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Three Essays on Transportation and Energy Use 

 

Abstract 

 

My dissertation examines three questions related to transportation and energy use. In the first 

essay, I investigate the influence of workplace peers on an individual’s travel decisions to work. 

Using a large dataset of U.S. military commuters and instruments to address the endogeneity of 

the decisions of one’s workplace peers, I show that workplace peers positively influence one 

another’s drive/no-drive decision and carpool/drive-alone decision. I also explore whether 

conventional measures of social status and seniority (i.e. income, education, age, and number of 

years in the military) predict who exerts the strongest influence on others, and find that 

intragroup influence appears to be stronger and more consistent than intergroup influence, which 

suggests that for commute decisions, social validation is a stronger motivator towards conformity 

than authority.  

 In the second essay, I examine the short-run impacts of rapid increases in regional 

employment on travel time to work by exploiting exogenous variation resulting from movements 

of military troops during the 2005 Base Realignment and Closure (BRAC) process. Employment 

levels often change more quickly than other factors that influence regional travel demand (e.g. 

number of two-worker households, vehicle ownership rates, travel preferences, etc.), making 

effective anti-congestion measures difficult to plan and implement. The BRAC process provides 

a convenient quasi-experimental framework to measure the short-run, congestion-related effects 

of employment growth on travel times because it occurred exogenous to the normal 

transportation planning process. I use difference-in-difference, difference-in-difference-in-

difference, and instrumental variable methods to estimate these effects. The results are quite 
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robust -- each additional commuter added to the transportation network per square kilometer 

adds 0.0032-0.055 additional minutes of travel for all other individual commuters in the short 

run. According to back-of-the-envelope calculations, the short-run economic travel time cost of 

the 2005 BRAC is estimated to have cost communities near BRAC-affected bases between $155 

million and $1.5 billion per year. This paper has relevance for both transportation planners who 

seek effective growth strategies and Department of Defense officials who seek to mitigate 

transportation impacts from troop movements and base closures. 

 In the third and final essay, I examine how the carbon intensity (grams CO2e/MJ) of 

important upstream stages of bioenergy production will change over the next century for three 

generic energy pathways (biogas, bioliquids, bioelectricity) and five feedstocks (miscanthus, 

switchgrass, jatropha, eucalyptus, and willow). I construct an updated version of the Global 

Change Assessment Model (GCAM) which accounts for regional, temporal, and feedstock 

heterogeneity in five upstream stages: fertilizer production, fertilizer application, harvest energy, 

biomass transport energy, and pre-processing energy. Overall, I find that the median carbon 

intensity of these five upstream stages across scenarios declines by about 50% between 2020 and 

2095 for bioelectricity, while bioliquids and biogas remain relatively flat. These trends result 

from several shifts in global agriculture production and land use. The shifting cultivation of 

biocrops between agricultural regions increases N2O emission intensity until the year 2050 and 

decreases it thereafter. Similarly, carbon intensities of bioenergy will decrease due to improved 

yields but this effect will be dampened before 2050 and accelerated after 2050 as effective yield 

of bioenergy moves towards less productive and more productive land, respectively. As yields 

increase, the supply radii of bioenergy agrosystems decreases by an average of 21% across 

scenarios between 2020 and 2095 assuming an average input of 2.0 million tons of biomass per 
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yr
-
. My results suggest that shifts in land use play as important role in determining the trajectory 

of upstream greenhouse gas intensity of bioenergy in the future. 
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ESSAY ONE 

Driving in Force:  

The Influence of Workplace Peers on Commuting Decisions on U.S. Military Bases 

 

1.1 INTRODUCTION 

Workplace peers have been shown to play an important role in daily decision-making 

within the workplace (Salancik and Pfeffer, 1978). Past research also demonstrates that peer 

influences – mainly from an intra-household perspective – can affect travel-related decisions like 

telecommuting (Paez and Scott, 2008; Wilton et al., 2011), bike commuting (Heinen et al., 

2011), and walking to school (McDonald, 2009). However, no empirical research links mode 

choice decisions of an individual’s workplace colleagues to his/her own travel choices. This 

paper uses a large dataset from the U.S. Census to examine whether an individual’s decision to 

drive or carpool to work is influenced by the drive or carpool decisions of his or her workplace 

peers.  

 There are three sources of endogeneity that must be overcome when estimating peer 

effects. The first is the simultaneity problem of reflection: an individual exerts influence on the 

group just as the group influences the individual (Manski, 1993). The second is an omitted 

variables problem which exists because of the impossibility of controlling for all travel-related 

variables that affect both an individual and his/her workplace colleagues.
1
 Lastly, there is a group 

self-selection problem because individuals may choose careers based on similar attitudes. 

                                                 
1
 Examples of unobservables that are difficult to quantify but could affect both an individual and his/her workplace 
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 This paper addresses these endogeneity problems using instrumental variables based on 

aggregated group demographic characteristics, which are shown to be unrelated to an 

individual’s mode choice decision but are related to the workplace peers’ preference for a given 

mode (Brock and Durlauf, 2001; Brock and Durlauf, 2002; Walker et al., 2011). I verify the 

appropriateness of the instruments with post-regression tests. I also control for important 

predictors of travel behavior, including individual-level variables such as income, age, education 

level, immigration status, number of dependents, gender, household vehicle ownership; and 

region-level land-use and transit availability variables such as employment density and transit 

availability.  For robustness, I run a variety of model specifications.   

 Social psychologists often use three interrelated components – cognition (information), 

affect (feelings), and conation (behavioral intentions) – to describe the main drivers of human 

behavior. Because of the important role the workplace plays in our daily lives -- American adults 

spend 22% of all hours at the workplace
2
 -- it is possible the workplace affects each of these 

components. For example, an individual may acquire knowledge about carpool lanes, transit 

incentives, bike routes, etc. during an informal ―water-cooler‖ talk, thus expanding that 

individual’s awareness about the benefits and costs of choosing a given mode (cognition). 

Moreover, as shown by Dumas and Dobson (1979), if the normative behavior of a peer group is 

one particular travel mode, then an individual’s affect will be influenced in favor of that mode. 

Norm transmission intensifies when the norms are communicated by individuals of higher social 

status (authority) and by members of one’s own social group (social validation) (Cialdini and 

Trost, 1998). Lastly, conation refers to an individual’s behavioral intentions which could be 

influenced by either formal or informal workplace goals related to commute behavior. 

                                                 
2
 The average worker in the U.S. between the years 2000-2009 worked for 40.5 hours per week and 47.2 weeks per 

year (Ruggles et al., 2009)  
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A well-known weakness of econometric analyses of travel behavior is that they often rely 

on cross-sectional datasets – like the National Household Travel Survey or local travel surveys – 

and thus fail to exploit variation in behavior over time. Similarly, travel datasets that include a 

time dimension are typically aggregated to the county-, city-, state-, or nation-level and thus 

neglect important variation between individuals. The dataset used here – the American 

Community Survey (ACS) – is a repeated cross-section data set that includes variation across 

both individuals
3
 and time, and is suitable to my needs because of its focus on the commute to 

work. 

I focus in particular on military personnel and their workplace peers working on the same 

military base because, unlike many workplaces, the military work environment is limited to a 

specific geographic and social space: that within the base perimeter. Thus, the physical 

movements of military personnel and the people with whom they interact are arguably better 

controlled than many other work environments. Additionally, to examine workplace peer 

influence requires a sizeable sample from a given workplace. I am not aware of other surveys 

with commute to work variables in which such a large number of individuals (831,195 total) can 

be identified and located at a specific worksite. 

I recognize that a sample of military commuters may differ in travel choices from a set of 

randomly chosen civilian workers. To better understand these differences, I compare military and 

civilian commuters across important travel-related variables and use a series of regressions to 

show that military individuals have a slightly higher preference for driving than civilian 

counterparts.  

                                                 
3
 As discussed below, important socio-economic and demographic variables are at the individual-level. However, 

the built environment, transit, and group demographic instrumental variables are aggregated to the PUMA-level. 
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 My results show that military personnel are influenced by their peers in both the drive/no-

drive decision and the carpool/drive-alone decision. Among all military commuters, individuals 

with more years in the military service, lower education, and fewer hours worked per week are 

most highly influenced by peers in the drive/no-drive decision. For the carpool/drive-alone 

decision, the peer influence is strongest among older individuals with high education, who work 

fewer hours per week, and who live in urban areas.  

I also explore whether conventional measures of social status and seniority (i.e.  income, 

education, age, number of years in the military) predict who exerts the strongest influence on 

others, and find instead that intragroup influence (e.g. young workers’ influence on other young 

workers) appears to be stronger and more consistent than intergroup influence (e.g. older 

workers’ influence on younger workers), which suggests that social validation is a stronger 

motivator towards conformity than authority.  

This research is the first to demonstrate that travel decisions made by one’s workplace 

colleagues predict his/her mode choice to work and suggests that workplace interventions that 

incentivize carpooling and non-auto modes will have a positive feedback on desired mode shifts. 

This paper is organized as follows: Section 2 discusses the datasets, variable creation, and 

modeling approach used to examine workplace peer effects on travel. Section 3 investigates 

differences between a military commuter and a civilian commuter. Section 4 presents the main 

results on peer effects.  Finally, in Section 5 I present a discussion and conclusion.  

 

1.2 DATA  

 My main dataset – the ACS – is available for download from the IPUMS-USA website 

maintained by the University of Minnesota Population Center (Ruggles et al., 2010). Each year, 
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approximately 3 million individuals are surveyed for the ACS, which means approximately 10% 

of the U.S. population is sampled in each 10-year cycle. I use the years 2000, 2006, 2007, 2008, 

and 2009. The years 2001-2004 were not included because they do not include a full set of 

variables. The U.S. Census Bureau uses a multistage sampling design to ensure a representative 

sample each year which includes stratification, clustering, and weighting of individuals.
4
 PUMAs 

are the smallest identifiable geographic region in census data at the person-level and typically 

have ~100,000 people. However, by identifying military personnel within the PUMAs and 

assigning those personnel to a unique military base I am able to dramatically reduce the size of 

the geographic region even further.
5
  

 Each individual in the dataset appears a single time and reports a single commute mode 

choice decision. The binary decision to drive to work versus taking other modes (bus, rail, walk, 

cycle, ferry, taxi, worked at home, other) is made by 88% of full-time civilian workers and 96% 

of military members. The decision to carpool is a subset of the individuals who respond they 

drive to work; among full-time workers and military members, 12% and 11% of individuals 

carpool versus drive alone, respectively.
6
  

 In addition to individual-level control variables – such as age, income, education, family 

status, vehicles in household, and immigration status – I create region-level land-use and transit 

availability variables (henceforth referred to as ―built environment‖ variables) which have been 

shown to affect travel (Bento et al., 2005). The built environment variables include employment 

                                                 
4
 As recommended by Ruggles et al. (2010), to help correct for the homogeneity of individuals in the same 

household and geographic region, our models use a Taylor Series Linearization (TSL) procedure in which an 

individual’s household is the primary sampling unit and an individual’s residential geographic area (called a 

―PUMA‖ – a public use microdata area) is the stratum. 
5
 Active duty military, veterans, and civilians are identified with the census variable ―vetstat‖ which defines 

individuals as active, veteran, or civilian. 
6
 If respondents took more than one mode to work (e.g. car, rail), the survey instructs them to mark the mode in 

which they travelled the greatest distance.   
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density, bus density, train/subway density, and dummy variables for whether an individual lives 

in an urban, rural, or suburban environment.
7
 

The use of built environment density variables is common in the travel literature (see e.g., 

Cervero and Kockelman, 1997; Zhang, 2004; Heres-Del-Valle and Neimeier, 2011). While these 

variables sometimes fail to capture complex transportation systems, some authors argue they act 

as reasonable proxies for important land use variables in travel decisions (Steiner, 1994; Dunphy 

and Fisher, 1996)
 8,9

. Each density variable is created using occupational codes in the ACS. For 

example, ―bus density‖ is the number of full-time bus operators within each PUMA divided by 

the area (in square-km) of the PUMA. The census provides each respondent’s home and work 

PUMA which allows us to create separate built environment variables for both locations (i.e. 

workplace bus density and home bus density).  

Built environment variables are often highly correlated. However, my large sample size 

provides considerable variability across different built environments, and the coefficients I 

estimate on most of these variables are significant, which suggests that they all belong in the 

model and omitting some of them would cause the estimates to be biased.  

I control for the log average gasoline price by year and state (DOE, 2010) to help control 

for differences in driving expenses, and I include state-level fixed effects to control for structural 

differences between states in travel behavior. Lastly, the military-only peer effects models in 

Section 4 also include base fixed effects.  

 

                                                 
7
 The urban, rural, and suburban are pre-defined by the U.S. Census and are mapped as follows: urban = ―central 

city,‖ rural = ―not in metro area‖; suburbia = ―outside central city.‖  
8
 These variables are created at the PUMA-level using worker identification codes in the ACS. For example, bus 

density is the density of bus drivers who work in a given PUMA in a given year.   
9
 Other measures, such as the ―3 D’s‖ (density, diversity, and design) put forth by Cervero and Kockleman (1997), 

use a combination of densities and indices to measure the built environment. 



7 

 

1.3  MILITARY VERSUS CIVILIAN COMMUTERS  

How do characteristics of military commuters and their commuting environment differ 

from those of civilian American commuters? I answer this question by first comparing 

distributions of each control variable for three commuter groups in the U.S.: military, veterans, 

and civilians. The veteran group is an interesting addition because they are still linked to the 

military (via their prior career) but no longer commute to a military base and therefore should not 

be affected by the military base’s built environment variables.
10

 I then estimate a discrete 

response model which predicts the probability of driving or carpooling using data for the general 

population, and use dummy variables for military, civilian, and veteran to examine whether 

being in the military has an effect of the probability of driving or carpooling after controlling for 

socio-economic, demographic, and built environment variables. 

Figure 1 plots the percentage of military, veterans, and civilians who drive to work and 

the percentage of drivers who drive alone to work for every 10 years between 1960 and 2010.
11

 

Military personnel have a slightly greater preference for driving to work than their civilian 

counterparts, and higher or the same preference as veterans (Ruggles et al., 2010). Among the 

group choosing to carpool or drive alone, the military were less likely to drive alone than both 

veterans and civilians in 1980 but drove alone more than the civilians and at the same rate as 

veterans in 2010.
 
 

  

 

                                                 
10

 However, it is likely that some self-selection still occurs since veterans often still live in cities with military bases 

(Ruggles et al., 2010) 
11

 Models in Section III use all three groups while the models in Section IV use only the active duty military 

subgroup. All samples omit military personnel who live in barracks, on ships, or in military prisons, focusing instead 

on military members who live offbase in private houses or apartments and commute daily to base. According to data 

from the U.S. Census Bureau (Ruggles et al., 2010) the omitted group, 35% of whom drive to work, comprises 23% 

of all military personnel.   
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FIGURE 1.1: Percentage of military, veterans, and civilians who drive to work (versus take 

other modes) and the percentage of drivers who drive alone to work (versus carpooled), 

1960-2010, with 95% Confidence Intervals 

 

 

Data source: Ruggles et al., 2010  

 

 

1.3.1 Individual-Level Variables 

Military and civilian workers differ across a number of important individual characteristics, 

many of which also influence driving and carpooling decisions. Table 1 gives summary statistics 

for individual-level variables for both military and civilian workers including socio-economic, 

immigration-related, family-related variables.
12

    

Two-sample t-tests reveal significant differences in the means of individual-level 

variables of military workers versus civilian workers for all variables. The military drives at a 

higher frequency and, among those who choose to drive, the military carpools at a lower 

frequency than civilian counterparts.  

                                                 
12

 The civilian group includes all non-military, full-time workers in the U.S. between the ages of 17 and 61 (to 

correspond with military age requirements) and who report a mode to work.  
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In a paper using similar discrete response models as used here, Bento et al. (2005) 

showed that the individual-level variables that most positively influenced the drive decision in 

the U.S. among commuters in the 2001 Nationwide Personal Travel Survey (NPTS) included age 

and income, while the individual-level variables that most negatively influenced driving included 

the number of children. As seen in Table 1, military commuters have some characteristics that I 

would expect to increase the probability of driving to work compared to civilian commuters, 

such as a lower mean income and fewer children on average. They also have some characteristics 

that I would expect to decrease the probability of driving to work compared to civilian 

commuters, such as a lower mean age. In sum, from this set of predictor variables, it is difficult 

to say whether the military sub-group of commuters is inherently more or less likely to drive than 

their civilian counterparts.  

Past research examining the individual-level predictors of carpooling suggests that age 

and vehicles per adult household member are negatively related to the decision to carpool (Belz 

and Lee, 2012). Table 1 demonstrates that, for these variables, military members have lower 

mean age and slightly fewer vehicles per household member than civilian commuters, and thus 

have some characteristics that make them less likely to carpool.   

The census dataset prohibits us from also considering attitudinal factors in my discrete 

response models. In particular, it is possible that military members have a predisposition towards 

a given mode prior to entering the military service. I discuss this potential self-selection bias at 

the end of this section. 
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1.3.2 Built Environment Variables  

 Table 2 gives a similar comparison of household-level and PUMA-level built 

environment variables. As seen in this table, military workers tend to live and work in places 

with locations with lower worker and transit densities than civilians (approximately three times 

as low).
13

 Past research suggests a negative relationship between residential and employment 

density and the decision to drive and the decision to carpool, and that characteristics of the work 

built environment have a larger impact on the decision than the residential built environment 

(Chatman, 2003; Bento et al., 2005; Belz and Lee, 2012).  

Some of the low density of military residence and workplace can be attributed to 

geographic development patterns. Most bases have an area of dense employment with 

administrative buildings and operations offices; training areas for physical fitness or combat 

exercises; a commercial area with retail shops and restaurants; a warehouse district for the 

storage of machinery, tools, and vehicles; and residential communities in the form of barracks, 

ships’ berthings, and base housing. Also, military bases are often separated from housing or 

urban centers by a ―buffer zone‖ which is often characterized by low to medium density retail 

(e.g. strip malls). Military personnel entering a base must pass through security gates which can 

act as bottlenecks for the morning commute and might discourage non-auto modes.  

Tables A2 and A3 in the Appendix compare the individual-level and built environment 

variables, respectively, for veterans and civilian workers. 

                                                 
13

 Despite the relatively low density of military workplaces and residences, the percentage of workers who report 

living in an urban versus rural environment is similar between civilians and military workers. One explanation for 

this apparent discrepancy is that military bases are often located near medium (less than 1 million people) to small 

(less than 100,000) sized cities where densities are lower, on average, than larger cities.   
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TABLE 1.1: Two Sample t-Tests of Military and Civilian Worker Populations (2000, 2006-2009 ACS) 

   

Civilian Workers 
n = 9,860,327 (591,899,750) 

 Military Workers 
n = 23,118 (1,256,953 )  

Sig 
Sample size (weighted) 

  
      Mean Std. Dev. Min Max Mean Std. Dev. Min Max 

Commute              
      Drive to work (dummy)  

          [alternatives are bus, train, ferry, taxi,  walk, cycle,  

           work at home, other] 

0.88 0.33 0 1 0.96 0.18 0 1 *** 

     Carpool (dummy)  

          [alternative is to drive alone]  
0.12 0.33 0 1 0.11 0.31 0 1 *** 

Socio-economic / Demographic       
     

      Age (years)    39.39 12.19 17 61 30.91 8.1 17 61 *** 

      Education level (years)   13.5 2.54 4 21 13.74 1.9 4 21 *** 

Family       
     

      Family income ($10,000)   6.65 6.06 -3.1 137 5.17 3.4 0.06 48.9 *** 

      Hours worked per week (hours)   39.9 11.89 1 99 51.3 13.76 0 99 *** 

      Female employed worker (dummy)   0.47 0.50 0 1 0.16 0.37 0 1 *** 

      Family size (number)   2.69 1.49 1 31 2.5 1.44 1 12 *** 

      Vehicles per adult in household (number)   1.25 0.69 0.05 6 1.21 0.66 0.09 6 *** 

      Number of children (number)   0.56 0.93 0 9 0.47 0.89 0 8 *** 

Immigration       
     

      Immigrated to US 0-5 years ago (dummy)   0.02 0.13 0 1 0.01 0.07 0 1 *** 

      Immigrated to US 5-10 years ago (dummy)   0.02 0.15 0 1 0.01 0.11 0 1 *** 

      Immigrated to US >10 years ago (dummy)   0.08 0.3 0 1 0.06 0.26 0 1 *** 

Notes: For each variable, a two-sample t-test was conducted to compare the military population with the non-military population.  The ―Sig‖ column reports the 

significance levels from the test.  Significance codes: * 5% level, ** 1% level, and *** 0.1% level. 
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TABLE 1.2: Two Sample t-Tests For Military and Civilian Built Environments (2000, 2006-2009 ACS) 

 
Civilian Workers 

n = 9,860,327 (591,899,750) 

 
Military Workers  

n = 23,118 (1,256,953 ) 
 
Sig 

 

 

Mean Std. Dev. Min Max Mean Std. Dev. Min Max 

Residential PUMA  

      

  

      Employment density (workers/sq. km) 1,755 6399 0.2 156,495 747.7 1598 1.56 29,374 *** 

     Bus density (bus workers/sq. km) 7.10 19.81 0 317 2.55 7.03 0.004 169 *** 

     Train density (train workers/sq. km) 0.29 1.56 0 25 0.08 0.7 0 18 *** 

     Lives in city center (dummy) 0.15 0.36 0 1 0.16 0.33 0 1 *** 

     Lives in rural area (dummy) 0.16 0.34 0 1 0.13 0.4 0 1 *** 

     Lives in suburban area (dummy) 0.35 0.44 0 1 0.26 0.48 0 1 *** 

     Lives in metropolitan area, land use type  not   

          specified (dummy) 
0.34 0.47 0 1 0.45 0.5 0 1 *** 

Workplace PUMA  
         

     Employment density (workers/sq. km) 3,360 15,135 0.2 156,495 1017.3 2437.3 1.16 17,606 *** 

     Bus density (bus workers/sq. km) 10.40 33.67 0 317 3.40 9.12 0.005 169 *** 

     Train density (train workers/sq. km) 0.52 2.67 0 25  0.14 0.863 0 18 *** 

Notes: For each variable, a two-sample t-test was conducted to compare the military population with the non-military population.  The ―Sig‖ column reports the 

significance levels from the test.  Significance codes: * 5% level, ** 1% level, and *** 0.1% level. 
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1.3.3 General Population Models 

To assess whether the military and civilians differ in their propensity for driving and 

carpooling I estimate a discrete response model by regressing the probability of driving (or 

carpooling) on a number of control variables, 
itx , which have been shown to predict commute 

decisions (Bento et al., 2005).  I estimate both a linear probability model: 

                                              (1) 

and a probit model: 

                           (2)
 

where Pr( ) denotes probability, 
iI  is an indicator for individual i choosing to drive (or carpool), 

( )  denotes the standard normal cumulative distribution function, and 
1  is a vector of 

parameters of the same length as 
itx . 

iI  is the decision to drive (drive models) and carpool 

(carpool models) to work. The alternative to driving to work is walking, biking, or taking public 

transit. The alternative to carpooling is driving alone. These models are estimated using the same 

military and civilian individuals used in Tables 1 and 2 and include dummy variables for being in 

the military and being a recent or not a recent veteran. Significant coefficients for the dummy 

variables suggest that factors beyond common predictors of travel contribute to differences in 

travel choices between the military/veteran individuals and the general population.  

Table 3a gives results of the linear probability and probit models for the drive/no drive 

decision. Table 3b gives the same results for the carpool/drive alone decision. In both sets of 

models, the military and veteran dummy variables are almost all significant and are among the 

highest magnitude coefficients.  Focusing on the linear probability model results, being in the 

military increases the probability of driving by between 0.009 to 0.049 and decreases the 

probability of carpooling by 0.01 to 0.03.  Being a veteran increases the probability of driving by 
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between 0.012 to 0.025 and being a veteran separated from the military for over 2 years 

decreases the probability of carpooling by 0.02. 

Table 4 is a robustness check for the military dummy variables using two other model 

specifications of the linear probability model. In the first robustness test, I change the income 

control from the natural log of income to the real-valued function (in units of $10,000). This 

change allows for the inclusion of an additional 663,481 observations in the drive/no-drive 

model and 522,207 observations in the carpool/drive alone model.  

In the second robustness test, I only consider heads of households instead of all working 

household members. This helps control for inherent homogeneity between household members 

and is used by Marion and Horner (2007) who examine behavior of ―extreme commuters‖
14

 with 

U.S. census data.  

In all the specifications, the coefficients on all the dummy military and veteran variables 

except some in the household head model of the drive decision (Model 6) are all positive and 

significant at the 5%  level for the drive/no-drive decision and negative and significant for the 

carpool/drive alone decision. 

 

 

 

 

 

 

 

 

                                                 
14

 Extreme commuters are those whose one-way commute is greater than 90 minutes (Marion and Horner, 2007). 
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TABLE 1.3a: General Population Models of Drive/No Drive Decision 

  

Linear Probability Model Probit Model 

(Model 1) (Model 2) 

Coeff. Std. Err. Coeff. Std. Err. 

Military-related  

    
     Military member in year 2000 (dummy) 0.009*** (0.00) 0.221*** (0.01) 

     Military member in year 2006 (dummy) 0.016*** (0.00) 0.294*** (0.01) 

     Military member in year 2007 (dummy) 0.003*** (0.00) 0.106*** (0.01) 

     Military member in year 2008 (dummy) 0.049*** (0.00) 0.525*** (0.01) 

     Military member in year 2009 (dummy) 0.043*** (0.00) 0.410*** (0.00) 

     Veteran (separated  >2 yrs ago) (dummy) 0.025*** (0.00) 0.200*** (0.00) 

     Veteran (separated  <2 yrs ago) (dummy) 0.012*** (0.00) 0.0829*** (0.00) 

Socio-economic / Demographic 

    
     Age (yrs) 0.001*** (0.00) 0.0064*** (0.00) 

     Age-squared (yrs^2) -2.06*** (0.00) -1.3e-4*** (0.00) 

     Education (10s of years in school) -0.03*** (0.00) -0.20*** (0.00) 

Family  

    
     Family Income ($10,000) 0.017*** (0.00) 0.101*** (0.00) 

     Hours worked per week (100 hours) 0.072*** (0.00) 0.41*** (0.00) 

     Female employed worker (dummy) 0.003*** (0.00) 0.0245*** (0.00) 

     Family size (100s of people) -0.11*** (0.00) -0.45*** (0.00) 

     Vehicles per adult in household (number) 0.018*** (0.00) 0.119*** (0.00) 

     Number of children (100s) 0.33*** (0.00) 1.80*** (0.00) 

Immigration  

    
     Immigrated to U.S. 0-5 years ago (dummy) -0.06*** (0.00) -0.329*** (0.00) 

     Immigrated to U.S. 5-10 years ago (dummy) -0.02*** (0.00) -0.129*** (0.00) 

     Immigrated to U.S. >10 years ago (dummy) 0.001*** (0.00) -0.000249 (0.00) 

Household Built Environment  

    
     Workers density (million workers/sq. km) 0.10*** (0.00) -1.43*** (0.00) 

     Bus density (1,000 bus  workers/sq. km) -1.04*** (0.00) -3.23*** (0.00) 

     Train density (1,000 train workers/sq. km) 3.01*** (0.00) 14.60*** (0.00) 

     Lives in city center (dummy) -0.01*** (0.00) -0.105*** (0.00) 

     Lives in rural area (dummy) -0.00*** (0.00) -0.0359*** (0.00) 

     Lives in suburban area (dummy) 0.007*** (0.00) 0.0290*** (0.00) 

Workplace Built Environment  

    
     Worker density (million workers/sq. km) -0.90*** (0.00) 3.20*** (0.00) 

     Bus density (1,000 bus  drivers/sq. km) -2.30*** (0.00) -10.70*** (0.00) 

     Train density (1,000 train workers/sq. km) 3.33*** (0.00) 30.60*** (0.00) 

State-Level  

    
     Log of avg. yearly gas price in state ($2009) -0.007*** (0.00) -0.188*** (0.00) 

State and year fixed effects Yes   Yes   
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p-value (Pr > F) 0.0000**** 

 

0.0000**** 

 
Observations 491,674,903   9,211,459   

Notes: Standard errors in parentheses.  For the probit model, marginal effects are reported. Significance codes: * 5% level, ** 

1% level, and *** 0.1% level. 
 

 

TABLE 1.3b: General Population Models of Carpool/Drive Alone Decision 

  

Linear Probability Model Probit Model 

(Model 3) (Model 4) 

Coeff. Std. Err. Coeff. Std. Err. 

Military  

         Military member in year 2000 (dummy) -0.02*** (0.00) -0.114*** (0.01) 

     Military member in year 2006 (dummy) -0.01*** (0.00) -0.0541*** (0.01) 

     Military member in year 2007 (dummy) -0.03*** (0.00) -0.214*** (0.01) 

     Military member in year 2008 (dummy) -0.02*** (0.00) -0.105*** (0.00) 

     Military member in year 2009 (dummy) -0.02*** (0.00) -0.0997*** (0.00) 

     Veteran (separated  >2 yrs ago) (dummy) -0.02*** (0.00) -0.150*** (0.00) 

     Veteran (separated  <2 yrs ago) (dummy) -0.003 (0.00) -0.00879*** (0.00) 

Socio-economic / Demographic 

         Age (yrs) -0.002*** (0.00) -0.0103*** (0.00) 

     Age-squared (yrs^2) 2.1e-5*** (0.00) 7.2e-5*** (0.00) 

     Eduction (10s of years in school) -0.10*** (0.00) -0.45*** (0.00) 

Family  

         Family Income ($10,000) -0.01*** (0.00) -0.0915*** (0.00) 

     Hours worked per week (100 hours) 0.02*** (0.00) 0.06*** (0.00) 

     Female employed worker (dummy) -0.003*** (0.00) -0.0176*** (0.00) 

     Family size (100s of people) 1.60*** (0.00) 6.57*** (0.00) 

     Vehicles per adult in household (number) -0.01*** (0.00) -0.0806*** (0.00) 

     Number of children (100s) -0.61*** (0.00) -1.56*** (0.00) 

Immigration  

         Immigrated to U.S. 0-5 years ago (dummy) 0.172*** (0.00) 0.594*** (0.00) 

     Immigrated to U.S. 5-10 years ago (dummy) 0.093*** (0.00) 0.359*** (0.00) 

     Immigrated to U.S. >10 years ago (dummy) 0.034*** (0.00) 0.159*** (0.00) 

Household Built Environment  

         Workers density (million workers/sq. km) 0.311*** (0.00) 1.48*** (0.00) 

     Bus density (1,000 bus  workers/sq. km) -0.077*** (0.00) -0.403*** (0.00) 

     Train density (1,000 train workers/sq. km) 0.215*** (0.00) -0.156*** (0.00) 

     Lives in city center (dummy) 0.004*** (0.00) 0.0161*** (0.00) 

     Lives in rural area (dummy) 0.012*** (0.00) 0.0706*** (0.00) 
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     Lives in suburban area (dummy) -0.008*** (0.00) -0.0424*** (0.00) 

Workplace Built Environment  

         Worker density (million workers/sq. km) -0.171*** (0.00) -1.65*** (0.00) 

     Bus density (1,000 bus  drivers/sq. km) 0.763*** (0.00) 4.11*** (0.00) 

     Train density (1,000 train workers/sq. km) -2.33*** (0.00) -14.10*** (0.00) 

State-Level  

         Log of avg. yearly gas price in state ($2009) -0.05*** (0.00)  -0.82***  (0.01) 

State and year fixed effects Yes   Yes   

p-value (Pr > F) 0.0000**** 

 

0.0000**** 

 Observations 442,178,872   8,346,664   
Notes: Standard errors in parentheses.  For the probit model, marginal effects are reported.  Significance codes: * 5% level, 

** 1% level, and *** 0.1% level. 



 

    

 

1
8
 

TABLE 1.4:  Robustness Checks for General Population Models 
 Drive/No Drive Carpool/Drive Alone 

 

Income Changed Heads of HH Income Changed Heads of HH 

 

(Model 5) (Model 6) (Model 7) (Model 8) 

  Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. 

Std. 

Err. 

Military in 2000 (dummy) 0.00722*** (0.00) -0.0022 (0.00) -0.0235*** (0.00) -0.0264*** (0.00) 

Military in 2006 (dummy) 0.0170*** (0.00) 0.0110*** (0.00) -0.0121*** (0.00) -0.0157*** (0.00) 

Military in 2007 (dummy) 0.00361** (0.00) -0.0009 (0.00) -0.0363*** (0.00) -0.0444*** (0.00) 

Military in 2008 (dummy) 0.0490*** (0.00) 0.0586*** (0.00) -0.0219*** (0.00) -0.0196*** (0.00) 

Military in 2009 (dummy) 0.0431*** (0.00) 0.0464*** (0.00) -0.0219*** (0.00) -0.0270*** (0.00) 

Veteran (Separated  >2 yrs ago)  0.0257*** (0.00) 0.0307*** (0.00) -0.0292*** (0.00) -0.0273*** (0.00) 

Veteran (Separated  <2 yrs ago)  0.0257*** (0.00) 0.0137*** (0.00) -0.00314*** (0.00) -0.00181*** (0.00) 

Control variables
ǂ
 Yes 

 

Yes 

 

Yes 

 

Yes 

 State and year fixed effects Yes 

 

Yes 

 

Yes 

 

Yes 

 p-value (Pr > F) 0.000*** 

 

0.000*** 

 

0.000***    0.000*** 

 Observations 492,338,384   442,701,079   250,270,281   226,174,456   

Notes: Standard errors in parentheses.  All models are linear probability models. Significance codes: * 5% level, ** 1% level, and *** 0.1% level. 
ǂ
 I use the following control variables: 

Individual-level: age, age-squared, education level, income, female, vehicles per capita in household, years in the US, family size, family income, hours worked 

per week 

Built environment/Other: employee density of workplace & residence (workers/sq-km), population density of workplace & residence (people/sq-km), train 

density of workplace & residence (train workers/sq-km), bus density of workplace & residence (bus workers/sq-km), lives in urban environment, lives in rural 

environment, lives in a suburban environment, state-year log of avg. gasoline price 
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1.3.5 Differences between Military and Civilian Populations 

The higher rates of driving and driving alone among military members may contribute to 

a stronger peer influence among military commuters than civilian commuters because the norms 

are simply that much stronger. Three factors could explain why military individuals drive to 

work more than their civilian counterparts even after controlling for individual-level and built 

environment variables. First, while my set of built environment variables is consistent with those 

in the travel literature, it is possible that military bases have a unique set of land use 

characteristics that influence travel behavior and that I do not observe. My land use variables are 

at the PUMA-level and may lack enough geographic resolution to account for all the transit 

options and land use configurations in and around military bases. A second explanation is that 

auto-oriented individuals may self-select into the military. Third, military members may be 

conditioned to drive and drive alone more often while serving in the military.  

I cannot rule out the first explanation but I find evidence for the second or third 

explanations in the positive signs on the veteran dummy variables. Veterans are individuals who 

previously served in the military – and were therefore part of the self-selection or conditioning 

process – but who are no longer affected by land use characteristics of military bases, since 

presumably most commute to civilian jobs outside of bases. If there is, in fact, a ―conditioning 

process‖ towards greater driving and driving alone that occurs while an individual works in the 

military, then this would strengthen the magnitude of the peer influence among military workers. 

However, without information about the commute decisions of individuals before they entered 

the military, I cannot say conclusively whether a self-selection or conditioning process explains 

the higher auto-orientation. What I can conclude is that military members have stronger norms 
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for driving and driving alone after controlling for normal predictors of travel which means that 

the peer effect among the military may be stronger than the peer effect among civilians.  

 

1.4. PEER EFFECTS MODELS 

I now examine whether an individual’s decision to drive or carpool to work is influenced 

by the drive or carpool decisions of his or her workplace peers.  To determine the impact of 

workplace peers on one another’s travel decisions I consider a military-only sample from bases 

in which I have 100 or more observations.
15

  Table A1 in the Appendix describes the bases in my 

sample.   

My models for the drive and carpool decisions are similar to the respective general 

population models in the previous section except for two differences: (1) I include an 

endogenous regressor: the fraction of base workers who drive (drive models) or carpool (carpool 

models), and (2) I control for regional differences in commute behavior using base-level, rather 

than state-level, fixed effects.   

My linear probability model is: 

     
1Pr( 1) 'i o i itI n x   
    (3)

 

and my probit model is: 

     
1Pr( 1) ( ' ).i o i itI n x   

    (4)
 

The coefficient of interest is 
o , the coefficient on the fraction n  of peers who drive (or 

carpool). I instrument for the fraction n  of peers who drive (or carpool) with the average group 

demographic variables including the percentage of: American-born individuals, the recent 

                                                 
15

 The cutoff at 100 observations was chosen because we create base-level group average variables as instruments. A 

secondary selection criteria was that bases could not be located in the same PUMA as another military base since 

such an arrangement would prohibit us from uniquely identifying an individual’s workplace. In total, 58 bases fit my 

selection criteria (see appendix). 
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immigrants (within the last 0-5 years), immigrants 6-10 years ago, immigrated to U.S. greater 

than 10 years ago, born in Latin America, average age, and average family size. The 

demographic variables were found to be significant determinants of the drive and carpool 

decisions in the models in the previous section.  Average group demographic variables have been 

used in past literature as instrumental variables for peer effects models (Manski, 1993) and are 

appropriate instruments because they predict the percentage of driving or carpooling on a base 

but are unrelated to whether a given individual chooses to drive or carpool.  

The instrumental variables analogs of the linear probability model and the probit model 

are two-stage least squares and Amemiya generalized least squares, respectively. The Amemiya 

generalized least squares estimator is formed by first estimating reduced-form parameters and 

then solving for the structural parameters; this estimator is asymptotically more efficient than a 

two-stage estimator (Newey, 1987). 

   

1.4.1 Peer Effects 

Table 5 gives the first-stage regression results for the drive and carpool models. Each of 

the instruments is significant at the 0.1% level and both first-stage F-statistics are greater than 

7698. Moreover, the instruments for both models pass the Anderson underidentification test and 

the weak-instrument-robust inference test of joint significance of endogenous regressors, 

supporting the validity of my instruments. 
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TABLE 1.5:  First-Stage Regressions 

 Dependent variable is: 

 fraction who drive fraction who carpool 

   

  

Drive/No Drive Carpool/Drive Alone 

(Model 9) (Model 10) 

Coeff. 

Std. 

Err. Coeff. 

Std. 

Err. 

Instruments 

         Percent of base who is U.S.-born 0.2445*** (0.00) -0.240*** (0.00) 

     Percent of base who immigrated to U.S. 0-5 years ago 0.2166*** (0.00) -0.064*** (0.01) 

     Percent of base who immigrated to U.S. 6-10 years ago 0.3001*** (0.00) -0.115*** (0.01) 

     Percent of base who immigrated to U.S. 10+ years ago 0.225*** (0.00) -0.213*** (0.00) 

     Percent of base born in Latin America 0.1898*** (0.00) 0.0296*** (0.00) 

     Average age of base (yrs) 2.0e-4*** (0.00) -8.0e-3*** (0.00) 

     Average family size of workers on base (#) -3.0e-3 (0.00) 6.7e-3*** (0.00) 

Individual 

         Age (yrs) 2.0e-4*** (0.00) -1.1e-3*** (0.00) 

     Age-squared (yrs^2) -3.8e-6*** (0.00) 1.7e-5*** (0.00) 

     Education (10s of years) -4.0e-3*** (0.00) -1.9e-3*** (0.00) 

Family  

         Log of Family Income ($10,000) 6.0e-4*** (0.00) -4.4e-4*** (0.00) 

     Hours worked per week (100 hours) -0.021*** (0.00) -6.0e-3*** (0.00) 

     Female employed worker (dummy) -3.2e-4*** (0.00) -5.1e-4*** (0.00) 

     Family size (100s of people) -0.067*** (0.00) -0.031*** (0.00) 

     Vehicles per adult in household (number) -2.1e-4*** (0.00) -1.3e-3*** (0.00) 

     Number of children (100s) 0.073*** (0.00) 0.036*** (0.00) 

Immigration  

         Immigrated to U.S. 0-5 years ago (dummy) -6.6e-5 (0.00) -8.9e-4*** (0.00) 

     Immigrated to U.S. 5-10 years ago (dummy) -3.7e-5 (0.00) -1.7e-3*** (0.00) 

     Immigrated to U.S. >10 years ago (dummy) 7.1e-5 (0.00) -4.3e-4*** (0.00) 

Household Built Environment  

         Workers density (million workers/sq. km) 1.3e-6*** (0.00) 1.95*** (0.00) 

     Bus density (1,000 bus  workers/sq. km) -0.061*** (0.00) -0.64*** (0.00) 

     Train density (1,000 train workers/sq. km) -2.80*** (0.00) 3.90*** (0.00) 

     Lives in city center (dummy) -2.6e-3*** (0.00) -2.43e-4*** (0.00) 

     Lives in rural area (dummy) -2.6e-3*** (0.00) 4.44e-4*** (0.00) 

     Lives in suburban area (dummy) -1.8e-3*** (0.00) 7.10e-4*** (0.00) 

Workplace Built Environment  

         Worker density (million workers/sq. km) -33.0*** (0.00) 88.9e*** (0.00) 

     Bus density (1,000 bus  drivers/sq. km) 7.40*** (0.00) 22.7*** (0.00) 

     Train density (1,000 train workers/sq. km) 134.0*** (0.01) 171.0*** (0.01) 

State-Level  

         Log of avg. yearly gas price in state ($2009) -2.0e-3*** (0.00) -0.034*** (0.00) 

Base fixed effects Yes 

 

Yes 

 First-stage F-statistic  7698.96 

 

8992.97 

 First-stage Shea Partial R-squared p-value 0.000*** 

 

0.000*** 

 Anderson underidentification test p-value 0.000*** 

 

0.000*** 
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Weak-instrument-robust inference test of joint significance 

of endogenous regressions p-value 0.000***   0.000***   

p-value (Pr > F) 0.000**** 

 

0.0000**** 

 Observations, weighted 867,480   831,195   

Notes: Standard errors in parentheses.  Significance codes: * 5% level, ** 1% level, and *** 0.1% level. 
 

  

 Table 6a and 6b present the results from the IV and IV probit models using equations (3) 

and (4) above, respectively. The probit models are presented as marginal effects at the means. 

For all models, the coefficient on the endogenous regressors measuring peers’ commuting 

decisions are positive and significant, suggesting that decisions of co-workers to drive and to 

carpool do in fact influence individuals to do the same.  According to the linear probability 

model for the drive decision (Model 11), if the fraction who drive on a base increases by 0.1, the 

probability that an individual drives increases by 0.10.  According to the linear probability model 

of the carpool decision (Model 13), if the fraction who carpool on a base increases by 0.1, the 

probability that an individual carpools increases by 0.04. 

The magnitudes of the control variables also suggest that peer influence plays a fairly 

dominant role in one’s commute decisions relative to other factors traditionally associated with 

travel decisions (Models 12 and 14). For the drive/no drive decision, the most influential 

variables (listed by magnitude) are: the percentage of peers who drive to base, age, household 

income, and age-squared. For the carpool/drive alone decision, the most influential variables are 

age, age-squared, education, and percentage of peers who carpool to base.  

The existence and strength of workplace peer influence on commuting is a new finding 

within the travel literature and suggests that workplace programs that incentivize carpooling and 

non-auto modes have a positive feedback over time.   
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TABLE 1.6a:  IV and IV Probit Results for Drive/No drive Decision 

Dependent variable is probability of driving 

  Drive/No Drive Drive/No Drive 

 

IV Linear Prob. IV Probit 

 

(Model 11) (Model 12) 

  Coeff. Std. Err. Coeff. Std. Err. 

Endogenous Variable 

         Fraction who drive, by base, year 1.003*** (0.03) 7.155*** (0.54) 

Individual 

         Age (yrs) 6.69e-3*** (0.00) 0.0921*** (0.00) 

     Age-squared (yrs^2) -9.50e-05*** (0.00) -1.30e-3*** (0.00) 

     Education (10s of years) -8.45e-3*** (0.00) -0.0142*** (0.00) 

Family  

         Log of Family Income ($10,000) 6.57e-3*** (0.00) 0.0902*** (0.01) 

     Hours worked per week (100 hours) -0.019*** (0.00) -0.309*** (0.00) 

     Female employed worker (dummy) 6.17e-3*** (0.00) 0.107*** (0.01) 

     Family size (100s of people) -1.77*** (0.00) -15.9*** (0.00) 

     Vehicles per adult in household (number) 0.0122*** (0.00) 0.254*** (0.00) 

     Number of children (100s) 1.90*** (0.00) 15.20*** (0.00) 

Immigration  

         Immigrated to U.S. 0-5 years ago (dummy) -0.0319*** (0.00) -0.368*** (0.02) 

     Immigrated to U.S. 5-10 years ago (dummy) -0.0105*** (0.00) -0.191*** (0.02) 

     Immigrated to U.S. >10 years ago (dummy) 0.00928*** (0.00) 0.120*** (0.01) 

Household Built Environment  

         Workers density (million workers/sq. km) -15.70*** (0.00) -90.80*** (0.00) 

     Bus density (1,000 bus  workers/sq. km) 0.40*** (0.00) -8.10*** (0.00) 

     Train density (1,000 train workers/sq. km) 27.80*** (0.00) 177.0*** (0.01) 

     Lives in city center (dummy) 0.0289*** (0.00) 0.343*** (0.01) 

     Lives in rural area (dummy) -0.0128*** (0.00) -0.154*** (0.01) 

     Lives in suburban area (dummy) 0.00148*** (0.00) 0.0141* (0.01) 

Workplace Built Environment  

         Worker density (million workers/sq. km) 0.959 (0.00) 214.0** (0.00) 

     Bus density (1,000 bus  drivers/sq. km) 0.0422 (0.00) -9.61 (0.03) 

     Train density (1,000 train workers/sq. km) 188.0*** (0.08) -414.0 (1.73) 

State-Level  

         Log of avg. yearly gas price in state ($2009) -5.31e-3*** (0.00) 0.0179** (0.01) 

Base fixed effects Yes 

 

Yes 

 p-value (Pr > F) 0.0000**** 

 
0.0000**** 

 Observations, weighted 867,480   867,480   
Notes: Standard errors in parentheses.  The fraction on the base who drive is instrumented with the percentage of: 

American-born individuals, the recent immigrants (within the last 0-5 years), immigrants 6-10 years ago, 

immigrated to U.S. greater than 10 years ago, born in Latin America, average age, and average family size.  For the 

probit model, marginal effects are reported.  Significance codes: * 5% level, ** 1% level, and *** 0.1% level. 
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TABLE 1.6b: IV and IV Probit Results for Carpool/Drive Alone Decision 

Dependent variable is probability of carpooling 

  Carpool/Drive Alone Carpool/Drive Alone 

 

IV Linear Prob. IV Probit 

 

(Model 13) (Model 14) 

  Coeff. Std. Err. Coeff. Std. Err. 

Endogenous Variable 

         Fraction who carpool, by base, year 0.407*** (0.03) 2.788*** (0.16) 

Individual 

         Age (yrs) -0.0273*** (0.00) -0.137*** (0.00) 

     Age-squared (yrs^2) 3.44e-4** (0.00) 0.00168*** (0.00) 

     Education (10s of years) -5.44e-3** (0.00) -0.0384*** (0.00) 

Family  

         Log of Family Income ($10,000) -0.0175*** (0.00) -0.0899*** (0.00) 

     Hours worked per week (100 hours) 0.037** (0.00) 0.224*** (0.00) 

     Female employed worker (dummy) 0.0480*** (0.00) 0.272*** (0.00) 

     Family size (100s of people) 1.56*** (0.00) 8.99*** (0.00) 

     Vehicles per adult in household (number) 0.00519*** (0.00) 0.0233*** (0.00) 

     Number of children (100s) -1.12*** (0.00) -5.47*** (0.00) 

Immigration  

         Immigrated to U.S. 0-5 years ago (dummy) -0.0101*** (0.02) -0.0259* (0.02) 

     Immigrated to U.S. 5-10 years ago (dummy) 0.000244 (0.01) 0.00585 (0.01) 

     Immigrated to U.S. >10 years ago (dummy) -0.0137*** (0.01) -0.0925*** (0.01) 

Household Built Environment  

         Workers density (million workers/sq. km) 8.11** (0.00) 57.90*** (0.00) 

     Bus density (1,000 bus  workers/sq. km) -3.74** (0.00) -27.4*** (0.00) 

     Train density (1,000 train workers/sq. km) 3.51*** (0.01) 37.1*** (0.01) 

     Lives in city center (dummy) 0.00760*** (0.01) 0.0457*** (0.01) 

     Lives in rural area (dummy) 0.0229*** (0.01) 0.148*** (0.01) 

     Lives in suburban area (dummy) 0.00308*** (0.01) 0.00626 (0.01) 

Workplace Built Environment  

         Worker density (million workers/sq. km) 57.4** (0.00) -134.0*** (0.00) 

     Bus density (1,000 bus  drivers/sq. km) 13.0*** (0.00) 53.2*** (0.02) 

     Train density (1,000 train workers/sq. km) 969.0*** (0.08) 3863.0*** (0.92) 

State-Level  

         Log of avg. yearly gas price in state ($2009) -0.0210*** (0.01) -0.180*** (0.01) 

Base fixed effects Yes 

 

Yes 

 p-value (Pr > F) 0.0000**** 

 
0.0000**** 

 Observations, weighted 831,195   831,195   

Notes: Standard errors in parentheses.  The fraction on the base who carpool is instrumented with the percentage of: 

American-born individuals, the recent immigrants (within the last 0-5 years), immigrants 6-10 years ago, 

immigrated to U.S. greater than 10 years ago, born in Latin America, average age, and average family size.  For the 

probit model, marginal effects are reported.  Significance codes: * 5% level, ** 1% level, and *** 0.1% level. 
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1.4.2 Interaction Models 

How does the magnitude of the peer effect vary with different characteristics of the 

individual? I tackle this question by estimating interaction models for the drive and carpool 

decisions in which I interact the peer effect with various individual-level covariates including 

income, education level, age, number of years worked in an organization, urban household, 

number of children, and hours worked per week.  These interaction models enable us to examine 

how the peer effect varies with these covariates.  

The interaction models are identical to the linear probability models in Tables 6a and 6b 

except I interact the endogenous peers’ decision variable with the individual-level characteristic 

(e.g. fraction of workers who drive * individual i’s income).
16

 A significant coefficient on the 

endogenous interaction variable indicates that the strength of the peer effect changes with the 

given variable. For each model, I calculate the ―total average effect‖ of peers, which is the sum 

of the coefficient on the endogenous peer effect variable and the coefficient on the endogenous 

interaction variable multiplied by the mean of the interacted variable. All models pass the post-

regression weak instrument and underidentification tests.  

Table 7a presents the results of the interaction models for the drive decision.  In the drive 

models, the interactions with education level, years in service, and hours worked per week are all 

significant. For education, the sign is negative indicating that as education level increases, the 

impact of one’s peers decreases, ceteris paribus. One possible explanation is that the more 

educated an individual, the more likely he or she will make the drive/no-drive decision based on 

a set of internal reasoning rather than based on group norms.  

The interaction on the number of years in the military is positive and significant in the 

drive model, indicating that a more senior person (defined as serving at least 2 years) in the 

                                                 
16

 Each model also includes a non-interacted endogenous peer effect variable. 
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military is more affected by his or her peers in the drive to work decision than a junior person 

(serving two year or less). This is an intuitive result since I expect that the more time one spends 

in a particular workplace, all else equal, the more likely he or she is to be influenced by norms in 

that workplace.  

The hours worked per week has a negative and significant coefficient in the drive model. 

Thus, the more hours worked by an individual, the smaller the influence of his or her peers in the 

drive to work decision. However, it should be noted that when the endogenous variable and 

endogenous interaction are combined (the ―total average effect‖), the result is not significant.   

Table 7b presents the results of the interaction models for the carpool decision.  In the 

carpool models, the significant interaction variables include: age, urban household, number of 

children, and hours worked. The coefficient on the age interaction is positive, indicating that the 

older an individual, the more he or she is influenced by the carpooling decisions of his or her 

peers.   

The coefficient on the urban household interaction is positive, which may result from a 

stronger ―culture‖ of carpooling in urban areas than in a less-dense suburban or rural 

environments. Belz and Lee (2012) show that carpooling is more prevalent among urban 

households than in rural or suburban households, but do not discuss the strength of peer 

influence in the decision-making process. Owing to data limitations, I am unable to further 

explore whether residential proximity to other carpoolers leads to higher carpooling rates, but 

this would be a natural extension of this work and could help determine whether a ―critical mass‖ 

is needed to stimulate carpooling.   
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The number of children has a positive sign, indicating that individuals with more children 

are more influenced by their peers to carpool.  Finally, like the drive model, the sign on the hours 

worked coefficient is negative.  
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TABLE 1.7a:  Interaction Models for Drive/No Drive Decision 

Dependent variable is probability of driving 

Model IV IV IV IV IV IV IV 

Interaction included Ln(income) Education Age 
Nbr yrs in 

military 
Urban 

Nbr of 

Children 
Hrs 

Worked/Wk 

  (Model 13)  (Model 14) (Model 15) (Model 16) (Model 17) (Model 18) (Model 19) 

Total average effect of fraction who drive  1.187*** 1.070*** 1.197*** 1.162*** 1.203*** 1.166*** 1.11  

 
(0.29) (0.389) (0.31) (0.07) (0.05) (0.05) (0.58) 

Coefficient on fraction who drive 0.951*** 1.0727*** 1.102*** 0.960*** 1.231*** 1.222*** 2.133*** 

 
(0.22) (0.283) (0.23) (0.06) (0.04) (0.04) (0.41) 

Coefficient on interaction 0.16  -0.004*** 0.00  0.136** (0.15) (0.07) -0.020* 

 
(0.14) 0.020 (0.01) (0.02) (0.11) (0.04) (0.01) 

Mean value of interacted variable
a 1.44  13.600 30.82  1.48  0.18  0.83  51.49  

Control Variables
ǂ Yes Yes Yes Yes Yes Yes Yes 

Base Fixed Effects Yes Yes Yes Yes Yes Yes Yes 
First-stage F-statistic for fraction who drive 5250.56 5250.56 5250.56 5250.56 5250.56 5250.56 5250.56 
First-stage F-statistic for interaction variable 3856.26 2544.23 4525.65 5673.42 2604.71 1425.28 4529.58 

First-stage Shea Partial R-squared p-value 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

Anderson underidentification test p-value 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 
Weak-instrument-robust inference test of 

joint significance of endogenous regressions 

p-value 
0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

Observations, weighted 867,480 867,480 867,480 867,480 867,480 867,480 867,480 
R-squared (2nd stage) 0.069 1.069 0.068 0.068 0.066 0.068 0.064 
Notes: Standard errors in parentheses. The average effect is the coefficient on the fraction who drive plus the mean times the coefficient on the interaction 

variable.  The fraction on the base who drive and its interaction with the given covariate are instrumented with the average group demographic variables 

including the percentage of: American-born individuals, the recent immigrants (within the last 0-5 years), immigrants 6-10 years ago, immigrated to U.S. greater 

than 10 years ago, born in Latin America, average age, and average family size.  Significance codes: * 5% level, ** 1% level, and *** 0.1% level. 
ǂ
 I use the following control variables: 

Individual-level: age, age-squared, education level, income, female, vehicles per capita in household, years in the US, family size, family income, hours worked 

per week 

Built environment/Other: employee density of workplace & residence (workers/sq-km), population density of workplace & residence (people/sq-km), train 

density of workplace & residence (train workers/sq-km), bus density of workplace & residence (bus workers/sq-km), lives in urban environment, lives in rural 

environment, lives in a suburban environment, state-year log of avg. gasoline price 
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TABLE 1.7b:  Interaction Models for Carpool/Drive Alone Decision 

Dependent variable is probability of carpooling 

Model IV IV IV IV IV IV IV 

Interaction included Ln(income) Education Age 
Nbr yrs in 

military Urban 
Nbr of 

Children 
Hrs 

Worked/Wk 

  
(Model 20)  (Model 21) (Model 22) (Model 23) (Model 24) 

(Model 

25) 
(Model 26) 

Total average effect of fraction who carpool 0.456 -1.170 0.335 0.503*** 0.412*** 0.621*** 0.571 

 
(0.333) (1.158) (0.781) (0.147) (0.075) (0.144) (0.777) 

Coefficient on fraction who carpool 0.20 -4.052*** -6.091*** 0.551*** 0.316*** -0.504*** 2.505*** 

 
(0.244) 0.811  (0.559) (0.127) (0.067) (0.099) (0.563) 

Coefficient on interaction 0.180 0.3342*** 0.209*** -0.031 0.530*** 1.354*** -0.038*** 

 
(0.157) (0.061) (0.018) (0.050) (0.189) (0.127) (0.010) 

Mean value of interacted variable
a 1.440 13.600 30.814 1.486 0.182 0.831 51.458 

Control variables
ǂ Yes Yes Yes Yes Yes Yes Yes 

Base Fixed Effects Yes Yes Yes Yes Yes Yes Yes 
First-stage F-statistic for fraction who carpool 5548.87 5548.87 5548.87 5548.87 5548.87 5548.87 5548.87 
First-stage F-statistic for interaction variable 4739.48 4740.48 5036.43 10915.92 4110.69 1574.92 5310.95 
1st-stage Shea Partial R2 p-value 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 
Anderson underidentification test p-value 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 
Weak-instrument-robust inference test of joint 

significance of endogenous regressions p-

value 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 
Observations 831,195 831,195 831,195 831,195 831,195 831,195 831,195 
R-squared (2nd stage) 0.162 0.087 0.037 0.0651 0.162 0.092 0.0537 
Notes: Standard errors in parentheses. The average effect is the coefficient on the fraction who carpool plus the mean times the coefficient on the interaction 

variable.  The fraction on the base who carpool and its interaction with the given covariate are instrumented with the average group demographic variables 

including the percentage of: American-born individuals, the recent immigrants (within the last 0-5 years), immigrants 6-10 years ago, immigrated to U.S. greater 

than 10 years ago, born in Latin America, average age, and average family size.  Significance codes: * 5% level, ** 1% level, and *** 0.1% level. 
ǂ
 I use the following control variables: 

Individual-level: age, age-squared, education level, income, female, vehicles per capita in household, years in the US, family size, family income, hours worked 

per week 

Built environment/Other: employee density of workplace & residence (workers/sq-km), population density of workplace & residence (people/sq-km), train 

density of workplace & residence (train workers/sq-km), bus density of workplace & residence (bus workers/sq-km), lives in urban environment, lives in rural 

environment, lives in a suburban environment, state-year log of avg. gasoline price 
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1.4.3 Non-Linear Interaction Models 

I also examine if any covariates affect the peer effect non-linearly. In particular, I 

examine if the peer effect varies non-linearly with income and with the number of children. 

Figure 2 plots the peer effects for the drive and carpool decisions, respectively, as 

functions of income quartile.  The slope of the peer effect as a function of income is relatively 

flat for the drive model which is consistent with the insignificant coefficient on the income 

interaction in Table 7a. The peer effect in the carpool model deceases with income over the first 

three income quartiles, suggesting that low income individuals are more likely to be influenced 

by their peers to carpool than high income individuals are. In the 3
rd

 income quartile, the peer 

effect is negative which, in conjunction with the positive peer effects in the other income 

quartiles, likely contributes to the insignificant coefficient on the income interaction in Table 7b.    

 Figure 3 plots the peer effects for the drive and carpool decisions, respectively, as 

functions of the number of children.  The peer effect for the drive decision declines with the 

number of children.  The peer effect for the carpool peaks at 1 child: individuals with one child 

are more influenced by their peers to carpool than are individuals with 0, 2 or 3 children. 

Individuals with one child constitute 36% of individuals in the sample while zero-child, two-

child, and three-child individuals constitute 29%, 21%, and 12% respectively.  
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 Figure 1.2. Magnitude of peer effect coefficient by income level. 

 

Note: Dotted lines indicate the 95% confidence interval. 

 

Figure 1.3. Magnitude of peer effect coefficient by number of children in household. 

 

Note: Dotted lines indicate the 95% confidence interval. 
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1.4.4 Who Are The Strongest “Influencers?” 

Who exerts the greatest influence on others? According to Cialdini and Trost (1998), 

authority and social validation are key components of social influence.  Authority refers to 

people who have superior information and power through ―knowledge, talent, or fortune‖ 

(Cialdini and Trost, 1998, p. 170). Social validation is defined as looking to other individuals – 

often those similar to oneself – for confirmation that a given action is acceptable (Cialdini and 

Trost, 1998). 

 To examine these components of social influence, I break my sample into several sub-

groups to test which types of individuals are exerting influence and which types of individuals 

are being influenced. I use three variables associated with social status (income, age, and 

education) and one variable related to workplace seniority (number of years in the military). For 

each of these four variables, I divide individuals on each military base into two groups based on 

whether they are above or below the mean value of the respective variable.  I then examine 

whether individuals are influenced by those of higher or lower status or workplace seniority, and 

also whether individuals of the same social status or seniority influence one another.  

Based on the theoretical reasoning from Cialdini and Trost (1998), I hypothesize that the 

greatest social influence should be exerted by: (1) individuals high in social status or workplace 

seniority on individuals low in social status or workplace seniority (authority); or (2) individuals 

of the same social status or workplace seniority on one another (social validation). Further, I 

posit that (3) individuals with low social status or workplace seniority should have no effect or a 

negative effect on those with high social status or workplace seniority.  

 Table 8 presents summary statistics of the fraction who drive and the fraction who 

carpool for each sub-group used in this section. For each variable, I separate individuals into 
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those above the mean and those below the mean. For example, the high income sub-group is 

composed of individuals whose average family income is more than the mean income of $50,200 

per year.   
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TABLE 1.8:  Summary Statistics of Fraction Who Drive and Fraction Who Carpool by Sub-group 
  Drive/No Drive  Carpool/Drive Alone 

  
Fraction of subgroup who drive  Fraction of subgroup who carpool 

Subgroup Obs. Mean Std. Dev. Min Max  Mean Std. Dev. Min Max 

All individuals 1,672,448 0.962 0.063 0 1  0.103 0.079 0 1 

Higher Income 657,400 0.954 0.078 0 1  0.101 0.079 0 1 

Lower Income 1,015,048 0.966 0.051 0 1  0.105 0.079 0 1 

Higher education 666,127 0.956 0.076 0 1  0.096 0.078 0 1 

Lower education 1,006,321 0.965 0.053 0 1  0.108 0.080 0 1 

Higher age 777,001 0.958 0.070 0 1  0.098 0.076 0 1 

Lower age 895,447 0.964 0.057 0 1  0.108 0.082 0 1 

Senior (> 2 yrs) 776,907 0.962 0.059 0 1  0.104 0.072 0 1 

Junior (< 2 yrs) 578,786 0.955 0.068 0 1  0.097 0.079 0 1 

 



 

  36  

 

Table 9 shows the results of eight linear probability models where the peer effects are 

broken down by the type of the group exerting influence and the type of the individual being 

influenced.  If I divide both the group exerting influence and the individual being influenced by 

family income, the highest magnitude of influence is by high income individuals on other high 

income individuals in both the drive and carpool decisions. The high income group exerts less or 

no influence on low income individuals.  In the drive decision, as hypothesized, the low income 

group negatively influences high income individuals and low income individuals influence other 

low income individuals. 

If I examine influence by educational level, I again observe positive intragroup influence 

(e.g. high education individuals influencing other high education individuals) and a positive 

influence of the high education group on low education individuals for the carpooling decision. 

However, in contrast to my hypothesis that low status individuals should not influence high 

status individuals, I find a positive effect of the low education individuals on high education 

individuals in the drive decision. 

Disaggregating the sample by age group also shows positive intragroup influence but has 

mixed results on intergroup influence. Again, the signs and significance levels of the carpool 

models seem to better support my hypotheses than those of the drive models.  

Finally, a seniority-based metric for authority – serving greater or less than two years in 

the military – yields mixed results. The intragroup influence has the largest magnitude 

coefficients in the drive model but has a negative sign for the effects of junior personnel on 

junior personnel in the carpool model. The carpool model also has a large positive sign on the 

junior group exerting influence on the senior group – a counterintuitive finding.  
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In sum, the intragroup influence appears to be stronger and more consistent than 

intergroup influence. This suggests that, within the realm of driving and carpooling decisions, 

social validation is a stronger motivator towards conformity than authority.  

 

TABLE 1.9:  Peer Effects by Characteristics of Individuals and Their Peers 

  
Drive/No Drive Carpool/Drive Alone 

Group exerting 

influence 
Individual being 

influenced Coef. Std Error Coef. Std Error 

Higher income Higher income 1.2941*** (0.05) 0.9589*** (0.10) 
Higher income Lower income 0.0282 (0.02) 0.3300*** (0.09) 
Lower income Higher income -0.162** (0.05) -0.060 (0.07) 
Lower income Lower income 1.0497*** (0.06) 0.0959 (0.09) 

Higher education Higher education 0.8788*** (0.17) 1.2690*** (0.20) 
Higher education Lower education 0.1024 (0.09) 1.1354*** (0.11) 
Lower education Higher education 0.4464** (0.15) -0.456*** (0.13) 
Lower education Lower education 0.9389*** (0.17) 0.1648** (0.06) 

Higher age Higher age 0.8804*** (0.10) 1.0186*** (0.31) 
Higher age Lower age  0.2303*** (0.06) -0.248* (0.12) 
Lower age Higher age 0.2518*** (0.08) -0.025 (0.29) 
Lower age Lower age 0.9271*** (0.10) 1.0468*** (0.14) 

Senior Senior 0.7213*** (0.04) 0.5348** (0.19) 
Senior Junior -0.659*** (0.13) 0.2227*** (0.05) 
Junior Senior -0.031*** (0.01) 5.3157*** (0.91) 
Junior Junior 1.8455*** (0.15) -4.848*** (0.76) 

Notes: Standard errors in parentheses.  The endogenous variables are instrumented with the average group 

demographic variables including the percentage of: American-born individuals, the recent immigrants (within the 

last 0-5 years), immigrants 6-10 years ago, immigrated to U.S. greater than 10 years ago, born in Latin America, 

average age, and average family size.  Significance codes: * 5% level, ** 1% level, and *** 0.1% level. 

I use the following control variables: 

Individual-level: age, age-squared, education level, income, female, vehicles per capita in household, years in the 

US, family size, family income, hours worked per week 

Built environment/Other: employee density of workplace & residence (workers/sq-km), population density of 

workplace & residence (people/sq-km), train density of workplace & residence (train workers/sq-km), bus density of 

workplace & residence (bus workers/sq-km), lives in urban environment, lives in rural environment, lives in a 

suburban environment, state-year log of avg. gasoline price, base fixed effects 

 

 

 

1.5. CONCLUSION 

There appears to be overwhelming evidence that workplace peers influence one another’s 

work commute mode decisions on U.S. military bases. Whether this effect is true in civilian 

workplaces or in other countries is not addressed directly here, although a number of notable 
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differences in travel preference and population demographics exist between civilian and military 

commuters. Regardless, this paper is the first to show that driving and carpooling norms in the 

pool of commuters at a given worksite  influence individual commuter decisions.  

Using instruments to address the endogeneity of the decisions of one’s workplace peers, I 

find that workers are influenced by their peers in both the drive/no-drive decision and the 

carpool/drive alone decision. According to the linear probability model for the drive decision, if 

the fraction who drive on a base increases by 0.1, the probability that an individual drives 

increases by 0.10.  According to the linear probability model of the carpool decision, if the 

fraction who carpool on a base increases by 0.1, the probability that an individual carpools 

increases by 0.04. 

Among all military commuters, individuals with more years in the military service, lower 

education, and fewer hours worked per week are most highly influenced by peers in the drive/no-

drive decision. For the carpool/drive-alone decision, the peer influence is strongest among older 

individuals with high education, who work fewer hours per week, and who live in urban areas.   

I also explore whether conventional measures of social status and seniority (i.e.  income, 

education, age, number of years in the military) predict who exerts the strongest influence on 

others.  I find that individuals of the same level of social status or seniority exert the strongest 

influence on each other and find less evidence that higher status individuals exert influence on 

lower status individuals. This suggests that, within the realm of driving and carpooling decisions, 

social validation is a stronger motivator towards conformity than authority. 

 In the past 30 years, a number of innovative workplace programs have been implemented 

to encourage pro-environmental behavior among workers (Carrico and Riemer, 2011). Case 

studies and empirical experiments that look at shifting commute modes is a subset of this 
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literature and focus on the role of parking charges, workplace training, carpooling incentives, and 

public transit subsidies (Cambridge Systematics, 1994; Cairns et al., 2010). Cairns et al. (2010) 

show that reductions in driving of up to 18% have been observed in well-organized commute 

programs in the UK. My research suggests that once these programs shift the norms at a 

workplace towards carpooling or non-auto modes, there will be a positive feedback because of 

the peer effects.  

 There are two possible mechanisms that could explain why intragroup influences are 

stronger and more consistent than intergroup influence.  First, individuals within the same social 

group are better able to educate one another because they are seen as more trustworthy and can 

better capture the attention of those in the same group than a superior (Buller et al., 2007). 

Second, according to Festinger’s (1954) Theory of Social Comparison, when objective evidence 

is not present, I use similar others for the basis of comparison. It follows that – at least in some 

domains -- injunctive and descriptive norm transmission occurs most strongly within similar 

social groups than from higher status to lower status groups.     

 Trips to and from the workplace account for 27% of vehicle miles travelled (VMT) in 

light duty vehicles in the United States (FHWA, 2011). Our ability to shift workers towards non-

auto modes rests, in part, in understanding which groups of workers most strongly influence 

others and, similarly, which groups are most influenced by others. Extension of this work to 

civilian workplaces is a logical next research direction. Additionally, greater insight into the 

social mechanisms of workplace peer influence on commuting behavior could be achieved 

through controlled experiments among co-workers. In particular, the success of workplace 

interventions may rest on research that explores which individuals or subgroups exert the 

greatest influence on others.     
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APPENDIX FOR ESSAY ONE 

 

Table 1.A1: Military Bases in Sample  

Base State Observations 
Area of Base  

(sq. km) 
Workers on Base 

(#) 

Maxwell Gunter AL 231 12 4,606 

Fort Rucker AL 298 31 7,428 

Little Rock Air Force Base  AR 296 294 7,257 

MC Air Station Yuma AZ 236 140 4,049 

Coronado North Island SDNAVSTA Point Loma CA 1845 2,684 51,435 

Pendleton SDMCTC CA 1182 102 52,497 

Travis Air Force Base  CA 294 369 7,676 

Peterson Schriver CO 390 592 8,199 

Fort Carson CO 505 37 20,183 

Jacksonvill Mayport FL 788 835 23,000 

MacDill Air Force Base  FL 211 312 7,125 

Tyndall Air Force Base  FL 215 42 4,657 

Naval Submarine Base Kings Bay GA 231 97 5,637 

Robins Air Force Base  GA 210 663 18,206 

Fort Benning GA 215 44 31,698 

Fort Gordon GA 236 72 16,160 

Naval Station Pearl Harbor HI 571 682 19,892 

Hickam Air Force Base  HI 303 813 8,309 

Schofield Shafter HI 561 298 19,517 

Fort Riley KS 303 53 16,653 

Fort Campbell KT 533 204 31,809 

Fort Knox KT 320 42 18,423 

Fort Polk LA 296 25 10,319 
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Andrews Air Force Base  MD 219 410 8,294 

Offutt Air Force Base  NE 218 988 7,646 

Nellis Air Force Base  NV 397 411 8,674 

McGuire Air Force Base  NJ 254 493 7,185 

Fort Drum NY 463 45 19,378 

Pope Air Force Base  NC 205 3,897 3,362 

Seymour Johnson Air Force Base  NC 228 362 4,731 

Fort Bragg NC 1064 90 55,501 

MCAS Cherry Point NC 220 195 10,387 

MCB Camp Lejune NC 925 14 48,210 

Wright-Patterson Air Force Base  OH 257 911 14,434 

Beaufort Parris Island SC 216 122 6,743 

Dyess Air Force Base  TX 210 429 5,427 

Lackland Randoph TX 786 1,633 22,063 

Fort Sam Houston TX 311 1,530 19,735 

Fort Bliss TX 335 27 21,626 

Fort Hood TX 1356 66 55,834 

Naval Station  Norfolk VA 1646 3,593 52,101 

Little Creek Oceana VA 758 1,891 22,360 

Portsmith Hospital VA 286 13,609 6,063 

Langley Air Force Base  VA 370 757 11,559 

Fort Myer VA 290 2,387 2,349 

Naval Base Kitsap Bremerton WA 467 675 21,364 

Fort Lewis WA 623 100 34,207 

Sum 
 

 21,630  42,333        863,224  

Average Size 
 

460 901 18366 

Notes: All bases have at least 100 observations. Average number of observations per base is 460. Average size of base is 901 sq. km 

and 18,366 personnel. 
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TABLE 1.A2: Two Sample t-Tests of Veterans and Civilian Worker Populations (2000, 2006-2009 ACS) 

 

Civilian Workers 
n =9,860,327 (591,899,750) 

 Veteran Workers 
n = 953,079 (47,124,493 ) 

Sig Sample size (weighted) 

  Mean Std. Dev. Min Max Mean 

Std. 

Dev. Min Max 

Commute  

      

  

      Drive to work (dummy)  

          [alternatives are bus, train, ferry, taxi, walk, cycle,  

           work at home, other] 

0.89 0.31 0 1 0.91 0.28 0 1 *** 

     Carpool (dummy) 

          [alternative is to drive alone] 
0.20 0.30 0 1 0.10 0.30 0 1 *** 

Socio-economic / Demographic 
      

0 0 
 

      Age (years)  39.39 12.19 17 61 46.41 10.47 17 61 *** 

      Education level (years) 13.50 2.54 4 21 13.50 2.02 4 21 *** 

Family 
      

0 0 
 

      Family income ($10,000) 6.65 6.06 -3.1 137 6.89 5.58 -3.1 137 *** 

      Hours worked per week (hours) 39.90 11.89 1 99 43.73 11.08 1 99 *** 

      Female employed worker (dummy) 0.10 0.31 0 1 1.09 0.29 0 1 *** 

      Family size (number) 2.69 1.49 1 31 2.68 1.43 1 21 *** 

      Vehicles per adult in household (number) 1.25 0.69 0.05 6 1.30 0.66 0.08 6 *** 

      Number of children (number) 0.56 0.93 0 9 0.79 1.08 0 9 *** 

Immigration 
      

0 0 
 

      Immigrated to US 0-5 years ago (dummy) 0.02 0.13 0 1 0.003 0.05 0 1 *** 

      Immigrated to US 5-10 years ago (dummy) 0.02 0.15 0 1 0.003 0.05 0 1 *** 

      Immigrated to US >10 years ago (dummy) 0.08 0.30 0 1 0.05 0.21 0 1 *** 

Notes: For each variable, a two-sample t-test was conducted to compare the military population with the non-military population.  The ―Sig‖ column reports the 

significance levels from the test.  .Significance codes: * 5% level, ** 1% level, and *** 0.1% level. 
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TABLE 1.A3: Two Sample t-Tests of Veterans and Civilian Built Environments (2000, 

2006-2009 ACS) 

 
Civilian Workers 

n =9,860,327 (591,899,750) 

 Veteran Workers 
n = 953,079 (47,124,493 ) 

 

 

Sig 

Variable Mean 

Std 

Dev. Min Max Mean 

Std 

Dev. Min Max 

 
Residential PUMA  

      

  

      Employment density 

(workers/sq. km) 1,755 6399 0.2 156,495 685 1132. 1.56 17 *** 

     Bus density (bus 

workers/sq. km) 7.1 19.81 0 317 2.225 3.635 0.01 82 *** 

     Train density (train 

workers/sq. km) 0.29 1.56 0 25 0.05 0.28 0 6.0 *** 

     Lives in city center 

(dummy) 0.15 0.36 0 1 0.18 0.38 0 1 *** 

     Lives in rural area 

(dummy) 0.16 0.34 0 1 0.11 0.31 0 1 *** 

     Lives in suburban area 

(dummy) 0.35 0.44 0 1 0.24 0.42 0 1 *** 

     Lives in metropolitan area, 

land use type  not specified 

(dummy) 

0.34 0.47 0 1 0.46 0.49 0 1 

*** 

Workplace PUMA  

              Employment density 

(workers/sq. km) 3,360 15,135 0.2 156,495 872 168 16.2 12 *** 

     Bus density (bus 

workers/sq. km) 10.4 33.67 0 317 2.7 4.42 0.05 22 *** 

     Train density (train 

workers/sq. km) 0.52 2.67 0 25 0.08 0.25 0 0.9 *** 

Notes: For each variable, a two-sample t-test was conducted to compare the military population with the non-

military population.  The ―Sig‖ column reports the significance levels from the test.  Significance codes: * 5% level, 

** 1% level, and *** 0.1% level. 
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ESSAY TWO 

Short-Run Effects of Rapid Employment Growth on Travel Time to Work:  

An Empirical Analysis using Military Troop Movements 

 

 

2.1  INTRODUCTION 

Employment growth is a common public policy goal, but it can lead to a number of 

unwanted environmental, social, and economic costs – particularly in high growth communities – 

due to its impact on peak-hour traffic. Some have shown that traffic congestion is the number 

one concern of individuals in rapidly growing areas in the U.S., often ranked higher than crime, 

school over-crowding, and housing shortages (Cervero, 1989; NJ, 2005; GAO, 2009). 

Congestion is undesirable because it discourages future economic growth (Hymel, 2009; Sweet, 

2011), increases vehicular emissions, increases fuel expenses, decreases economies of 

agglomeration, heightens the psychological burden of travel, creates a need for more emergency 

services, and imposes an opportunity cost on time (Downs, 1992; Downs, 2004). Over the past 

three decades, employment growth rates (measured in the annual percentage change in the 

number of employed individuals per square kilometer) have averaged 1.4% per year in the U.S.; 

some high growth communities like the city of Las Vegas in the 1990s or Atlanta in the 2000s 

reached employment growth rates of over 10% per year (Ruggles et al., 2012). Anecdotal 

evidence suggests that rapid employment growth and congestion are linked. This paper attempts 

to measure the strength of this relationship.  

Here, travel time is used (rather than a congestion index) to measure the impact of 

employment growth because it allows the use of person-level data. Additionally, despite being a 

simple concept in practice, traffic congestion is difficult to measure because of its heterogeneous 
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nature across space and time (Downs, 2004). The most well-known measure of congestion is the 

Travel Time Index developed by the Texas Transportation Institute which is the travel time of a 

certain route during peak-hour traffic divided by the travel time in free-flow traffic. Some 

organizations have criticized TTI’s congestion index because of its inability to measure 

congestion on all routes and because it fails to account for certain travel demand management 

strategies like ramp metering and advanced signaling (Downs, 2004).  

Travel time is a measure of both the speed (i.e. congestion) and distance of travel. In the 

short run, the employment growth forecasted by transportation planners often differs from actual 

growth leading to inaccurate travel models (Rodier et al., 2002), mismatches between 

infrastructure supply and demand, and sometimes higher levels of traffic congestion. In the 

longer run, after infrastructure has time to adjust for example through the construction of new 

roads, growth affects the speed and distance of travel by re-organizing relative locations of jobs 

and housing (Gordon, 1989). Whether this re-organization increases or decreases travel times 

depends on the specific spatial makeup of the region. The focus of this paper is on the short-run, 

congestion-related effects of employment growth, not the longer-run, jobs-housing distance 

effect. 

A number of well-studied factors, other than employment growth, also affect travel times 

to work. These include micro-, congestion-related factors like inclement weather, traffic 

accidents, special events, and road construction as well as macro factors which affect congestion 

or distance of travel like absolute employment level (larger metropolitan areas tend to have 

higher travel times); infrastructure expansion/contraction; vehicle ownership; travel preferences 

(e.g. mode shifts); geo-demographics; number of two-worker households; and the spatial 

structure of the region (FWA, 2012; Downs, 2004). Additionally, any factor that affects traffic 
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congestion will be dampened by the ―triple convergence‖ in which commuters re-adjust to a new 

steady-state by switching routes, modes, and departure times (Downs, 1992; Choo and 

Mokhtarian, 2008).  

Traffic congestion has been described as a ―creeping crisis‖ because so many of the 

macro factors listed above evolve over extremely long timeframes (Downs, 2004). For most 

factors, this long timeframe means transportation planners have sufficient time to react with 

effective anti-congestion measures. However, fluctuations in employment can occur at a rapid 

pace, making the implementation of anti-congestion measures extremely difficult.
17

  

 Measuring the effect of rapid employment growth on travel time requires separating out 

these many factors and isolating the impact of employment growth. Most notably, a simultaneity 

problem arises because an increase in congestion reduces the attractiveness of a community to 

potential new firms which, in turn, reduces the number of future commuters using the 

transportation network (Hymel, 2009; Sweet, 2011). Potential new residents and businesses are 

incentivized to either locate on the outskirts of the city or in another city altogether (Downs, 

1992). A second endogeneity problem stems from omitted variables (such as transportation 

infrastructure) that are related to both employment growth and travel time. Many congestion 

researchers have suggested that higher growth is associated with worsening traffic but have not 

empirically estimated the relationship or dealt with the endogeneity problems (Freilich and 

White, 1991; Downs, 2004).  

This paper examines how rapid increases in regional employment affect travel time to 

work by exploiting exogenous variation resulting from movements of military troops during the 

2005 Base Realignment and Closure (BRAC) process to address the endogeneity of employment 

                                                 
17 There is also empirical support for the fundamental law of road congestion, which states that even if transportation 
planners increased the provision of roads and transportation infrastructure, this is unlikely to relieve congestion on these 
roads (Duranton and Turner, 2011). 
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growth. The BRAC process provides a convenient quasi-experimental framework to measure the 

short-term, congestion-related effects of employment growth on travel times because it occurred 

exogenous to the normal transportation planning process
18

. I only consider bases and 

communities that received troops in the 2005 BRAC, and briefly discuss the impact on bases that 

were closed. I conduct two separate analyses to measure the short-term, congestion-related 

effects of employment growth on travel time to work. The first uses difference-in-difference 

(DD) and difference-in-difference-in-difference (DDD) methods in which travel times for 

BRAC-affected individuals are compared to travel times for non-BRAC-affected individuals 

both before and after the 2005 BRAC. This is done for both a military-only subgroup and a 

larger, civilian and military sub-group. In the second analysis, I use an instrument variable (IV) 

model in which I instrument for regional employment density growth using the number of 

individuals gained in the 2005 BRAC. The number of troops gained for each area ranges from 

1,200 troops to 28,000 troops over the five-year period and corresponds to annual growth rates in 

employment density (in workers per square kilometer) of 0.01-7.0%. The IV method enables 

measurement of a causal relationship between employment density growth and travel time. 

Results are quite robust – each additional commuter added to the network per square kilometer 

adds 0.0032-0.055 additional minutes of travel for all other commuters in the short run.  

A better understanding of the relationship between employment growth and travel times 

would help policymakers develop effective anti-congestion growth measures. Additionally, such 

an understanding would assist travel modelers evaluate acceptable tolerances of errors between 

the predicted and actual growth in their transportation models. At a more specific level, this 

                                                 
18

 The simultaneity and omitted variable endogeneity problems are addressed by these exogenous troop movements. 
However, as explained below, one additional endogeneity problem persists: the selection criteria used by the Department 
of Defense to choose bases for the 2005 BRAC included consideration of community transportation infrastructure. 
However, this likely results in dampening, not strengthening, the effect measured here.  
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paper contributes to our understanding of how military troop movements affect communities 

around military bases. Traffic congestion is a major concern near military bases (Norfolk, 2007; 

NAS 2012) and no academic study has looked at how the movements of troops – either from 

base closures or from routine deployment cycles – affect a region’s transportation network. 

Major fluctuations in the number of troops at domestic bases are expected in the next decade 

because of: 1) reductions to the Department of Defense’s budget, 2) the return of many of troops 

from foreign bases, and 3) another round of base closures expected in 2015. 

 

2.2 EXOGENEITY OF THE 2005 BRAC  

Here, I address potential endogeneity problems in measuring the impact of employment growth 

on travel time. As discussed above, a simultaneity problem would exist if the travel time had an 

influence on employment growth. Omitted variable problems would exist if there were factors 

related to both the movement of troops and to changes in travel time. I identify two potential 

omitted variable problems: 1) the BRAC decisions could be based, at least to some degree, on 

the existing transportation infrastructure and 2) BRAC-affected communities may have taken 

pre-emptive or concurrent action to upgrade or expand their transportation infrastructure before 

or during the movement of troops. I first discuss the omitted variable problems then the 

simultaneity problem.  

To contextualize the discussion, a brief history of the BRAC process and the 2005 BRAC 

is given. In the 2005 BRAC, the Department of Defense (DoD) closed 29 bases and relocated 

123,000 troops to 57 other bases in a process known as Base Realignment and Closure (BRAC). 

These 123,000 troops relocated over a relatively short period (between 2006 and 2011). Since the 

end of the Cold War, there have been five rounds of base closures (1989, 1991, 1993, 1995, and 
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2005) with the primary goal of reducing the DoD physical infrastructure budget and improving 

the military’s strategic agility. Past rounds of BRAC have closed between 17 and 33 bases and 

the next round is tentatively scheduled for 2015. 

 

2.2.1 Omitted Variable Problems  

As in past rounds of BRAC, the decision for which bases to include/exclude in the round 

of closures in the 2005 BRAC was a mix of political, budgetary, and strategic interests (Beaulier 

et al., 2011). The first major step in the BRAC process was in May, 2005 when the Secretary of 

Defense gave the list of recommendations to the BRAC Commission – a group of nine high 

ranking political and military figures appointed by the President to oversee the process. Of these 

recommendations, 86% were eventually approved by the Commission and authorized by the 

President (Beaulier et al., 2011). The DoD used a set of eight criterion to rank potential bases 

(DoD, 2005). Four criteria relate to how a closing/realignment will add to the ability of the 

military to accomplish its mission, one relates to the costs and savings of a to the military, 

another to the environmental impact of a closure or realignment, and another to the economic 

impact on existing and ―receiving‖ communities (communities that gain troops). The final 

criterion – impact on community infrastructure – is germane to this study. It considers, ―the 

ability of the infrastructure of both the existing and potential receiving communities to support 

forces, missions, and personnel (p. 333, DoD, 2005).‖  Specifically, the infrastructure 

considerations include transportation, utilities, schools, employment, medical providers, housing 

availability, and crime.  

Thus, the existing transportation system of receiving bases is, at least to some degree, 

related to the decision to place troops at a base. A logical consequence is that communities that 
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received troops in the 2005 BRAC were larger and had better transportation infrastructure than a 

randomly chosen military community. However, it should be noted that transportation 

infrastructure was just one of several factors considered in the movement of troops and was not 

the sole driver in the selection of one receiving base versus another.  Furthermore – and more 

importantly -- if BRAC communities that received new troops were, on the whole, more able to 

absorb new commuters, the magnitude of the effect measured here – the impact of growth on 

travel time to work -- would be dampened. Thus, our reported coefficients may be 

underestimated.  

An omitted variable problem could also exist if communities receiving new troops took 

action to improve transportation infrastructure before or during the movement of troops began. I 

think this effect is small because of the condensed timing of events in the 2005 BRAC process. 

Re-locations of troops in the 2005 BRAC were to begin in January 2006 and finish by 

September, 2011. As shown in Table 2, not until the spring of 2005 did the Department of 

Defense submit a list of bases they recommended for closing. Even if a base was on a list, 

however, did not mean it was guaranteed to be closed. Media reports from the summer of 2005 

indicate real estate investors were hesitant to make real estate transactions until the final 

recommendations were made in September 2005 (Hedgepeth, 2005). Similarly, action by 

transportation planners would not have begun until November, 2005 when the President 

approved the final list of base realignments. Thus, planners had a minimum of three months to 

begin planning for the first troop movements.  

 

Table 2.2: Timeline of 2005 BRAC Process 

 

Date 

 

Action 

Dec. 28, 2001 Congress authorizes DoD to explore options for a 2005 BRAC 
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Mar. 23 , 2004 DoD provides troop inventories of all bases to congress 

Apr. 1, 2005 Congress appoints 8-member BRAC commission to oversee BRAC process 

May 16, 2005 Secretary of Defense submits recommendations of base closures to BRAC 

commission  

Sept. 8, 2005 BRAC commission provides recommendations for realignments to congress 

Nov. 7, 2005 

Jan. 1, 2006 

President approves BRAC base realignment list 

Troop relocations begin 

Sept. 30, 2011 Deadline for completion of troop movements 

 

Typically, detailed traffic studies are needed to justify any major transportation 

infrastructure expansion. These studies are followed by a planning and design phase and then by 

public discussion. Finally, permitting and construction often takes more than a year unless public 

safety is a concern. Infrastructure capacity expansion projects are listed on the Metropolitan 

Planning Organization’s Long-Range Transportation Plan which has a planning horizon of 20 

years. 

A National Academies of Science (2011) report on the 2005 BRAC states that: ―The 

problems for state and local jurisdictions in BRAC cases are attributable to the rapid pace of 

traffic growth on heavily used facilities….The normal length of time for development of 

highway and transit projects – from required planning and environmental processes all the way 

through construction – is, at best, nine years and usually 15 to 20 years‖ (p. 7, NAS, 2011). The 

NAS report concludes that the BRAC timeline gave insufficient opportunity for receiving 

communities to properly conduct transportation planning. 

The Washington DC area – a region with numerous BRAC-affected bases – provides an 

example of the duration of infrastructure improvements. Closely following the final list of base 

realignments, the Washington DC Metropolitan Planning Organization announced plans to 

expand I-375 to help facilitate the additional troops at Fort Meade, Maryland. By the deadline for 

completion of the BRAC process in September, 2011, the additional lanes of highway still had 
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not been added (Washington Post, 2011). Furthermore, in 2011 in response to public criticism 

towards the BRAC-related traffic congestion, the head of the Washington DC Metropolitan 

Planning Organization exclaimed "We just don't have the resources to add capacity when they 

[US Congress] just drop these things [BRAC] out of the sky," (Ron Kirby, 2011). 

 

2.2.2 Simultaneity Problems 

I feel the 2005 BRAC is free from potential simultaneity problems because of the nature 

and timing of the BRAC process. The 2005 BRAC occurred as a result of an exogenous, top-

down governmental requirement, not as part of a normal employer location decision. In other 

words, the government did not adjust the number of troops it sent to an area because of 

increasing levels of congestion. Rather the relationship is unidirectional – congestion increases 

as more troops move into an area.  

A simultaneity problem could also exist if civilian firms changed their location decision 

because of a community’s traffic congestion. Hymel (2009) uses a time series analysis of data 

from Los Angeles, California to show the effect of traffic-related feedback on employment 

growth. However, he also shows that the effect is lagged by at least 10 years (i.e. increased 

traffic congestion dampened employment growth in an area after 10 years). Since I measure the 

short-run impact of employment growth on traffic congestion over a 6-year period, this feedback 

is not a problem.  

 I acknowledge there could also be short-run positive economic feedback between BRAC 

troop movements and employment levels, whereby the additional troops in a community attract 

new employment – particularly retail and service jobs. This would inflate the effect observed 

here because I would be underestimating the number of new employees in a community. 
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However, this effect is likely lagged as well, though probably less than 10 years
19

. My main 

effect in this study is demonstrated in the first year of BRAC (2006) suggesting that the effect 

exists despite these economic feedbacks. 

 

2.3 DATA 

Using the US military to measure the relationship between employment growth shocks and travel 

time has a number of benefits. First, the Department of Defense maintains well-kept records on 

troop levels at its bases. This allows tracking the exact number of employees who commute to 

each base in each year. Also, the U.S. military is relatively homogenous between bases in its 

demographic composition meaning BRAC-affected bases gain or lose similar distributions of 

personnel between bases. Military bases exist in a geographically diverse set of cities and towns 

allowing the examination of the effect of employment growth shocks on different parts of the 

country. 

There are also disadvantages to using a population of military for this analysis. First, a 

number of important differences exist between commuting to a military base and commuting to 

an average workplace. According to 2000-2010 census data, military bases reach peak traffic at 

7:45 in the morning and 4:32 in the afternoon while the civilian traffic is at 8:32am and 5:47pm 

(Ruggles et al., 2012). Therefore, military members commute at slightly off-peak times which 

would likely lessen a change in travel time due to BRAC. Military commuters also have fewer 

alternatives to driving than civilians because of lack of public transit, no option to telecommute, 

and often low density built environment on base
20

. Military also generally have a greater 

preference for driving to work than their civilian counterparts -- 94% of military commute by 

                                                 
19

 We are unaware of any literature that estimates the lag of this effect. 
20 Data on 85 domestic military bases from DoD (2011) was collected. Military bases have a range of different land use 
and transit availability.  
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auto while 89% of civilians commute by auto (Ruggles et al., 2012). A higher drive-to-work rate 

could have an amplification effect on traffic congestion in the face of employment growth. Also, 

military commuters must pass through security gates on their way to work. The impact of these 

gates is not quantified here, although the gates likely amplify the travel delay in congested 

regions (FHWA, 2004). To partially address the drawbacks of using a military population, the 

effects of employment growth on travel time to work for both the military population as well as 

the civilian population who work in areas adjacent to the military bases are analyzed. 

For this study, I use the 16 bases and communities whose transportation systems were 

deemed highly affected by the 2005 BRAC according to a later Government Accountability 

Office (2009) study (Figure 1). Other bases that gained troops in the 2005 BRAC are not 

considered because of limitations in the collection of data.  

 

Figure 2.1: Domestic military bases used in this study (OEA, 2012) 
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I use person-level, repeated cross-section data from the 2000 decennial census and the 

2005-2010 American Community Surveys (ACS), available through the University of 

Minnesota’s IPUMS website (Ruggles et al., 2010). The years 2001-2004 were the first years of 

the ACS and are omitted here because they do not include a complete set of variables. One 

limitation of this dataset is that the geographic location of an individual’s residence and 

workplace are only known within regions containing approximately 100,000 people (called 

PUMAs). However, for individuals in the military, a combination of their service affiliation (e.g. 

Air Force, Army, etc.) and their workplace region allows assignment of that individual to a 

specific military base. For example, individual XX is known to work on Fort Meade, Maryland 

and live in PUMA YY. This paper only considers military individuals who are commuting from 

private houses or apartment buildings off-base and omits those who live on-base in barracks or 

on ships. Data on the number of troops gained by each community come from Table 2 of GAO 

(2009). The weighted sample sizes used in models in this paper are extremely large, ranging 

from 265,161 to 29.2 million observations.  

Table 1 shows summary statistics of the military BRAC population and the US general 

population for all variables used in the analysis. Summary statistics for all subgroups considered 

in the DD(D) and IV analyses are available in table A-1 of the Appendix.  

 

 
Table 2.1: Summary statistics of treatment and reference groups used in this analysis.   

 

 

 

 

Military in 

BRAC-affected 

Areas  
US Average 

Variable Min Max Mean (std error) Mean (std error)1  

Commute Travel Time 2000-2005 0 188 20.43 (16.16) 23.81 (23.17) 

Commute Travel Time 2006-2010 0 188 22.52 (17.32) 23.58 (22.13) 

Worker density (workers/sq-km)  5.66 193.3 770.2 (39.20) 2040.3 (497.40) 

Age*Age   289 3721 1,037 (553.28) 1,852 (1169.63) 

Education  0 16 7.61 (1.82) 7.36 (2.31) 

Family members  0 1 2.90 (1.49) 2.84 (1.60) 
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Female  0 1 0.14 (0.35) 0.47 (0.50) 

Family income ($100K)  -0.2 17.21 59,915 (39,919) 165,314 (923,530)
1 

Immigration status  0 1 0.10 (0.29) 0.17 (0.37) 

Num. riders in car  0 9 1.08 (0.52) 0.99 (0.70) 

Hours worked  0 99 53.23 (14.50) 39.46 (12.50) 

Vehicles per family member  0 6 1.15 (0.61) 1.20 (0.72) 

Married  0 1 0.71 (0.45) 0.53 (0.50) 

Population density (people/sq-km)  11.2 340.8 86.70 (70.90) 402.60 (842.10) 

Lives in rural area  0.0 1 0.16 (0.36) 0.15 (0.36) 

Lives in urban area  0 1 0.13 (0.34) 0.15 (0.36) 

Train density (train operators/sq-km)  0 0.36 0.015 (0.043) 0.32 (1.55) 

Bus density (bus operators/sq-km)  0.0 0.67 0.047 (0.090) 0.91 (3.62) 

Sample Size unweighted (weighted) 6,093 (631,802) 9.60E6 (9.81E8) 
1
 All employed people between 17-61 years old. 

2
 Family income should not be confused with per capita income which is much lower for the US. Family income 

refers to all pre-taxed income by one’s family and is likely skewed upwards by high income individuals.  

 

 

2.4 DIFFERENCE-IN-DIFFEREN (-IN-DIFFERENCE) ESTIMATION  

I use both difference-in-difference (DD) and difference-in-difference-in-difference (DDD) 

models with geographic and year fixed effects and a vector of control variables to explore the 

relationship between employment growth shocks and change in travel time. DD(D) estimations 

measure the impact of an intervention or policy by comparing the treated group with one (or two 

in the case of DDD) control group(s) both before the policy and after the policy.   I estimate six 

different DD(D) models, as described below.  In all models the policy I consider is the 2005 

BRAC. 

In the first DD model (DD-1), the treatment group consists of military personnel in the 

BRAC communities and the control group consists of civilians in the BRAC communities. Using 

Figure 2 as an example, DD-1 would compare the military members who commute to the 

BRAC-affected Fort Meade (and the 15 other BRAC-affected bases) with civilians who work in 

the same BRAC-affected PUMA as Fort Meade, represented by dark grey region surrounding 

Fort Meade (along with the civilians in the 15 other BRAC-affected PUMAs). A dummy 

variable is used to distinguish between the pre-BRAC period (2000 and 2005) and post-BRAC 



 

  60  

 

period (2006-2010). The advantage of the control group in DD-1 is they share the same 

geographic area as the BRAC-affected military members, and therefore have similar land-use 

compositions and transportation infrastructure. However, the disadvantage of this treatment 

group is that these civilians are also affected by increased traffic congestion caused by the troop 

re-locations since they work in the vicinity of a BRAC-affected base. If this is true, however, it 

would mean a significant effect would be more difficult to detect. The second disadvantage is 

that, as civilians, this control group may not be exposed to policies, traffic regulations, or 

infrastructure specific to military bases.  

The ensure that the control group is not also affected by increased traffic congestion 

caused by the troop re-locations, the DD-2 model uses as it control group military individuals on 

non-BRAC affected bases. Again with Figure 2 as an example, DD-2 compares military travel 

time of workers on Fort Meade (and 15 other treatment bases) with military workers at Fort AP 

Hill (and 37 non-BRAC-affected bases total). The advantage of this controls group is that it 

controls for military-specific factors that affected commute travel in the years 2000-2010. The 

disadvantage of this control group is that these individuals may be influenced by different set of 

city-level factors such as land-use, weather, transit availability, etc. since these bases are located 

in other regions of the country.  
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Figure 2.2.  Examples of treatment and comparison groups in DD(D) models near Washington 

D.C. Military bases shown in red. Fort Meade gained 28,000 new workers as a result of the 2005 

BRAC. Fort A.P. Hill neither gained nor lost workers in the BRAC. 

 

 

 

Since both DD-1 and DD-2 have advantages and disadvantages, a third model (DDD-1) 

is estimated which uses the control groups from both models.   This model differences out both 

changes in travel time experienced by civilians in the BRAC communities as well as changes in 

travel time experienced by military individuals on non-BRAC affected bases.  It thus controls for 

factors that affect both military and non-military members in the same PUMAs as well as factors 

affecting military members on all bases, allowing us to identify the effect of the BRAC on the 

travel time of military members on BRAC-affected bases. 

I also estimate effect of BRAC on the travel time for all commuters (both civilians and 

military) in BRAC-affected PUMAs in order to quantify the broader impacts of regional growth. 

In DD-3, my treatment group consists of military and civilian commuters in BRAC-affected 



 

  62  

 

regions and my control group consists of military and civilian commuters in adjacent PUMAs (in 

Figure 2, this group works in the ―adjacent‖ PUMA). Like DD-1, the hope with DD-3 is that 

choosing reference groups that are geographically adjacent to BRAC-affected PUMAs controls 

for built environment variables. However, there are certainly a number of important variables 

that might affect one group but not the other. DD-4 uses a similar control group as DD-2 (the 

non-BRAC-affected PUMAs) but counts all civilians rather than just the military commuters (in 

Figure 2, this group is in the ―non-BRAC PUMA‖). 

A DDD-2 model is also estimated in which the control group consists of military and 

civilian commuters in BRAC-regions and the treatment groups consist of the military and 

civilians in adjacent PUMAs as well as the military and civilians in non-BRAC-affected PUMAs 

that have military bases.   This model differences out both changes in travel time experienced by 

individuals in adjacent communities as well as changes in travel time experienced by individuals 

on non-BRAC affected PUMAs that have military bases.  It thus controls for factors that affect 

both the local area as well as factors affecting all bases, allowing us to identify the effect of the 

BRAC on the travel time of individuals, both civilian and military, in PUMAs with BRAC-

affected bases. 

Table 3 below summarizes the six models.  Summary statistics of the six DD(D) modes 

are provided in the Appendix.  

 

Table 2.3: Descriptions of DD(D) models  

 

Model Population of 

Interest 

Description of Model 

DD-1 Military only Treatment group works at BRAC-affected bases and are military. 

Control group works in same geographic region (i.e. PUMA) as 

BRAC-affected base but does not work onbase and is civilian. 

DD-2 Military only Treatment group works at BRAC-affected bases. Control group 

works at unaffected bases and are military members. 
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DDD-1 Military only Treatment group works at BRAC-affected bases. Two control 

groups are used: civilians who work in same geographic region 

(i.e. PUMA) as BRAC-affected base and military who work at 

unaffected bases. 

DD-3 Civilians + 

Military 

Treatment groups works in BRAC-affected PUMAs. Control 

group works at non-BRAC-affected PUMAs that have military 

bases.  

DD-4 Civilians + 

Military 

Treatment groups works in BRAC-affected PUMAs. Control 

group works at non-BRAC-affected PUMAs that have military 

bases.  

DDD-2 Civilians + 

Military 

Treatment groups works in BRAC-affected PUMAs. Two 

control groups are used: those who work at non-BRAC-affected 

PUMAs that have military bases and those who work in adjacent 

PUMAs. 

 

 

The DD models are given by:  

 

                                                                ,        (1) 

 

where       is travel time of individual i in PUMA r in year t;   is a constant,       is a dummy 

variable for post-2005, treatedirt is a dummy variable for an active duty military member in DD-

1 and DD-2 and for a military or civilian worker in a BRAC-affected PUMA for DD-3 and DD-

4,                 is an interaction variable indicating an individual is in the treated group and 

in the post period,    are state fixed effects,     are year fixed effects, and X is a vector of control 

variables. I use the following individual-level control variables: age, age-squared, education 

level, income, female, vehicles per capita in household, years in the US, married, family size, 

family income, hours worked per week, and number of riders in car.  I also use the following 

land-use control variables: employee density of workplace (workers/sq-km), population density 

of workplace (people/sq-km), train density of workplace (train workers/sq-km), bus density of 

workplace (bus workers/sq-km), and a dummy for urban environment.  The coefficient of 
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interest is  , the coefficient on the                 interaction, as it is the difference-in-

difference estimator. 

The DDD-1 model is given by: 

where militaryirt are military personnel, postt*militaryirt are military personnel after 2005, 

post*BRAC-affectedirt are military or civilians who live in a BRAC-affected region after 2005, 

military*BRAC-affectedirt are military personnel in BRAC-affected regions, 

post*military*BRAC-affectedirt is the interaction term of interest for military personnel who live 

in the BRAC-affected regions in years after 2005, and other terms are those defined above. The 

difference-in-difference-in-difference estimator is  , the coefficient on the post*military*BRAC-

affectedirt  interaction. 

The specification for the DDD-2 model is similar to DDD-1, where instead of militaryirt I 

now use all employees in a PUMA with a military base (both BRAC-affected and non-BRAC-

affected bases), and instead of BRAC-affectedirt I now use all employed individuals who work in 

a BRAC-affected PUMA or in a PUMA directly adjacent to a BRAC-affected PUMA.  Thus, in 

DDD-2, the coefficient   on the triple interaction term gives the effect of the BRAC on travel 

time in relation to adjacent PUMAs and other PUMAs with non-BRAC-affected military bases.  

Table 4 shows the results for the five DD(D) models, each with two specifications. The 

interaction term is positive and significant across specifications.  Results of the DD(D) estimator 

  show that the employment growth of the 2005 BRAC is associated with 0.26 to 4.89 minutes 

of additional travel time per commute trip. 
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Table 2.4. Results of DD(D) models 

 

 

Military Only Models Civilians & Military Models 

 

DD-1 DD-2 DDD-1 DD-3 DD-4 DDD-2 

VARIABLES 

Drivers 

Only 

Full 

Model 

Drivers 

Only 

Full 

Model 

Drivers 

Only 

Full 

Model 

Drivers 

Only 

Full 

Model 

Drivers 

Only 

Full 

Model 

Drivers 

Only 

Full 

Model 

Interaction Effect 0.63*** 0.83*** 4.08*** 4.9*** 0.867*** 0.921*** 0.617*** 0.615*** 3.076*** 2.894*** 0.263*** 0.411*** 

Std. Error (0.0738) (0.0736) (0.0976) (0.103) (0.0868) (0.088) (0.0291) (0.0287) (0.0576) (0.203) (0.0367) (0.0367) 

             

Control Variables
ǂ
 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

State Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Obs. (millions) 3.9 4.2 0.63 0.67 12.3 13.6 9.3 9.9 0.63 0.67 26.7 29.2 

R-squared 0.589 0.566 0.636 0.599 0.56 0.539 0.567 0.541 0.636 0.599 0.544 0.513 

Standard errors in parentheses 

    

  

  Significance codes: *** p<0.001, ** p<0.01, * p<0.05 

    

  

  ǂI use the following control variables:  

Individual-level: age, age-squared, education level, income, female, vehicles per capita in household, years in the US, married, 

family size, family income, hours worked per week, number of riders in car 

Land-use: employee density of workplace (workers/sq-km), population density of workplace (people/sq-km), train density of 

workplace (train workers/sq-km), bus density of workplace (bus workers/sq-km), urban environment 
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2.5 INSTRUMENTAL VARIABLE ESTIMATION  

My second approach to estimating the effect of worker density on travel time to work 

uses the number of gained individuals in the 2005 BRAC as an instrument for worker density. 

The number of gained individuals in the 2005 BRAC is a good instrument because it is related to 

worker density but unrelated to travel time to work except through the endogenous variable. This 

exogeneity was discussed in Section 2.  Unlike the DD(D) models, which can only identify the 

effect of the 2005 BRAC, my IV models identify the effect of worker density on travel time, and 

therefore has external validity beyond the 2005 BRAC. 

 The IV model is: 

 

                                                    ,       (3) 

 

where TTirt is travel time to work for individual i in PUMA r at time t, WDrt is the worker density 

of PUMA r at time t; TTt-1,r is the average travel time to work in region r in period t-1. This 

variable acts similar to a PUMA-level fixed effect and accounts for variation in travel times 

between regions. IXirt are interaction terms between the worker density variable and income, age, 

gender, education, and number of household vehicles per adult household member. These 

interaction terms only appear in my ―Interaction‖ models.    are state-level fixed effects,    are 

year fixed effects,        are the same vector of control variables as in the DD(D) models, and 

     is the disturbance term.  I instrument for worker density WDrt using the number of gained 

individuals in the 2005 BRAC. Summary statistics for the data used in the IV models are 

presented in the Appendix.  



 

  67  

 

Results of eight IV models are shown in Table 5.  I run specifications for both military 

and military plus civilian subgroups. As reported in the table, the first-stage F-statistics are all 

quite large, and all much larger than 10.  The table reports the average effect, which is the 

coefficient on worker density in the models without interaction terms (―No IX‖).  In calculating 

the average effect for the interaction models, I evaluate the interaction terms at the mean value of 

the household characteristics in each respective interaction.  According to my results, worker 

density has a significant positive effect on travel time to work. 
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Table 2.5: Results of IV models 

 Dependent variable is travel time 

  
Military Only Models 

  
Civilians + Military Models 

 

 
All Commuters Drivers Only All Commuters Drivers Only 

 No IX Interaction No IX Interaction No IX Interaction No IX Interaction 

Average Effect of Worker Density 0.0070*** 0.0053*** 0.00594*** 0.00324*** 0.0555*** 0.05133*** 0.0494*** 0.0461*** 
Std. Error (0.0005) (0.1030) (0.0004) (0.0291) (0.0004) (0.0738) (0.0004) (0.1050) 
  

        Control Variablesǂ Yes Yes Yes Yes Yes Yes Yes Yes 
State Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes 
Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes 
First stage F-statistic. 89.37  1387.29  63.85  799.20  10617.36  4959.60  7575.42  89.37  

Observations 278,036 278,036  265,161  265,161  3,129,734  3,129,734  2,935,207  2,935,207  

R-squared 0.59  0.57  0.64  0.60  0.57  0.54  0.54  0.51  

Standard errors in parentheses 
       Significance codes: *** p<0.001, ** p<0.01, * p<0.05 

      Notes: Worker density is instrumented with the number of gained individuals in the 2005 BRAC. The average effect for interaction 

terms is estimated using the mean value of the respective interacted variable (e.g. age).   
ǂ I use the following control variables:  

Individual-level: age, age-squared, education level, income, female, vehicles per capita in household, years in the US, married, 

family size, family income, hours worked per week, number of riders in car 

Land-use: employee density of workplace (workers/sq-km), population density of workplace (people/sq-km), train density of 

workplace (train workers/sq-km), bus density of workplace (bus workers/sq-km), lives in urban environment 
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2.6 ECONOMIC COSTS OF TRAVEL TIME 

Spending additional minutes traveling to work implies an economic opportunity cost. Many 

suggest that the specific level of service matters when quantifying travel time costs: waiting an 

additional hour in congested traffic is more costly than waiting an hour in freeflow traffic 

(Wardman, 1986; Fosgerau et al., 2007). Wardman et al. (2012) use a state choice survey and 

find that individuals value congested traffic in the UK from 1.18-1.80 times more costly (from 

light congestion to heavy congestion) compared to freeflow traffic. Others find that the specific 

mode matters: an hour in a car is less costly than an hour in a crowded bus (Abrantes and 

Wardman, 2011). Zamparini and Reggiani (2007) conduct a meta-analysis of 90 studies that 

measure the value of travel time for individuals driving cars. They report that, on average, 

studies find that travelers value an hour stuck in traffic at 0.82 times their wage rate. Littman 

(2010) conducts a similar meta-analysis and suggests that when quantifying travel time costs a 

range of 0.5-1.0 times the individual’s wage rate should be used. 

I use Littman’s method to obtain a back-of-the-envelope estimate of the short-run travel 

time costs from the 2005 BRAC. From 2006-2010 the average income of military individuals at 

the BRAC-affected bases was $46,455 per year ($2005) or $17.29/hour using the average 

number of hours worked per year of 2,686 hrs (Ruggles et al., 2012). Thus, each additional man-

hour stuck in traffic congestion results in a cost of $8.65-$17.29 per military commuter. Using 

the range of coefficients estimated in the DD(D) and IV models, the total cost of the 2005 BRAC 

to all military commuters is between $1.09-$90.1 million per year ($2005). Applying the same 

calculations to the non-military workers average wage rate of $24.30 per hour, I estimate the 

total short-run cost of the 2005 BRAC due to increased commuting time to be $155.1-$1,530.3 

million per year ($2005).  Results are summarized in Tables 6 and 7 below. The left-hand 
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column uses highest and lowest coefficients of the DD(D) models while the right-hand column 

uses the highest and lowest coefficients of the IV models. Bolded cells at the bottom provide the 

range of estimates for each method using 0.5 and 1.0 for wage rate multipliers. 

 

Table 2.6: Calculations of travel time costs for military members at BRAC-affected bases 

Military Members 

DD 

Calculations 

IV 

Calculations 

Data from IPUMS     

Avg income of military in BRAC-affected PUMAs ($2005) $46,455  $46,455  

Avg hrs. worked / week by military in BRAC-affected PUMAs (hrs) 53.23 53.23 

Avg weeks worked per year by military in BRAC-affected PUMAs (wks) 50.47 50.47 

  2686.63 2686.63 

Calculations     

Hourly Income based on above ($/hr) $17.29 $17.29 

DD/DDD coefficient on interaction term (avg effect) –low 0.63   

DD/DDD coefficient on interaction term (avg treatment effect) -- high 4.90   

IV coefficient on endogenous variables (workers/sq km) – low 

 

0.0032 

IV coefficient on endogenous variables (workers/sq km) – high 

 

0.0051 

Total cost of BRAC for all military commuters to BRAC bases ($/day) – 

Low $30,225 $4,301 

Total cost of BRAC for all military commuters to BRAC bases ($/day) – 

High $356,873 $294,637 

Annual short-run cost of BRAC ($) – Low $7,627,207 $1,085,303 

Annual short-run cost of BRAC ($) – High $90,056,177 $74,351,219 

 

 

Table 2.7: Calculations of travel time costs for civilians and military members working in 

BRAC-affected PUMAs 

All Workers in BRAC-Affected PUMAs DD Calculations IV Calculations 

Data from IPUMS     

Avg income of all workers in BRAC-affected PUMAs ($2005) $46,520.68  $46,520.68  

Avg hrs. worked / week of all workers in BRAC-affected PUMAs (hrs) 40.52 40.52 

Avg weeks worked per year of all workers in BRAC-affected PUMAs 

(wks) 47.24 47.24 

      

Calculations     

Hourly income based on above ($/hr) $24.30 $24.30 

DD/DDD coefficient on interaction term (avg treatment effect) –low 0.26   

DD/DDD coefficient on interaction term (avg treatment effect) -- high 0.62   

IV coefficient on endogenous variables (workers/sq km) – low   0.0461 

IV coefficient on endogenous variables (workers/sq km) – high   0.0555 

Total cost of BRAC for all commuters to BRAC bases ($/day) – Low $656,615 $2,688,319 

Total cost of BRAC for all commuters to BRAC bases ($/day) - High $1,953,829 $6,478,842 
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Annual short-run cost of BRAC ($) – Low $155,093,921 $634,987,383 

Annual short-run cost of BRAC ($) – High $461,498,984 $1,530,317,643 

Similar calculations are made for all commuters in BRAC-affected regions and for the 

US general employed population using the IV coefficients and the estimated US-wide wage rate 

in Table 8. Use of DD(D) coefficients is not possible for the US-wide effect. One additional 

employee  added per sq km incurs a cost of $0.18-0.44 for all other commuters. While the IV 

method is often regarded as the ―gold standard‖ in terms of causal models, it says nothing about 

whether results are externally valid. Thus, these US-wide estimates should be viewed with some 

degree of caution.  

 

 

Table 2.8: Average cost of employment growth for all of US workers 

Average Effect of Employment Growth IV Calculations 

Data from IPUMS   

Avg income of all US workers ($2005) $44,855.77  

Avg hrs. worked / week (hrs/wk) 39.94 

Avg weeks worked per year (wks) 46.82 

    

Calculations   

Hourly income based on above ($/hr) $23.99 

IV coefficient on endogenous variables (workers/sq km) -- low 0.0461 

IV coefficient on endogenous variables (workers/sq km) -- high 0.0555 

Short-run cost of 10 additional people per sq km ($/commuter/day) -- low $0.18 

Short-run cost of 10 additional people per sq km ($/commuter/day) -- high $0.44 

 

 

It should be noted that Downs (2004) and others express concern about simple travel time 

value calculations based on wage rate because no two people experience the same cost and some 

even report a net benefit from added travel time. However, for the purposes of this study, such a 

calculation provides a convenient quantification of the burden imposed by the BRAC and allows 

for comparison with other costs and benefits. For example, while the estimates for the total cost 

of the 2005 BRAC due to increased commuting time were $155.1-$1,530.3 million per year 
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($2005), the DoD estimated that the 2005 BRAC would provide $37 billion in savings over ten 

years. A full accounting of the costs of BRAC, however, would include the cost of added travel 

time as well as other economic costs and benefits associated with the BRAC employment 

growth.
21

 

 

2.7 CONCLUSIONS 

When policymakers craft legislation for job growth, they should work with transportation 

planners to mitigate negative impacts on traffic flow. To some extent, transportation networks 

are self-regulating (Littman, 2010) and added travelers will eventually find alternative routes, 

departure times, or modes to compensate for congested networks. While past research has shown 

that the total employment size of an area is positively correlated with travel time to work, no 

research has shown the effect of rapid employment growth. Here, results are quite robust – each 

additional commuter added to the transportation network per square kilometer adds 0.0032-0.055 

additional minutes of travel for all other individual commuters.  

 In terms of short-run economic travel time cost, the 2005 BRAC cost communities near 

bases between $155 and $1.5 billion per year according to our back-of-the envelope calculation. 

A full accounting of the economic costs of BRAC should be considered by future BRAC 

officials and should include travel time costs as well as other costs and benefits not measured 

here. Lastly, the effect of unanticipated employment growth for the average US commuter is 

estimated -- an additional commuter per square km will incur a short-run cost of $0.18-0.44 per 

day for other commuters using the same network. 

                                                 
21  A full accounting of BRAC would also account for the effects of employment loss on the bases that lost troops.  
However, when we estimated the DD and DDD models to analyze the effects of losing troops, we were unable to find a 
robust significant effect of the loss of troops on travel time, suggesting that while employment growth increases travel 
time, employment loss does not necessarily decrease travel time.  We therefore focus on the costs of BRAC to the 
BRAC-affected regions that gained troops.  



 

  73  

 

 A couple specific caveats should be mentioned regarding the data and the conclusions. 

Freight transportation is affected by increased congestion levels because delays in shipping will 

inevitably create economic burdens for freight firms, particularly those with perishable products. 

Due to lack of the necessary freight transport data, this cost is not measured here. Also, 

considerable heterogeneity exists between cities in their spatial structure, transit availability, 

transportation policy, natural barriers to travel, and demographic composition. The findings in 

this study are ―average effects‖ and asymmetric responses between communities are likely. 

Additionally, adding military members to a community may have a different effect on travel 

times than adding a similar number of civilian workers. Military commuters have a slightly 

higher tendency to drive to work and to drive alone (Ruggles et al., 2012). Lastly, some of the 

increases in travel time measured above could be due to increases in distance of travel, not 

congestion. However, because the timeframe over which these impacts occurred were on the 

order of years instead of decades and because of myriad media accounts of increased congestion 

due to BRAC, the majority of the increases in travel time due to BRAC were likely congestion-

related, not distance-related.   

 

 

 

 



 

  74  

 

 

2.8 REFERENCES 
 

Abrantes, P.A.L., Wardman, M., 2011. Meta-analysis of UK values of time: an update. 

Transportation Research A 45 (1), 1–17. 

 

Beaulier, S., Hall, J., Lynch, A., 2011. The impact of political factors on military base closures. 

Journal of Economic Policy Reform 14 (4), 333-342 

 

Cervero, R. 1989. Jobs-Housing Balancing and Regional Mobility. Journal of the American 

Planning Association 55, no. 2: 139-150. 

 

Cevero, R. 2002. Built environments and mode choice: toward a normative framework. 

Transportation Research Part D 7, pp. 265-284. 

 

Choo, Sangho, and Patricia L. Mokhtarian. 2008. How do People Respond to Congestion 

Mitigation Policies? A Multivariate Probit Model of the Individual Consideration of Three 

Travel-Related Strategy Bundles. Transportation 35:145-63. 

 

De Jong, G., A. Daly, M. Pieters, S. Miller, R. Plasmeijer, F. Hofman. 2007. Uncertainty in 

traffic forecasts: literature review and new results for the Netherlands. Transportation: 375-395. 

 

Department of Defense. 2005. Report from the Base Closure and Realignment Commission to 

the President of the United States. Available online at: http://www.brac.gov/finalreport.html. 

Accessed 15 May, 2013.   

 

Down, A. 1992. Stuck in Traffic. The Brookings Institute, Washington DC. 

 

Downs, A. 2004. Still stuck in traffic. The Brookings Institute, Washington DC. 

 

Duranton, G., Turner, M.A. 2011. The Fundamental Law of Road Congestion: Evidence from 

US Cities. American Economic Review, 101(6): 2616-52. 

 

Federal Highway Administration (FHWA). 2004. Traffic Congestion and Reliability: Trends and 

Advanced Strategies for Congestion Mitigation. 

 

Federal Highways Administration. 2007. The Transportation Planning Process: Key Issues. 

Report from the Federal Transit Administration (FTA). 

 

Federal Highways Administration (FHA). 2010. Status of Nation’s Highways, Bridges, and 

Transit: Conditions and Performance, available at: fhwa.dot.gov/policy/2010cpr/index.htm. 

 

Government Accountability Office (GAO). 2009. Military Base Realignments and Closures: 

Transportation Impact of Personnel Increases Will be Significant, but Long-Term Costs and 

Uncertain and Direct Federal Support is Limited. GAO-09-750. 

http://www.brac.gov/finalreport.html


 

  75  

 

 

Fosgerau, M., Hjorth, K., Lyk-Jensen, S.V., 2007. The Danish Value of Time Study: Final 

Report. Danish Transport Research Institute, Knuth-Winterfeldt Allé, 

Bygning 116 Vest, 2800 Kgs. Lyngby. 

 

Hedgpeth, D. 2005. Businesses to Seek Hints at Base-Closing Hearing. Washington Post. 

http://www.washingtonpost.com. 

 

Hymel, K. 2009. Does traffic congestion reduce employment growth? Journal of Urban 

Economics, 65, pp. 127-135. 

 

Kirby, Ron. 2011. Study: Pentagon should pay for transportation improvements necessitated by 

BRAC. Washington Post. www.washingtonpost.com. Federal Highway Administration 

(FHWA). 2004. Traffic Congestion and Reliability: Trends and Advanced Strategies for 

Congestion Mitigation. 

 

Litman, T. 2011. Transportation Cost and Benefit Analysis – Travel Time Costs. Victoria 

Transport Policy Institute, available online at: www.vtpi.org.  

 

National Academies of Science. 2011. Federal Funding of Transportation Improvements in 

BRAC Cases: Special Report 302.   

 

New Jersey (NJ). 2005. New Jersey Long-Range Transportation Plan 2030: Statewide Public 

Opinion Survey, available at: 

www.state.nj.us/transportation/works/njchoices/pdf/Statewide_Public_Opinion_Survey_Report.p

df 

 

Rodier, C., R. Johnston. 2002. Uncertain socioeconomic projections used in travel demand and 

emissions models: could plausible errors result in air quality nonconformity? Transportation 

Research Part A 36, pp. 613-631. 

 

Ruggles, S., J.T. Alexander, K. Genadek, R. Goeken, M.B. Schroeder, and M. Sobek,  

―Integrated Public Use Microdata Series: Version 5.0 [Machine-readable database],‖  University 

of Minnesota, Minnesota, 2010. 

 

Schrank, D.  T. Lomax, B. Eisele. 2011. TTIs 2011 Urban Mobility Report. Available online at: 

http://mobility.tamu.edu/ums/report/. 

 

State of Illinois. ―MPO Planning Process: Overview of Transportation Planning Process in 

Urbanized Areas.‖Department of Transportation, State of Illinois. Accessed 12 May, 2012. 

Available: http://www.dot.state.il.us/opp/MPO%20Process.pdf. 

 

Sweet, Matthias. 2011. Does Traffic Congestion Slow the Economy? Journal of Planning 

Literature, 26(4), pp. 391-404. 

 

Washington Post. www.washingtonpost.com.  

http://www.washingtonpost.com/
http://www.washingtonpost.com/
http://www.vtpi.org/
http://www.state.nj.us/transportation/works/njchoices/pdf/Statewide_Public_Opinion_Survey_Report.pdf
http://www.state.nj.us/transportation/works/njchoices/pdf/Statewide_Public_Opinion_Survey_Report.pdf
http://www.dot.state.il.us/opp/MPO%20Process.pdf
http://www.washingtonpost.com/


 

  76  

 

 

Zamparini, L. and A. Reggiani. 2007. Meta-Analysis and the Value of Travel Time Savings: A 

Transatlantic Perspective in Passenger Transport. Network Spatial Economics, 7, pp. 377-396. 

 

 

 



 

  77  

 

APPENDIX FOR ESSAY TWO 

 

Table 2.A-1: Summary statistics for DD1 groups 

 

DD1 - Treatment (Military on BRAC-affected Bases) 

Variable Obs. Weighted Obs. Mean Std. Dev Min Max 
Commute Travel Time 2000-05 (min.) 1,596 158,371 20.43 16.16 0 183 

Commute Travel Time 2006-10 (min.) 4,497 473,431 22.52 17.32 0 188 

WP Worker Density (workers/sq. km) 6,093 631,802 766.12 1614.43 0.26672 24381.7 

Age (yrs) 6,093 631802 31.18 8.05 17 61 

Age Squared (yrs
2
) 6,093 631802 1037.1 553.28 289 3721 

Family Inc. ($10,000) 6,093 631802 59.92 39.92 0 730.5 

Education (yrs) 6,093 631,802 7.61 1.82 0 11 

Female (0,1) 6,093 631,802 0.14 0.35 0 1 

Veh. Per Adult in Household (No.) 6,093 631,802 1.15 0.61 0 6 

Family Size (No.) 6,093 631,802 2.9 1.49 1 11 

Married (0,1) 6,093 631,802 0.71 0.45 0 1 

Immigrated to U.S. (0,1) 6,093 631,802 0.1 0.29 0 1 

Hrs. worked per Wk (hrs.) 6,093 631,802 53.23 14.5 0 99 

Kids in Household (No.) 6,093 631,802 1.05 1.19 0 8 

Bus Density (bus workers/sq km.) 6,093 631,802 0.76 2.64 0 156.47 

Train Density (train workers/sq km.) 6,093 631,802 0.25 0.8 0 22.05 

Urban Household (0,1) 6,093 631,802 0.13 0.34 0 1 

Rural Household (0,1) 6,093 631,802 0.15 0.36 0 1 

WP Bus Density (bus workers/sq. km) 3,760 381,345 0.2 0.65 0 33.42 

WP Train Density (train wkrs/sq. km) 3,760 381,345 0.07 0.44 0 16.52 

DD1 - Control(Civilians in BRAC-affected PUMAs) 
Commute Travel Time 2000-05 (min.) 49,241 5,075,661 24.99 21.95 0 196 

Commute Travel Time 2006-10 (min.) 134,651 14,060,517 25.28 21.45 0 200 

WP Worker Density (workers/sq. km) 183,892 19,136,178 2532.49 3534.46 0.32 194504.9 

Age (yrs) 183,892 19,136,178 39.24 11.81 17 61 

Age Squared (yrs
2
) 183,892 19,136,178 1679.35 931.51 289 3721 

Family Inc. ($10,000) 183,892 19,136,178 82.77 73.98 -19.99 1721 

Education (yrs) 183,892 19,136,178 7.46 2.31 0 11 

Female (0,1) 183,892 19,136,178 0.47 0.5 0 1 

Veh. Per Adult in Household (No.) 183,892 19,136,178 1.23 0.71 0 6 

Family Size (No.) 183,892 19,136,178 2.95 1.6 1 16 

Married (0,1) 183,892 19,136,178 0.54 0.5 0 1 

Immigrated to U.S. (0,1) 183,892 19,136,178 0.18 0.39 0 1 

Hrs. worked per Wk (hrs.) 183,892 19,136,178 40.52 11.43 1 99 

Kids in Household (No.) 183,892 19,136,178 0.87 1.13 0 9 

Bus Density (bus workers/sq km.) 183,892 19,136,178 1.55 3.12 0 274.9268 

Train Density (train workers/sq km.) 183,892 19,136,178 0.55 1.09 0 67.98153 

Urban Household (0,1) 183,892 19,136,178 0.23 0.42 0 1 

Rural Household (0,1) 183,892 19,136,178 0.06 0.25 0 1 

WP Bus Density (bus workers/sq. km) 39,941 3,851,335 0.11 0.39 0 30.96419 

WP Train Density (train wkrs/sq. km) 39,941 3,851,335 0.06 0.43 0 55.18086 
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Table 2.A-2: Summary statistics for DD2 groups 

DD2 - Treatment (Military on BRAC-affected bases) 
 Same as DD1 - Treatment  

DD2 - Control (Civilians in BRAC-affected PUMAs) 
Variable Obs. Weighted Obs. Mean Std. Dev Min Max 
Commute Travel Time 2000-05 (min.) 1,546 155,681 23.50 24.67 0 185 

Commute Travel Time 2006-10 (min.) 4,060 424,647 22.11 20.66 0 195 

WP Worker Density (workers/sq. km) 7,202 738,699 1855.92 6995.61 0.3399474 163266.1 

Age (yrs) 7,202 738,699 30.73 7.98 17 61 

Age Squared (yrs
2
) 7,202 738,699 1008.12 543.72 289 3721 

Family Inc. ($10,000) 7,202 738,699 58.50 40.06 0 730.5 

Education (yrs) 7,202 738,699 7.53 1.78 0 11 

Female (0,1) 7,202 738,699 0.13 0.34 0 1 

Veh. Per Adult in Household (No.) 7,202 738,699 1.14 0.63 0 6 

Family Size (No.) 7,202 738,699 2.84 1.47 1 11 

Married (0,1) 7,202 738,699 0.71 0.45 0 1 

Immigrated to U.S. (0,1) 7,202 738,699 0.10 0.29 0 1 

Hrs. worked per Wk (hrs.) 7,202 738,699 51.71 13.88 0 99 

Kids in Household (No.) 7,202 738,699 1.00 1.17 0 9 

Bus Density (bus workers/sq km.) 7,202 738,699 1.26 9.28 0 422.7533 

Train Density (train workers/sq km.) 7,202 738,699 0.24 1.26 0 52.01862 

Urban Household (0,1) 7,202 738,699 0.09 0.29 0 1 

Rural Household (0,1) 7,202 738,699 0.17 0.38 0 1 

WP Bus Density (bus workers/sq. km) 3,886 387,126 0.35 1.41 0 62.70433 

WP Train Density (train wkrs/sq. km) 3,886 387,126 0.18 0.73 0 13.80383 
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Table 2.A-3: Summary statistics for DD3 groups 

DD3 - Treatment (All employed individuals in BRAC-affected PUMAs) 
Variable Obs. Weighted Obs. Mean Std. Dev Min Max 
Commute Travel Time 2000-05 (min.) 50,837 5,234,032 24.86 21.81 0 196 

Commute Travel Time 2006-10 (min.) 139,148 14,533,948 25.19 21.34 0 200 

WP Worker Density (workers/sq. km) 189,985 19,767,980 2476.03 3503.28 0.2667204 194504.9 

Age (yrs) 189,985 19,767,980 38.98 11.80 17 61 

Age Squared (yrs
2
) 189,985 19,767,980 1658.82 928.72 289 3721 

Family Inc. ($10,000) 189,985 19,767,980 82.04 73.25 -19.998 1721 

Education (yrs) 189,985 19,767,980 7.47 2.29 0 11 

Female (0,1) 189,985 19,767,980 0.46 0.50 0 1 

Veh. Per Adult in Household (No.) 189,985 19,767,980 1.23 0.71 0 6 

Family Size (No.) 189,985 19,767,980 2.95 1.59 1 16 

Married (0,1) 189,985 19,767,980 0.55 0.50 0 1 

Immigrated to U.S. (0,1) 189,985 19,767,980 0.18 0.38 0 1 

Hrs. worked per Wk (hrs.) 189,985 19,767,980 40.92 11.75 0 99 

Kids in Household (No.) 189,985 19,767,980 0.87 1.13 0 9 

Bus Density (bus workers/sq km.) 189,985 19,767,980 1.52 3.11 0 274.9268 

Train Density (train workers/sq km.) 189,985 19,767,980 0.54 1.08 0 67.98153 

Urban Household (0,1) 189,985 19,767,980 0.23 0.42 0 1 

Rural Household (0,1) 189,985 19,767,980 0.07 0.25 0 1 

WP Bus Density (bus workers/sq. km) 43,701 4,232,680 0.12 0.42 0 33.42399 

WP Train Density (train wkrs/sq. km) 43,701 4,232,680 0.06 0.43 0 55.18086 

 
DD3 - Control (All employed individuals in adjacent PUMAs) 

Variable Obs. Weighted Obs. Mean Std. Dev Min Max 
Commute Travel Time 2000-05 (min.) 33,798 3,414,238 25.32 23.34 0 197 

Commute Travel Time 2006-10 (min.) 89,601 9,191,007 25.25 22.43 0 200 

WP Worker Density (workers/sq. km) 123,398 12,605,058 2790.01 4438.69 0.6389797 87211.6 

Age (yrs) 123,399 12,605,245 39.42 11.89 17 61 

Age Squared (yrs
2
) 123,399 12,605,245 1695.04 941.24 289 3721 

Family Inc. ($10,000) 123,399 12,605,245 79.82 72.22 -19.998 1282 

Education (yrs) 123,399 12,605,245 7.59 2.24 0 11 

Female (0,1) 123,399 12,605,245 0.47 0.50 0 1 

Veh. Per Adult in Household (No.) 123,399 12,605,245 1.25 0.72 0 6 

Family Size (No.) 123,399 12,605,245 2.73 1.51 1 16 

Married (0,1) 123,399 12,605,245 0.53 0.50 0 1 

Immigrated to U.S. (0,1) 123,399 12,605,245 0.12 0.32 0 1 

Hrs. worked per Wk (hrs.) 123,399 12,605,245 40.24 11.54 1 99 

Kids in Household (No.) 123,399 12,605,245 0.77 1.07 0 9 

Bus Density (bus workers/sq km.) 123,398 12,605,058 2.43 4.26 0 269.102 

Train Density (train workers/sq km.) 123,398 12,605,058 0.66 1.49 0 45.13968 

Urban Household (0,1) 123,399 12,605,245 0.21 0.41 0 1 

Rural Household (0,1) 123,399 12,605,245 0.19 0.40 0 1 

WP Bus Density (bus workers/sq. km) 56,807 5,658,206 0.16 0.50 0 26.93345 

WP Train Density (train wkrs/sq. km) 56,807 5,658,206 0.12 0.45 0 13.67605 
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Table 2.A-4: Summary statistics for DD4 groups 

DD4 - Treatment (All employed individuals in BRAC-affected PUMAs) 
 Same as DD3 Treatment  

DD4 - Control (All individuals non-BRAC-affected PUMAs with Military Bases) 

Variable Obs. Weighted Obs. Mean 
Std. 

Dev Min Max 
Commute Travel Time 2000-05 

(min.) 135,665 14,112,097 26.40 23.53 0 200 

Commute Travel Time 2006-10 

(min.) 366,093 39,686,549 25.83 22.03 0 200 

WP Worker Density (workers/sq. 

km) 501,757 53,798,592 13758.7 

24825.3

3 0.068135 545081.7 

Age (yrs) 501,758 53,798,646 39.06 11.79 17 61 

Age Squared (yrs
2
) 501,758 53,798,646 1664.99 931.10 289 3721 

Family Inc. ($10,000) 501,758 53,798,646 79.35 71.56 -20.1 1774 

Education (yrs) 501,758 53,798,646 7.34 2.35 0 11 

Female (0,1) 501,758 53,798,646 0.46 0.50 0 1 

Veh. Per Adult in Household (No.) 501,758 53,798,646 1.15 0.76 0 6 

Family Size (No.) 501,758 53,798,646 3.02 1.76 1 31 

Married (0,1) 501,758 53,798,646 0.51 0.50 0 1 

Immigrated to U.S. (0,1) 501,758 53,798,646 0.29 0.45 0 1 

Hrs. worked per Wk (hrs.) 501,758 53,798,646 40.22 11.48 0 99 

Kids in Household (No.) 501,758 53,798,646 0.86 1.16 0 9 

Bus Density (bus workers/sq km.) 501,757 53,798,592 13.00 44.88 0 484.5425 

Train Density (train workers/sq km.) 501,757 53,798,592 1.25 5.30 0 112.8643 

Urban Household (0,1) 501,758 53,798,646 0.13 0.33 0 1 

Rural Household (0,1) 501,758 53,798,646 0.06 0.24 0 1 

WP Bus Density (bus workers/sq. 

km) 86,043 8,362,252 0.49 1.51 0 88.33821 

WP Train Density (train wkrs/sq. 

km) 86,043 8,362,252 0.33 1.36 0 48.78015 

 

**Note 1: DDD-1 model compares DD-1 treatment with DD-1 and DD-2 comparison groups 

**Note 2: DDD-2 model compares DD-3 treatment with DD-3 and DD-4 comparison groups 
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Table 2.A-5: Summary statistics for IV-1 models 

IV-1 (Employed individuals in BRAC-affected PUMAs) 

Variable Obs. Weighted Obs. Mean Std. Dev Min Max 

Commute Travel Time 2000-05 (min.) 146,953 15,375,148 24.50 21.28 0 200 

Commute Travel Time 2006-10 (min.) 146,953 15,375,148 2488.31 3591.86 0.27 194505 

WP Worker Density (workers/sq. km) 146,953 15,375,148 26295.61 17062.55 1600 69700 

Age (yrs) 146,953 15,375,148 23.86 4.82 9.09 58 

Age Squared (yrs
2
) 146,953 15,375,148 38.75 12.25 17 62 

Family Inc. ($10,000) 146,953 15,375,148 1651.83 965.65 289 3844 

Education (yrs) 142,742 14,857,231 85.35 76.17 -19.998 1721 

Female (0,1) 146,953 15,375,148 7.47 2.27 0 11 

Veh. Per Adult in Household (No.) 146,953 15,375,148 0.45 0.50 0 1 

Family Size (No.) 142,742 14,857,231 1.24 0.71 0 6 

Married (0,1) 146,953 15,375,148 2.87 1.61 1 16 

Immigrated to U.S. (0,1) 146,953 15,375,148 0.52 0.50 0 1 

Hrs. worked per Wk (hrs.) 146,953 15,375,148 0.18 0.39 0 1 

Kids in Household (No.) 146,953 15,375,148 41.16 12.13 1 99 

Bus Density (bus workers/sq km.) 146,953 15,375,148 0.83 1.12 0 9 

Train Density (train workers/sq km.) 146,953 15,375,148 1.49 3.17 0 275 

Urban Household (0,1) 146,953 15,375,148 0.51 1.07 0 68 

Rural Household (0,1) 146,953 15,375,148 0.22 0.42 0 1 

WP Bus Density (bus workers/sq. km) 146,953 15,375,148 0.07 0.25 0 1 

WP Train Density (train wkrs/sq. km) 35,002 3,445,369 0.11 0.39 0 33 

Commute Travel Time 2000-05 (min.) 35,002 3,445,369 0.05 0.36 0 38 
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Table 2.A-6: Summary statistics for IV-2 models 

IV - Drivers  

(All employed individuals who report driving to work in BRAC-affected PUMAs) 

Variable Obs. Weighted Obs. Mean Std. Dev Min Max 

Commute Travel Time 2000-05 (min.) 132,778 13,773,195 25.66 20.19 1 195 

Commute Travel Time 2006-10 (min.) 132,778 13,773,195 2456.52 3545.45 0 194505 

WP Worker Density (workers/sq. km) 132,778 13,773,195 2456.52 3545.45 0 194505 

Age (yrs) 132,778 13,773,195 26243.72 17179.93 1600 69700 

Age Squared (yrs
2
) 132,778 13,773,195 23.95 4.83 11 46 

Family Inc. ($10,000) 132,778 13,773,195 39.11 12.05 17 62 

Education (yrs) 132,778 13,773,195 1674.65 956.27 289 3844 

Female (0,1) 131,492 13,622,651 85.78 75.08 -20 1721 

Veh. Per Adult in Household (No.) 132,778 13,773,195 7.52 2.26 0 11 

Family Size (No.) 132,778 13,773,195 0.45 0.50 0 1 

Married (0,1) 131,492 13,622,651 1.26 0.70 0 6 

Immigrated to U.S. (0,1) 132,778 13,773,195 2.92 1.59 1 16 

Hrs. worked per Wk (hrs.) 132,778 13,773,195 0.54 0.50 0 1 

Kids in Household (No.) 132,778 13,773,195 0.18 0.38 0 1 

Bus Density (bus workers/sq km.) 132,778 13,773,195 41.18 11.54 1 99 

Train Density (train workers/sq km.) 132,778 13,773,195 0.85 1.12 0 9 

Urban Household (0,1) 132,778 13,773,195 1.48 3.09 0 275 

Rural Household (0,1) 132,778 13,773,195 0.51 1.07 0 68 

WP Bus Density (bus workers/sq. km) 132,778 13,773,195 0.22 0.42 0 1 

WP Train Density (train wkrs/sq. km) 132,778 13,773,195 0.07 0.25 0 1 

Commute Travel Time 2000-05 (min.) 31,401 3,027,274 0.11 0.37 0 33 

Commute Travel Time 2006-10 (min.) 31,401 3,027,274 0.05 0.35 0 38 
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Table 2.A-7: Summary statistics for IV-3 models 

IV - Military (Military in BRAC-affected PUMAs) 

Variable Obs. Weighted Obs. Mean Std. Dev Min Max 

Commute Travel Time 2000-05 (min.) 4,497 473,431 22.52 17.32 0 188 

Commute Travel Time 2006-10 (min.) 4,497 473,431 793.54 1650.88 0 21337 

WP Worker Density (workers/sq. km) 4,497 473,431 26172.1 16281.40 1600 69700 

Age (yrs) 4,497 473,431 21.39 4.10 13 41 

Age Squared (yrs
2
) 4,497 473,431 31.08 8.00 17 61 

Family Inc. ($10,000) 4,497 473,431 1030.09 544.69 289 3721 

Education (yrs) 4,497 473,431 62.52 40.39 2 679 

Female (0,1) 4,497 473,431 7.58 1.81 0 11 

Veh. Per Adult in Household (No.) 4,497 473,431 0.14 0.35 0 1 

Family Size (No.) 4,497 473,431 1.16 0.63 0 6 

Married (0,1) 4,497 473,431 2.88 1.50 1 11 

Immigrated to U.S. (0,1) 4,497 473,431 0.70 0.46 0 1 

Hrs. worked per Wk (hrs.) 4,497 473,431 0.09 0.29 0 1 

Kids in Household (No.) 4,497 473,431 53.47 14.25 1 99 

Bus Density (bus workers/sq km.) 4,497 473,431 1.04 1.20 0 8 

Train Density (train workers/sq km.) 4,497 473,431 0.80 2.88 0 156 

Urban Household (0,1) 4,497 473,431 0.24 0.73 0 15 

Rural Household (0,1) 4,497 473,431 0.12 0.33 0 1 

WP Bus Density (bus workers/sq. km) 4,497 473,431 0.16 0.37 0 1 

WP Train Density (train wkrs/sq. km) 2,709 278,036 0.15 0.64 0 33 

Commute Travel Time 2000-05 (min.) 2,709 278,036 0.04 0.46 0 17 
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Table 2.A-8: Summary statistics for IV-4 models 

IV - Military, Drivers (Military drivers in BRAC-affected Bases) 

Variable Obs Weight Mean Std. Dev. Min Max 

Commute Travel Time 2000-05 (min.) 4,286 450,945 22.58 16.41 1 185 

Commute Travel Time 2006-10 (min.) 4,286 450,945 786.06 1624.95 2 18010 

WP Worker Density (workers/sq. km) 4,286 450,945 26142.13 16109.33 1600 69700 

Age (yrs) 4,286 450,945 21.33 4.04 13 40 

Age Squared (yrs
2
) 4,286 450,945 31.05 7.94 17 61 

Family Inc. ($10,000) 4,286 450,945 1027.21 541.01 289 3721 

Education (yrs) 4,286 450,945 62.16 40.22 2 679 

Female (0,1) 4,286 450,945 7.59 1.81 0 11 

Veh. Per Adult in Household (No.) 4,286 450,945 0.14 0.35 0 1 

Family Size (No.) 4,286 450,945 1.17 0.63 0 6 

Married (0,1) 4,286 450,945 2.86 1.49 1 11 

Immigrated to U.S. (0,1) 4,286 450,945 0.70 0.46 0 1 

Hrs. worked per Wk (hrs.) 4,286 450,945 0.09 0.29 0 1 

Kids in Household (No.) 4,286 450,945 53.58 14.09 1 99 

Bus Density (bus workers/sq km.) 4,286 450,945 1.04 1.19 0 8 

Train Density (train workers/sq km.) 4,286 450,945 0.78 2.74 0 156 

Urban Household (0,1) 4,286 450,945 0.24 0.72 0 15 

Rural Household (0,1) 4,286 450,945 0.13 0.33 0 1 

WP Bus Density (bus workers/sq. km) 4,286 450,945 0.16 0.36 0 1 

WP Train Density (train wkrs/sq. km) 2,582 265,161 0.15 0.64 0 33 

Commute Travel Time 2000-05 (min.) 2,582 265,161 0.04 0.46 0 17 
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ESSAY THREE 

Global Dynamic Lifecycle Assessment of Advanced Bioenergy: 

Results from an Integrated Assessment Model 

 

3.1 INTRODUCTION 

As the use of lignocellulosic biomass for fuel expands from less than 10 exajoules (EJ) of 

primary energy today to – by some estimates – as much as 300 EJ in 2050 (Krey and Clarke, 

2011), dramatic shifts may occur in the land use and production of the fuel that alters the fuel’s 

carbon intensity. This study examines these shifts and estimates the resulting greenhouse gas 

(GHG) intensity of three lignocellulosic bioenergy pathways over the long-term and across 

mitigation scenarios. Importantly, the study estimates the relationship between a global carbon 

price and the carbon intensity of these pathways. In particular, we focus on five upstream 

processes that release GHGs: fertilizer production, N2O emissions from fertilizer application, 

biomass harvest, transport, and pre-processing. Although other emissions and processes 

associated with bioenergy production are important determinants of the net greenhouse gas 

intensity of a fuel – such as urea, lime, herbicide, and pesticide production; biomass-to-fuel 

conversion; allocation of co-products, and indirect land-use change – these stages are sufficiently 

different from the five stages considered here to deserve treatment of their own. The 

lignocellulosic crops and their respective growing regions modeled in this paper are listed below: 

 

 Miscanthus (Western Europe) 

 Switchgrass (all regions but Western Europe/Africa) 

 Jatropha (India, Africa) 
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 Willow (Western Europe, Eastern Europe, China) 

 Eucalyptus (Latin America) 

 

A number of changes in global agricultural practices will likely determine the future 

trajectory of bioenergy’s carbon intensity. The fertilizer production process will likely become 

more efficient and shift towards using more natural gas and less coal and petroleum as an energy 

feedstock. Energy use and associated emissions from the farming/harvesting step will likely 

decrease as farming equipment improves and crop yields increase. The biomass transportation 

stage will likely become more efficient due to improved efficiencies of freight trucking and 

because the effective supply radius will decrease as average yields increase. However, any 

movement of bioenergy crops to less productive land will dampen this latter effect. Lastly, 

biomass to liquid, gas, and electricity conversion efficiencies are expected to continue to 

improve over time, thus increasing the output of final fuel produced per unit of input primary 

biomass
22

. 

Integrated assessment models have been used in the past to examine a number of long-

term implications of expanding the bioenergy industry. Wise et al. (2009a) use the Global 

Change Assessment Model (GCAM) to show that pricing emissions from terrestrial carbon 

sources (above and below ground carbon stock) results in vastly more forest land than an 

emissions mitigation policy in which terrestrial carbon remains unpriced. Melillo et al. (2011) 

use the Emissions Prediction and Policy Analysis (EPPA) model to demonstrate the important 

role – particularly after 2050 – that N2O soil emissions play in bioenergy’s net greenhouse gas 

impacts. Luckow et al. (2010) use the GCAM model to show that the availability of carbon 

                                                 
22

 Since the purpose of this study is to estimate changes in carbon intensity over time, no reference fuel is given as is 

common in fuel LCAs. Here, the reference should be thought of as the first year’s (2020) carbon intensity.  
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capture and storage technology with bioenergy affects where bioenergy is used in the energy 

system (transportation versus industry). Havlik et al. (2010) use the GLOBIOM model to 

compare the indirect land use impact of first and second generation biofuels, showing that woody 

biomass from existing forests have the largest potential for GHG reduction of the fuels 

examined.  

This paper consists of four parts. Section two gives background information on the 

GCAM model and my modeling approach to the five upstream stages of bioenergy production 

considered here: fertilizer manufacturing, fertilizer application, biomass harvest, transport, and 

pre-processing. Because of their importance and inherent uncertainty, special attention is given 

to the fertilizer N2O emissions. Additionally, section 2.8 provides details about the nine 

scenarios used to examine differential effects of carbon policy and energy technology such as 

carbon capture and storage in the next century. Section three provides three main results and 

corresponding discussion: (1) the estimated change in carbon intensity over time of the three 

bioenergy pathways, (2) the effect of yield assumptions and shifts in global land allocation over 

time, and (3) the trends of the effective supply radius over time. Finally, Section four gives 

conclusions. 

 

3.2 BACKGROUND 

 

3.2.1 GCAM Background 

 

I use the Global Change Assessment Model (GCAM) to analyze climate, energy, agriculture, and 

land cover for 14 global regions. GCAM is a dynamic-recursive partial equilibrium model that 

solves in five-year time steps to the year 2095. The agriculture and land-use component further 
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subdivides each region into up to 18 agro-ecological zones (AEZs), differentiated based on 

temperature and precipitation (Monfreda et al. 2009). The intersection of geopolitical regions and 

AEZs results in 151 agriculture and land use regions (Kyle et al., 2011). Primary bioenergy 

resources in GCAM consist of four streams: (1) traditional biomass
23

, (2) conventional bioenergy 

crops including corn, sugarcane, and oil seed, (3) waste biomass from agriculture, forestry, 

industrial processes, and municipal solid waste, and (4) lignocellulosic  bioenergy crops (Wise et 

al., 2011; Kyle et al., 2011). The latter is the focus of the present analysis. In the scenarios in this 

study, lignocellulosic bioenergy crops are introduced in 2020, competing with other land use 

types based on the relative profitability of bioenergy production in each of GCAM’s 151 

agricultural regions. 

The profitability of lignocellulosic bioenergy supply in GCAM is determined by 

bioenergy crop productivity, the rental rate on land, non-energy costs of crop production, the 

costs of transformation to fuels, and delivery to consumers. GCAM assumes that lignocellulosic 

crops are transported as a uniform commodity and undergo a pre-processing step to homogenize 

the biomass stream (Wolf et al., 2006). Others have envisioned similar uniform format systems 

for the future bioenergy industry (Hess et al., 2009; Richard, 2010). When greenhouse gas 

emissions are priced, land-use-change CO2 emissions from the conversion of land to bioenergy 

cropping systems are priced at the same rate as fossil-derived CO2.  

Exogenously specified technological growth occurs in all sectors of the economy, 

including agriculture. Yields are based on FAO (Bruinsma 2009) estimates for 33 agricultural 

crops in each of 108 countries through 2050, followed by a long-term improvement rate of 

0.25% per year in all regions. However, an important note is that the share-weighted average 

                                                 
23

 Use of traditional biomass is expected to decline dramatically in future years (Goldemberg and Coelho, 2004). 
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yield of bioenergy within a region or for the entire globe may still decrease over time if 

bioenergy crops expand to less productive land.  

 

3.2.2 Modeling Approach for Five Upstream Stages 

.  

A number of studies and groups have estimated static bioenergy carbon intensities. As an 

example, Table 1 gives results of several bioenergy pathways examined by the California Air 

Resources Board (CARB) using the California-GREET model. CARB combines the pre-

processing stage with the biomass to fuel conversion stage (not shown) meaning the total carbon 

intensity is low. The cellulosic ethanol pathway has a marked improvement over other bioenergy 

pathways for nearly every stage of production. Unlike most other crops shown in Table 1, the 

largest emission source of the five for cellulosic ethanol from poplar is the harvest/farming stage 

followed closely by the biomass transportation stage, whereas for other crops it’s the N2O 

emissions.  
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Table 3.1 Carbon intensities (CO2e/MJ) of upstream processes in eight bioenergy 

pathways. 
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(1) (2) (3) (4) (5) (6) (7) (8) 

Fertilizer Production 0.32 10.30 10.70 3.70 7.47 4.70 0.58 0.61 

N2O from Fertilizer 0.60 15.91 16.52 3.50 12.27 9.50 1.59 1.66 

Harvest/Farming 3.34 5.56 5.81 9.90 10.78 2.08 2.08 2.17 

Biomass Transportation 2.10 2.22 2.28 2.00 2.19 0.49 1.67 1.90 

Pre-processing Na na na na na na na na 

Total 6.36 33.99 35.31 19.10 32.71 16.78 5.92 6.34 

 

Sources: (1-8) CARB (2013) 

 

3.2.2.1 Fertilizer Production  

 

Fertilizer production is an important source of upstream CO2 emissions for fertilized crops 

(Wood and Cowie, 2004). One study in the 1990’s estimated that fertilizer production accounted 

for 1.2% of global greenhouse gas emissions (Kongshaug, 1998). Regional differences in CO2 
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emission intensities arise because of differences in the raw energy input, fertilizer plant design, 

and plant efficiency (Kahrl et al., 2010; Wood and Cowie, 2004).  

Although production of potassium (K) and phosphorous (P) fertilizers contribute to the 

net emissions of crop production (most analyses put P and K emissions at ~20% of total fertilizer 

production-related emissions), I limit the focus here to nitrogenous fertilizer production. Using 

region-specific fertilizer production data from the IEA (2007), I estimate the shares and energy 

intensity of the different N-fertilizer production technology used in the 14 GCAM regions. As 

shown in Table 2, China relies heavily on coal gasification for its N-fertilizer production (Zhou 

et al., 2010) while other regions, except for India, primarily use natural gas. As a result, the 

emission intensity of China-produced fertilizer is much higher than other regions. The coal 

gasification process is also typically less efficient than the Haber-Bosch process (Rafiqul et al. 2005), 

which is ,modern natural gas-powered ammonia plants used by most contries. The plant consuming 

approximately 82% of the natural gas as feedstock and the remaining 18% as fuel (Kongshaug, 1998). 

   

Table 3.2 Energy and energy intensity for fertilizer production by world region in base 

year 2005.  

Region 

Fertilizer 

Production 

(Mt 

Ammonia) 

Shar

e gas 

(%) 

Shar

e oil 

(%) 

Shar

e 

coal 

(%) 

Energy 

Intensity 

(GJ/t 

NH3) 

Total Fuel 

Use 

(PJ/yr) 

Africa 4.0 100   36.0 144 

Australia_NZ 1.2      100   36.0 43 

Canada 4.4 100   37.9 146 
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China 43.7 20 10 70 48.8 2,133 

Eastern Europe 6.2 95 5  43.6 270 

Former Soviet 

Union 

20.9 100   39.9 834 

India 12.2 50 50  43.3 528 

Japan 3.3 100   37.0 77 

Korea 2.5 100   37.0 100 

Latin America 9.0 100   36.0 324 

Middle East 8.5 100   36.0 306 

Southeast Asia 7.5 100   37.0 315 

USA 10.0 100   37.9 400 

Western Europe 12.2 90 10  35.0 427 

World 145.4 70.5 8.5 21 41.6 6,047 

Source: IEA (2007)  

 

Fertilizer production emissions can also vary by fertilizer type (e.g. urea versus 

ammonia).  However, Bouwman et al. (2002) demonstrate this is a relatively small effect 

compared with the overall fertilizer production emissions and is thus ignored here.  

GCAM is not a trade model and therefore does not track the flow of global fertilizer from 

producing country to consuming country. Therefore, in this study I estimate the manufacturing-

related emissions from fertilizer use in a given region from the characteristics of the fertilizer 

production sector of that region. Because nearly every region uses natural gas as its primary 

feedstock except China and to a lesser extent, India, this assumption is only problematic for 
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regions that import large quantities of Chinese-made or India-made fertilizer relative to their 

total consumption. In 2010, the five largest importers of Chinese fertilizer in terms of weight 

were India, USA, Bangladesh, Viet Nam, and Malaysia (UN, 2013)
24

. According to the 

International Fertilizer Association (IFA) (2013), 8% of total fertilizer consumption in India and 

6% in the U.S. in 2010 originated in China (UN, 2013; IFA, 2013). Because of the difficulties in 

forecasting the development of global fertilizer trade over the next century, I make note of the 

bias created by the importation of Chinese fertilizer but do not attempt to correct it. The mass 

balance for the 14 GCAM regions is shown in Table 3. A detailed description of GCAM fertilizer 

modeling can be found in Kyle (2012). 

 

Table 3.3 N fertilizer mass balance in each region in 2005 (in Mt N). 

GCAM region Production 

Net 

exports Consumption 

Africa 2.99 0.13 2.86 

Australia_NZ 0.46 -0.76 1.23 

Canada 3.03 1.30 1.72 

China 29.6 -0.96 30.55 

Eastern Europe 3.98 1.27 2.71 

Former Soviet 

Union 10.51 8.53 1.98 

India 10.49 -2.25 12.74 

                                                 
24

 This statistic includes urea and mixtures of urea and ammonium nitrate in aqueous solution (commodity code: 

310280). 
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Japan 0.75 0.21 0.54 

Korea 0.34 -0.02 0.36 

Latin America 3.10 -3.07 6.17 

Middle East 4.98 3.19 1.79 

Southeast Asia 6.49 -2.15 8.65 

USA 8.23 -3.20 11.43 

Western Europe 8.28 -2.23 10.51 

Global total 93.23 0.00 93.23 

 

In future periods, the technology choice in the fertilizer production sector is endogenous, 

and is based on the costs of the different technology options. I assume that China is the only 

region with a coal-based option for fertilizer production, and in the few regions with oil-based 

production at present, the technology is phased out by 2035. This assumption is consistent with 

the trends in India in the last few decades, and with expectations for upcoming decades 

(Schumaker and Sathaye 1999; Rafiqul 2005). Gas- and coal-based production technologies with 

carbon capture and storage (CCS) are also modeled, with the additional capital and operating 

costs of these technologies based on the inputs to the H2A model (DOE Hydrogen and Fuel Cells 

Program 2013),
25

 and the region-specific costs of CO2 transportation, injection, and monitoring 

from a detailed GIS assessment (Dahowski et al. 2005; 2011; 2013). 

In my method of calculating fertilizer production-related emissions using region- and 

crop-specific fertilizer application rates and region-specific fertilizer manufacturing practices, I 

focus entirely on synthetic N fertilizer. In reality, some portion will come from organic sources 

                                                 
25

 Hydrogen production accounts for about 80% of all energy use in ammonia production (Schumaker and Sathaye 

1999), and it produces a high-purity CO2 stream that would be a prime candidate for CO2 capture systems. 
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such as manure and crop residues, particularly in developing nations (IPCC, 2006). It is common 

in jatropha cultivation, for example, to use the jatropha seed husks from one harvest to provide 

up to 50% of the nitrogen for the next crop cycle (Shinda, 2008). Thus, to the extent that these 

organic nitrogen sources may account for a substantial portion of bioenergy crop nitrogen 

requirements, my approach may overestimate the fertilizer production-related emissions required 

for long-term large-scale bioenergy production. Note that the source of nitrogen—whether 

organic or inorganic—is thought to be irrelevant for the production of N2O, addressed in the 

following section (Galloway et al. 2004; Smeets et al 2009). 

 

3.2.2.2 Fertilizer Application 

 

Application of nitrogenous fertilizer to cropland results in the formation of the greenhouse gas, 

N2O, via nitrification and denitrification processes. N2O emissions from fertilizer application 

have been estimated to account for approximately 4% of global greenhouse gas emissions (IPCC, 

2011). N2O emissions from fertilizer are typically categorized into direct and indirect emissions. 

Direct emissions are those at the field where the crops are grown. Indirect emissions occur 

elsewhere (e.g. downstream, in groundwater or surface water) and result from N leached from 

the soil.  

In the past, N2O emissions from fertilizer have been estimated using one of three 

methods: (1) field experiments which typically measure direct emissions only (e.g. Pedroso et 

al., 2013), (2) process-based biogeochemical models such as DayCent and DNDC which also 

measure direct emissions (e.g. Adler et al., 2009), or (3) using the fertilizer application rate and 

assuming a certain fraction is emitted as N2O. Multi-region analyses usually rely on the latter 
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method, often using the IPCC Tier 1 metholodogy
26

. The IPCC Tier 1 methodology gives the 

estimated N to N2O conversion rate for a fertilized plot relative to an unfertilized plot, all else 

equal.  

An alternative approach to the IPCC Tier 1 method has been suggested by Bouwman and 

Bournan (2002) and Smeets et al. (2009). Using a statistical analysis of a large number of field 

experiments, they show that the N to N2O conversion rate can be estimated based on soil texture, 

soil organic carbon, soil drainage, soil pH, climate type, length of experiment, and frequency of 

measurements. Stehfest and Bouwman (2006) estimate a similar model for N2O emissions from 

natural vegetation and find that vegetation type, soil organic carbon content, soil pH, bulk 

density and drainage are significant predictors of N2O emissions from natural vegetation. Both 

sets of results are used by Smeets et al. (2009) to estimate the global N2O emissions associated 

with first generation bioenergy production. In the sections below, a brief background on fertilizer 

application and yield response is given for each of the five crops considered here followed by a 

description of the modeling decisions for fertilizer application.  

 

3.2.2.2.1 Switchgrass Fertilizer Application 

 

Due to relatively low nitrogen requirements and relatively high nitrogen uptake 

efficiency, some have suggested that perennial grasses like switchgrass can be grown without 

supplemental N fertilizer (Smith et al., 2013). While this may be true for short-term field 

experiments (Shield et al., 2012), most literature suggests the need for some fertilizer input for 

                                                 
26 As is the convention, the IPCC distinguishes between direct and indirect emissions. Direct emissions occur at the site of the 

plant, while indirect occurring later or downstream. The IPCC (2007) Tier 1 methodology recommends using an emission factor 

of 1.325% for direct emissions plus indirect emissions. Stehfest and Bouwman (2006) use a more disaggregate approach 

described above and estimate a global average emission factor of 0.91%.   
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sustained agro-ecosystems (McLaughlin and Kszos, 2003; Schmer et al., 2007; Pedroso et al., 

2011).  

McLaughlin and Kszos (2003) report results of 13 switchgrass field trials in the U.S. 

They find that among experimentally tested inputs to switchgrass plants – including nitrogen, 

potassium, calcium, and phosphorous – only nitrogen had a consistently positive relationship 

with yield. For long-term switchgrass cultivation, the authors recommend 50 kg ha
-1

 yr
-1 

in Mid-

Atlantic states, 41 kg ha
-1

 yr
-1 

in Alabama, and 120 kg ha
-1

 yr
-1 

in Texas where there was a 

shorter growing season and higher soil temperatures. A substantial yield response to N fertilizer 

was shown by Lemus et al. (2008) in two field trials in Texas using switchgrass.  

Another important consideration is how yield and fertilizer requirements will change over 

time. Annual yield increases of 1-2% for lowland cultivars of switchgrass and 3-5% for upland 

cultivars have been observed in switchgrass breeding programs (Taliaferro, 2002). These rates 

correspond with increases in corn grain yield in the U.S since the early 1900s of 0.7-1.2% 

(McLaughlin and Kszos, 2003). McLaughlin and Kszos (2003) estimate the maximum 

theoretical yield of switchgrass by assuming that the maximum yielding individual plant today 

(6.9 kg) was replicated over an entire hectare. This gives a yield of 47 tons ha
-1 

yr
-1

, or 846 GJ 

ha
-1

 yr
-1 

assuming an energy density of 18 MJ kg
-1

. Yield increases will also come from new 

varieties of crops and investments in irrigation systems (Cassman, 1998). 

  

3.2.2.2.2 Miscanthus Fertilizer Application 

 

Miscanthus yields in the literature range from 124 to 564 GJ ha
-1

 yr
-1

 or 7.5 to 34 tons ha
-1

 yr
-1

. 

Several different optimal fertilizer rate and yield responses have been suggested. In a review of 
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11 miscanthus field trials, Cadoux et al. (2012) recommend that no fertilizer is applied to 

miscanthus in its first two years. In subsequent years, the authors recommend 4.9 grams of 

nitrogen fertilizer per kg of dry plant (equivalent to 82 kg of N-fertilizer ha
-1

 yr
-1

 assuming a 

yield of 300 GJ ha
-1

 yr
-1

 and an energy density of 16.5 MJ kg
-1

 of dry matter). Miguez et al. 

(2008) conduct a meta-analysis using non-linear mixed models of miscanthus field trials and also 

find that miscanthus has a yield response to fertilizer application only after the third growing 

season.  

Other literature suggests that miscanthus yields are maintained across successive years 

with little or no addition of fertilizer (Sommerville et al., 2010). However, in agrosystems, crops 

that do not fix N and are harvested annually typically deplete any available N within a few years 

(Cassman et al. 2002). Davis et al. (2009) report evidence from Illinois, USA that miscanthus 

fixes nitrogen from the atmosphere allowing it to meet its annual N demand without the use of 

supplemental nutrients. The authors later state that the ability of miscanthus to fix N likely 

differs across world regions. Others (Ercoli et al., 1999) have found that irrigation moderates 

yield response to fertilizer in miscanthus, and that miscanthus is more responsive to inorganic 

fertilizer than organic fertilizer (Smith and Slater, 2010). Heaton et al. (2008) conduct 

comparisons of switchgrass and miscanthus grown on identical soils and find that carbon yield 

and nitrogen uptake efficiency were approximately two times as high for miscanthus than 

switchgrass. Although there is much excitement about no-fertilizer agrosystems, I feel there are 

insufficient number of long-term field trials to suggest that no nitrogen will be required in 

herbaceous energy crops.  
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3.2.2.2.3 Jatropha Fertilizer Application 

 

Optimal fertilizer practices and yield response have been even less extensively studied in 

jatropha than switchgrass and miscanthus. Although jatropha was originally grown in Latin 

America, field trials have only been attempted in parts of India and Africa. Singh et al. (2012) 

conducted a five-year field trial of jatropha in seven climate and soil conditions in India. Their 

results suggest that yield and fertilizer requirements are site-specific and that fertilizer has a 

statistically significant positive influence on jatropha growth. Singh et al. (2012) suggest an 

optimal fertilizer application of 25 kg N ha
-1

 yr
-1

. Their reported yields (maximum of 1.09 tons 

ha
-1

 yr
-1

) were far below those assumed in another study, Achten et al. (2008), who assume yield 

of 1.695 tons ha
-1

 yr
-1

 on degraded land in their lifecycle assessment of jatropha biodiesel in 

India.  

Another study (Sop et al., 2012) reports that on severely degraded land in India, jatropha 

would require fertilizer in order to survive the first two years. Pandey et al. (2011) state that, 

because jatropha does not fix nitrogen, long-term cultivation of jatropha requires fertilizer input. 

The authors also suggest that jatropha typically requires irrigation in arid regions and weed 

removal, particularly in early years.  

 

3.2.2.2.4 Willow and Eucalyptus Fertilizer Application 

 

The literature is generally in agreement about the robust yield response for woody biomass like 

eucalyptus and willow to fertilizer (Judd et al., 1996; Smithurst et al., 2003; Heller et al., 2003; 

Pinkard et al., 2006; Cavenaugh et al., 2011; Stolarski et al., 2011; Forrester et al., 2012; Wang 
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and MacFarland, 2012). The band of optimal fertilization application rates is tighter for willow 

and eucalyptus than for the three previous energy crops. There is limited evidence that tree crops 

such as poplar and willow fix nitrogen from the atmosphere which helps minimize inputs 

(Mitchell, 1995).  

 

3.2.2.2.5 Modeling Approach for Fertilizer N2O Emissions 

 

Here, I use the IPCC Tier 1 methodology to model both direct and indirect N2O emissions
27

. 

Although the method is relatively straightforward, for a global analysis such as this a number of 

modeling questions must first be answered, including: (1) how much fertilizer will be applied to 

bioenergy crops in each world region, in order to be consistent with the assumed yields and 

economic development pathways of the scenarios? and (2) what is the responsiveness of N2O 

emissions to greenhouse gas mitigation policies?  

In an economically efficient system, farmers will apply fertilizer until the increase in 

profits from additional fertilizer application are zero. However, at what point this occurs for 

different regions of the world and different bioenergy crops in the future is an open question, 

particularly given that no large-scale lignocellulosic bioenergy production systems currently 

                                                 
27 Although not used here, the statistical approach towards N2O emission estimation used by Bournan (2002), Stehfest and 

Bouwman (2006), and Smeets et al. (2009), provides some qualitative conclusions about the N to N2O conversion rate for 

lignocellulosic bioenergy crops. For example, jatropha is likely to be grown in arid climates with low soil organic matter. 

According to the regression model in Smeets et al. (2009), such conditions would imply a relatively low N to N2O conversion. As 

suggested by Achten et al. (2010), the IPCC Tier 1 approach should be seen as an upper bound for jatropha N2O emissions. 

Similarly, willow grows mostly in northern latitudes which have acidic soil pH and intermediate levels of soil organic matter 

(Adegibidi et al., 2003). Acidic soils are related to relatively higher emission fractions than basic soils (Stehfast and Bouwman, 

2006) therefore we expect, on a global scale, that the IPCC emission fraction would underestimate the emissions from willow. 

Eucalyptus, switchgrass, and miscanthus are grown on a range of soils and climates. Therefore, the emission fraction associated 

with these crops should be considered on a more disaggregate basis.  
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exist. In fact, the literature on jatropha, switchgrass, and miscanthus has considerable variability 

in both fertilizer application rates and yields. I plot yield and fertilizer application in Figure 2 for 

a number of field trials in the literature. The figure is meant to be illustrative of the challenges of 

modeling a global crop system that does not exist today. The figure should be interpreted with 

caution because yields are determined by a number of factors not shown such as soil type, soil 

nutrients, climate, and irrigation.  

 



 

    

 

1
0
2
 

Figure 3.1 Fertilizer application for several field trials reported in the literature.  

Sources: Melillo et al., 2009; Forrester et al., 2011; UNEP, 2012; Pandey et al. 2011; Singh et al., 2011; Achten et al., 2010; Himken 

et al, 1997; Boehmel et al. 2008; Ercoli et al., 1999; Smeets et al. 2009; Lewandowski et al. 2000; Vogel et al., 2002; Brejda et al. 

1988; Pedroso et al., 2012; Spatari et al. 2005; Groode and Hayward, 2007; Boehmel et al., 2008; Heller et al., 2003; Adegbidi et al., 

2003; Ericsson et al., 1994; Ledin, 1986; Willebrand et al., 1993 
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   For my reference case (Ref), I use the share-weighted average fertilizer application rates 

for all tree crops within a region from a dataset of 88 countries to generate region-specific willow 

and eucalyptus fertilization rates (FAO, 1999; IFA, 2002). For jatropha, I simply use an 

application rate of 25 kg N ha
-1

 yr 
-1

 for both India and Africa (the two regions which can grow 

jatropha in GCAM) as suggested by Singh et al. (2012). For switchgrass and miscanthus – the 

most widely available lignocellulosic crops in GCAM – I use an optimal value of 60 kg ha
-1

 yr
-1

 

for the USA and scale the 13 other regions to the USA based on the historical fertilizer 

application rates of grass crops (hay, wheat, and barley) from the FAO/IFA dataset (FAO, 1999; 

IFA, 2002). This scaling is meant to capture differences in farming practices, farmer income 

levels, soils and climates that lead regions to use different fertilization rates.   

For future periods, I hold the fertilizer coefficients constant per unit crop produced; in 

other words, I assume a linear relationship between yield and fertilizer application rate. This 

assumption deserves special discussion. The input of fertilizer per unit crop output depends on 

two factors: the tissue nitrogen content of the crop produced, and the fertilizer recovery 

efficiency (Cassman et al., 2002). I am unaware of any reason to expect that either of these will 

change systematically in response to other variables modeled over time. In fact, I have analyzed 

the available historical data on fertilizer consumption by region, crop, and year from 1971 to 

2010, and I do not find evidence for a systematic increase or decrease in the fertilizer input-

output coefficient for any of the major grain crops in any of the world regions analyzed.  
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Table 3.3.4 Fertilizer application rate in the three scenarios used here (kg N ha
-1

 yr
-1

). Note: 

ng = not grown in given region. 

 

 

Table 4 shows my base-year (2020) assumptions of fertilizer application rates; note that 

these rates will increase linearly with assumed yield improvements in subsequent time periods. 

Because of the importance of this variable in determining the emissions intensity of bioenergy 

production I construct two additional fertilizer scenarios – High_Fert and Low_Fert – which use 

application rates of +/-66% the Reference assumptions stated above which represent my best 

guess of the maximum and minimum average fertilizer application rates for bioenergy crops. 

Another modeling challenge arises because the optimal fertilizer application for 

greenhouse gas mitigation can differ from the optimal application for profit (Kim and Dale, 

2008), assuming that fertilizer-related N2O emissions are not priced. To this point, the main data 

source for marginal abatement of N2O as a function of carbon prices is the comprehensive EPA 

(2006) global mitigation report. However, in this study I do not adopt any such marginal 

abatement curves, for several reasons. First, these marginal abatement curves did not hold output 

Ref Low High Ref Low High Ref Low High

Africa 50            23            69            38            13            64            25            15            35            

Middle East 50            23            69            34            11            57            ng ng ng

Eastern Europe 52            24            72            59            20            99            ng ng ng

Former Soviet Union 52            24            72            59            20            99            ng ng ng

Western Europe 68            31            94            83            28            139          ng ng ng

Korea 68            31            94            98            33            163          ng ng ng

Australia_NZ 87            40            120          78            26            130          ng ng ng

Canada 87            40            120          42            14            70            ng ng ng

USA 87            40            120          60            20            100          ng ng ng

Latin America 89            41            124          43            14            72            ng ng ng

India 91            42            126          82            27            136          25            15            35            

Southeast Asia 91            42            126          65            22            109          ng ng ng

Japan 145          67            201          98            33            163          ng ng ng

China 146          67            202          100          33            166          ng ng ng

Willow / Eucalyptus Switchgrass / Miscanthus Jatropha
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constant; the decreases in N2O emissions as a function of carbon prices reflected reduced crop 

output. Second, it is unclear that agricultural N2O emissions would actually be included in any 

emissions mitigation policy, given the difficulty in measuring the emissions, much of which take 

place far from the site of application and depend on site-specific environmental conditions. 

Therefore, in these scenarios, the only feedback between carbon prices and N2O emissions is 

mediated by the CO2 emissions penalties of fertilizer production, which increase the price of 

fertilizer, and thereby increase the costs of production in agricultural regions with relatively high 

fertilizer intensities. 

 

3.3.2.3 Global Biomass Harvest 

 

This stage encompasses all operations associated with the growing and collecting of biomass 

feedstock. The main energy uses in this stage come from irrigation and tractor energy 

consumption. Here, a very simple modeling approach is taken: I assume that all five 

lignocellulosic crops use 0.00746 GJ of diesel fuel ha
-1

 of harvested crop, regardless of the crop 

type. Therefore, as yields increase over time the energy use ha
-1

 stays the same, but the energy 

use GJ
-1

 decreases. In this way, I assume that any additional energy requirements from larger 

harvests are counter-balanced by efficiency improvements in the harvesting equipment. 

Similarly, in a single time period, higher-yield AEZs consume less energy GJ
-1

 than the lower 

yield AEZs. Table 5 below gives values of harvest energy reported in the literature. For this 

paper, I use the GJ total/GJ biomass reported for USA switchgrass of 0.00746. 
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Table 3.5 Harvest energy for various bioenergy feedstocks and regions. 

 

 

The assumption of constant harvest energy per hectare is supported in historical data; 

between 1961 and 2005, the number of tractors per thousand metric tonnes of agricultural output 

(proportational to a GJ of biomass) remained relatively constant at 6.4 to 5.9, respectively (IFA, 

2012). At the same time, tractor efficiency has changed very little (Grisso et al., 2010)
28

. 

Ultimately, because harvest energy and emissions represent such a small portion of total GHG 

emissions from biocrop cultivation, any assumption on harvest energy will have a relatively 

small impact on the long-term dynamics of carbon intensity.   

  

3.2.4 Global Biomass Transport 

 

The supply radius of the bioenergy agrosystem is a main factor in determining the energy use in 

biomass transport. Because the size of bioenergy conversion facilities in a vastly expanded 

bioenergy world is uncertain, I simply assume that all biorefineries and bioelectricity plants will 

                                                 
28

 The authors show that the average available fuel economy of tractors in the U.S. increased from 14.5 horsepower-hours gallon-

1 (hp-h/gal) in 1980 to 16.5 hp-h/gal in 2000. The trend in efficiency gains will obviously differ by world region and by type of 

agriculture, soil, and climate. However, in general the trend in tractor efficiency is very slowly upwards.   

Region Feedstock

GJ Electricity/GJ of 

Biomass

GJ Diesel/GJ 

Biomass GJ NG/GJ Biomass

GJ Total/GJ 

Biomass Source

USA Corn na na na 0.02276 GREET 2011

USA Farmed Trees na na na 0.01415 GREET 2011

USA Switchgrass na na na 0.00746 GREET 2011

USA Corn Stover na na na 0.01136 GREET 2011

USA Forest Residue na na na 0.01387 GREET 2011

USA Forest Residue 0.00528 0.03840 na 0.04368 CARB, 2011

USA Sorghum 0.03585 0.00005 0.02865 0.06456 CARB, 2010

Latin America Sugar Cane na na na 0.00573 GREET 2011

Western Europe All na na na 0.00076 IRENA IFS 11

Western Europe Poplar na na na 0.04512 Fantozzi & Buratti 2010

Canada Selection cut na na na 0.01530 Zhang et al. 2010 - Supp info

Canada Shelterwood cut na na na 0.02106 Zhang et al. 2010 - Supp info

Canada Clear cut na na na 0.01813 Zhang et al. 2010 - Supp info

Average 0.02057 0.01923 0.02865 0.02184



 

  107  

 

be sized accept 2.0 million tons of feedstock per year (roughly the quantity needed for a 200 

million gal yr
-1

 biorefinery) and that the supply radii will change as yield changes (i.e. as yield 

increases, the effective supply radius for a single biorefinery shrinks and the corresponding 

energy use GJ
-1

 decreases). Additionally, I assume that the fraction of land within the supply 

radius which is growing biocrops stays constant at 60% and that the Tortousity factor (a measure 

of how indirect the roadway is within the supply radius) is 1.5 in accordance with Wright and 

Brown (2007). Lastly, I assume that the fuel economy of freight trucks in developed and 

developing countries is 0.84 MJ ton-km
-1

 and 1.80 MJ ton-km
-1

, respectively
29

.  

Given this set of assumptions as well as the exogenous assumptions about yield, the 

supply radii decrease from 38.4-141.3 km in 2005 and 29.7 km-106.8 km in 2095
30

. On average, 

the supply radii decrease by 25% in this time.   

 

3.2.5 Global Biomass Pre-processing 

  

The pre-processing stage includes the unloading, queuing, and handling of biomass and all 

processes that physically transform the feedstock into the format required by the biorefinery such 

as drying, grinding, and pelletization, and/or torrefaction. 

 Most research that examines future bioenergy supply chains recommends adoption of a 

multiple-stage pre-processing system (Hess, 2008; Uslu et al., 2008; Richard, 2010). The first 

stage could be a small densification unit near the growing field which serves to reduce the 

                                                 
29

Both numbers are from the GREET model (2011). Developing countries corresponds to fuel economy of medium 

duty vehicles and developed countries to heavy duty vehicles. Developed countries, on average, use smaller freight 

vehicles than developed countries.  
30 In both cases the shortest supply radius is for miscanthus in Western Europe and the longest for eucalyptus in 

Africa. 
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biomass transportation costs. The second stage could be at the biorefinery (or elsewhere) and 

would serve to prepare the biomass for conversion to fuel.  

In GCAM, this pre-processing stage is accounted for using a cost adder to the non-energy 

cost of bioenergy. Additionally, for this study, I modify GCAM to account for energy use in the 

pre-processing stage. Table 6 below gives literature values for the pelletization energy for several 

world regions and feedstocks. As is apparent, most values from the literature are for pelletization 

of wood biomass. These pellets are used largely in Europe and increasingly in the U.S. in home 

pellet stoves. Since a largescale lignocellulosic bioenergy industry does not exist, only three 

sources were found that report pelletization energy use for non-wood biomass. Because wood 

biomass has very high moisture content relative to other feedstock (up to 50% compared to 

~15% for field-dried switchgrass), the high energy consumption for wood shown in Table 6 goes 

for drying the biomass. To avoid overestimating energy use in the pre-processing stage, I use the 

coefficient for switchgrass from Samson et al. 2001 for all purpose-grown bioenergy feedstock 

streams. I feel the pre-processing stage in general deserves more attention in future studies.     

Table 3.6 Pelletization energy requirements for selected crops and regions. 
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3.2.6 Co-Products 

  

Unlike many first generation energy crops, second generation crops produce very few co-

products. Electricity will likely be the most significant co-produce for these purpose grown 

crops, with the exception of jatropha which produces seed cake, wood, and shells as co-products 

(Wang et al., 2011; IPCC, 2011) and eucalyptus and willow which yield tree bark. Thus this 

study does not explicitly consider co-products in bioenergy production, except electricity that are 

implicitly wrapped into the input-output coefficients of biomass to fuel conversion. 

 

3.2.7 Calculations of Carbon Intensity 

 

Section 2 of the SI gives a description of the calculations used for estimating the greenhouse gas 

intensity of bioliquids, biogas, and bioelectricity. I categorize the five upstream stages by five 

emission streams: N2O from fertilizer, and CO2 from fertilizer production, harvest, transport, and 

pre-processing. Variables are defined as either exogenous (determined outside the model) or 

endogenous (determined within the model). The main endogenous variables are the quantities of 

feedstock produced in each of the 151 AEZs each year and the quantities of fuel produced in the 

producing regions. By aggregating quantities of primary or final energy, share-weighted global 

values are estimated.  

In this study, I estimate emissions per unit of final energy, not primary energy. Thus, an 

important determinant of GHG intensity is the efficiency with which the primary energy 

delivered to the biorefinery is converted to final energy. For bioliquids, this entails conversion 

from biomass to liquids in a biorefinery and pipeline delivery to service stations. For 
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bioelectricity, this means biomass to electricity conversion followed by transmission along an 

electrical grid to the end use device. Finally, for biogas, this entails biomass to gas processing 

followed by pipeline delivery to the end user. These efficiencies are documented in the GCAM 

Wiki (2013). Each of the three conversions has a different assumed efficiency over time, 

meaning a differential effect on the carbon intensity.  

 

3.2.8 Scenarios 

 

A set of 13 scenarios are used to identify key relationships between carbon policy and bioenergy 

carbon intensity.  

 

 Baseline scenario (Base) – technology advancement follows historical trends. No carbon 

policy is adopted in this scenario and therefore there is no price signal to incentivize 

market penetration of low-carbon technologies or more efficient technologies beyond 

normal cost considerations by energy suppliers and consumers. Carbon capture and 

storage (CCS) does not become available.  

 Carbon tax scenarios (e.g. CTax_5) – Technology advancement follows historical trends. 

Carbon taxes are adopted to provide a price signal to incentivize market penetration of 

low-carbon technologies or more efficient technologies beyond normal cost 

considerations by energy suppliers and consumers. Carbon taxes begin in the year 2020 at 

$5, $10, $20, and $25 tonne
-1

 and increase at a Hotelling schedule of 5% per year to 

2095. Abbreviations are CTax_5, CTax_10, CTax_15, CTax_20, and CTax_25, 

respectively. I run five scenarios with CCS (e.g. CTax_5_CCS) and five scenarios 
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without CCS (e.g. CTax_5_noCCS). Lastly, given the important role of CCS technologies 

determining the contribution of bioenergy and other renewable and nuclear resources, I 

run five additional scenario in which changes in terrestrial carbon stock (above and below 

ground) are also taxed (CTax_25_Terrestrial). 

 Fertilizer scenarios (e.g. High_Fert) – I include two fertilizer scenarios based on 

uncertainty bounds for two parameters: 1) fertilizer application and 2) Nitrogen-to-N2O 

conversion rate. High_fert accounts for high fertilizer application and high N-N2O 

conversion rate, while Low_fert is low fertilizer application and low N-N2O conversion 

rate.  

 

Tables S.1 of the supplementary material summarize the scenarios adopted in this study 

including corresponding CO2 concentration, estimated median temperature rise, and carbon 

prices. Given the array of fertilizer application rates that could be used to characterize an 

expanded global bioenergy crop system, I develop three fertilizer-N2O scenarios: (1) a reference 

fertilization scenario used in the base scenario and all carbon policy scenarios, (2) a high input 

scenario (High Fert), and (3) a low input scenario (Low Fert). 

Figure 2 shows the range of lignocellulosic crops across scenarios for 2020, 2050, and 

2095. Error bars represent the range, columns represent the median values. Bioliquids is 

generally the dominant use of lignocellulosic biomass across scenarios. The maximum quantity 

of final energy from purpose-grown bioeerngy crops is in the Ctax_25_Terrestrial scenario 

which has a total of 406 EJ of final energy or 761 EJ of primary energy (biogas 165 EJ, 

bioliquids 527 EJ, bioelectricity 68 EJ).  
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Figure 3.2 Final energy use across scenarios for 2020, 2050, and 2095 (EJ). Columns are the 

median values. Error bars represent the range across scenarios. 

 

In CCS scenarios I observe greater quantities of bioelectricity and bioliquids (the two CCS paths) 

and less biogas than the same scenario without CCS. This fits with Luckow et al.’s (2010) 

results.  

 

3.2.9 Biomass production in each scenario 

 

Figure 3 shows the total primary biomass production in each scenario. Most scenarios have very 

similar trajectories with the exception of when CCS is available and when terrestrial carbon is 

not priced. With CCS, bioenergy becomes more attractive than without CCS because of the 

ability for a low carbon energy resource along with negative CO2e emissions. Not pricing 
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terrestrial carbon results in large-scale deforestation for bioenergy production, releasing a large 

amount of CO2 from land-use-change (Wise et al., 2009). 

 

Figure 3.3 Primary EJ of purpose-grown bioenergy by scenario. Figure demonstrates that 

not taxing terrestrial carbon sources leads to the largest production followed by CCS 

scenarios.  

 

 

 

 

3.2.10 Exogenous yield assumptions 

 

As stated in the main text, each scenario uses the same exogenously-specified assumptions about 

bioenergy crop yields. These generally follow the median of all crops for the given region and 

crop, which are based on FAO projections of yield to 2050, with an assumed increase of 0.25% 
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per year thereafter (Table S2 of the Supplementary Information). Yield assumptions have a direct 

effect on two of the five upstream stages considered here: the harvest energy (for a given region-

year-AEZ, higher yield implies less harvest energy per GJ
-1

 biomass produced), and the biomass 

transportation energy (for a given region-year-AEZ, higher yield implies less transportation 

energy GJ
-1 

transported). 

 

3.3. RESULTS 

 

3.3.1 Main results 

 

Figures 4A-C give the range of whole-system emission intensity for the carbon tax, reference, 

and CCS scenarios. These emissions include all modeled inputs to the bioenergy production 

processes, traced back to primary energy, plus the N2O emissions, converted to CO2e using the 

hundred-year global warming potential in the Second Assessment Report (IPCC 1996). Perhaps 

the most surprising fact is that, with the exception of early years, the carbon intensity trends are 

relatively flat, despite increasing technology and yield assumptions in all scenarios. Biogas and 

bioliquids coefficients are both smaller in magnitude and have a smaller band than bioelectricity.  

Bioelectricity has the highest average emission intensity, due in large part because of the poor 

base-year efficiency of biomass to electricity conversion. Note that as the older biomass power 

plants are retired over time, the emissions intensity of this pathway improves. 
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Fig 3.3A-C. Overall results showing carbon intensity (CO2 e MJ
-1

 final) of all scenarios 

except High_Fert and Low_Fert scenarios. Only the max, min (yellow band), and median 

(black dotted line) scenarios are shown. Other scenarios fall within the range shown.  

 

The median line for bioelectricity drops by about 50% between 2020 and 2095, whereas 

bioliquids and biogas decline by 25-27%. The progression of carbon intensities in figure 3A-C is 

actually a combination of several moving variables discussed below.  

 

3.3.2 Efficiency changes over time 

This study does not focus on the efficiency of converting pre-processed biomass to final fuels, as 

GCAM already has detailed representations of these processes. However, since my carbon 

intensity metric is in units of final energy (liquid, gas, or electricity delivered to the end user), 

this efficiency plays an important role in the trajectory of the carbon intensity values, and is 

shown at the global level in Figure 4. The higher the primary to final efficiency, the fewer MJ of 

primary input energy needed for the same quantity of final energy; thus, the lower the carbon 

intensity value. For example, this means that the seven percentage point increase in bioelectricity 

will contribute to  
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Fig. 3.4. Global share-weighted primary to end-use efficiency trends for biogas, bioliquids, 

and bioelectricity 

 

Bioelectricity changes by the largest magnitude in percentage points and the largest overall 

percentage between 2020 and 2095. This contributes to bioelectricity’s declining carbon intensity 

trend in Fig. 3A.   

 

3.3.3 N2O Emission Trends 

N2O emissions contribute very little to changes over time in Fig. 3A-C because of the 

assumption of constant fertilizer application per GJ of primary biomass, and because I have not 

adopted a marginal abatement curve for these emissions. The only factor which shifts the N2O 

emission intensity over time is the allocation of bioenergy to different regions with different 

fertilizer application rates. In other words, the ―effective fertilizer rate‖ may change with shifting 

biocrop cultivation between regions. Figure 5 demonstrates how as bioenegy crops expand 

globally biocrops to move towards higher fertilizer regions before 2050 and towards lower 

fertilizer regions after 2050.  
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Figure 3.5 Changes in average fertilizer rate over time, across scenarios. Figure clearly 

demonstrates how – given constant fertilizer application assumptions – the “effective” 

fertilizer rate can still vary over time because of shifting land use patterns. 

 

 

3.3.4 Global shifts in growing regions 

 

As discussed above, the average yield of biocrops directly impacts the fertilizer emissions 

(higher yield in a given AEZ from one year to the next implies lower fertilizer input per unit of 

energy) and the transportation emissions (higher yields lead to smaller supply radii and less 

energy use) from bioenergy. In this section, I examine inter-regional shifting in bioenergy crop 

production over time and between scenarios. To start, I plot the average bioenergy yield by 

region in Figure 6. Each AEZ has been weighted by its cumulative bioenergy production. The 

figure reflects two general trends: (1) increasing yields across all AEZs according to 

exogenously specified yield improvements and (2) movement of shares of bioenergy crops 

between AEZs (endogenously determined). With a few exceptions, most regions follow similar 
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trajectories, getting 10%-20% higher yield from 2020 to 2100. Africa has the greatest increase in 

effective yield while Korea has the lowest. At a global scale, the effective yield of bioenergy 

crops increases by 21% between 2020 and 2100.  

 

Figure 3.6 Effective yield in BAU case (indexed to 1.0 in 2020). Figure demonstrates how 

despite the exogenous and uniform yield improvements in GCAM, range differ in how they 

change over time. The effective yield in Africa for biocrops increases by ~70% between 

2020 and 2095 whereas  in Korea, the increase is less than 10%.  

 

In order to quantify the shifting of biocrop cultivation between AEZs of different yields in these 

scenarios, next I hold the land allocation in the year 2020 constant, but allow yields to increase 

within each AEZ. I then compared the effective yield in this ―no movement‖ case to the effective 

yield in the GCAM output for each of the 13 scenarios. Figure 7 gives the difference between the 

―no movement‖ and ―movement‖ cases (a positive value indicates that the effective yield is less 

than the case in which no movement of crop shares is occurring). Across scenarios, biocrops 
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move towards less productive land before 2050 and towards more productive land after 2050, 

relative to the no movement case.  

 

Figure 3.7 Effective yield at the global level and across scenarios.  

 

3.3.3.5 Shifts in Supply Radius 

 

As discussed above, average supply radius of AEZs that produce bioenery declines by about 

25% between 2005 and 2095 across scenarios, contributing to decreases in energy use and 

emissions from the transportation stage. However, because of the shift in bioenergy crops 

towards less productive land than would be achieved without movement of crops, this 

improvement is dampened.  
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Figure 3.8. Average supply radius decline across scenarios from 2005 to 2095. 

 

Figure 3.9A/B. The effective supply radius over time across scenarios (8A). Figure shows 

that because of increasing yields, supply radius of biocrop cultivation will decline. Figure 

8B shows the shift in supply radius relative to a “no crop movement” case.   
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3.4 CONCLUSIONS  

 

This paper is the first to examine contributions to long-term shifts in carbon intensity of 

bioenergy. I find that the carbon intensity of bioelectricity declines by about 50% between 2020 

and 2095, while bioliquids and biogas remain relatively flat. These trends are a product of 

several effects. Although I model nitrogen application per GJ to be constant for a given AEZ 

over time, the shifting cultivation of biocrops between AEZs increases N2O emissions to about 

the year 2050 and decreases it thereafter. Similiarly, carbon intensities of bioenergy will decrease 

due to improved yields but this effect will be dampened before 2050 and accelerated after 2050 

as effective yield of bioenergy moves towards less productive and more productive land, 

respectively. As yields increase, supply radii of bioenergy agrosystems decrease by an average of 

21% across scenarios between 2020 and 2095 assuming an average input of 2.0 million tons of 

biomass yr
-1

.   

While some technical and spatial detail was sacrificed in order to conduct a global 

analysis, the value of this study to policymaking is to show that patterns in future bioenergy 

production have an effect on bioenergy’s carbon intensity. To date, the emphasis of the literature 

on second-generation biofuels has been mainly comparing site-specific and feedstock-specific 

growing conditions, yields, nutrition, efficiencies, emissions, and energy use. Although this 

marks a reasonable starting place for research, the long-term attractiveness of a fuel should 

ultimately be measured in how it interacts with the energy and land-use system when it is greatly 

expanded. GCAM allows us to envision a number of different possible future and examine 

dynamics of the systems along those futures. Because GCAM includes both an agriculture and 
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energy module within the model, there is opportunity to understand how changes in one system 

will relate to changes in the other.  

There are a number of limitations to the study. Because of the exogenous assumptions on 

yield in GCAM, there is no opportunity for feedbacks between the climate system and agriculture 

system. Additionally, while GCAM uses a logit-share equation to create to determine market 

share of biocrops and end use technology and thus avoid winner-take-all projections, many of the 

parameters are characterized by point estimates which themselves have a high degree of 

uncertainty, in particular for bioenergy (Plevin et al., 2010). Another limitation is that I have not 

modeled country-level policies related to bioenergy. I also do not take account of the effect of 

feedstock on soil carbon. For example, there is evidence (Anderson-Teixiera et al., 2009; 

Cherubini et al., 2010) that perennial grasses enhance soil carbon if grown on marginal land and 

that the GHG savings could be substantial, at least in the short-run.  
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