolers and solo-drivers

will eventually switch to use the transit. In addition, a flat freeway tool can also reduce

the total network travel cost.

In addition to the intrinsic distinction among travelers, we also discuss the manage-

ment measures that can distinguish travelers externally, using parking as an example.

The parking fee, parking capacity allocation and accessibility altogether can effectively

reduce both the system cost and the queuing delay. If parking lots are owned publicly,
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then all travelers are better off under the optimal parking setting. This is an advantage

that cannot be realized by the system-optimum dynamic toll scheme. If they are owned

privately, then market regulations, such as price-ceiling and quantity tax/subsidy, are

suggested to improve the network performance and reduce the congestion.

We finally extend our research to the DTA problem in general networks. We propose

a hybrid route choice model for studying non-equilibrium traffic where travelers have

different preferences in choosing travel routes. It combines pre-trip route choice and

en-route route choice to solve dynamic traffic assignment (DTA) in large-scale networks.

We apply the hybrid route choice model in a synthetic medium-scale network and a large-

scale real network to assess its effect on the flow patterns and network performances,

and compare them with those obtained from Predictive User Equilibrium (PUE) DTA.

The proposed route choice model incorporating route choice heterogeneity is capable of

solving DTA efficiently in in a realistic size network with satisfactory results. Finally,

some suggestions are given on how to calibrate the hybrid route choice model in practice.


