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Abstract: 
This is one of two first-level reports describing the third phase of a warm-mix asphalt study that compares the 
performance of two rubberized asphalt control mixes with that of seven mixes produced with warm-mix 
technologies. The control mixes were produced and compacted at conventional hot-mix asphalt temperatures 
(>300 F [150°C]), while the warm-mixes were produced and compacted at temperatures between 36°F (20°C) and 
60°F (35°C) lower than the controls. This report discusses the mixes produced at the George Reed Marysville Plant 
and covers the Advera WMA®, Astec Double Barrel Green®, Rediset® WMX, and Sasobit® warm-mix technologies. 
The test track layout and design, mix design and production, and test track construction are discussed, as well as the 
results of Heavy Vehicle Simulator (HVS) and laboratory testing. Key findings from the study include: 
• Adequate compaction can be achieved on rubberized warm-mixes at lower temperatures. Roller operators 

should, however, be aware of differences in roller response between warm-mix and conventional hot-mixes, and 
that rolling operations and patterns may need to be adjusted to ensure that optimal compaction is always 
achieved. 

• Optimal compaction temperatures will differ among the different warm-mix technologies. However, a 
temperature reduction of at least 60°F (35°C) is possible for some technologies. 

• Equal and potentially better rutting performance compared to hot-mix can be achieved from warm-mix asphalt 
provided that standard specified construction and performance limits for hot-mix asphalt are met. 

• Laboratory test results indicate that use of the warm-mix technologies assessed in this study did not significantly 
influence performance when compared to control specimens. However, the mixes produced with chemical 
surfactant technologies did appear to be influenced in part by the lower mix production and construction 
temperatures, which would have resulted in less oxidation of the binder and consequent lower stiffness of the 
mix. Rutting performance under accelerated load testing did not appear to be affected, however, nor did fatigue 
performance or moisture sensitivity. The warm-mixes produced using water-foaming technologies appeared to 
have lower moisture resistance compared to the other warm-mixes in all the laboratory moisture sensitivity tests. 

• Smoke and odors are significantly reduced on warm-mixes compared to hot-mixes, while workability is 
considerably better on warm-mixes compared to hot-mixes. 

 
The HVS and laboratory testing completed in this phase have provided no results to suggest that warm-mix 
technologies should not be used in rubberized asphalt in California. 
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DISCLAIMER STATEMENT 
 

This document is disseminated in the interest of information exchange. The contents of this report reflect 

the views of the authors who are responsible for the facts and accuracy of the data presented herein. The 

contents do not necessarily reflect the official views or policies of the State of California or the Federal 

Highway Administration. This publication does not constitute a standard, specification or regulation. This 

report does not constitute an endorsement by the Department of any product described herein. 

 

For individuals with sensory disabilities, this document is available in Braille, large print, audiocassette, or 

compact disk. To obtain a copy of this document in one of these alternate formats, please contact: the 

Division of Research and Innovation, MS-83, California Department of Transportation, P.O. Box 942873, 

Sacramento, CA 94273-0001. 

 

 

PROJECT OBJECTIVES 
 

The objective of this warm-mix asphalt study is to determine whether the use of additives to reduce the 

production and construction temperatures of hot-mix asphalt will influence the performance of the mix. 

This will be achieved through the following tasks: 

1. Preparation of a workplan to guide the research; 

2. Monitoring the construction of Heavy Vehicle Simulator (HVS) and in-service test sections; 

3. Sampling of mix and mix components during asphalt concrete production and construction; 

4. Trafficking of demarcated sections with the HVS in a series of tests to assess performance; 

5. Conducting laboratory tests to identify comparable laboratory performance measures; 

6. Monitoring the performance of in-service pilot test sections; and 

7. Preparation of first- and second-level analysis reports and a summary report detailing the 

experiment and the findings. 

 

This report covers Tasks 2, 3, 4, 5, and 7. 
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EXECUTIVE SUMMARY 

The third phase of a comprehensive study into the use of warm-mix asphalt has been completed for the 

California Department of Transportation (Caltrans) by the University of California Pavement Research 

Center (UCPRC). This phase of the study, which investigated gap-graded rubberized asphalt concrete, 

was based on a workplan approved by Caltrans and included the design and construction of a test track, 

accelerated load testing using a Heavy Vehicle Simulator (HVS) to assess rutting behavior, and a series of 

laboratory tests on specimens sampled from the test track to assess rutting and fatigue cracking 

performance and moisture sensitivity. The objective of the study is to determine whether the use of 

technologies that reduce the production and construction temperatures of asphalt concrete influences 

performance of the mix. The study compared the performance of two rubberized asphalt control mixes, 

which were produced and constructed at conventional hot-mix asphalt temperatures (320°F [160°C]), 

with seven warm-mixes, produced and compacted at between 36°F (20°C) and 60°F (35°C) lower than 

the control. The mixes were produced at two different asphalt plants. The first part of the study, covered 

in a companion report (UCPRC-RR-2011-02), included mixes produced at Granite Construction’s 

Bradshaw Plant using Cecabase RT®, Evotherm DATTM, and Gencor Ultrafoam GXTM warm-mix 

technologies. The second part of the study, discussed in this report, included mixes produced at the 

George Reed Marysville Plant using Advera WMA®, Astec Double Barrel Green®, RedisetTM, and 

Sasobit® technologies. 

 

The test track is located at the University of California Pavement Research Center in Davis, California. 

The design and construction of the test track was a cooperative effort between Caltrans, the UCPRC, 

Granite Construction, George Reed Construction, Teichert Construction, and the seven warm-mix 

technology suppliers. The test track is 360 ft. by 50 ft. (110 m by 15 m) divided into nine test sections 

(two controls and seven warm-mixes). The pavement structure consists of the ripped and recompacted 

subgrade, 1.5 ft. (450 mm) of imported aggregate base, one 0.2 ft. (60 mm) lift of dense-graded hot-mix 

asphalt, and one 0.2 ft. (60 mm) lift of gap-graded rubberized hot-mix (RHMA-G) or warm-mix 

(RWMA-G) asphalt concrete. Each asphalt plant prepared a mix design. No adjustments were made to 

these mix designs to accommodate the warm-mix technologies. Target production temperatures were not 

set; instead the warm-mix technology suppliers set their own temperatures based on experience, ambient 

temperatures, and haul distance. 

 

The production temperature for the George Reed Marysville RHMA-G control mix was 335°F (166°C) 

and 295°F (145°C), 295°F (145°C), 285°F (140°C), and 300°F (149°C) for the Advera, Astec, Rediset 

and Sasobit warm-mixes, respectively. 
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The rubberized asphalt sections were placed in April 2010. Specimens were removed from the test track 

for laboratory testing approximately six weeks after construction. 

 

Heavy Vehicle Simulator (HVS) testing commenced in September 2010 and was completed in 

January 2011. Additional testing on three of the sections was conducted in August and September 2011. 

Testing compared early rutting performance at elevated temperatures (pavement temperature of 122°F at 

2.0 in. [50°C at 50 mm]), starting with a 9,000 lb (40 kN) load on a standard dual wheel configuration and 

a unidirectional trafficking mode. Laboratory testing also commenced in June 2010 and was completed in 

December 2011. The test program included shear testing, wet and dry fatigue testing, Hamburg Wheel-

Track testing, and determination of the wet-to-dry tensile strength ratio. 

 

Key findings from the study include: 

• A consistent subgrade was prepared and consistent base-course and underlying dense-graded hot-
mix asphalt concrete layers were constructed on the test track using materials sourced from a 
nearby quarry and asphalt plant. Thickness and compaction of the base and bottom layer of asphalt 
were consistent across the test track. 

• Asphalt plant modifications were required to accommodate the three powder/pellet based warm-
mix technologies. The delivery systems were approved under the Caltrans Material Plant Quality 
Program. The water injection equipment was integral to the asphalt plant and was also approved 
under the Caltrans Material Plant Quality Program. 

• A number of problems related to blocked nozzles occurred during the production of the water 
injection technology mix (Astec), which resulted in this and the Rediset mix construction being 
delayed for seven days, while the equipment was being replaced and additional binder sourced. 
This also resulted in the need to produce a second Control mix and to construct a second Control 
section. Target mix production temperatures (335°F, 300°F, 295°F, 295°F, and 285°F [166°C, 
149°C, 149°C, 145°C, and 140°C] for the Control, Sasobit, Advera, Astec, and Rediset mixes 
respectively), set by the warm-mix technology providers, were all achieved. There was some 
variation in binder content among the six mixes, with the Rediset mix having a significantly higher 
binder content compared to the other mixes, and to the design. 

• Compaction temperatures ranged between 258°F (126°C) and 219°F (104°C) for the Control and 
Rediset mixes, respectively, and were consistent with production temperatures. The mixes 
produced at lower temperatures lost heat during transport and placement at a slower rate than the 
mixes produced at the higher temperatures, as expected. Compaction was generally poor on all 
sections, especially on the Day #1 Control and Advera sections. 

• Smoke and odors were significantly more severe on the Control section compared to the warm-mix 
sections. 

• Workability of the mix, determined through observation of and interviews with the paving crew, 
was considerably better on the warm-mix sections compared to the Control. 

• Average thicknesses of the top (rubberized) and bottom asphalt layers across the four sections were 
0.22 ft. (66 mm) and 0.24 ft. (75 mm), respectively. The average thickness of the combined two 
layers was 0.45 ft in. (137 mm), 0.5 ft. (17 mm) thicker than the design thickness of 0.4 ft. 
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(120 mm). General consistency of thickness across the track was considered satisfactory and 
representative of typical construction projects. 

• Nuclear gauge–determined density measurements were inconsistent with core-determined air-void 
contents. The core-determined air-void contents indicated that slightly higher density was achieved 
on the warm-mix sections compared to the Control sections (88 percent of the RICE specific 
gravity) compared to the warm-mix sections (92, 89, 91, and 92 percent for the Sasobit, Advera, 
Astec, and Rediset sections, respectively). Compaction across the test track appeared to be 
consistent, confirming that adequate compaction can be achieved on rubberized warm-mixes at 
lower temperatures. Based on observations from the test track construction and interviews with 
roller operators, optimal compaction temperatures and rolling patterns will differ between the 
different warm-mix technologies, but it was shown that adequate compaction can be achieved on 
warm-mixes at the lower temperatures. Roller operators will, however, need to consider that there 
might be differences in roller response between warm-mix and conventional hot mixes, and that 
rolling operations and patterns may need to be adjusted to ensure that optimal compaction is always 
achieved. 

• HVS trafficking on four of the five sections indicated generally consistent performance among the 
mixes. Unexpected poor performance was measured on the Advera section (Section 626HA) so 
additional tests on this section as well as on the Control and Sasobit sections were undertaken to 
determine the cause and to eliminate possible seasonal and machine-related testing variables. The 
cause of this poor performance was attributed to a combination of high subgrade moisture content 
and thinner combined asphalt layers, which were identified during the forensic investigation. The 
duration of the tests to terminal rut (12.5 mm [0.5 in.]) on the five sections varied from 73,500 load 
repetitions (Section 629HB, Advera Test #2) to 365,000 load repetitions (Section 625HA, Sasobit 
Test #1). 

• The duration of the embedment phases on all sections except the Advera section were similar. 
Apart from the Advera section, the depth of the ruts at the end of the embedment phases differed 
only slightly between sections, with the Astec section (7.5 mm [0.3 in.]) having a slightly deeper 
embedment than the Control, Sasobit, and Rediset sections, which had similar embedment (6.5 to 
6.7 mm [0.26 in.]). This is opposite to the early rutting performance in the Phase 1 study and is 
being investigated in a separate project. 

• Rut rate (rutting per load repetition) after the embedment phase on the Control and Sasobit sections 
was almost identical. The rut rate was slightly higher on the Astec and Rediset sections, and was 
attributed to some moisture in the asphalt layer and subgrade in the Astec section (determined 
during the forensic investigation), and to the higher binder content on the Rediset section. Although 
lower production and paving temperatures typically result in less oxidation of the binder, which can 
influence early rutting performance, differences in production and placement temperatures did not 
appear to influence performance in this set of tests. 

• The laboratory test results indicate that use of the warm-mix technologies assessed in this study, 
produced and compacted at lower temperatures, did not significantly influence the performance of 
the asphalt concrete when compared to control specimens produced and compacted at conventional 
hot-mix asphalt temperatures. Specific observations include: 
+ Laboratory performance in all tests appeared to be mostly dependent on air-void content and 

binder content, as expected, and less dependent on mix production temperature. 
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+ The water-based warm-mix technology mixes (Advera and Astec) appeared to have lower 
moisture resistance compared to the other three mixes in all the moisture sensitivity tests. 

+ Test results were influenced by mix production temperatures, actual binder content, specimen 
air-void content, actual stress and strain levels, and actual test temperature. Variation in these 
parameters needs to be taken into consideration when comparing performance between the 
different mixes. 

 

The HVS and laboratory testing completed in this phase have provided no results to suggest that warm-

mix technologies should not be used in gap-graded rubberized mixes in California, provided that standard 

specified construction and performance limits for hot-mix asphalt are met. Significant reductions in 

smoke and odors and improved workability of the warm-mixes also support wider use of these 

technologies. Consideration should be given to further study into the effects of warm-mix asphalt 

technologies and production and placement of warm-mixes at lower temperatures on binder 

oxidation/aging rates.  The effects that these may have on performance over the life of the asphalt 

surfacing should also be investigated. Research in this study has shown differences in early rutting 

performance between conventional and rubber mixes, between mixes tested after different curing periods, 

and between pavements subjected to mostly shade and mostly sun, respectively. 
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1. INTRODUCTION 

1.1 Background 

Warm-mix asphalt is a relatively new technology. It has been developed in response to needs for reduced 

energy consumption and stack emissions during the production of asphalt concrete, long hauls, lower 

placement temperatures, improved workability, and better working conditions for plant and paving crews. 

Studies in the United States and Europe indicate that significant reductions in production and placement 

temperatures are possible. 

 

Research initiatives on warm-mix asphalt are currently being conducted in a number of states, as well as 

by the Federal Highway Administration and the National Center for Asphalt Technology (NCAT). 

Accelerated pavement testing experiments are being carried out at NCAT. 

 

The California Department of Transportation (Caltrans) has expressed interest in warm-mix asphalt with a 

view to reducing stack emissions at plants, to allow longer haul distances between asphalt plants and 

construction projects, to improve construction quality (especially during nighttime closures), and to extend 

the annual period for paving. However, the use of warm-mix asphalt technologies requires incorporating 

an additive into the mix, and/or changes in production and construction procedures, specifically related to 

temperature, which could influence the short- and long-term performance of the pavement. Consequently, 

the need for research was identified by Caltrans to address a range of concerns related to these changes 

before statewide implementation of the technology is approved. 

 

1.2 Project Objectives 

The research presented in this report is part of Partnered Pavement Research Center Strategic Plan 

Element 4.18 (PPRC SPE 4.18), titled “Warm-Mix Asphalt Study,” undertaken for Caltrans by the 

University of California Pavement Research Center (UCPRC). The objective of this multi-phase project is 

to determine whether the use of additives intended to reduce the production and construction temperatures 

of asphalt concrete influence mix production processes, construction procedures, and the short-, medium-, 

and/or long-term performance of hot-mix asphalt. The potential benefits of using the additives will also be 

quantified. This is to be achieved through the following tasks: 

• Develop a detailed workplan (1) for Heavy Vehicle Simulator (HVS) and laboratory testing 
(Completed in September 2007). 

• Construct test tracks (subgrade preparation, aggregate base-course, tack coat, and asphalt wearing 
course) at the Graniterock A.R. Wilson quarry near Aromas, California (completed in September 
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2007 for the Phase 1 and Phase 2 studies), and at the UCPRC facility in Davis, California 
(completed in April 2010 for the Phase 3 study). 

• Undertake HVS testing in separate phases, with later phases dependent on the outcome of earlier 
phases and laboratory tests (Phase 1 [rutting on HMA/WMA] was completed in April 2008, Phase 2 
[moisture sensitivity on HMA/WMA] was completed in July 2009, and Phase 3 [rutting on 
RHMA-G/RWMA-G] was completed in July 2011). 

• Carry out a series of laboratory tests to assess rutting and fatigue behavior (Phase 1 [plant-mixed, 
field-compacted] completed in August 2008, Phase 2a [plant-mixed, laboratory-compacted] 
completed in August 2009, Phase 2b [laboratory-mixed, laboratory-compacted] was completed in 
June 2010, and Phase 3 [plant-mixed, field-compacted] was completed in June 2011). 

• Prepare a series of reports describing the research. 
• Prepare recommendations for implementation. 

 

Selected pilot studies with warm-mix technologies on in-service pavements will also be monitored as part 

of the study. 

 

1.3 Overall Project Organization 

This UCPRC project has been planned as a comprehensive study to be carried out in a series of phases, 

with later phases dependent on the results of the initial phase. The planned testing phases include (1): 

• Phase 1 compared early rutting potential at elevated temperatures (pavement temperature of 122°F 
at 2.0 in. [50°C at 50 mm]). HVS trafficking began approximately 45 days after construction. Cores 
and beams sawn from the sections immediately after construction were subjected to rutting, fatigue, 
cracking, and moisture sensitivity testing in the laboratory. The workplan dictated that moisture 
sensitivity, additional rutting, and fatigue testing with the HVS would be considered if the warm-
mix asphalt concrete mixes performed differently than the conventional mixes. The results from this 
phase are discussed in a report entitled Warm-Mix Asphalt Study: Test Track Construction and 
First-Level Analysis of Phase 1 HVS and Laboratory Testing (2). 

• Depending on the outcome of laboratory testing for moisture sensitivity, a testing phase, if deemed 
necessary, would assess general performance under dry and wet conditions with special emphasis 
on moisture sensitivity. Phase 1 laboratory testing indicated a potential for moisture damage, 
prompting initiation of a second phase. Phase 2 compared rutting potential at elevated temperatures 
(pavement temperature of 122°F at 2.0 in. [50°C at 50 mm] pavement depth) and under wet 
conditions. HVS trafficking started approximately 90 days after completion of the Phase 1 HVS 
testing (12 months after construction). The results from Phase 2 are discussed in two reports entitled 
Warm-Mix Asphalt Study:  First-Level Analysis of Phase 2 HVS and Laboratory Testing, and 
Phase 1 and Phase 2 Forensic Assessments (3) and Warm-Mix Asphalt Study:  First-Level Analysis 
of Phase 2b Laboratory Testing on Laboratory Prepared Specimens (4). 

• Depending on the outcome of laboratory testing for rutting, a testing phase, if deemed necessary, 
would assess rutting performance on artificially aged test sections at elevated temperatures (122°F 
at 2.0 in. [50°C at 50 mm]). The actual process used to artificially age the sections was not 
finalized, but it would probably follow a protocol developed by the Florida Department of 

 
2 UCPRC-RR-2011-03 



 

Transport Accelerated Pavement Testing program, which uses a combination of infrared and 
ultraviolet radiation. Phase 1 laboratory testing results and Phase 2 HVS testing results provided no 
indication of increased rutting on aged sections and consequently this phase was not undertaken. 

• Depending on the outcome of the laboratory study for fatigue, a testing phase, if deemed necessary, 
would assess fatigue performance at low temperatures (59°F at 2.0 in. [15°C at 50 mm]). Phase 1 
laboratory testing did not indicate that the warm-mix asphalt technologies tested would influence 
fatigue performance and consequently this phase was not undertaken. 

• Depending on the outcome of the above testing phases and if agreed upon by the stakeholders 
(Caltrans, warm-mix technology suppliers), the sequence listed above or a subset of the sequence 
would be repeated for gap-graded rubberized asphalt concrete (RHMA-G), and again for open-
graded mixes. The testing of gap-graded rubberized mixes was undertaken in two subphases and is 
discussed in this report and in a companion report entitled Warm-Mix Asphalt Study: Test Track 
Construction and First-Level Analysis of Phase 3b HVS and Laboratory Testing (Rubberized 
Asphalt, Mix Design #2) (5). 

• Periodic assessment of the performance of gap-graded mixes in full-scale field experiments. This 
work is discussed in a separate report on that study entitled Warm-Mix Asphalt Study: Field Test 
Performance Evaluation (6). 

 

This test plan is designed to evaluate short-, medium-, and long-term performance of the mixes. 

• Short-term performance is defined as failure by rutting of the asphalt-bound materials. 
• Medium-term performance is defined as failure caused by moisture and/or construction-related 

issues. 
• Long-term performance is defined as failure from fatigue cracking, reflective cracking, and/or 

rutting of the asphalt-bound and/or unbound pavement layers. 
 

The following questions, raised by Caltrans staff in a pre-study meeting, will be answered during the 

various phases of the study (1): 

• What is the approximate comparative energy usage between HMA and WMA during mix 
preparation? This will be determined from asphalt plant records/observations in pilot studies where 
sufficient tonnages of HMA and WMA are produced to undertake an assessment. 

• Can satisfactory compaction be achieved at lower temperatures? This will be established from 
construction monitoring and subsequent laboratory tests. 

• What is the optimal temperature range for achieving compaction requirements? This will be 
established from construction monitoring and subsequent laboratory tests. 

• What are the cost implications? These will be determined with basic cost analyses from pilot studies 
where sufficient tonnages of HMA and WMA are produced to undertake an assessment.  

• Does the use of warm-mix asphalt technologies influence the rutting performance of the mix? This 
will be determined from all HVS and laboratory tests. 

• Is the treated mix more susceptible to moisture sensitivity given that the aggregate is heated to 
lower temperatures? This will be determined from Phase 1 laboratory tests and Phase 2 HVS 
testing. 
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• Does the use of warm-mix asphalt technologies influence fatigue performance? This will be 
determined from Phase 1 and Phase 2 laboratory tests and potential additional laboratory and HVS 
testing. 

• Does the use of warm-mix asphalt technologies influence the performance of the mix in any other 
way? This will be determined from HVS and laboratory tests, and from field observations (all 
phases). 

• If the experiment is extended to rubberized gap-graded and standard, rubberized, and polymer-
modified open-graded mixes, are the impacts of using the warm-mix technologies in these mixes 
the same as for conventional dense-graded mixes? 

 

1.3.1 Project Deliverables 

Deliverables from the study will include: 

• A detailed workplan for the entire study (1); 
• A report detailing construction, first-level data analysis of the Phase 1 HVS testing, first-level data 

analysis of the Phase 1 laboratory testing, and preliminary recommendations (2); 
• A report detailing first-level data analysis of the Phase 2 HVS testing, first-level data analysis of the 

Phase 2a laboratory testing, Phase 1 and Phase 2 forensic investigations, and preliminary 
recommendations (3);  

• A report detailing first-level analysis of the Phase 2b laboratory testing on laboratory-mixed, 
laboratory-compacted specimens (4); 

• A report detailing first-level data analysis of the Phase 3a (mixes produced at Granite 
Construction’s Bradshaw plant) HVS testing, first-level data analysis of the Phase 3a laboratory 
testing, Phase 3a forensic investigation, and preliminary recommendations (5); 

• A report detailing first-level data analysis of the Phase 3b (mixes produced at George Reed’s 
Marysville plant) HVS testing, first-level data analysis of the Phase 3b laboratory testing, Phase 3b 
forensic investigation, and preliminary recommendations (this report); 

• A report summarizing periodic observations from test sections on in-service pavements (6); and 
• A summary report for the entire study. 

 

A series of conference and journal papers documenting various components of the study will also be 

prepared. 

 

1.4 Structure and Content of this Report 

1.4.1 Warm-Mix Technologies Tested 

In the Phase 1 and Phase 2 studies, the three most prominent warm mix technologies (Advera WMA®, 

Evotherm DATTM, and Sasobit®) were assessed. During that testing phase numerous other technologies 

were developed and consequently additional technologies, specifically those based on water injection (or 

mechanical foam), were considered for the Phase 3 study. The technologies assessed were selected based 

on participation of warm-mix technology providers in the Caltrans Warm-mix Asphalt Technical Working 

Group. Given that two different water injection technologies would be tested and that these technologies 

are asphalt plant-specific (i.e., they are integral components of the asphalt plant), the Phase 3 study tested 
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mixes from two different asphalt plants. Since two different aggregate sources and consequently two 

different mix designs were used, testing and reporting has been undertaken in two subphases to limit 

inappropriate performance comparisons, as follows: 

• Phase 3a:  Mix Design #1 using mixes produced at the Granite Construction Bradshaw Plant 
(companion report [5]) 
+ Hot-mix control 
+ Gencor Ultrafoam GXTM, water injection technology, referred to as Gencor in this report 
+ Evotherm DATTM, chemical surfactant technology, referred to as Evotherm in this report 
+ Cecabase RT®, chemical surfactant technology, referred to as Cecabase in this report 

• Phase 3b:  Mix Design #2 using mixes produced at the George Reed Construction Marysville Plant 
(this report) 
+ Hot-mix control 
+ Astec Double Barrel Green®, water injection technology, referred to as Astec in this report 
+ Sasobit®, organic wax technology, referred to as Sasobit in this report 
+ Advera WMA®, chemical water foaming technology, referred to as Advera in this report 
+ RedisetTM, chemical surfactant technology, referred to as Rediset in this report. 

 

1.4.2 Report Layout 

This report presents an overview of the work carried out in Phase 3b to continue meeting the objectives of 

the study, and is organized as follows: 

• Chapter 2 summarizes the HVS test track location, design, and construction. 
• Chapter 3 details the HVS test section layout and HVS test criteria. 
• Chapter 4 provides a summary of the Phase 3b HVS test data collected from each test. 
• Chapter 5 details the forensic investigations undertaken on each HVS test section after testing. 
• Chapter 6 discusses the Phase 3b laboratory testing on specimens sampled from the test track. 
• Chapter 7 provides conclusions and preliminary recommendations. 

 

1.5 Measurement Units 

Although Caltrans has recently returned to the use of U.S. standard measurement units, metric units have 

always been used by the UCPRC in the design and layout of HVS test tracks, and for laboratory and field 

measurements and data storage. In this report, both English and metric units (provided in parentheses after 

the English units) are provided in general discussion. In keeping with convention, only metric units are 

used in HVS and laboratory data analyses and reporting. A conversion table is provided on page xx at the 

beginning of this report. 

 

1.6 Terminology 

The term “asphalt concrete” is used in this report as a general descriptor for the surfacing on the test track. 

The terms “hot-mix asphalt (HMA)” and “warm-mix asphalt (WMA)” are used as descriptors to 

differentiate between the control and warm-mixes discussed in this study. 
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2. TEST TRACK LOCATION, DESIGN, AND CONSTRUCTION 

2.1 Experiment Location 

The Phase 3 warm-mix asphalt experiment is located on the North Test Track at the University of 

California Pavement Research Center facility in Davis, California. An aerial view of the site is shown in 

Figure 2.1. This was the first test undertaken on this test track. 

 

 

Figure 2.1:  Aerial view of the UCPRC research facility. 
 

2.2 Test Track Layout 

The North Test Track is 361 ft. (110 m) long and 49.2 ft (15 m) wide. It has a two percent crossfall in a 

north-south direction. For the study, the track was divided into nine equal cells, 120.4 ft. (36.7 m) long 

and 16.4 ft. (5.0 m) wide for the study. Its layout is shown in Figure 2.2, with Cells 1 through 4 used in the 

Phase 3a study (Control, Gencor, Evotherm, and Cecabase, respectively) (5) and Cells 5 though 9 

(Sasobit, Advera, Control, Astec, and Rediset, respectively) used in the Phase 3b study. All test track 

measurements and locations discussed in this report are based on this layout. 

 

 

North Test Track 

N 
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Figure 2.2:  Test track layout. 
 

2.3 Pavement Design 

Dynamic cone penetrometer (DCP) tests were performed along the center lines of each lane over the 

length and width of the test track (Figure 2.3) prior to any construction to obtain an indication of the in 

situ subgrade strength. Results are summarized in Table 2.1. Penetration rates varied between 11 mm per 

blow and 30 mm per blow, with the weakest areas in the middle of the track spanning Cells 5 and 6. 

Variation was attributed to the degree of soil mixing, temporary stockpiling of lime-treated soils (lime 

treatment was used to dry the soil in some areas of the site), and to compaction from equipment during 

construction of the facility, and to varying subgrade moisture contents. 
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Figure 2.3:  DCP test locations. 
 

Table 2.1:  Summary of DCP Survey on Subgrade Material 
Test 

Location1 
(m) 

Penetration Rate 
(mm/blow) 

Estimated California Bearing 
Ratio2 

Estimated Stiffness 
(MPa)2 

Lane #1 Lane #2 Lane #3 Lane #1 Lane #2 Lane #3 Lane #1 Lane #2 Lane #3 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

17 
16 
14 
13 
13 
12 
15 
14 
12 
11 

21 
18 
16 
22 
26 
25 
30 
28 
26 
20 

19 
15 
13 
16 
15 
16 
15 
15 
14 
15 

11 
12 
14 
15 
15 
17 
13 
14 
17 
19 

  9 
10 
12 
  8 
  6 
  6 
  5 
  5 
  6 
  9 

  9 
13 
15 
12 
13 
12 
13 
13 
14 
13 

56 
60 
66 
71 
71 
77 
63 
66 
77 
85 

41 
46 
60 
40 
36 
37 
30 
34 
36 
42 

44 
63 
71 
60 
63 
60 
63 
63 
66 
63 

1 Measured from southwest corner of the track.  2  Estimated from DCP software tool. 
 

A sensitivity analysis of potential pavement designs using layer elastic theory models was carried out 

using the DCP results obtained during the site investigation and estimates, based on previous experience, 

of the moduli of a representative aggregate base-course and asphalt concrete surfacing. Components of the 

sensitivity analysis included the following 24 cells: 
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• Three asphalt concrete thicknesses (100 mm, 125 mm, and 150 mm) 
• Three asphalt concrete moduli (600 MPa, 1,000 MPa, and 3,000 MPa) 
• Two base-course thicknesses (300 mm and 450 mm) 
• Two base-course moduli (150 MPa and 300 MPa) 
• One subgrade (existing soil with modulus of 60 MPa). 

 

A test pavement design was selected to maximize the information that would be collected about the 

performance of warm-mix asphalt, taking into consideration that a very strong pavement would lengthen 

the testing time before results (and an understanding of the behavior) could be obtained, while a very 

weak pavement could fail before any useful data was collected. The pavement design shown in Figure 2.4 

was considered appropriate for the study. 

 

  Layer: RHMA-G/RWMA-G 
 Thickness: 60 mm (0.2 ft.),   Modulus: 460 MPa @ 50°C (66.7 ksi @ 122°F) 

 Layer: HMA 
 Thickness: 60 mm (0.2 ft.),   Modulus: 615 MPa @ 50°C (89.2 ksi @ 122°F) 

 
 
 
 
 

 

Layer: Imported Class 2 Aggregate Base-Course 
 Thickness: 450 mm (1.5 ft.),  Modulus: 300 MPa (43.5 ksi) 

 
 
 
 

 
Layer: Prepared Subgrade 
 Thickness: Semi-infinite,   Modulus: 60 MPa (8.7 ksi) 

Figure 2.4:  Pavement structure for rubberized warm-mix asphalt test sections. 
 

2.4 Subgrade Preparation 

2.4.1 Equipment 

The following equipment was used for preparation of the subgrade: 

• Water tanker (4,000 gal. [15,000°L]) 
• Caterpillar 163H grader 
• Caterpillar 623F scraper 
• Caterpillar 815F padfoot roller 
• Ingersoll Rand SD-115-D vibrating steel drum roller 

 

2.4.2 Preparation 

The subgrade was prepared on September 22, 2009. Preparation included vegetation removal, preliminary 

leveling, ripping, watering and mixing, compaction, and final leveling to include a two percent north–

south crossfall as follows: 
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• Removing vegetation with a grader, windrowing the deleterious material toward the center of the 
track, collecting this material with a scraper and dumping it in a temporary stockpile for removal 
(Figure 2.5). 

• Preliminary leveling with a grader followed by watering (Figure 2.6). 
• Ripping to a depth of 12 in. (300 mm) (Figure 2.7). 
• Watering and mixing using both the scraper and grader (Figure 2.8). Pockets of high clay content 

soils were observed during this process, which required additional working with the grader and 
scraper to break up the clods (Figure 2.9). 

• Initial compaction with a padfoot roller (Figure 2.10). Despite extensive mixing, some clay pockets 
were still observed after completion of the initial compaction, with padfoot impressions clearly 
visible (Figure 2.11). Clay pockets appeared to predominate on the eastern half of the track. 

• Final compaction with a vibrating smooth drum roller (Figure 2.12). 
• Final leveling with a grader. 
• Density checks on the finished surface (Figure 2.13) with a nuclear density gauge. 

 

  

Figure 2.5:  Vegetation removal. 

  

Figure 2.6:  Preliminary leveling. Figure 2.7:  Ripping. 
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Figure 2.8:  Watering and mixing. Figure 2.9:  Breaking up of clay clods. 

  

Figure 2.10:  Initial compaction. Figure 2.11:  Padfoot impressions in clay 
pockets. 

  

Figure 2.12:  Final compaction. Figure 2.13:  Final subgrade surface. 
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2.4.3 Quality Control 

Quality control of the subgrade preparation was limited to density checks with a nuclear gauge following 

Caltrans Test Method CT 231 and comparison of the results against a laboratory maximum density of 

134.2 lb/ft3 (2,150 kg/m3) determined according to Caltrans Test Method CT 216. Nuclear gauge 

measurements were taken at 10 different locations selected according to a nonbiased plan shown in 

Figure 2.14. Samples for laboratory density determination were taken at locations 1, 2 and 3. Results are 

summarized in Table 2.2 and indicate that the subgrade density was generally consistent across the test 

track. Relative compaction varied between 99.2 percent and 98.8 percent with an average of 97.0 percent, 

two percent above the Caltrans-specified minimum density of 95 percent for subgrade compaction (7). No 

location had a relative compaction lower than this minimum. 
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Figure 2.14:  Location of subgrade density measurements. 
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Table 2.2:  Summary of Subgrade Density Measurements 
Location Wet Density Moisture 

Content 
Dry Density Relative 

Compaction 
(lb/ft3) (kg/m3) (%) (lb/ft3) (kg/m3) (%) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

130.5 
132.6 
131.3 
130.2 
133.2 
128.9 
132.2 
128.1 
132.3 
128.7 

2,091 
2,124 
2,103 
2,086 
2,133 
2,065 
2,117 
2,052 
2,120 
2,062 

15.6 
17.3 
16.8 
16.2 
15.2 
17.8 
17.9 
18.7 
16.5 
15.0 

112.6 
113.1 
112.4 
112.1 
115.6 
109.5 
112.1 
107.9 
113.6 
111.9 

1,804 
1,811 
1,801 
1,796 
1,852 
1,754 
1,795 
1,728 
1,820 
1,793 

97.3 
98.8 
97.8 
97.0 
99.2 
96.0 
98.5 
95.4 
98.6 
95.9 

Average 
Std. Dev. 

130.8 
1.8 

2,095 
29 

17.0 
1.2 

112.1 
2.1 

1,795 
34 

97.0 
1.3 

 

2.5 Base-Course Construction 

2.5.1 Material Properties 

Base-course aggregates were sourced from Teichert’s Cache Creek quarry. Key material properties are 

summarized in Table 2.3. The material met Caltrans specifications, except for the percent passing the 

#200 sieve, which exceeded the specification operating range by 3.0 percent, and just met the contract 

compliance limits. 

Table 2.3:  Base-course Material Properties 
Property Result Operating Range Contract Compliance 

Grading: 1" (25 mm) 
 3/4" (19 mm) 
 1/2" (12.5 mm) 
 3/8" (9.5 mm) 
 #4 (4.75 mm) 
 #8 (2.36 mm) 
 #16 (1.18 mm) 
 #30 (600 μm) 
 #50 (300 μm) 
 #100 (150 μm) 
 #200 (75 μm) 

100 
99.1 
90.1 
83.5 
63.3 
48.8 
39.2 
30.8 
21.6 
15.6 
12.3 

100 
90 – 100 

– 
– 

35 – 60 
– 
– 

10 – 30 
– 
– 

2 – 9 

100 
87 – 100 

– 
– 

30 – 65 
– 
– 

5 – 35 
– 
– 

0 – 12 
Liquid Limit 
Plastic Limit 
Plasticity Index 

Non-plastic 
– 
– 
– 

– 
– 
– 

Maximum Dry Density (lbs/ft3/kg/m3) 
Optimum Moisture Content 

140.6 (2,252) 
6.0 

– 
– 

– 
– 

R-Value 
Sand equivalent 
Durability index – course 
Durability index – fine 

79 
30 
78 
52 

– 
25 
– 
– 

>78 
>22 
>35 
>35 

 

2.5.2 Equipment 

The following equipment was used during the construction of the base-course: 

• Water tanker (4,000 gal. [15,000 L]) 
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• Caterpillar 163H grader 
• Caterpillar 623F scraper 
• Ingersoll Rand SD-115-D vibrating steel drum roller 

 

2.5.3 Construction 

The test track base-course was constructed on September 24, 2009, two days after the subgrade 

preparation. The construction process included aggregate spreading, watering, compaction, and final 

leveling to include a two percent north-south crossfall as follows: 

• Transporting crushed base-course material (alluvial) that complied with Caltrans Class 2 aggregate 
base-course specifications from Teichert’s Cache Creek aggregate source to the test track with a 
fleet of bottom-dump trucks and trailers. 

• Dumping the aggregate in windrows (Figure 2.15). 
• Spreading the aggregate with a grader (Figure 2.16) to a thickness of approximately 4.0 in. 

(100 mm). 
• Adding water to bring the aggregate to the optimum moisture content and re-mixing with the grader 

to ensure even distribution of the moisture throughout the material (Figure 2.17). 
• Initial compaction of the spread material with a vibrating steel wheel roller (Figure 2.18). 
• Repeating the process until the design thickness of 1.5 ft. (450 mm) was achieved. 
• Applying a generous application of water (Figure 2.19) followed by compaction to pump fines to 

the surface to provide good aggregate interlock (slushing). 
• Final leveling with a grader (Figure 2.20). Final levels were checked with a total station to ensure 

that a consistent base-course thickness had been achieved. 
• Removal of excess material with a scraper followed by final compaction (Figure 2.21). 
• Density checks on the finished surface with a nuclear density gauge. 

 

  

Figure 2.15:  Dumping material in windrows. Figure 2.16:  Material spreading. 
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Figure 2.17:  Watering. Figure 2.18:  Initial compaction. 

  

Figure 2.19:  Heavy watering prior to pre-final 
compaction. 

Figure 2.20:  Final leveling with a grader. 

 

Figure 2.21:  Removing excess material and final compaction. 
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2.5.4 Quality Control 

Quality control of the base-course construction was limited to density checks with a nuclear gauge 

following Caltrans Test Method CT 231 and comparison of the results against a laboratory maximum wet 

density of 150.5 lb/ft3 (2,410 kg/m3) determined according to Caltrans Test Method CT 216. Nuclear 

gauge measurements were taken at 10 different locations selected according to a nonbiased plan shown in 

Figure 2.22. A sample for laboratory density determination was taken at Location #1. Results are 

summarized in Table 2.4 and indicate that the base-course density properties were generally consistent 

across the test track, but that the material was relatively wet compared to the laboratory-determined 

optimum moisture content. Relative compaction varied between 96.7 percent and 99.4 percent with an 

average of 98.0 percent, three percent above the Caltrans-specified minimum density of 95 percent for 

base compaction (7). No location had a relative compaction lower than this minimum. 
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Figure 2.22:  Location of base density measurements. 
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Table 2.4:  Summary of Nuclear Gauge Base-Course Density Measurements 
Location Wet Density Moisture 

Content 
Dry Density Relative 

Compaction 
(lb/ft3) (kg/m3) (%) (lb/ft3) (kg/m3) (%) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

146.5 
148.5 
148.0 
147.1 
148.7 
145.5 
149.0 
145.6 
149.5 
145.7 

2,346 
2,379 
2,371 
2,356 
2,382 
2,330 
2,387 
2,332 
2,395 
2,334 

6.6 
7.0 
8.0 
7.8 
6.3 
6.8 
8.2 
7.7 
6.9 
7.8 

137.4 
138.8 
137.0 
136.5 
139.9 
136.2 
137.7 
135.2 
139.8 
135.2 

2,201 
2,223 
2,195 
2,186 
2,241 
2,182 
2,206 
2,165 
2,240 
2,165 

97.3 
98.7 
98.4 
97.8 
98.8 
96.7 
99.0 
96.8 
99.4 
96.8 

Average 
Std. Dev. 

147.4 
1.5 

2,361 
25 

7.3 
0.7 

137.3 
1.7 

2,200 
27.6 

98.0 
1.0 

 

2.5.5 Follow-Up Testing Prior to Paving 

Paving of the first lift of asphalt concrete was scheduled for October 7, 2009. However, contractor 

scheduling and then rainfall on four days (October 13, 14, 15, and 19) delayed priming of the surface until 

October 23, 2009, and paving until October 30, 2009. Rainfall measured over the four days totaled 3.1 in. 

(78 mm). Some ponding of water in Cells #1 and #2 on the western end of the test track was observed 

during these rainfall events (Figure 2.23). 

 

  

Figure 2.23:  Ponding of water on base. 
 

Dynamic cone penetrometer (DCP) measurements were undertaken on the base at the same locations as 

the original subgrade DCP survey (Figure 2.3) to assess whether the rainfall had weakened the base on 

any parts of the track. The results are summarized in Table 2.5 and indicate that although average 

penetration rates (mm/blow) were consistent across the track, there was considerable difference in the 

average calculated stiffness of the base from the redefined layers based on actual penetration. 

Consequently, the contractor was requested to recompact the track with a static steel drum roller prior to 

priming to consolidate the base layer and accelerate movement of infiltrated water to the surface. 
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A significant improvement in subgrade stiffness attributed to the subgrade preparation and confinement by 

the base was also noted. 

Table 2.5:  Summary of DCP Survey on Base and Subgrade Material 
Test 

Location 
(m)1 

Penetration Rate 
(mm/blow) 

Estimated Stiffness 
(MPa [ksi])2 

Base Subgrade Base Subgrade 
Lane Lane Lane Lane 

#1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 
  10 
  20 
  30 
  40 
  50 
  60 
  70 
  80 
  90 
100 

3 
- 
- 
4 
- 
- 
4 
- 
- 
4 

- 
3 
- 
- 
4 
- 
- 
4 
- 
- 

- 
- 
3 
- 
- 
4 
- 
- 
4 
- 

9 
- 
- 
9 
- 
- 

10 
- 
- 

11 

- 
8 
- 
- 
9 
- 
- 

10 
- 
- 

- 
- 
7 
- 
- 
9 
- 
- 
7 
- 

430 (62) 
- 
- 

332 (48) 
- 
- 

255 (37) 
- 
- 

259 (38) 

- 
395 (57) 

- 
- 

299 (43) 
- 
- 

260 (38) 
- 
- 

- 
- 

320 (46) 
- 
- 

279 (41) 
- 
- 

273 (40) 
- 

111 (16) 
- 
- 

114 (17) 
- 
- 

99 (14) 
- 
- 

116 (17) 

- 
119 (17) 

- 
- 

107 (16) 
- 
- 

105 (15) 
- 
- 

- 
- 

139 (20) 
- 
- 

137 (20) 
- 
- 

148 (22) 
- 

1 Measured from southwest corner of the track. 2 Estimated from DCP software tool. 
 

2.6 Bottom Lift Asphalt Concrete Construction 

2.6.1 Material Properties 

Dense-graded asphalt concrete for the bottom lift was sourced from Teichert’s Woodland Asphalt Plant. 

Key material properties are summarized in Table 2.6. The material met Caltrans specifications. 

Table 2.6:  Key Bottom Lift HMA Mix Design Parameters 
Parameter Wearing Course 

Actual Target Specification Compliance 
Grading: 1" (25 mm) 
 3/4" (19 mm) 
 1/2" (12.5 mm) 
 3/8" (9.5 mm) 
 #4 (4.75 mm) 
 #8 (2.36 mm) 
 #16 (1.18 mm) 
 #30 (600 μm) 
 #50 (300 μm) 
 #100 (150 μm) 
 #200 (75 μm) 

100 
98 
84 
75 
52 
34 
22 
15 
9 
6 
4 

100 
100 
98 
83 
40 
23 
– 
12 
– 
– 
5 

100 
100 

  90 – 100 
77 – 89 
33 – 47 
18 – 28 

– 
– 
– 
– 

3 – 7 

100 
100 

90 – 100 
76 – 90 
30 – 44 
6 – 26 

– 
– 
– 
– 

0 – 8 
Asphalt binder grade 
Asphalt binder content (% by aggregate mass) 
Hveem stability at optimum bitumen content 
Air-void content (%) 
Dust proportion 
Voids in mineral aggregate (LP-2) (%) 
Voids filled with asphalt (LP-3) (%) 
Crushed particles (1 face) (%) 
Sand equivalent (%) 
Fine aggregate angularity (%) 
Los Angeles Abrasion at 100 repetitions (%) 
Los Angeles Abrasion at 500 repetitions (%) 

PG 64-16 
  5.0 
41.0 
  4.0 
0.9 

13.0 
69.0 
92 

71.0 
54.0 
  5.0 
21.3 

- 
– 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

– 
– 

>37 
2 – 6 

0.6 – 1.3 
>13 

65 – 75 
>90 
>47 
>47 
<12 
<45 

- 
– 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
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2.6.2 Equipment 

The following equipment was used during the construction of the bottom lift of asphalt concrete: 

• Terex Cedar Rapids CR552 paver and material transfer device 
• Caterpillar CB-534D vibrating steel twin-drum roller (two) 
• Ingersoll Rand PT-240R pneumatic tire roller 

 

2.6.3 Prime Coat Application 

On the day before the prime coat application (October 22, 2009), the test track was compacted with a 

twin-drum steel roller to consolidate the base layer and accelerate movement of infiltrated water to the 

surface. An SS-1 asphalt emulsion prime coat was applied to the surface at a rate of 0.25 gal./yd2 

(1.0 L/m2). The time of application was 1:00 p.m., ambient temperature was 88°F (35°C) and relative 

humidity was 28 percent. A consistent application was achieved (Figure 2.24); however, differential 

penetration was observed, which was attributed to patches of near-surface moisture (Figure 2.25). 

 

  

Figure 2.24:  Prime coat application. Figure 2.25:  Differential penetration of prime 
coat. 

 

2.6.4 Asphalt Placement 

The bottom lift of asphalt concrete was placed on October 30, 2009. Construction started at approximately 

8:30 a.m. Ambient air temperature was 50°F (10°C) and the relative humidity was 45 percent. 

Construction was completed at approximately 11:00 a.m. when ambient temperature was 61°F (16°C) and 

the relative humidity was 40 percent. 

 

Mix was transported using bottom-dump trucks and placed in a windrow on the surface. Paving started in 

Lane #1, followed by Lanes #2 and #3, and was carried out in a west–east direction. A pickup machine 

connected to the paver collected the material and fed it into the paver hopper. Paving followed 

conventional procedures. The breakdown roller closely followed the paver applying about four passes. A 
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single pass was made with the intermediate rubber-tired roller, followed by another four passes with the 

finish roller. The construction process is summarized in Figure 2.26. 

 

  
Placing asphalt in windrow Paving and breakdown rolling 

  
Intermediate rolling Final rolling 

Figure 2.26:  Construction of bottom lift asphalt concrete layer. 
 

2.6.5 Construction Quality Control 

Compaction was measured by the UCPRC using a nuclear gauge on the day after construction using the 

mix design specific gravity values. Measurements were taken at 33 ft. (10 m) intervals along the centerline 

of each lane, with a focus on checking densities in the areas that would be used for HVS testing. A 

summary of the results is provided in Table 2.7. The results indicate that there was very little variability in 

the measurements and that satisfactory compaction had been achieved. 
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Table 2.7:  Summary of Bottom Layer Asphalt Concrete Density Measurements 
Position Lane #1 Lane #2 Lane #3 

Gauge Relative Gauge Relative Gauge Relative 
lb/ft3 kg/m3 (%) lb/ft3 kg/m3 (%) lb/ft3 kg/m3 (%) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

146.0 
145.3 
147.8 
149.2 
146.1 
146.5 
145.2 
147.7 
147.0 
145.9 

2,339 
2,328 
2,367 
2,390 
2,341 
2,346 
2,326 
2,366 
2,355 
2,337 

93 
93 
95 
95 
93 
94 
93 
94 
94 
93 

148.3 
148.3 
148.6 
147.1 
145.6 
148.7 
145.8 
146.2 
144.9 
146.8 

2,376 
2,375 
2,380 
2,357 
2,333 
2,382 
2,336 
2,342 
2,321 
2,351 

95 
95 
95 
94 
93 
95 
93 
94 
93 
94 

146.0 
145.5 
145.3 
146.5 
147.8 
146.1 
147.7 
148.3 
147.1 
144.9 

2,338 
2,330 
2,327 
2,346 
2,367 
2,341 
2,366 
2,376 
2,357 
2,321 

93 
93 
93 
94 
95 
93 
94 
95 
94 
93 

Average 
Std. Dev. 

146.7 
1.3 

2,350 
0.020 

94 
0.8 

146.5 
1.4 

2,347 
0.019 

94 
0.8 

146.5 
1.2 

2,347 
0.019 

94 
0.8 

RICE 2.504  
 

2.7 Rubberized Gap-Graded Asphalt Concrete Construction 

2.7.1 Plant Modifications 

Minor plant modifications were required to incorporate the Advera, Sasobit, and Rediset technologies. 

Customized equipment provided by the Advera and Sasobit suppliers was used. The Rediset technology 

was added using the Sasobit equipment. The Astec Double Barrel Green system was integral to the asphalt 

plant. All delivery systems were approved under the Caltrans Material Plant Quality Program. 

 

2.7.2 Material Properties 

A Caltrans-approved mix design, prepared by George Reed Construction Company’s Marysville Plant to 

meet Caltrans specifications for 1/2 in. (12.5 mm) gap-graded rubberized hot-mix asphalt (RHMA-G), 

was used for the experiment. Key parameters for the mix design are summarized in Table 2.8. The mix 

design was not adjusted for accommodation of the warm-mix technologies. 

 

2.7.3 Warm-Mix Technology Application Rates 

The warm-mix additive application rates were determined by the additive suppliers and were as follows: 

• Advera: 4.5 percent by mass of binder 
• Astec (water): 1.5 percent by mass of binder 
• Rediset: 2.0 percent by mass of binder 
• Sasobit: 1.5 percent by mass of binder 

 

2.7.4 Mix Production Temperatures 

Mix production and paving temperatures were not set for the project. Instead, each technology provider 

was requested to select their own production temperatures based on ambient temperatures, haul distance, 

and discussions with the plant manager. Production temperatures were set as follows: 
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• Control: 335°F (166°C) 
• Advera: 295°F (145°C) 
• Astec: 295°F (145°C) 
• Rediset: 285°F (140°C) 
• Sasobit: 300°F (149°C) 

Table 2.8:  Key RHMA-G Mix Design Parameters 
Parameter Wearing Course 

Target Specification Compliance 
Grading: 3/4" (19 mm) 
 1/2" (12.5 mm) 
 3/8" (9.5 mm) 
 #4 (4.75 mm) 
 #8 (2.36 mm) 
 #16 (1.18 mm) 
 #30 (600 μm) 
 #50 (300 μm) 
 #100 (150 μm) 
 #200 (75 μm) 

100 
98 
83 
40 
23 
– 

12 
– 
– 
5 

100 
  90 – 100 

77 – 89 
33 – 47 
18 – 28 

– 
– 
– 
– 

3 – 7 

100 
90 – 100 
76 – 90 
30 – 44 
6 – 26 

– 
– 
– 
– 

0 – 8 
Asphalt binder grade 
Asphalt binder source 
Asphalt binder content (% by mass of aggregate) 
Rubber content (% by mass of binder) 
 Scrap tire rubber (%) 
 High natural rubber (%) 
Extender oil (Raffex 120/Tricor, % by mass of binder) 
Hveem stability at recommended bitumen content 
Air-void content (%) 
Voids in mineral aggregate (LP-2) (%) 
Voids filled with asphalt (LP-3) (%) 
Crushed particles (1 face) (%) 
Sand equivalent (%) 
Fine aggregate angularity (%) 
Los Angeles Abrasion at 100 repetitions (%) 
Los Angeles Abrasion at 500 repetitions (%) 

PG 64-16 
Paramount 

    7.0 
  19.0 
  75.0 
  25.0 
    2.0 
  45.0 
    4.5 
  19.0 
  70.0 
100.0 
  70.0 
  46.0 
    3.0 
  15.0 

– 
– 
– 

18 – 22 
– 
– 
– 

23 
4 ± 2 
>18 

65 – 75 
>90 
>47 
>45 
<10 
<45 

- 
– 
– 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

 

2.7.5 Mix Production 

Mix production was overseen by technical representatives from each of the additive suppliers. Production 

started on April 8, 2010, at approximately 8:00 a.m., with the Control mix. No problems were 

experienced. Production of the Astec mix followed, but was halted after numerous attempts due to 

blockage of the binder nozzles on the foaming unit. Production of this mix was postponed until the system 

could be repaired. Production continued with the Sasobit, followed by the Advera mix. On completion of 

the Advera mix production, insufficient binder remained to produce the Rediset and Astec mixes, due to 

wastage in the earlier attempts to produce the Astec mix. Consequently production and placement of these 

mixes was planned for the following day; however, rain and contractor availability ultimately postponed 

production until April 15, 2010, and prompted the need to construct a second Control section. 

 

 
UCPRC-RR-2011-03 23 



 

Approximately 150 tonnes of each mix were produced. Mix was stored in insulated silos for a limited time 

before load out and transport. The first approximately 20 tonnes of each mix was “wasted” to ensure that a 

consistent mix was used on the test track. The drum plant was also run for a short period with no warm-

mix technology at the end of each production run to prevent any contamination of the next mix. This 

material was also wasted. 

 

Plant emissions were not monitored due to the small volume of each mix produced. 

 

2.7.6 Mix Production Quality Control 

Asphalt Binder 

Certificates of compliance for the modified binder were provided by the binder supplier (International 

Surfacing Systems in Modesto) with the delivery to the Marysville plant on both production days. Base 

binder was sourced from the same tank and batch for both days’ production. 
 

Asphalt Mix 

Quality control of the mixes produced for the test track was undertaken by George Reed Construction on 

mix sampled from the trucks at the silos. The results are summarized in Table 2.9. The following 

observations were made: 

• The aggregate gradations met the targets and were within the required ranges for all mixes, although 
there were notable differences among the mixes. 

• Binder contents were inconsistent across the mixes with only two mixes (Astec [8.4 percent] and 
Sasobit [8.0 percent]) falling within the compliance range (target of 8.3 percent). The Rediset mix 
(10.0 percent) was significantly above the target, while the Controls (7.7 and 7.6 percent) and 
Advera (7.6 percent) mixes were blow the target. These differences were taken into consideration in 
performance discussions in Chapter 4 and Chapter 6. 

• Hveem stabilities varied among the mixes, but were all well above the minimum specified 
requirement of 23. Stabilities were dependent on binder content, as expected, with lower stabilities 
recorded on mixes with higher binder contents. 

• Specific gravities also varied according to binder content, but were within an acceptable range. 
 

2.7.7 Paving Equipment 

The following equipment was used during placement of the rubberized asphalt layer: 

• Terex Cedar Rapids CR552 paver and material transfer device 
• Caterpillar CB-534D vibrating steel twindrum roller (two) 
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Table 2.9:  Quality Control of Mix After Production 
Parameter Specification/ 

Target 
Control #1 Sasobit Advera Control #2 Astec Rediset 

Grading1 

 3/4" (19 mm) 
 1/2" (12.5 mm) 
 3/8" (9.5 mm) 
 #4 (4.75 mm) 
 #8 (2.36 mm) 
 #16 (1.18 mm) 
 #30 (0.6 mm) 
 #50 (0.3 mm) 
 #100 (0.15 mm) 
 #200 (0.075 mm) 

 
100 

  90 – 100 
78 – 88 
32 – 42 
17 – 25 

- 
  7 – 15 

- 
- 

2 – 7 

 
100 
98 
87 
39 
20 
12 
8 
6 
4 
3 

 
100 
99 
85 
38 
22 
14 
10 
7 
5 
4 

 
100 
99 
87 
41 
23 
15 
11 
7 
5 
4 

 
100 
99 
87 
39 
21 
13 
9 
6 
5 
4 

 
100 
99 
87 
39 
24 
16 
10 
7 
5 
4 

 
100 
99 
82 
33 
17 
11 
8 
5 
4 
3 

Sand equivalent2 >47 73 74 74 73 73 80 
AC binder content (%)3 8.3 7.7 8.0 7.6 7.6 8.4 10.0 
Hveem stability 
RICE specific gravity4 
Unit weight 

>23 
- 
- 

43 
2.505 
2.388 

37 
2.502 
2.395 

40 
2.497 
2.379 

40 
2.485 
2.369 

35 
2.485 
2.377 

34 
2.467 
2.387 

Moisture (before plant) (%) 
Moisture6 (after silo) (%) 

- 
1.0 

2.3 
Not tested 

3.3 
Not tested 

2.4 
Not tested 

3.0 
Not tested 

3.2 
Not tested 

2.5 
Not tested 

1 CT 202 2 CT 217 3 CT 382 4 CT 308 5 CT 366 6 CT 370 
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2.7.8 Tack Coat Application 

The test track was broomed to remove dust and organic matter from the surface prior to any work. Tack 

coat was applied to Cells #5 and #6 in Lane #2 and to Cell #7 in Lane #3 in single passes just prior to the 

start of paving on the first day of construction, and to the remaining cells and second Control section just 

prior to the start of paving on the second day of construction (Figure 2.27). A diluted SS-1 emulsion 

(70:30) was applied with a distributor at an application rate of approximately 0.08 gal./yd2 (0.36 L/m2). 

Some steam was observed during application. Weather conditions at the time of tack coat application were 

as follows: 

• Day #1 Construction 
+ Air temperature: 45°F (7°C) 
+ Surface temperature: 54°F (12°C) 
+ Relative humidity: 85 percent 

• Day #2 Construction 
+ Air temperature: 46°F (8°C) 
+ Surface temperature: 54°F (12°C) 
+ Relative humidity: 75 percent 

 

  
Lane #2, Cells #5 and #6 Lane #3 

Figure 2.27:  Tack coat application. 
 

2.7.9 Asphalt Placement 

Control Section #1 

Placement of the asphalt concrete on the first Control section started at 10:10 a.m. with the positioning of 

the paver at the start of the section. Three loads were used. Some chunks were noted in the trucks, paver 

hopper, and behind the paver (Figure 2.28) and were attributed to cooling during transport. Chunks were 

removed and replaced with new mix. The paver reached the end of the section about 12 minutes after 

starting. Considerable smoke was observed from the trucks during tipping and from the paver 

(Figure 2.29). A pungent odor, typical of rubberized asphalt construction projects, was also noted. The 

paving crew wore respirators to limit the effects of these odors (Figure 2.30). Breakdown rolling started as 

soon as the paver was moved off of the section. Density and temperature measurements were taken 
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throughout (see Section 2.7.6). Seven passes were made with the breakdown roller with vibration over a 

period of approximately 15 minutes (Figure 2.31). Some cooling was allowed before final rolling, which 

consisted of five passes with no vibration (Figure 2.32). No significant tenderness was observed and the 

roller operator considered the exercise typical of normal rubberized asphalt projects. Paver spillage was 

removed from the end of the section to ensure a clean and regular surface and join for the Astec section. 

 

  

Figure 2.28:  Control #1:  Chunks in mix. 

  

Figure 2.29:  Control #1:  Smoke from truck and 
paver. 

Figure 2.30:  Control #1:  Paver operator 
wearing respirator. 

  

Figure 2.31:  Control #1:  Breakdown rolling. Figure 2.32:  Control #1:  Final rolling. 
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Sasobit Section 

The same process described above was followed for the placement of the Sasobit mix, which started at 

11:30 a.m. No smoke was observed or odors noted (Figure 2.33). Breakdown rolling was achieved with 

eight passes, followed by a further five passes after a short period of cooling (Figure 2.34). Final rolling 

was completed in ten passes. No problems were observed during any of the compaction phases and a 

tightly bound surface was achieved. When interviewed, the roller operator noted that the mat was a little 

stiffer and responded a little differently than typical rubberized asphalt projects in that the response of the 

roller did not relate to the density measurements taken with the nuclear gauge. The operator had 

considered compaction to be complete; however, the density gauge indicated that compaction levels were 

not the same as those measured on the previous day’s Control section and consequently the additional 

roller passes were applied. The paving crew noted that workability of this mix in terms of raking and 

shoveling was much better than the Control, which was stiff and had adhered to tools. Workability was 

considered to be comparable to, if not better than, non-rubberized mixes. Given the absence of smoke and 

odors, the crew also removed their respirators during paving of this and the remaining warm-mix sections. 

 

  

Figure 2.33:  Sasobit:  Absence of smoke from 
truck and paver. 

Figure 2.34:  Sasobit:  Breakdown rolling. 

 

Advera Section 

The same process followed for the previous two sections was also followed for the Advera mix. 

Construction started at 12:25 p.m. No smoke or odors were observed/noted (Figure 2.35); however some 

chunks were observed in the hopper and behind the screed. Paving was temporarily halted while these 

were removed (Figure 2.36). Eight passes were made with the breakdown roller, followed by a further 

four passes after a period of cooling (Figure 2.37). Ten passes were applied during final rolling. Some 

tenderness was observed during breakdown rolling and the roller operator noted similar “discrepancies” 

between roller response and the density gauge readings as discussed above, when compared to typical 
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rubberized asphalt projects. The paving crew noted that the workability of the mix was again better than 

the Control, especially with regard to raking and shoveling. 

 

  

Figure 2.35:  Advera:  No smoke from truck or 
paver. 

Figure 2.36:  Advera:  Removing chunks from 
paver. 

 

Figure 2.37:  Advera:  Breakdown rolling. 
 

Control Section #2 

This second Control section was not anticipated in the test track design. However, an appropriate section 

of the same structure was demarcated in the area between the North and West Test Tracks for this section. 

Heavy Vehicle Simulator testing would only be carried out if significant differences were noted in the 

Control mixes from the two production days. 

 

The same process followed during the earlier construction was also followed on this section. Construction 

started at 9:00 a.m. Severe smoke and odors were noted (Figure 2.38) requiring the paving crew to wear 

respirators. Some chunks were observed (Figure 2.39) and workability of the mix was similar to the 

previous day’s Control section. Breakdown rolling started as soon as the paver was moved off the section. 

Seven passes were made with the breakdown roller with vibration (Figure 2.40) followed by phased finish 
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rolling until satisfactory density and smoothness were achieved. No differences were noted between this 

and the other Control section construction. 

 

  

Figure 2.38:  Control #2:  Smoke from truck and 
paver. 

Figure 2.39:  Control #2:  Chunks removed from 
section. 

 

Figure 2.40:  Control #2:  Breakdown rolling. 
 

Astec Section 

The same process followed for the previous four sections was also followed for the Astec mix. 

Construction started at 9:40 a.m. Some smoke was observed and odors noted, but the intensity was 

considerably less than that observed/noted on the Control section (Figure 2.41). Some chunks were 

observed in the paver hopper, but were removed before paving started. Breakdown rolling was achieved 

with eight passes, followed by a further four passes after a short period of cooling (Figure 2.42). Final 

rolling was completed in ten passes. 
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Figure 2.41:  Astec:  Some smoke from truck 
and paver. 

Figure 2.42:  Astec:  Breakdown rolling. 

 

Rediset 

The same process followed for the other sections was also followed for the Rediset mix. Construction 

started at 10:25 a.m., but an immediate problem with the paver (broken feed chain) delayed the start until 

12:15 p.m. Mix in the paver was removed with a loader, returned to the truck, and covered while the paver 

was repaired. Temperatures were monitored throughout this delay. No smoke was observed and no odors 

noted (Figure 2.43). Some chunks were noted and attributed to cooling of the mix on the sides of the truck 

during the delay. These were removed from the truck and paver hopper and did not influence actual 

paving. Breakdown rolling was achieved with eight passes, followed by a further four passes after a short 

period of cooling (Figure 2.44). Final rolling was completed in ten passes. The paving crew reported 

similar good workability to that noted on the other warm-mixes, despite the lower than planned placement 

and compaction temperatures. 

 

  

Figure 2.43:  Rediset:  No smoke from truck or 
paver. 

Figure 2.44:  Rediset:  Breakdown rolling. 
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General 

The surface of the completed cells appeared to have uniform appearance, but the color of some appeared 

darker than others. This was attributed to differences in binder content, with the Rediset section 

(10.0 percent binder content) being the darkest. 

 

2.7.10 Construction Quality Control 

Quality control, both during and after construction, was undertaken jointly by Teichert Construction, the 

UCPRC, and an appointed contractor. This included: 

• Placement and compaction temperatures 
• Thickness 
• Compaction density 
• Deflection 

 

Placement and Compaction Temperatures 

Temperatures were systematically measured throughout the placement of the asphalt concrete using 

infrared temperature guns, thermocouples, and an infrared camera. Measurements included: 

• Surface prior to start of paving 
• Mix as it was tipped into the paver 
• Mix behind the paver 
• Mat before and during compaction 

 

A summary of the measurements is provided in Table 2.10 and in Figure 2.45 and Figure 2.46. 

Table 2.10:  Summary of Temperature Measurements 
Measuring Point Day #1 Temperature1 

Control #1 Sasobit Advera 
(°F) (°C) (°F) (°C) (°F) (°C) 

Production 
Ambient at start of paving 
Surface before paving2 
Paver2 

Mid-depth at start of compaction3 
Mid-depth at end of compaction3 
Ambient at end of compaction 

331 
  55 
  57 
284 
255 
142 
  57 

166 
  13 
  14 
140 
124 
  61 
  14 

300 
  59 
  66 
284 
253 
144 
  61 

149 
  15 
  19 
140 
123 
  62 
  16 

293 
  61 
  77 
279 
241 
163 
  63 

145 
  16 
  25 
137 
116 
  73 
  17 

Measuring Point Day #2 Temperature1 

Control #2 Astec Rediset 
(°F) (°C) (°F) (°C) (°F) (°C) 

Production 
Ambient at start of paving 
Surface before paving2 
Paver2 

Mid-depth at start of compaction3 
Mid-depth at end of compaction3 
Ambient at end of compaction 

333 
  55 
  57 
286 
258 
145 
  57 

167 
  13 
  14 
141 
126 
  63 
  14 

293 
  54 
  57 
277 
234 
144 
  55 

145 
  12 
  14 
136 
112 
  62 
  13 

284 
  61 
  82 
259 
219 
149 
  63 

140 
  16 
  28 
126 
104 
  65 
  17 

1  Average of three sets of measurements 2  Measured with a temperature gun 3  Measured with a thermocouple 
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Figure 2.45:  Summary of temperature measurements. 
(Note that only the Day #1 Control Section is included.) 
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Figure 2.46:  Summary of mid-depth temperatures over time. 
(Note that only the Day #1 Control Section is included in the figure.) 

 

The following observations were made: 

• Ambient and paving temperatures were considered representative of early- or late-season paving. 
• Paving and compaction temperatures were consistent with production temperatures, as expected. 
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• There was a considerable drop in temperature during the approximate 120 minute haul in covered 
trucks. 

• Ambient temperatures at the start of paving increased slightly for each section, as expected. 
• There was very little temperature difference between the material being tipped into the paver and 

the mat behind the paver before compaction. 
• Mid-depth temperatures on the warm-mix sections decreased at a slower rate than the Control 

section and were consistent with the differences in production temperatures. 
 

Thermal camera images (FLIR Systems ThermaCAM PM290, recorded by T.J. Holland of Caltrans) of the 

mat behind the paver are shown in Figure 2.47. The images clearly show consistent temperature across the 

mat on all sections. (Note that temperature scales on the right side of the photographs differ between 

images and are dependent on the time that the image was taken and distance of the camera from the 

paver.) 

 

  
Control #1 Sasobit 

  
Advera Control #2 (with first roller pass) 

Figure 2.47:  Thermal images of test track during construction. 
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Astec Rediset 

Figure 2.47:  Thermal images of test track during construction (continued). 

 

Thickness 

Thickness was monitored with probes by the paving crew throughout the construction process. The 

thickness of the slabs and cores removed for laboratory testing after construction (see Section 2.8) was 

measured for quality control purposes. The results of these measurements are summarized in Table 2.11. 

Layer thicknesses of actual Heavy Vehicle Simulator test sections were determined during forensic 

investigations after testing and are discussed in Section 5.7. 

Table 2.11:  Summary of Asphalt Layer Thickness 
Measurement Day #1 Asphalt Layer Thickness 

Control #1 Sasobit Advera 
(ft.) (mm) (ft.) (mm) (ft.) (mm) 

Surface layer 
Bottom layer 

0.22 
0.25 

66 
77 

0.22 
0.23 

67 
72 

0.21 
0.23 

63 
71 

Total 0.47 143 0.45 138 0.44 134 
Measurement Day #2 Asphalt Layer Thickness 

Control #2 Astec Rediset 
(ft.) (mm) (ft.) (mm) (ft.) (mm) 

Surface layer 
Bottom layer 

0.22 
- 

66 
- 

0.22 
0.26 

67 
78 

0.22 
0.25 

66 
77 

Total - - 0.48 135 0.47 143 
 

The average thickness of the combined two layers was 0.45 ft. (137 mm), 0.05 ft. (17 mm) thicker than the 

design thickness of 0.4 ft. (120 mm). General consistency of thickness across the track was considered 

satisfactory and representative of typical construction projects. 

 

Compaction Density 

Compaction was monitored using nuclear gauges throughout the construction process using the mix 

design specific gravity values. Given the very small quantities of mix produced for each technology, 

actual mix specific gravities were not available before completion of construction of each section. The 
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results were used to manage the number of roller passes and roller settings and were monitored but not 

recorded. 

 

Final density measurements were taken on June 18, 2010, by an independent consultant using a calibrated 

nuclear gauge. Measurements were taken on each section according to the plan shown in Figure 2.48, 

which focused primarily on checking densities in the areas selected for HVS testing, but also to assess 

variability across each section. A summary of the results is provided in Table 2.12. The results indicate 

that there was very little variability across the sections and that slightly better densities were achieved on 

the Sasobit and Rediset sections compared to the other sections, but that relatively poor compaction was 

achieved overall. A series of cores were taken from positions 7 through 10 (Figure 2.48) to check these 

densities in the laboratory using the CoreLok method. The results are summarized in Table 2.13 and 

indicate that higher densities were actually achieved. Air-void contents were also determined on each 

specimen sampled from the test track for laboratory testing. The results for these tests, which are similar to 

the results shown in Table 2.13, are discussed in Chapter 6. It is not clear why there was a difference 

between the gauge and core-determined densities. Core-determined densities were used for all analyses in 

this study. 

 

 

Figure 2.48:  Asphalt concrete density measurement plan. 
 

Table 2.12:  Summary of Rubberized Asphalt Concrete Density Measurements 
Position Day #1 Density Measurements 

Control #1 Sasobit Advera 
Gauge (kg/m3) % Relative Gauge (kg/m3) % Relative Gauge (kg/m3) % Relative 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

2,157 
2,150 
2,100 
2,152 
2,169 
2,184 
2,235 
2,144 
2,075 
2,138 

86 
86 
84 
86 
87 
87 
89 
86 
83 
85 

2,135 
2,238 
2,120 
2,193 
2,115 
2,191 
2,231 
2,169 
2,136 
2,209 

85 
89 
85 
88 
85 
88 
89 
87 
85 
88 

2,151 
2,149 
2,114 
2,134 
2,162 
2,160 
2,133 
2,120 
2,087 
2,173 

86 
86 
85 
85 
87 
87 
85 
85 
84 
87 

Average 2,150 86 2,174 87 2,138 86 
RICE 2.505 2.502 2.497 

N 
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Table 2.12:  Summary of Rubberized Asphalt Concrete Density Measurements (continued) 

Position Day #2 Density Measurements 
Control #2 Astec Rediset 

Gauge (kg/m3) % Relative Gauge (kg/m3) % Relative Gauge (kg/m3) % Relative 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

2,030 
2,091 
2,173 
2,175 
2,081 
2,200 
2,101 
2,173 
2,020 
2,212 

82 
84 
87 
88 
84 
89 
85 
87 
81 
89 

2,097 
2,179 
2,170 
2,137 
2,122 
2,116 
2,148 
2,163 
2,074 
2,163 

84 
88 
87 
86 
85 
85 
86 
87 
83 
87 

2,151 
2,179 
2,170 
2,137 
2,122 
2,116 
2,148 
2,163 
2,074 
2,163 

87 
88 
88 
87 
86 
86 
87 
88 
84 
88 

Average 2,126 86 2,137 86 2,142 87 
RICE 2.485 2.485 2.467 

 

Table 2.13:  Summary of Asphalt Concrete Density Measurements from Cores 
Position 

 

Day #1 Density Measurements from Cores 
Control #1 Sasobit Advera 

Air-Void 
(%) 

Relative 
(%) 

Air-Void 
(%) 

Relative 
(%) 

Air-Void 
(%) 

Relative 
(%) 

7 
8 
9 

10 

11.6 
11.4 
11.6 
11.7 

88 
89 
88 
88 

8.4 
8.5 
8.5 
8.5 

92 
92 
92 
92 

10.8 
10.5 
10.6 
10.8 

89 
90 
89 
89 

Average 11.6 88 8.5 92 10.7 89 
Position 

 

Day #2 Density Measurements from Cores 
Control #2 Astec Rediset 

Air-Void 
(%) 

Relative 
(%) 

Air-Void 
(%) 

Relative 
(%) 

Air-Void 
(%) 

Relative 
(%) 

7 
8 
9 

10 

11.5 
11.5 
11.6 
11.6 

89 
89 
88 
88 

9.0 
9.0 
9.3 
9.2 

91 
91 
91 
91 

8.4 
8.2 
8.5 
8.3 

92 
92 
92 
92 

Average 11.6 88 9.1 91 8.4 92 
RC – Relative compaction 

 

Deflection 

Falling weight deflectometer (FWD) measurements were taken on May 27 and May 28, 2010, at 1.0 m 

intervals along the centerline of each lane to assess general variability across the test track. Deflection 

measurements were not taken on the second Control section.  Average results of the second 40 kN load 

drop are summarized in Table 2.14 and in Figure 2.49. The D1 sensor data were used to obtain an 

indication of overall pavement deflection. The D2 sensor data were used to obtain an indication of 

deflection in the asphalt layers. The D3 and D5 sensor data were used to obtain an indication of deflection 

in the top and bottom of the base respectively, and the D6 sensor data were used to obtain an indication of 

deflection in the subgrade. All deflection measurements were normalized to 40 kN by proportioning at 
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20°C pavement temperature at 40 mm depth (i.e., one-third of the total asphalt concrete thickness) using 

the Bells Temperature calculated from actual air and surface temperatures. 

 

There was no significant difference in the deflections measured on the warm-mix sections, all of which 

were lower than those measured on the primary (Day #1) Control section, indicating slightly higher 

stiffnesses on the warm-mix sections. Deflections were generally consistent along the length of each 

section. 

Table 2.14:  Summary of Average FWD Deflection Measurements 
Section Deflection (micron) 

Control Sasobit Advera Astec Rediset 
 Mean SD Mean SD Mean SD Mean SD Mean SD 

Sensor D11 
Sensor D22 
Sensor D33 
Sensor D54 
Sensor D65 

625 
401 
288 
115 
  70 

76 
  6 
48 
32 
11 

518 
338 
250 
113 
  72 

8 
2 
5 
5 
3 

534 
347 
256 
108 
  62 

33 
  2 
16 
  9 
  3 

543 
353 
258 
112 
  73 

17 
  2 
10 
  6 
  2 

547 
353 
253 
99 

  60 

40 
  1 
21 
12 
  4 

Section Average Temperatures Measured 
Air 
Surface 

19.7 
14.9 

1.1 
0.4 

19.8 
14.8 

0.4 
0.4 

20.0 
15.4 

0.6 
0.3 

21.1 
15.7 

0.6 
0.2 

22.9 
16.4 

1.4 
0.3 

1 Geophone D1, 0 mm offset 
4 Geophone D5, 630 mm offset 

2 Geophone D2, 150 mm offset 
5 Geophone D6, 925 mm offset 

3 Geophone D3, 315 mm offset 
SD – Standard deviation 

 

 

 

0

100

200

300

400

500

600

700

D1 D2 D3 D5 D6
FWD Sensor

A
ve

ra
ge

 D
ef

le
ct

io
n 

at
 4

0k
N

 a
nd

 2
0C

 (m
ic

ro
n) Control Sasobit Advera Astec Rediset

 

Figure 2.49:  Summary of average deflection by section (40 kN load at 20°C). 
(Note that only the Day #1 Control Section is included in the figure.) 
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Figure 2.50:  Summary of Sensor-1 deflection measurements. 
(Note that only the Day #1 Control Section is included in the figure.) 

 

2.8 Sampling 

Specimens in the form of 6.0 in. (152 mm) diameter cores and slabs 20 in. by 10 in. (500 mm by 250 mm) 

were sawn from the middle of each section adjacent to the planned HVS test sections for laboratory 

testing, as shown in Figure 2.51. Slabs were sawn to the bottom of the combined asphalt concrete layers, 

extracted, stored on pallets, and then transported to the UCPRC Richmond Field Station laboratory. 

Inspection of the slabs indicated that the asphalt concrete was well bonded to the top of the base-course 

material, and that the two asphalt layers were well bonded to each other. 

 

0m 18.5m 37m

5m

0m
8m HVS Section

0 16

600mm

NN
Sampling area

 

Figure 2.51:  Sampling location for laboratory specimens. 
 

2.9 Construction Summary 

Key observations from the test track construction process include: 
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• Preparation of the subgrade resulted in a generally consistent platform on which to construct the 
base. Density measurements taken after final compaction indicated an average relative compaction 
of 97 percent of the laboratory-determined value, with very little variation across the track. 

• Construction of the base-course followed conventional procedures. Measurements after final 
compaction indicated that the average dry density was 98 percent of the laboratory-determined 
maximum dry density with very little variation across the track. The final surface was tightly bound 
and free of loose material. Heavy rainfall after construction resulted in some loosening of the 
surface and the layer was consequently recompacted prior to paving the bottom lift of asphalt 
concrete. 

• Placement of the bottom lift of hot-mix asphalt followed conventional procedures. Thickness and 
compaction appeared to be consistent across the test track. 

• Some asphalt plant modifications were required to accommodate the warm-mix additives. These 
complied with the Caltrans Material Plant Quality Program requirements. 

• No problems were recorded with producing three of the four warm asphalt mixes at the lower 
temperatures. Continued nozzle blockages on the Astec foaming system made its replacement 
necessary, causing a delay in production and placing the Astec and Rediset mixes because of a 
shortage of binder resulting from the repeated attempts to produce the original Astec mix. A second 
control mix was also produced on the second day for comparative purposes. Target mix production 
temperatures (335°F, 300°F, 295°F, 295°F, and 285°F [166°C, 149°C, 145°C, 145°C, and 140°C] 
for the two Controls, Sasobit, Advera, Astec, and Rediset mixes, respectively), set by the warm-mix 
technology providers, were all achieved. 

• The rubberized binder, with 19 percent rubber content, complied with the specification 
requirements. 

• All mixes met the project mix design grading requirements, with little variability among five of the 
six mixes. The Rediset mix, although still within specification, was somewhat coarser than the other 
mixes. 

• Only two of the six mixes (Sasobit [8.0 percent] and Astec [8.4 percent]) had binder contents within 
an acceptable range of the target of 8.3 percent. Binder contents on the other mixes were 7.7, 7.6, 
7.6, and 10.3 percent for the Controls, Advera, and Rediset mixes, respectively. 

• Hveem stabilities exceeded the minimum requirement by a considerable margin. 
• Compaction temperatures differed considerably among the mixes and were consistent with 

production temperatures. The warm-mixes lost heat during transport and placement at a slower rate 
that the Control mixes, produced at the higher temperatures. Apart from some crusting of the 
asphalt on the Astec and Advera mixes during transport, the lower temperatures in the four warm-
mixes did not appear to influence the paving or compaction operations, and interviews with the 
paving crew after construction revealed that no problems were experienced at the lower 
temperatures. Improved working conditions were identified as an advantage. Chunks in the Control 
mixes, attributed to their cooling during transport, caused some problems with the paving process. 

• Smoke and odors were more severe on the Control sections compared to the warm-mix sections. 
Some smoke and odors were noted during construction of the Astec section. No smoke or odors 
were noted during construction of the Advera, Rediset, or Sasobit sections. 

• Workability of the mix, determined through observations of and interviews with the paving crew, 
was considerably better on the warm-mix sections compared to the Control. 
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• Average thicknesses of the top (rubberized) and bottom asphalt layers across the four sections were 
0.22 ft. (66 mm) and 0.24 ft. (75 mm), respectively. The average thickness of the combined two 
layers was 0.45 ft. (137 mm), 0.5 ft. (17 mm) thicker than the design thickness of 0.4 ft. (120 mm). 
General consistency of thickness across the track was considered satisfactory and representative of 
typical construction projects. 

• Nuclear gauge–determined density measurements were inconsistent with core-determined air-void 
contents. The core-determined air-void contents indicated that slightly higher density was achieved 
on the warm-mix sections (92, 89, 91, and 92 percent of the RICE specific gravity for the Sasobit, 
Advera, Astec, and Rediset sections respectively) compared to the Control sections (88 percent). 
Compaction across the test track appeared to be consistent, demonstrating that adequate compaction 
can be achieved on rubberized warm-mixes at lower temperatures. Based on observations from the 
test track construction and interviews with roller operators, optimal compaction temperatures will 
differ among the different warm-mix technologies. Therefore on projects where warm-mix 
technologies are used, roller operators will need to consider potential differences in roller response 
between warm-mix and conventional hot mixes, and may need to adjust rolling procedures to 
ensure that optimal compaction is always achieved. 

• Deflection measurements showed that relatively consistent construction was achieved on the test 
track. 

 

The test track was considered satisfactorily uniform for the purposes of accelerated pavement testing and 

sampling for laboratory testing. 
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3. TEST TRACK LAYOUT AND HVS TEST CRITERIA 

3.1 Protocols 

Heavy Vehicle Simulator (HVS) test section layout, test setup, trafficking, and measurements followed 

standard University of California Pavement Research Center (UCPRC) protocols (8). 

 

3.2 Test Track Layout 

The Phase 3 Warm-Mix Asphalt Study test track layout is shown in Figure 3.1. Five HVS test sections 

were demarcated for the first phase of HVS testing for early-age rutting at high temperatures. The testing 

sequence did not follow the construction sequence because testing on the Phase 3a sections was already in 

progress and the two HVSs could not test side-by-side and (see Table 3.1). HVS testing on the Day #2 

Control mix section was not considered necessary based on the findings of laboratory testing, which 

indicated no significant differences between the two Control mixes. Early failure on the Advera section 

prompted another two tests to determine whether this was a mix problem or a pavement structural 

problem, or whether it was related to equipment or weather variables. Second tests were also carried out 

on the Control and Sasobit sections for comparative purposes. The section numbers allocated were as 

follows (HA and HB refer to the specific HVS equipment used for testing): 

• Section 624HB:  Control (Test #1) 
• Section 625HA:  Sasobit (Test #1) 
• Section 626HA:  Advera (Test #1) 
• Section 627HB:  Astec 
• Section 628HB:  Rediset 
• Section 629HB:  Advera (Test #2) 
• Section 630HB:  Advera (Test #3) 
• Section 631HB:  Sasobit (Test #2) 
• Section 632HA:  Control (Test #2) 

 

3.3 HVS Test Section Layout 

The general test section layout for each of the rutting sections is shown in Figure 3.2. Station numbers 

(0 to 16) refer to fixed points on the test section and are used for measurements and as a reference for 

discussing performance. 
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Figure 3.1:  Layout of Phase 3 test track and Phase 3b HVS test sections. 
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Figure 3.2:  Location of thermocouples. 
 

3.4 Pavement Instrumentation and Monitoring Methods 

Measurements were taken with the instruments listed below. Instrument positions are shown in Figure 3.2. 

Detailed descriptions of the instrumentation and measuring equipment are included in Reference 8. 
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Intervals between measurements, in terms of load repetitions, were selected to enable adequate 

characterization of the pavement as damage developed. 

• A laser profilometer was used to measure surface profile; measurements were taken at each station. 
• Thermocouples measured pavement temperature (at Stations 4 and 12) and ambient temperature at 

one-hour intervals during HVS operation. 
 

Air temperatures were recorded by a weather station next to the test section at the same intervals as the 

thermocouples. Subgrade and base moisture contents were measured with two moisture sensors positioned 

in the middle of the test track. 

 

Surface and in-depth deflections were not measured. Surface deflection cannot be measured with the road 

surface deflectometer (RSD) on rutted pavements. In-depth deflection measured with multi-depth 

deflectometers (MDD) was not possible due to difficulties with installing and anchoring the instruments in 

the soft clay subgrade. 

 

3.5 HVS Test Criteria 

3.5.1 Test Section Failure Criteria 

An average maximum rut depth of 12.5 mm (0.5 in.) over the full monitored section (Station 3 to 

Station 13) was set as the failure criterion for the experiment. However; in most instances, HVS 

trafficking was continued past this point to fully understand the rutting behavior of each mix. 

 

3.5.2 Environmental Conditions 

The pavement temperature at 50 mm (2.0 in.) was maintained at 50°C±4°C (122°F±7°F) to assess rutting 

potential under typical pavement conditions. Infrared heaters inside a temperature control chamber were 

used to maintain the pavement temperature. The test sections received no direct rainfall as they were 

protected by the temperature control chamber. The sections were tested predominantly during the wet 

season (August through February) and rainfall was recorded during each of the first round of tests. Later, 

additional testing on the Control, Advera, and Sasobit sections was conducted in the summer months (July 

through September) when no rainfall was recorded. 

 

3.5.3 Test Duration 

HVS trafficking on each section was initiated and completed as shown in Table 3.1. The sequence of 

testing was adjusted to accommodate positioning of the two HVS machines on the Phase 3a and Phase 3b 

sections (i.e., the machines could not test side-by-side on the test track configuration). 
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Table 3.1:  Test Duration for Phase 3b HVS Rutting Tests 
Section Overlay Test Sequence Start Date Finish Date Repetitions 
624HB 
625HA 
626HA 
627HB 
628HB 
629HB 
630HB 
631HB 
632HA 

Control (Test #1) 
Sasobit (Test #1) 
Advera (Test #1) 

Astec 
Rediset 

Advera (Test #2) 
Advera (Test #3) 
Sasobit (Test #2) 
Control (Test #2) 

1 
2 
5 
4 
3 
6 
7 
8 
9 

08/10/2010 
09/09/2010 
12/14/2010 
11/11/2010 
10/01/2010 
01/24/2011 
07/26/2011 
08/16/2011 
09/15/2011 

09/29/2010 
10/18/2010 
01/16/2011 
12/16/2010 
11/08/2010 
02/07/2011 
08/08/2011 
09/09/2011 
09/28/2011 

320,000 
365,000 
  50,000 
242,000 
309,000 
  73,500 
    5,000 
  85,000 
  80,000 

 

3.5.4 Loading Program 

The HVS loading program for each section is summarized in Table 3.2. Equivalent Standard Axle Loads 

(ESALs) were determined using the following Caltrans conversion (Equation 3.1): 

ESALs =  (axle load/18,000)4.2 (3.1) 

 

All trafficking was carried out with a dual-wheel configuration, using radial truck tires (Goodyear G159 - 

11R22.5- steel belt radial) inflated to a pressure of 720 kPa (104 psi), in a channelized, unidirectional 

loading mode. Load was checked with a portable weigh-in-motion pad at the beginning of each test, after 

each load change, and at the end of each test. 

Table 3.2:  Summary of Phase 3b HVS Loading Program 
Section Overlay Wheel Load1 

(kN) 
Repetitions ESALs2 Test to Failure 

624HB Control 
(Test #1) 

40 
60 
80 

   160,000 
   100,000 
     60,000 

   160,000 
   549,000 
1,102,750 

Yes 

625HA Sasobit (Test #1) 40 
60 
80 

   160,000 
   100,000 
   105,000 

   160,000 
   549,014 
1,929,813 

Yes 

626HA Advera (Test #1) 40      50,000      50,000 No 
627HB Astec 40 

60 
   160,000 
     82,000 

   160,000 
   450,191 

Yes 

628HB Rediset 40 
60 
80 

   160,000 
   100,000 
     49,000 

   160,000 
   549,000 
   900,580 

Yes 

629HB Advera (Test #2) 40      73,500      73,500 Yes 
630HB Advera (Test #3) 40        5,000        5,000 Yes 
631HB Sasobit (Test #2) 40      85,000      85,000 No 
632HA Control 

(Test #2) 
40      80,000      80,000 No 

 Total 1,529,500 6,963,848  
1 40 kN = 9,000 lb.; 60 kN = 13,500 lb 2 ESAL:  Equivalent Standard Axle Load 
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4. PHASE 3b HVS TEST DATA SUMMARY 

4.1 Introduction 

This chapter provides a summary of the data collected from the nine HVS tests (Sections 624HB through 

632HA) and a brief discussion of the first-level analysis. Data collected includes rainfall, air temperatures 

outside and inside the temperature control chamber, pavement temperatures, and surface permanent 

deformation (rutting). 

 

Pavement temperatures were controlled using the temperature control chamber. Both air (inside and 

outside the temperature box) and pavement temperatures were monitored and recorded hourly during the 

entire loading period. In assessing rutting performance, the temperature at the bottom of the asphalt 

concrete and the temperature gradient are two important controlling temperature parameters influencing 

the stiffness of the asphalt concrete and are used to compute plastic strain. Permanent deformation at the 

pavement surface (rutting) was monitored with a laser profilometer. In-depth permanent deformation at 

various depths within the pavement was not monitored due to the soft subgrade clay and associated 

difficulties with the installation and anchoring of multi-depth deflectometers. The following rut 

parameters were determined from these measurements, as illustrated in Figure 4.1: 

• Average maximum rut depth,  
• Average deformation, 
• Location and magnitude of the maximum rut depth, and 
• Rate of rut development. 
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Figure 4.1:  Illustration of maximum rut depth and average deformation of a leveled profile. 
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The laser profilometer provides sufficient information to evaluate the evolution of permanent surface 

deformation of the entire test section at various loading stages. The rut depth figures in this report show 

the average values over the entire section (Stations 3 through 13) as well as values for half sections 

between Stations 3 and 8 and Stations 9 and 13. These two additional data series were plotted to illustrate 

any differences along the length of the section. The precise nature of the permanent deformation was 

determined after the forensic investigation (test pits and cores) on each section and is discussed in 

Chapter 5. 

 

The data from each HVS test is presented separately, with the presentation of each test following the same 

format. Data plots are presented on the same scale, where possible, to facilitate comparisons of 

performance. 

 

4.2 Rainfall 

Figure 4.2 shows the monthly rainfall data from July 2010 through October 2011 as measured at the 

weather station next to the test track. Rainfall was measured during the first six HVS tests (five sections 

plus first repeat on the Advera section). No rainfall was measured during the second round of tests on the 

Control, Advera, and Sasobit sections. There were a number of relatively high 24 hour rainfall events (i.e., 

more than 20 mm (0.75 in.) in the latter stages of the first round of testing. 
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Figure 4.2:  Measured rainfall during Phase 3b HVS testing. 
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4.3 Section 624HB:  Control (Test #1) 

4.3.1 Test Summary 

Loading commenced on August 10, 2010, and ended on September 29, 2010. A total of 320,000 load 

repetitions were applied and 49 datasets were collected. Load was increased to 60 kN (13,500 lb) and 

80 kN (18,000 lb) after 160,000 and 260,000 load repetitions, respectively. No breakdowns occurred 

during testing on this section. The HVS loading history for Section 624HB is shown in Figure 4.3. 
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Figure 4.3:  624HB:  Load history. 
 

4.3.2 Outside Air Temperatures 

Daily average outside air temperatures are summarized in Figure 4.4. Vertical error bars on each point on 

the graph show the daily temperature range. Temperatures ranged from 8°C to 46°C (42°F to 108°F) 

during the course of HVS testing, with a daily average of 24°C (75°F), an average minimum of 15°C 

(59°F), and an average maximum of 31°C (88°F). 

 

4.3.3 Air Temperatures in the Temperature Control Unit 

During the test, air temperatures inside the temperature control chamber ranged from 22°C to 60°C (72°F 

to 140°F) with an average of 45°C (113°F) and a standard deviation of 2.3°C (4.1°F). Air temperature was 

adjusted to maintain a pavement temperature of 50°C±4°C (122°F±7°F), which is expected to promote 

rutting damage. The recorded pavement temperatures discussed in Section 4.3.4 indicate that the inside air 

temperatures were adjusted appropriately to maintain the required pavement temperature. The daily 
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average air temperatures recorded in the temperature control unit, calculated from the hourly temperatures 

recorded during HVS operation, are shown in Figure 4.5. Vertical error bars on each point on the graph 

show daily temperature range. 
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Figure 4.4:  624HB:  Daily average outside air temperatures. 
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Figure 4.5:  624HB:  Daily average inside air temperatures. 
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4.3.4 Temperatures in the Asphalt Concrete Layers 

Daily averages of the surface and in-depth temperatures of the asphalt concrete layers are listed in 

Table 4.1 and shown in Figure 4.6. Pavement temperatures decreased slightly with increasing depth in the 

pavement, which was expected as there is usually a thermal gradient between the top and bottom of the 

asphalt concrete pavement layers. 

Table 4.1:  624HB:  Temperature Summary for Air and Pavement 
Temperature Average (°C) Std. Dev. (°C) Average (°F) Std. Dev. (°F) 

Outside air 
Inside air 
Pavement surface 
-  25 mm below surface 
-  50 mm below surface 
-  90 mm below surface 
- 120 mm below surface 

24 
45 
51 
51 
50 
49 
49 

3.6 
2.3 
1.3 
1.1 
1.0 
1.0 
1.0 

  75 
113 
124 
123 
122 
121 
120 

6.5 
4.1 
2.3 
2.0 
1.8 
1.8 
1.8 
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Figure 4.6:  624HB:  Daily average temperatures at pavement surface and various depths. 
 

4.3.5 Permanent Surface Deformation (Rutting) 

Figure 4.7 shows the average transverse cross section measured with the laser profilometer at various 

stages of the test. This plot clearly shows the increase in rutting and deformation over the duration of the 

test. 

 

Figure 4.8 and Figure 4.9 show the development of permanent deformation (average maximum rut and 

average deformation, respectively) with load repetitions as measured with the laser profilometer for the 

test section. 
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Figure 4.7:  624HB:  Profilometer cross section at various load repetitions. 
 

During HVS testing, rutting usually occurs at a high rate initially, and then it typically diminishes as 

trafficking progresses until reaching a steady state. This initial phase is referred to as the “embedment” 

phase. The embedment phase, although relatively short in terms of the number of load repetitions (i.e., ± 

5,000), ended with a fairly significant rut of about 6.0 mm (0.25 in.) that was attributed to the relatively 

high air-void content and other problems during construction, as discussed in Section 2.7.9. The rate of rut 

depth increase after the embedment phase was relatively slow despite the poor compaction. Increases in 

the applied load (to 60 kN and then 80 kN) had very little effect on the rate of rut depth increase. Error 

bars on the average reading indicate that there was very little variation along the length of the section; 

however, rut depths were slightly deeper on the second half of the section compared to the first half. 

 

Figure 4.10 shows contour plots of the pavement surface at the start and end of the test (320,000 

repetitions), also indicating minimal variation along the section. A slightly deeper rut recorded in one of 

the wheel tracks was attributed to the positioning of the HVS on the crossfall on the section. Terminal rut 

(12.5 mm [0.5 in.]) was reached after 290,000 repetitions. Testing was continued for an additional 30,000 

repetitions to further assess rutting trends. 

 

After completion of trafficking, the average maximum rut depth and the average deformation were 

13.3 mm (0.52 in.) and 7.8 mm (0.31 in.), respectively. The maximum rut depth measured on the section 

was 15.1 mm (0.61 in.), recorded at Station 13. 
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Figure 4.8:  624HB:  Average maximum rut. 
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Figure 4.9:  624HB:  Average deformation. 
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Start of test (1,000 load repetitions) End of test (320,000 load repetitions) 

Figure 4.10:  624HB:  Contour plots of permanent surface deformation. 
(Note that key scales are different.) 

 

4.3.6 Visual Inspection 

Apart from rutting, no other distress was recorded on the section. Figure 4.11 is a photograph taken of the 

surface at the end of the test. 

 

Figure 4.11:  624HB:  Section photograph at test completion. 
 

4.4 Section 625HA:  Sasobit (Test #1) 

4.4.1 Test Summary 

Loading commenced on September 9, 2010, and ended on October 18, 2010. A total of 365,000 load 

repetitions were applied and 46 datasets were collected. Load was increased to 60 kN and 80 kN after 

160,000 and 260,000 load repetitions, respectively. The HVS loading history for Section 625HA is shown 

in Figure 4.12. No shutdowns or breakdowns occurred during this test. 
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Figure 4.12:  625HA:  Load history. 
 

4.4.2 Outside Air Temperatures 

Daily average outside air temperatures are summarized in Figure 4.13. Vertical error bars on each point on 

the graph show the daily temperature range. Temperatures ranged from 10°C to 38°C (50°F to 100°F) 

during the course of HVS testing, with a daily average of 22°C (72°F), an average minimum of 15°C 

(59°F), and an average maximum of 30°C (86°F). Temperatures decreased notably towards the end of the 

test. Outside air temperatures were in a similar range to those recorded during testing of the Control. 
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Figure 4.13:  625HA:  Daily average outside air temperatures. 
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4.4.3 Air Temperatures in the Temperature Control Unit 

During the test, the measured air temperatures inside the temperature control chamber ranged from 35°C 

to 54°C (95°F to 129°F) with an average of 43°C (109°F) and a standard deviation of 3.3°C (6.0°F). The 

air temperature was adjusted to maintain a pavement temperature of 50°C±4°C (122°F±7°F). The daily 

average air temperatures recorded in the temperature control unit, calculated from the hourly temperatures 

recorded during HVS operation, are shown in Figure 4.14. Vertical error bars on each point on the graph 

show daily temperature range. 
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Figure 4.14:  625HA:  Daily average inside air temperatures. 
 

4.4.4 Temperatures in the Asphalt Concrete Layers 

Daily averages of the surface and in-depth temperatures of the asphalt concrete layers are listed in 

Table 4.2, and shown in Figure 4.15. Data for the Control section are included for comparison. 

Temperatures were very similar to those recorded on the Control section. Pavement temperatures 

decreased slightly with increasing depth in the pavement, as expected. Average pavement temperatures at 

all depths of Section 625HA were similar to those recorded on the Control. 

Table 4.2:  625HA:  Temperature Summary for Air and Pavement 
Temperature 625HA 624HB 

Average (°C) Std. Dev. (°C) Average (°F) Std. Dev. (°F) Average (°C) 
Outside air 
Inside air 
Pavement surface 
-  25 mm below surface 
-  50 mm below surface 
-  90 mm below surface 
- 120 mm below surface 

22 
43 
50 
51 
50 
50 
50 

- 
3.3 
0.9 
0.6 
0.7 
0.7 
0.8 

  72 
109 
122 
124 
122 
122 
122 

- 
6.0 
1.6 
1.1 
1.3 
1.3 
1.4 

24 
45 
51 
51 
50 
49 
49 
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Figure 4.15:  625HA:  Daily average temperatures at pavement surface and various depths. 
 

4.4.5 Permanent Surface Deformation (Rutting) 

Figure 4.16 shows the average transverse cross section measured with the laser profilometer at various 

stages of the test and shows the increase in rutting and deformation over time. 
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Figure 4.16:  625HA:  Profilometer cross section at various load repetitions. 
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Figure 4.17 and Figure 4.18 show the development of permanent deformation (average maximum rut and 

average deformation, respectively) with load repetitions as measured with the laser profilometer for the 

test section. Results for the Control section (Section 624HB) are also shown for comparative purposes. 

Rutting performance was very similar on both sections for both the embedment and longer-term loading 

phases. This behavior differs from earlier testing on dense-graded mixes with conventional binders, which 

have typically shown warm-mixes to have deeper rutting than the Control at the end of the embedment 

phase. This difference in behavior could be attributed to the better compaction (lower air-void content) on 

the Sasobit section, and/or to the additional “curing” time between construction and the start of HVS 

testing. These parameters are being investigated in another phase of the Caltrans warm-mix asphalt study 

and will be discussed in a separate report. The terminal rut depth of 12.5 mm (0.5 in.) was reached after 

313,000 repetitions compared to 290,000 repetitions on the control. Average deformation (down rut) on 

the Sasobit section was also very similar to that recorded on the Control at the same number of repetitions 

(8.3 mm [0.33 in.] compared to 7.9 mm [0.31 in.] on the Control). Error bars on the average reading 

indicate that there was very little variation along the length of the section. 

 

Increases in the applied load (to 60 kN and then 80 kN) had very little effect on the rate of rut depth 

increase. Error bars on the average reading indicate that there was very little variation along the length of 

the section; however, rut depths were slightly deeper on the second half of the section compared to the 

first half. 
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Figure 4.17:  625HA:  Average maximum rut. 
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Figure 4.18:  625HA:  Average deformation. 
 

Figure 4.19 shows contour plots of the pavement surface at the start and end of the test (366,000 

repetitions) that also indicate minimal variation along the section. 

 

After completion of trafficking, the average maximum rut depth and the average deformation were 

13.5 mm (0.53 in.) and 9.0 mm (0.35 in.), respectively. The maximum rut depth measured on the section 

was 15.6 mm (0.61 in.), recorded at Station 13. 

 

  

Start of test (1,000 load repetitions) End of test (366,000 load repetitions) 

Figure 4.19:  625HA:  Contour plots of permanent surface deformation. 
(Note that key scales are different.) 
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4.4.6 Visual Inspection 

Apart from rutting, no other distress was recorded on the section, which was similar in appearance to the 

Control (Figure 4.11) at the end of testing. Figure 4.20 shows a photograph taken of the surface at the end 

of the test. 

 

 

Figure 4.20:  625HA:  Section photograph at test completion. 
 

4.5 Section 626HA:  Advera (Test #1) 

4.5.1 Test Summary 

Loading commenced on December 14, 2010, and ended on January 16, 2011. Testing was stopped for the 

holiday break. A total of just 50,000 load repetitions were applied to reach an average maximum rut depth 

of 12 mm, indicating significantly different performance to that recorded on the Control section. Testing 

was halted at this point to determine the cause of this difference in performance, and a second test to 

confirm these results was planned (see Section 4.8). The HVS loading history for Section 622HA is shown 

in Figure 4.21. 

 

4.5.2 Outside Air Temperatures 

Daily average outside air temperatures are summarized in Figure 4.22. Vertical error bars on each point on 

the graph show the daily temperature range. Temperatures ranged from 1°C to 11°C (34°F to 52°F) during 

the course of HVS testing, with a daily average of 9°C (48°F), an average minimum of 6°C (43°F), and an 

average maximum of 11°C (52°F). Outside air temperatures were considerably cooler during testing on 

Section 626HA compared to those during testing of the Control. 
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Figure 4.21:  626HA:  Load history. 
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Figure 4.22:  626HA:  Daily average outside air temperatures. 
 

4.5.3 Air Temperatures in the Temperature Control Unit 

During the test, air temperatures inside the temperature control chamber ranged from 25°C to 48°C (77°F 

to 118°F) with an average of 38°C (100°F) and a standard deviation of 4.3°C (7.7°F). The air temperature 

was adjusted to maintain a pavement temperature of 50°C±4°C (122°F±7°F). The daily average air 

temperatures recorded in the temperature control unit, calculated from the hourly temperatures recorded 
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during HVS operation, are shown in Figure 4.23. Vertical errors bars on each point on the graph show 

daily temperature range. 
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Figure 4.23:  626HA:  Daily average inside air temperatures. 
 

4.5.4 Temperatures in the Asphalt Concrete Layers 

Daily averages of the surface and in-depth temperatures of the asphalt concrete layers are listed in 

Table 4.3 and shown in Figure 4.24. Pavement temperatures decreased slightly with increasing depth in 

the pavement, as expected. Average pavement temperatures at all depths of Section 626HA were similar 

to those recorded on the Control, despite significantly lower outside temperatures for this test. 

Table 4.3:  626HA:  Temperature Summary for Air and Pavement 
Temperature 626HA 624HB 

Average (°C) Std. Dev. (°C) Average (°F) Std. Dev. (°F) Average (°C) 
Outside air 
Inside air 
Pavement surface 
-  25 mm below surface 
-  50 mm below surface 
-  90 mm below surface 
- 120 mm below surface 

  9 
38 
49 
51 
50 
48 
47 

- 
4.3 
1.9 
1.7 
1.3 
1.6 
1.2 

  48 
100 
120 
124 
122 
118 
117 

- 
7.7 
3.4 
3.1 
2.3 
2.9 
2.2 

24 
45 
51 
51 
50 
49 
49 

 
62 UCPRC-RR-2011-03 



 

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

12/11/10 12/18/10 12/25/10 1/1/11 1/8/11 1/15/11 1/22/11
Date

Te
m

pe
ra

tu
re

 (º
C

)

0

50

100

150

200

250

300

350

400

Lo
ad

 R
ep

et
iti

on
s 

(x
 1

,0
00

)

Surface 25-mm below surface
50-mm below surface 90-mm below surface
120-mm below surface Load Repetitions

40kN

Shutdown

 

Figure 4.24:  626HA:  Daily average temperatures at pavement surface and various depths. 
 

4.5.5 Permanent Surface Deformation (Rutting) 

Figure 4.25 shows the average transverse cross section measured with the laser profilometer at various 

stages of the test and shows the increase in rutting and deformation over time. 
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Figure 4.25:  626HA:  Profilometer cross section at various load repetitions. 
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Figure 4.26 and Figure 4.27 show the development of permanent deformation (average maximum rut and 

average deformation, respectively) with load repetitions as measured with the laser profilometer for the 

test section. Results for the Control section (Section 624HB) are also shown for comparative purposes. 

Rutting behavior on this section was very different than that of the Control, despite having better 

compaction (lower air-void content) and was only explained after a forensic investigation on the section 

(see Section 5.7.3), which attributed this poor performance mostly to a high subgrade moisture content. 

Routine and additional load checks did not indicate any equipment problems that may have influenced the 

performance. 

 

The test was essentially terminated before the rut rate had stabilized after the embedment phase. During 

this embedment phase the rate of rutting on the Advera section was significantly higher compared to the 

Control section, both in terms of duration and rut depth. Average deformation (down rut) on the Advera 

section was similar to that measured at the end of the Control test. Error bars on the average reading 

showed no variation along the length of the section. 

 

Follow-up tests with the second HVS were scheduled to eliminate any equipment-related problems (see 

Sections 4.8 and 4.9).  
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Figure 4.26:  626HA:  Average maximum rut. 
 

 
64 UCPRC-RR-2011-03 



 

 

Figure 4.27:  626HA:  Average deformation. 
 

Figure 4.28 shows contour plots of the pavement surface at the start and end of the test (50,000 

repetitions). 

 

After completion of all trafficking, the average maximum rut depth and the average deformation were 

11.9 mm (0.47 in.) and 7.1 mm (0.28 in.), respectively. The maximum rut depth measured on the section 

was 12.7 mm (0.50 in.), recorded at Station 3. 

 

  

Start of test (1,000 load repetitions) End of test (50,000 load repetitions) 

Figure 4.28:  626HA:  Contour plots of permanent surface deformation. 
(Note that key scales are different.) 
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4.5.6 Visual Inspection 

Apart from rutting, no other distress was recorded on the section. Figure 4.29 shows a photograph taken of 

the surface at the end of the test. 

 

 

Figure 4.29:  626HA:  Section photograph at test completion. 
 

4.6 Section 627HB:  Astec 

4.6.1 Test Summary 

Loading commenced on November 11, 2010, and ended on December 16, 2010. A total of 242,000 load 

repetitions were applied and 33 datasets were collected. Load was increased to 60 kN (13,500 lb) after 

160,000 load repetitions, in line with the test plan. The HVS loading history for Section 627HB is shown 

in Figure 4.30. One shutdown occurred in the middle of the test over the Thanksgiving holiday. 

 

4.6.2 Outside Air Temperatures 

Daily average outside air temperatures are summarized in Figure 4.31. Vertical error bars on each point on 

the graph show the daily temperature range. Temperatures ranged from 1°C to 26°C (34°F to 79°F) during 

the course of HVS testing, with a daily average of 12°C (54°F), an average minimum of 8°C (46°F), and 

an average maximum of 16°C (51°F). Average outside air temperatures were considerably cooler during 

testing on Section 627HB compared to those during testing on the Control (daily average of 12°C [22°F] 

cooler). 
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Figure 4.30:  627HB:  Load history. 
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Figure 4.31:  627HB:  Daily average outside air temperatures. 
 

4.6.3 Air Temperatures in the Temperature Control Unit 

During the test, air temperatures inside the temperature control chamber ranged from 23°C to 53°C (73°F 

to 127°F) with an average of 43°C (109°F) and a standard deviation of 2°C (4°F). The air temperature was 

adjusted to maintain a pavement temperature of 50°C±4°C (122°F±7°F). The daily average air 

temperatures recorded in the temperature control unit, calculated from the hourly temperatures recorded 
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during HVS operation, are shown in Figure 4.32. Vertical error bars on each point on the graph show daily 

temperature range. 
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Figure 4.32:  627HB:  Daily average inside air temperatures. 
 

 

4.6.4 Temperatures in the Asphalt Concrete Layers 

Daily averages of the surface and in-depth temperatures of the asphalt concrete layers are listed in 

Table 4.4 and shown in Figure 4.33. Pavement temperatures decreased slightly with increasing depth in 

the pavement, as expected. Average pavement temperatures at all depths on Section 627HB were similar 

to those recorded on the Control, despite lower outside temperatures. 

Table 4.4:  627HB:  Temperature Summary for Air and Pavement 
Temperature 627HB 624HB 

Average (°C) Std. Dev. (°C) Average (°F) Std. Dev. (°F) Average (°C) 
Outside air 
Inside air 
Pavement surface 
-  25 mm below surface 
-  50 mm below surface 
-  90 mm below surface 
- 120 mm below surface 

12 
43 
49 
50 
50 
48 
48 

- 
1.5 
1.8 
0.8 
0.6 
0.6 
0.7 

  54 
109 
120 
122 
122 
118 
118 

- 
2.7 
2.2 
1.4 
1.1 
1.1 
1.3 

24 
45 
51 
51 
50 
49 
49 
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Figure 4.33:  627HB:  Daily average temperatures at pavement surface and various depths. 
 

4.6.5 Permanent Surface Deformation (Rutting) 

Figure 4.34 shows the average transverse cross section measured with the laser profilometer at various 

stages of the test and shows the increase in rutting and deformation over time. 
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Figure 4.34:  627HB:  Profilometer cross section at various load repetitions. 
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Figure 4.35 and Figure 4.36 show the development of permanent deformation (average maximum rut and 

average deformation, respectively) with load repetitions as measured with the laser profilometer for the 

test section. Results for the Control section (Section 624HB) are also shown for comparative purposes. 

Although the embedment phase was of similar duration for both sections, the Astec section had a slightly 

deeper average maximum rut compared to the Control after the same number of load repetitions (8.3 mm 

[0.33 in.]) compared to the Control (7.2 mm [0.28 in.]), despite this section having a lower air-void 

content than the Control section (9.1 percent compared to 11.6 percent). This behavior corresponds to 

results from earlier testing on dense-graded mixes with conventional binders, which typically showed 

warm-mixes to have deeper rutting than the control at the end of the embedment phase. After the 

embedment phase, the rate of deformation increase with increasing load repetitions was similar to the 

Control up to the load change to 60 kN. After the load change, the rate of deformation was higher than 

that on the Control. This was attributed in part to a second embedment phase (load sensitivity) as well as 

to an increase in subgrade moisture content after a relatively high rainfall event. Average deformation 

(down rut) on the Astec section was similar to that recorded on the Control up to the load change, but 

increased at a faster rate after the load change. At the end of the test, average deformation on the Astec 

section was 8.3 mm (0.33 in.) compared to 6.6 mm [0.26 in.) on the Control after the same number of load 

repetitions. Error bars on the average reading indicate some variation along the length of the section. 
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Figure 4.35:  627HB:  Average maximum rut. 
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Figure 4.36:  627HB:  Average deformation. 
 

Figure 4.37 shows contour plots of the pavement surface at the start and end of the test (242,000 

repetitions) that also indicate minimal variation along the section. 

 

After completion of trafficking, the average maximum rut depth and the average deformation were 

15.1 mm (0.59 in.) and 8.3 mm (0.33 in.), respectively. The maximum rut depth measured on the section 

was 21.2 mm (0.84 in.), recorded at Station 5. 

 

  

Start of test (1,000 load repetitions) End of test (242,000 load repetitions) 

Figure 4.37:  627HB:  Contour plots of permanent surface deformation. 
(Note that key scales are different.) 
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4.6.6 Visual Inspection 

Apart from rutting, no other distress was recorded on the section. Its appearance was similar to that of the 

other sections. Figure 4.38 shows a photograph taken of the surface at the end of the test. 

 

 

Figure 4.38:  627HB:  Section photograph at test completion. 
 

4.7 Section 628HB:  Rediset 

4.7.1 Test Summary 

Loading commenced on October 1, 2010, and ended on November 8, 2010. A total of 309,000 load 

repetitions were applied and 41 datasets were collected. Load was increased to 60 kN (13,500 lb) after 

160,000 load repetitions and to 80 kN (18,000 lb) after 260,000 load repetitions, in line with the test plan. 

The HVS loading history for Section 628HB is shown in Figure 4.39. No breakdowns or shutdowns 

occurred during the test. 

 

4.7.2 Outside Air Temperatures 

Daily average outside air temperatures are summarized in Figure 4.40. Vertical error bars on each point on 

the graph show the daily temperature range. Temperatures ranged from 5°C to 36°C (41°F to 97°F) during 

the course of HVS testing, with a daily average of 19°C (66°F), an average minimum of 13°C (55°F), and 

an average maximum of 26°C (79°F). Average outside air temperatures became progressively colder 

during testing on Section 628HB and on average were a little cooler compared to those during testing on 

the Control (daily average of 5°C [9°F] cooler). 
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Figure 4.39:  628HB:  Load history. 
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Figure 4.40:  628HB:  Daily average outside air temperatures. 
 

4.7.3 Air Temperatures in the Temperature Control Unit 

During the test, air temperatures inside the temperature control chamber ranged from 26°C to 57°C (79°F 

to 135°F) with an average of 42°C (108°F) and a standard deviation of 3.2°C (5.8°F). The air temperature 

was adjusted to maintain a pavement temperature of 50°C±4°C (122°F±7°F). The daily average air 

temperatures recorded in the temperature control unit, calculated from the hourly temperatures recorded 
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during HVS operation, are shown in Figure 4.41. Vertical error bars on each point on the graph show daily 

temperature range. 
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Figure 4.41:  628HB:  Daily average inside air temperatures. 
 

4.7.4 Temperatures in the Asphalt Concrete Layers 

Daily averages of the surface and in-depth temperatures of the asphalt concrete layers are listed in 

Table 4.5 and shown in Figure 4.42. Pavement temperatures decreased slightly with increasing depth in 

the pavement, as expected. Average pavement temperatures at all depths on Section 628HB were similar 

to those recorded on the Control, despite lower outside temperatures. 

Table 4.5:  628HB:  Temperature Summary for Air and Pavement 
Temperature 628HB 624HB 

Average (°C) Std. Dev. (°C) Average (°F) Std. Dev. (°F) Average (°C) 
Outside air 
Inside air 
Pavement surface 
-  25 mm below surface 
-  50 mm below surface 
-  90 mm below surface 
- 120 mm below surface 

19 
42 
51 
51 
50 
50 
49 

- 
3.2 
1.3 
0.5 
0.3 
0.5 
0.6 

66 
108 
123 
123 
123 
121 
120 

- 
5.8 
2.3 
0.9 
0.5 
0.9 
1.1 

24 
45 
51 
51 
50 
49 
49 
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Figure 4.42:  628HB:  Daily average temperatures at pavement surface and various depths. 
 

4.7.5 Permanent Surface Deformation (Rutting) 

Figure 4.43 shows the average transverse cross section measured with the laser profilometer at various 

stages of the test and shows the increase in rutting and deformation over time. 
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Figure 4.43:  628HB:  Profilometer cross section at various load repetitions. 
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Figure 4.44 and Figure 4.45 show the development of permanent deformation (average maximum rut and 

average deformation, respectively) with load repetitions as measured with the laser profilometer for the 

test section. Results for the Control section (Section 624HB) are also shown for comparative purposes. 

There was very little difference in performance (both average maximum rut and average deformation) 

between the Rediset and Control mixes during both the embedment phase and remainder of the test, 

despite the significantly higher binder content of the Rediset mix (10.0 percent for the Rediset mix 

compared to 7.7 percent for the Control). Mixes with a higher than optimum binder content will often 

deform at a faster rate than those produced at or slightly below optimum binder content. However, the 

Rediset test section had a notably lower air-void content (8.4 percent) than the Control (11.6 percent), 

which may have compensated for the higher binder content in terms of the rutting performance. The 

Rediset mix did not appear to be sensitive to the load changes. Error bars on the average reading indicate 

minimal variation along the length of the section. 

 

Figure 4.46 shows contour plots of the pavement surface at the start and end of the test (309,000 

repetitions) that also indicate minimal variation along the section. 

 

After completion of trafficking, the average maximum rut depth and the average deformation were 

13.5 mm (0.53 in.) and 7.8 mm (0.31 in.), respectively. The maximum rut depth measured on the section 

was 17.8 mm (0.70 in.), recorded at Station 6. 
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Figure 4.44:  628HB:  Average maximum rut. 
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Figure 4.45:  628HB:  Average deformation. 
 

 

  

Start of test (1,000 load repetitions) End of test (309,000 load repetitions) 

Figure 4.46:  628HB:  Contour plots of permanent surface deformation. 
(Note that key scales are different.) 

 

4.7.6 Visual Inspection 

Apart from rutting, no other distress was recorded on the section. Its appearance was similar to that of the 

other sections. Figure 4.47 shows a photograph taken of the surface at the end of the test. 
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Figure 4.47:  628HB:  Section photograph at test completion. 
 

4.8 Section 629HB:  Advera (Test #2) 

4.8.1 Test Summary 

This test was carried out as a follow-up to the Section 626HA test to determine if the poor performance on 

that section was related to equipment, the long break in testing over the holiday period, or to the pavement 

structure. Loading commenced on January 24, 2011, and ended on February 7, 2011. A total of 

73,500 load repetitions were applied and 14 datasets were collected. The HVS loading history for 

Section 629HB is shown in Figure 4.48. No improvement in performance was noted, indicating that the 

problem was probably related to the pavement structure or asphalt mix. No shutdowns or breakdowns 

occurred during the test. 

 

4.8.2 Outside Air Temperatures 

Daily average outside air temperatures are summarized in Figure 4.49. Vertical error bars on each point on 

the graph show the daily temperature range. Temperatures ranged from 0°C to 23°C (32°F to 73°F) during 

the course of HVS testing, with a daily average of 10°C (50°F), an average minimum of 6°C (43°F), and 

an average maximum of 15°C (59°F). Average outside air temperatures were very similar to those 

recorded on the first Advera test (Section 626HA), but considerably cooler compared to those during 

testing on the Control (daily average of 14°C [25°F] cooler). 
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Figure 4.48:  629HB:  Load history. 
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Figure 4.49:  629HB:  Daily average outside air temperatures. 
 

4.8.3 Air Temperatures in the Temperature Control Unit 

During the test, air temperatures inside the temperature control chamber ranged from 17°C to 48°C (63°F 

to 118°F) with an average of 37°C (99°F) and a standard deviation of 2°C (4°F), very similar to those 

recorded on the first Advera test. The daily average air temperatures recorded in the temperature control 
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unit, calculated from the hourly temperatures recorded during HVS operation, are shown in Figure 4.50. 

Vertical error bars on each point on the graph show daily temperature range. 
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Figure 4.50:  629HB:  Daily average inside air temperatures. 
 

4.8.4 Temperatures in the Asphalt Concrete Layers 

Daily averages of the surface and in-depth temperatures of the asphalt concrete layers are listed in 

Table 4.6 and shown in Figure 4.51. Average pavement temperatures at all depths on Section 629HB were 

similar to those recorded on both the first Advera test (626HA) and on the Control. 

Table 4.6:  629HB:  Temperature Summary for Air and Pavement 
Temperature 629HB 626HA 624HB 

Average (°C) Std. Dev. (°C) Average (°F) Average (°C) Average (°C) 
Outside air 
Inside air 
Pavement surface 
-  25 mm below surface 
-  50 mm below surface 
-  90 mm below surface 
- 120 mm below surface 

10 
37 
47 
50 
49 
48 
47 

- 
2.0 
2.3 
0.4 
0.8 
1.0 
1.4 

50 
99 

117 
122 
120 
118 
117 

  9 
38 
49 
51 
50 
48 
47 

24 
45 
51 
51 
50 
49 
49 
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Figure 4.51:  629HB:  Daily average temperatures at pavement surface and various depths. 
 

4.8.5 Permanent Surface Deformation (Rutting) 

Figure 4.52 shows the average transverse cross section measured with the laser profilometer at various 

stages of the test and shows the increase in rutting and deformation over time. 
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Figure 4.52:  629HB:  Profilometer cross section at various load repetitions. 
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Figure 4.53 and Figure 4.54 show the development of permanent deformation (average maximum rut and 

average deformation, respectively) with load repetitions as measured with the laser profilometer for the 

test section. Results for the first Advera test (Section 626HA) and the Control section (Section 624HB) are 

also shown for comparative purposes. 
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Figure 4.53:  629HB:  Average maximum rut. 
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Figure 4.54:  629HB:  Average deformation. 
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The plots clearly show that performance on this test was worse than that on the earlier test, indicating a 

pavement structure problem and not an equipment or testing protocol–related problem. The later forensic 

investigation (see Section 5.7.3) indicated that high subgrade moisture contents as well as thinner 

combined asphalt concrete layers on this section were probably the main contributory causes of the poor 

performance. 

 

4.8.6 Visual Inspection 

Apart from rutting, no other distress was recorded on the section. Its appearance was similar to that of the 

other sections. Figure 4.55 shows a photograph taken of the surface at the end of the test. 

 

 

Figure 4.55:  629HB:  Section photograph at test completion. 
 

4.9 Section 630HB:  Advera (Test #3) 

4.9.1 Test Summary 

This test was carried out as a follow-up to the Section 626HA and Section 629HB tests to determine if 

better performance could be achieved during testing in the summer after the subgrade had dried back. 

Loading commenced on July 26, 2011, and was terminated after just 5,000 repetitions as it was clear that 

there was no improvement in performance. Due to the short duration of the test, ambient temperatures are 

not discussed in the following sections. 

 

4.9.2 Temperatures in the Asphalt Concrete Layers 

Daily averages of the surface and in-depth temperatures of the asphalt concrete layers are listed in 

Table 4.7 and shown in Figure 4.56. Average pavement temperatures at all depths were similar to those 
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recorded on the first and second tests (Sections 626HA and 629HB) and on the Control despite 

considerable differences in ambient temperature. 

Table 4.7:  630HB:  Temperature Summary for Air and Pavement 
Temperature 630HB 626HA 629HB 624HB 

Average (°C) Std. Dev. (°C) Average (°C) Average (°C) Average (°C) 
Outside air 
Inside air 
Pavement surface 
-  25 mm below surface 
-  50 mm below surface 
-  90 mm below surface 
- 120 mm below surface 

31 
42 
47 
48 
49 
46 
46 

- 
2.4 
4.2 
3.3 
3.2 
2.9 
2.7 

  9 
38 
49 
51 
50 
48 
47 

10 
37 
47 
50 
49 
48 
47 

24 
45 
51 
51 
50 
49 
49 
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Figure 4.56:  630HB:  Daily average temperatures at pavement surface and various depths. 
 

4.9.3 Permanent Surface Deformation (Rutting) 

Figure 4.57 shows the average transverse cross section measured with the laser profilometer at various 

stages of the test. 

 

Figure 4.58 and Figure 4.59 show the development of permanent deformation (average maximum rut and 

average deformation, respectively) with load repetitions as measured with the laser profilometer for the 

test section. Results for the first and second tests as well as the Control section (Section 624HB) are also 

shown for comparative purposes. The rapid failure is clearly evident on the plots. 
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After completion of trafficking, the average maximum rut depth and the average deformation were 18 mm 

(0.71 in.) and 8.0 mm (0.32 in.), respectively. The maximum rut depth measured on the section was 

22 mm (0.87 in.) recorded at Station 9. 
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Figure 4.57:  630HB:  Profilometer cross section at various load repetitions. 
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Figure 4.58:  630HB:  Average maximum rut. 
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Figure 4.59:  630HB:  Average deformation. 
 

4.10 Section 631HB:  Sasobit (Test #2) 

4.10.1 Test Summary 

This test was carried out as part of the follow-up to the Section 626HA and Section 629HB tests to 

determine if seasonal or any other factors (e.g., change in stiffness in the asphalt layers, different testing 

equipment, etc.) had also affected the other sections. Loading commenced on August 16, 2011, and ended 

on September 9, 2011. The test was terminated after 85,000 load repetitions had been applied when it was 

clear that similar rutting performance to that measured on the first test (Section 625HA, Sasobit Test #1) 

was evident. Load history is shown in Figure 4.60. No breakdowns or shutdowns occurred during the test. 

 

4.10.2 Outside Air Temperatures 

Daily average outside air temperatures are summarized in Figure 4.61. Vertical error bars on each point on 

the graph show the daily temperature range. Temperatures ranged between 15°C and 42°C (59°F to 

108°F) during the course of HVS testing, with a daily average of 26°C (79°F), an average minimum of 

20°C (68°F), and an average maximum of 32°C (90°F). Average outside air temperatures were warmer 

during testing on Section 631HB compared to those during testing on the first Sasobit test (daily average 

of 4°C [7°F] warmer) and on the Control. 
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Figure 4.60:  631HB:  Load history. 
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Figure 4.61:  631HB:  Daily average outside air temperatures. 
 

4.10.3 Air Temperatures in the Temperature Control Unit 

During the test, air temperatures inside the temperature control chamber ranged from 40°C to 57°C (104°F 

to 135°F) with an average of 48°C (118°F) and a standard deviation of 3°C (5°F). The air temperature was 

adjusted to maintain a pavement temperature of 50°C±4°C (122°F±7°F). The daily average air 

temperatures recorded in the temperature control unit, calculated from the hourly temperatures recorded 
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during HVS operation, are shown in Figure 4.62. Vertical error bars on each point on the graph show daily 

temperature range. 
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Figure 4.62:  631HB:  Daily average inside air temperatures. 
 

4.10.4 Temperatures in the Asphalt Concrete Layers 

Daily averages of the surface and in-depth temperatures of the asphalt concrete layers are listed in 

Table 4.8 and shown in Figure 4.63. Pavement temperatures decreased slightly with increasing depth in 

the pavement, as expected. Average pavement temperatures at all depths on Section 631HB were similar 

to those recorded on the earlier Sasobit test and on the Control. 

Table 4.8:  631HB:  Temperature Summary for Air and Pavement 
Temperature 631HB 625HB 624HB 

Average (°C) Std. Dev. (°C) Average (°F) Average (°F) Average (°C) 
Outside air 
Inside air 
Pavement surface 
-  25 mm below surface 
-  50 mm below surface 
-  90 mm below surface 
- 120 mm below surface 

26 
48 
49 
50 
50 
49 
48 

- 
2.9 
1.9 
1.7 
1.6 
1.6 
1.8 

  79 
118 
120 
122 
122 
120 
118 

22 
43 
50 
51 
50 
50 
50 

24 
45 
51 
51 
50 
49 
49 
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Figure 4.63:  631HB:  Daily average temperatures at pavement surface and various depths. 
 

4.10.5 Permanent Surface Deformation (Rutting) 

Figure 4.64 shows the average transverse cross section measured with the laser profilometer at various 

stages of the test. This profile is similar to that measured on the first Sasobit (Section 625HA)test. 

 

-15

-10

-5

0

5

10

-1,000 -500 0 500 1,000 1,500
Transverse Position (mm)

R
ut

 D
ep

th
 (m

m
)

500 2,000 10,000 20,000 40,000 85,000

Wheelpath

x= -400 x= 1,000

 

Figure 4.64:  631HB:  Profilometer cross section at various load repetitions. 
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Figure 4.65 and Figure 4.66 show the development of permanent deformation (average maximum rut and 

average deformation, respectively) with load repetitions as measured with the laser profilometer for the 

test section. Results for the first Sasobit test (Section 625HA) and the Control section (Section 624HB) are 

also shown for comparative purposes. The average maximum rut measured at the end of the embedment 

phase was slightly deeper than that measured during the first Sasobit test. Apart from this, rutting trends 

(both total rut and average deformation) were the same as that measured on the first test and consequently 

the second test was halted after 85,000 repetitions, before the terminal rut depth was reached. This second 

test made clear that there was very little difference in performance between the two tests. 
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Figure 4.65:  631HB:  Average maximum rut. 
 

 

4.10.6 Visual Inspection 

Apart from rutting, no other distress was recorded on the section and its appearance was similar to that of 

the other sections. 
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Figure 4.66:  631HB:  Average deformation. 
 

4.11 Section 632HA:  Control (Test #2) 

4.11.1 Test Summary 

This test was also carried out as part of the follow-up to the Section 626HA and Section 629HB tests to 

determine if seasonal or any other factors had also affected the other sections. Loading commenced on 

September 15, 2011, and ended on September 28, 2011. The test was terminated after 80,000 load 

repetitions had been applied when it was clear that similar rutting performance to that measured on the 

first test (Section 624HA, Control #1) was evident. Load history is shown in Figure 4.67. No breakdowns 

or shutdowns occurred during the test. 

 

4.11.2 Outside Air Temperatures 

Daily average outside air temperatures are summarized in Figure 4.68. Vertical error bars on each point on 

the graph show the daily temperature range. Temperatures ranged from 26°C to 49°C (79°F to 120°F) 

during the course of HVS testing, with a daily average of 34°C (93°F), an average minimum of 30°C 

(86°F), and an average maximum of 37°C (99°F). Average outside air temperatures were considerably 

warmer during testing on Section 632HA compared to those during testing on the first Control test (daily 

average of 10°C [18°F] warmer). 
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Figure 4.67:  632HA:  Load history. 
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Figure 4.68:  632HA:  Daily average outside air temperatures. 
 

4.11.3 Air Temperatures in the Temperature Control Unit 

During the test, air temperatures inside the temperature control chamber ranged from 37°C to 54°C (99°F 

to 129°F) with an average of 46°C (115°F) and a standard deviation of 3°C (5°F). The air temperature was 

adjusted to maintain a pavement temperature of 50°C±4°C (122°F±7°F). The daily average air 

temperatures recorded in the temperature control unit, calculated from the hourly temperatures recorded 
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during HVS operation, are shown in Figure 4.69. Vertical error bars on each point on the graph show daily 

temperature range. 
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Figure 4.69:  632HA:  Daily average inside air temperatures. 
 

4.11.4 Temperatures in the Asphalt Concrete Layers 

Daily averages of the surface and in-depth temperatures of the asphalt concrete layers are listed in 

Table 4.9 and shown in Figure 4.70. Pavement temperatures decreased slightly with increasing depth in 

the pavement, as expected. Average pavement temperatures at all depths on Section 632HA were similar 

to those recorded on the first Control test, despite higher outside temperatures. 

Table 4.9:  632HA:  Temperature Summary for Air and Pavement 
Temperature 632HA 624HB 

Average (°C) Std. Dev. (°C) Average (°F) Std. Dev. (°F) Average (°C) 
Outside air 
Inside air 
Pavement surface 
-  25 mm below surface 
-  50 mm below surface 
-  90 mm below surface 
- 120 mm below surface 

34 
46 
50 
50 
50 
49 
48 

- 
2.5 
1.5 
0.5 
0.5 
0.7 
0.6 

  93 
115 
122 
122 
122 
120 
118 

- 
4.5 
2.7 
0.9 
0.9 
1.3 
1.1 

24 
45 
51 
51 
50 
49 
49 
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Figure 4.70:  632HA:  Daily average temperatures at pavement surface and various depths. 
 

4.11.5 Permanent Surface Deformation (Rutting) 

Figure 4.71 shows the average transverse cross section measured with the laser profilometer at various 

stages of the test. This profile is similar to that measured on the first Control test. 

 

-15

-10

-5

0

5

10

-1,000 -500 0 500 1,000 1,500
Transverse Position (mm)

R
ut

 D
ep

th
 (m

m
)

500 1,000 5,000 20,000 40,000 80,000

Wheelpath

x= -400 x= 1,000

 

Figure 4.71:  632HA:  Profilometer cross section at various load repetitions. 
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Figure 4.72 and Figure 4.73 show the development of permanent deformation (average maximum rut and 

average deformation, respectively) with load repetitions as measured with the laser profilometer for the 

test section. Results for the first Control section (Section 624HB) are also shown for comparative 

purposes. Average maximum rut, average deformation, and general change in rut rate trends measured 

during this test were the same as those measured during the first Control test and consequently the second 

test was halted after 80,000 repetitions, before the terminal rut depth was reached. This second test made 

clear that there was very little difference in performance between the two tests. 
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Figure 4.72:  632HA:  Average maximum rut. 
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Figure 4.73:  632HA:  Average deformation. 
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4.11.6 Visual Inspection 

Apart from rutting, no other distress was recorded on the section and its appearance was similar to that of 

the other sections. 

 

4.12 Test Summary 

The first round of testing on the five sections was started in the late summer of 2010 and ended in the 

winter of the same year. A range of daily average temperatures was therefore experienced; however, 

pavement temperatures remained constant throughout HVS trafficking. Unexpected poor performance was 

measured on the Advera section (Section 626HA) and additional tests on this section as well as on the 

Control and Sasobit sections were undertaken to determine the cause and to eliminate possible seasonal 

and machine-related testing variables. The cause of this poor performance was attributed to a combination 

of high subgrade moisture content and thinner combined asphalt layers, which were both identified during 

the forensic investigation (discussed in Chapter 5). The duration of the tests to terminal rut (12.5 mm 

[0.5 in.]) on the five sections varied from 73,500 load repetitions (Section 629HB, Advera Test #2) to 

365,000 load repetitions (Section 625HA, Sasobit Test #1) (Table 4.10). 

Table 4.10:  Summary of Embedment Phase and Test Duration. 
Section Embedment 

(mm/in.) 
Repetitions to 
12.5 mm Rut 

Load Change 
to 60 kN 

Load Change 
to 80 kN Number Technology 

624HB 
625HA 
626HA 
627HB 
628HB 
629HB 
630HB 
631HB 
632HA 

Control (test #1) 
Sasobit (test #1) 
Advera (test #1) 

Astec 
Rediset 

Advera (test #2) 
Advera (test #3) 
Sasobit (test #2) 
Control (test #2) 

 6.5 (0.26) 
 6.7 (0.26) 
 8.9 (0.35) 
 7.5 (0.30) 
 6.5 (0.26) 
>24 (0.95) 
>18 (0.71) 
 8.0 (0.32) 
 6.5 (0.26) 

290,000 
307,000 

Not applicable1 

183,000 
240,000 
    7,500 

Not applicable1 

Not applicable1 

Not applicable1 

Yes 
Yes 
No 
Yes 
Yes 
No 
No 
No 
No 

Yes 
Yes 
No 
No 
Yes 
No 
No 
No 
No 

1  Test was terminated before terminal rut was reached. 
 

Rutting behavior for the five sections is compared in Figure 4.74 (average maximum rut) and Figure 4.75 

(average deformation). The duration of the embedment phases on all sections except the Advera section 

were similar. Apart from the Advera section, the depth of the ruts at the end of the embedment phases 

differed only slightly between sections, with the Astec (7.5 mm [0.3 in.]) having a slightly deeper 

embedment than the Control, Sasobit, and Rediset sections, which had similar embedment (6.5 to 6.7 mm 

[0.26 in.]). This is opposite to the early rutting performance in the Phase 1 study (2) and is being 

investigated in a separate study. Rut rate (rutting per load repetition) after the embedment phase on the 

Control and Sasobit sections was almost identical. The rut rate on the Astec and Rediset sections was 

slightly higher: on the Astec section, this was attributed to moisture in the asphalt layer and the subgrade 

(as determined during the forensic investigation); on the Rediset section it was attributed to the higher 
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binder content. On the Astec and Rediset sections, the rut rate was slightly higher and was attributed to 

some moisture in the asphalt layer and in the subgrade in the Astec section (determined during the forensic 

investigation) and to the higher binder content on the Rediset section. Although lower production and 

paving temperatures typically result in less oxidation of the binder, which can influence early rutting 

performance, differences in production and placement temperatures did not appear to influence 

performance in this set of tests.  
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Figure 4.74:  Comparison of average maximum rut. 
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Figure 4.75:  Comparison of average deformation. 
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Based on the results from this phase of accelerated pavement testing on gap-graded, rubberized mixes, it 

can be concluded that the use of any of the three warm-mix asphalt technologies assessed and subsequent 

compaction of the mixes at lower temperatures will not significantly influence rutting performance of the 

mix. 
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5. FORENSIC INVESTIGATION 

5.1 Introduction 

A forensic investigation was carried out after completion of all HVS testing to compare the condition of 

the asphalt concrete and underlying layers within and outside the HVS trafficked area, and to remove 

samples for laboratory testing. 

 

5.2 Forensic Investigation Procedure 

The forensic investigation included the following tasks: 

1. Demarcate test pit locations; 
2. Saw the asphalt concrete; 
3. Remove the slab and inspect surfacing/base bond; 
4. Determine the wet density of the base (nuclear density gauge); 
5. Determine the in situ strength of the base and subgrade (dynamic cone penetrometer); 
6. Remove the base and subgrade material; 
7. Sample material from the base and subgrade for moisture content determination; 
8. Measure layer thicknesses; 
9. Describe the profile; 
10. Photograph the profile; 
11. Sample additional material from the profile if required; and 
12. Reinstate the pit. 

 

The following additional information is relevant to the investigation: 

• The procedures for HVS test section forensic investigations, detailed in the document entitled 
Quality Management System for Site Establishment, Daily Operations, Instrumentation, Data 
Collection and Data Storage for APT Experiments (8) were followed. 

• The saw cuts were made at least 50 mm into the base to ensure that the slab could be removed from 
the pit without breaking. 

• Nuclear density measurements were taken between the test section centerline and the inside 
(caravan side) edge of the test section. Two readings were taken: the first with the gauge aligned 
with the direction of trafficking and the second at 90° to the first measurement (Figure 5.1). 

• DCP measurements were taken between the test section centerline and the inside (caravan side) 
edge of the test section, and between the outside edge of the test section and the edge of the test pit 
on the traffic side (Figure 5.1). A third DCP measurement was taken between these two points if 
inconsistent readings were obtained. 

• Layer thicknesses were measured from a leveled reference straightedge above the pit. This allowed 
the crossfall of the section to be included in the profile. Measurements were taken across the pit at 
50-mm (2.0-in.) intervals. 
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Figure 5.1:  Test pit layout. 
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5.3 Test Pit Excavation 

One test pit was excavated on seven of the nine HVS test sections (between Stations 9 and 11 [see 

Figure 5.1]). Test pits were not excavated on Section 631HB (Sasobit #2) and Section 632HA 

(Control #2) given that performance trends on the second tests were very similar to those on the first tests. 

The Station 9 test pit face was evaluated in each test pit. Test pits were excavated to a depth 

approximately 200 mm (8 in.) into the subgrade. 

 

5.4 Base-Course Density and Moisture Content 

Table 5.1 summarizes the base-course density and moisture content measurements on each section. The 

table includes the wet and dry density and moisture content of the base in the HVS wheelpath and in the 

adjacent untrafficked area (see Figure 5.1). Measurements were taken with a nuclear gauge. Laboratory-

determined gravimetric moisture contents of the base material (average of two samples from the top and 

bottom of the excavated base) and subgrade material, as well as recalculated dry densities of the base 

(using the average gauge-determined wet density and laboratory-determined gravimetric moisture 

content), are also provided. Each gauge measurement is an average of two readings taken at each location 

in the pit (gauge perpendicular to wheelpath and parallel to wheelpath as shown in Figure 5.1). Subgrade 

densities were not measured. The following observations were made: 

• Densities increased with increasing depth, following a similar pattern to the densities measured after 
construction of the test track. 

• Some inconsistencies were noted in the densities from the different sections, with those sections 
with the highest number of applied load repetitions having higher densities in the upper regions of 
the base than the sections with lower numbers of repetitions (i.e., Advera sections). This implies 
that some densification under trafficking did occur. Average nuclear gauge–determined dry 
densities of the base-course for the six depths measured ranged between 2,085 kg/m3 (130.2 lb/ft3) 
in the trafficked area on Section 626HA (Advera) and 2,258 kg/m3 (141.0 lb/ft3) on the untrafficked 
area of Section 625HA (Sasobit) for the six test pits. The average dry density and standard deviation 
for the six test pits were 2,165 kg/m3 (135.1 lb/ft3) and 58 kg/m3 (3.6 lb/ft3), respectively, which 
corresponds with the average dry density of 2,200 kg/m3 (137.3 lb/ft3) recorded after construction, 
indicating that the base density over the test track did not change overall under trafficking. The 
laboratory-determined maximum dry density was 2,252 kg/m3 (140.6 lb/ft3). The average nuclear 
gauge–determined wet density was 2,347 kg/m3 (146.1 lb/ft3) with a standard deviation of 58 kg/m3 
(3.6 lb/ft3). 

• Nuclear gauge–determined moisture contents of the six test pits, measured at six intervals in the top 
300 mm of the base, ranged between 7.0 percent and 9.7 percent with an average of 8.5 percent 
(standard deviation of 0.9 percent), slightly higher than the measurements recorded after 
construction (7.3 percent). Moisture contents at the top of the base were generally slightly higher 
compared to those in the lower regions of the base. The laboratory-determined optimum moisture 
content of the base material was 6.0 percent. 
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Table 5.1:  Summary of Base-Course Density and Moisture Content Measurements 

Section Depth 

Nuclear Gauge Laboratory Wheelpath Untrafficked 
Base Wet 
Density 

MC1 

 
Base Dry 
Density 

Base Wet 
Density 

MC 
 

Base Dry 
Density 

Base 
MC 

Recalculated 
Dry Density* 

SG2 

MC 
(kg/m3) (lb/ft3) (%) (kg/m3) (lb/ft3) (kg/m3) (lb/ft3) (%) (kg/m3) (lb/ft3) (%) (kg/m3) (lb/ft3) (%) 

624HB 
(Control) 

  50 
100 
150 
200 
250 
300 

2,306 
2,345 
2,372 
2,374 
2,376 
2,394 

114.0 
146.4 
148.1 
148.2 
148.3 
149.5 

8.1 
8.2 
8.0 
8.4 
8.2 
7.7 

2,133 
2,168 
2,197 
2,191 
2,196 
2,226 

131.1 
135.4 
137.2 
136.8 
137.1 
139.0 

2,251 
2,345 
2,371 
2,402 
2,405 
2,400 

140.5 
146.4 
148.0 
150.0 
150.2 
149.8 

9.6 
9.5 
9.6 
9.2 
9.4 
9.6 

2,056 
2,142 
2,163 
2,201 
2,200 
2,191 

128.4 
133.7 
135.1 
137.4 
137.3 
136.8 

5.4 

2,162 
2,225 
2,250 
2,266 
2,268 
2,274 

135.0 
138.9 
140.5 
141.4 
141.6 
142.0 

17.3 

Avg3 

SD4 
2,361 
     31 

147.4 
    2.0 

8.1 
0.2 

2,185 
     32 

136.4 
    2.0 

2,362 
     59 

147.5 
    3.7 

9.5 
0.2 

2,159 
     55 

134.8 
    3.5  2,241 

     43 
139.9 
    2.7  

625HA 
(Sasobit 

#1) 

  50 
100 
150 
200 
250 
300 

2,108 
2,257 
2,409 
2,542 
2,495 
2,459 

131.6 
140.9 
150.4 
158.7 
155.8 
153.5 

7.9 
7.4 
7.1 
6.3 
6.5 
6.9 

1,954 
2,100 
2,252 
2,392 
2,343 
2,301 

122.0 
131.1 
140.6 
149.3 
146.2 
143.7 

2,305 
2,339 
2,572 
2,586 
2,553 
2,479 

143.9 
146.0 
160.6 
161.5 
159.4 
254.7 

10.4 
10.2 
9.0 
8.9 
9.2 
9.5 

2,088 
2,123 
2,361 
2,375 
2,339 
2,265 

130.3 
132.5 
147.4 
148.3 
146.0 
141.4 

5.0 

2,030 
2,114 
2,291 
2,359 
2,322 
2,271 

126.7 
132.0 
143.1 
147.3 
145.0 
141.8 

16.7 

Avg 
SD 

2,378 
   165 

148.5 
  10.3 

7.0 
0.6 

2,224 
   166 

138.8 
  10.3 

2,472 
   123 

154.3 
    7.7 

9.5 
0.7 

2,258 
   125 

141.0 
    7.8  2,231 

   130 
139.3 
    8.1  

626HA 
(Advera 

#1) 

  50 
100 
150 
200 
250 
300 

2,164 
2,251 
2,269 
2,284 
2,303 
2,327 

135.1 
140.5 
141.7 
142.6 
143.8 
145.3 

9.2 
9.0 
8.8 
8.4 
8.7 
8.3 

1,982 
2,066 
2,085 
2,107 
2,119 
2,150 

123.7 
129.0 
130.2 
131.6 
132.3 
134.2 

2,279 
2,313 
2,318 
2,305 
2,313 
2,301 

142.3 
144.4 
144.7 
143.9 
144.4 
143.7 

9.6 
9.3 
9.8 

10.3 
9.8 
9.6 

2,080 
2,117 
2,112 
2,091 
2,108 
2,101 

129.8 
132.2 
131.9 
130.5 
131.6 
131.1 

8.7 

2,116 
2,173 
2,184 
2,185 
2,198 
2,204 

132.1 
135.7 
136.4 
136.4 
137.2 
137.6 

19.2 

Avg 
SD 

2,266 
     57 

141.5 
    3.5 

8.7 
0.4 

2,085 
     58 

130.2 
    3.6 

2,305 
     14 

143.9 
    0.9 

9.7 
0.3 

2,101 
     14 

131.2 
    0.9  2,177 

     32 
135.9 
    2.0  

627HB 
(Astec) 

  50 
100 
150 
200 
250 
300 

2,292 
2,327 
2,346 
2,370 
2,398 
2,387 

143.1 
145.3 
146.4 
147.9 
149.7 
149.0 

8.6 
8.4 
9.0 
8.3 
8.1 
8.4 

2,111 
2,146 
2,152 
2,189 
2,219 
2,201 

131.8 
134.0 
134.3 
136.7 
138.5 
137.4 

2,371 
2,397 
2,418 
2,410 
2,414 
2,404 

148.0 
149.6 
150.9 
150.5 
150.7 
150.1 

7.6 
7.9 
7.3 
7.4 
7.6 
7.3 

2,204 
2,222 
2,253 
2,245 
2,243 
2,240 

137.6 
138.7 
140.6 
140.1 
140.1 
139.8 

5.7 

2,206 
2,235 
2,253 
2,261 
2,276 
2,266 

137.7 
139.5 
140.7 
141.2 
142.1 
141.5 

18.2 

Avg 
SD 

2,353 
     40 

146.9 
    2.5 

8.5 
0.3 

2,170 
     40 

135.5 
    2.5 

2,402 
     17 

150.0 
    1.1 

7.5 
0.2 

2,234 
     18 

139.5 
    1.1  2,250 

     26 
140.4 
   1.6  

* Recalculated dry density using nuclear gauge wet density and laboratory gravimetric moisture content. 
1  MC = Moisture content  2  SG = Subgrade  3  Avg = Average  4  SD = Standard Deviation 
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Table 5.1:  Summary of Base-Course Density and Moisture Content Measurements (continued) 

Section Depth 

Nuclear Gauge Laboratory Wheelpath Untrafficked 
Base Wet 
Density 

MC1 

 
Base Dry 
Density 

Base Wet 
Density 

MC 
 

Base Dry 
Density 

Base 
MC 

Recalculated 
Dry Density* 

SG2 

MC 
(kg/m3) (lb/ft3) (%) (kg/m3) (lb/ft3) (kg/m3) (lb/ft3) (%) (kg/m3) (lb/ft3) (%) (kg/m3) (lb/ft3) (%) 

628HB 
(Rediset) 

  50 
100 
150 
200 
250 
300 

2,312 
2,364 
2,358 
2,364 
2,366 
2,392 

144.3 
147.6 
147.2 
147.6 
147.7 
149.3 

8.3 
7.7 
7.5 
7.6 
7.5 
7.3 

2,135 
2,194 
2,194 
2,198 
2,201 
2,228 

133.3 
137.0 
137.0 
137.2 
137.4 
139.1 

2,314 
2,334 
2,330 
2,333 
2,354 
2,349 

144.5 
145.7 
145.5 
145.6 
146.9 
146.7 

8.1 
7.9 
8.2 
7.8 
7.5 
7.6 

2,141 
2,163 
2,154 
2,164 
2,189 
2,183 

133.6 
135.0 
134.5 
135.1 
136.6 
136.3 

5.2 

2,199 
2,233 
2,228 
2,233 
2,243 
2,253 

137.3 
139.4 
139.1 
139.4 
140.0 
140.7 

15.6 

Avg3 

SD4 
2,359 
     26 

147.3 
    1.6 

7.7 
0.8 

2,192 
     31 

136.8 
    1.9 

2,336 
     14 

145.8 
    0.9 

7.9 
0.3 

2,166 
     18 

135.2 
    1.1  2,231 

     18 
139.3 
    1.2  

629HB 
(Advera 

#2) 

 
Not Recorded 8.6 - - 19.1 

630HB 
(Advera 

#3) 

  50 
100 
150 
200 
250 
300 

2,189 
2,246 
2,282 
2,293 
2,305 
2,318 

136.7 
140.2 
142.5 
143.2 
143.9 
144.7 

9.5 
9.4 
9.0 
8.7 
9.2 
8.2 

2,000 
2,053 
2,093 
2,109 
2,111 
2,158 

124.9 
128.2 
130.7 
131.7 
131.8 
134.8 

2,257 
2,285 
2,296 
2,309 
2,313 
2,335 

140.9 
142.7 
143.4 
144.2 
144.4 
145.8 

9.1 
9.1 
8.5 
8.6 
8.8 
4.0 

2,069 
2,096 
2,117 
2,127 
2,126 
2,143 

129.2 
130.8 
132.1 
132.8 
132.7 
133.8 

8.3 

2,111 
2,152 
2,174 
2,185 
2,193 
2,209 

131.8 
134.3 
135.7 
136.4 
136.9 
137.9 

18.9 

Avg 
SD 

2,272 
     47 

141.8 
    3.0 

9.0 
0.5 

2,088 
     55 

130.3 
    3.4 

2,299 
     27 

143.5 
    1.7 

8.8 
0.3 

2,113 
     26 

131.9 
    1.7  2,171 

     35 
135.5 
    2.2  

* Recalculated dry density using nuclear gauge wet density and laboratory gravimetric moisture content. 
1  MC = Moisture content  2  SG = Subgrade  3  Avg = Average  4  SD = Standard Deviation 
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• Laboratory-determined gravimetric moisture contents varied between 5.0 percent (Section 625HA, 
Sasobit) and 8.7 percent (Section 626HA, Adera #1), with an average of 5.9 percent and standard 
deviation of 1.4 percent. These moisture contents were on average 2.6 percent lower than those 
recorded by the nuclear gauge and appeared more consistent with visual evaluations of the test pit 
face, and more representative of typical dryback conditions in base materials. The higher moisture 
contents determined with the nuclear gauge could be associated with the presence of some excess 
moisture from the saw-cutting operation during pit excavation. Recalculated dry densities, 
determined using the gauge wet density and gravimetric moisture content, were therefore slightly 
higher than the gauge-determined dry densities. 

 

5.5 Subgrade Moisture Content 

Laboratory-determined gravimetric moisture contents for the subgrade materials ranged between 

15.6 percent (Section 628HB, Rediset) and 19.2 percent (Section 626HA, Advera #1) for the six test pits, 

indicating a significant difference in moisture contents between the base and subgrade materials. Visual 

observations in the test pits confirmed these differences. The sections with the highest subgrade moisture 

contents had the poorest rutting performance. 

 

5.6 Dynamic Cone Penetrometer 

Dynamic cone penetrometer (DCP) measurements were recorded in each test pit, both in the wheelpath 

and untrafficked areas. Measurements and plots are provided in Appendix A. A summary of the 

measurements is provided in Table 5.2. The results show some variation; however, this is attributed more 

to stones in the base material and not to any significant differences in strength/stiffness. Variation in the 

subgrade strengths was attributed to differences in moisture content and to remnants of lime treatments 

during construction of the UCPRC facility. The strength of the material was considered relatively low for 

base-course standard, but appropriate for accelerated pavement tests. Note that subgrade stiffnesses on the 

Advera sections (626HA, 629HB, and 630HB) were generally lower than those on the other sections; this 

was attributed to the higher moisture contents. 

 

5.7 Test Pit Profiles and Observations 

Test pit profile illustrations are provided in Appendix A. Average measurements for each profile at 

Station 9 are listed in Table 5.3. The average layer thicknesses include the wheelpath depression and 

adjacent material displacement (bulge). As expected, minimum thickness measurements were always 

recorded in one of the wheelpaths, while maximum thickness measurements were always recorded in one 

of the adjacent areas of displacement. Design thicknesses for the top and bottom lifts of asphalt and the 

base were 60 mm, 60 mm, and 450 mm, respectively (0.2 ft., 0.2 ft., and 1.5 ft.). 
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Table 5.2:  Summary of Dynamic Cone Penetrometer Measurements 

Section Blows to 800 mm Layer 
mm/Blow Estimated Modulus 

(MPa) 
Wheelpath Untrafficked Wheelpath Untrafficked Wheelpath Untrafficked 

624HB 
625HA 
626HA 
627HB 
628HB 
629HB 
630HB 

132 
  93 
133 
121 
150 
134 
133 

106 
88 

132 
117 
110 
109 
111 

Base 

5 
6 
4 
5 
4 
4 
4 

6 
7 

10 
5 
6 
6 
5 

223 (32) 
478 (69) 
256 (37) 
209 (30) 
256 (37) 
266 (39) 
256 (37) 

179 (26) 
140 (20) 
223 (32) 
194 (28) 
173 (25) 
197 (29) 
191 (28) 

624HB 
625HA 
626HA 
627HB 
628HB 
629HB 
630HB 

 Subgrade 

14 
22 
30 
13 
11 
18 
30 

17 
26 
14 
12 
15 
33 
20 

  70 (10) 
41 (6) 
30 (4) 

  71 (10) 
  85 (12) 

52 (8) 
30 (4) 

56 (8) 
35 (5) 

  70 (10) 
  77 (11) 

65 (9) 
28 (4) 
48 (7) 

 

Table 5.3:  Average Layer Thicknesses from Test Pit Profiles (Station 9) 
Section Layer Average Std. Deviation Minimum Maximum 

(mm) (ft.) (mm) (ft.) (mm) (ft.) (mm) (ft.) 

624HB 

AC – top 
AC – bottom 

AC – total 
Base 

  66 
  77 
143 
481 

0.22 
0.25 
0.47 
1.58 

4 
5 
3 
5 

0.01 
0.02 
0.01 
0.02 

  55 
  66 
136 
470 

0.18 
0.22 
0.45 
1.54 

  75 
  85 
146 
492 

0.25 
0.28 
0.48 
1.61 

625HA 

AC – top 
AC – bottom 

AC – total 
Base 

  67 
  72 
138 
464 

0.22 
0.24 
0.45 
1.52 

3 
3 
3 
5 

0.01 
0.01 
0.01 
0.02 

  60 
  63 
131 
449 

0.20 
0.21 
0.43 
1.47 

  71 
  78 
145 
471 

0.23 
0.26 
0.48 
1.55 

626HA 

AC – top 
AC – bottom 

AC – total 
Base 

  63 
  71 
134 
462 

0.21 
0.23 
0.44 
1.52 

3 
3 
4 
9 

0.01 
0.01 
0.01 
0.03 

  59 
  63 
122 
447 

0.19 
0.21 
0.40 
1.47 

  75 
  76 
139 
476 

0.25 
0.21 
0.46 
1.56 

627HB 

AC – top 
AC – bottom 

AC – total 
Base 

  67 
  68 
135 
470 

0.22 
0.22 
0.44 
1.54 

4 
5 
5 
8 

0.01 
0.02 
0.02 
0.03 

  55 
  63 
126 
455 

0.18 
0.21 
0.41 
1.49 

  74 
  81 
144 
483 

0.24 
0.27 
0.47 
1.59 

628HB 

AC – top 
AC – bottom 

AC – total 
Base 

  66 
  77 
143 
442 

0.22 
0.25 
0.47 
1.45 

4 
5 
3 
10 

0.01 
0.02 
0.01 
0.03 

  56 
  65 
136 
426 

0.18 
0.21 
0.45 
1.40 

  75 
  84 
146 
456 

0.25 
0.28 
0.48 
1.50 

629HB 

AC – top 
AC – bottom 

AC – total 
Base 

  50 
  72 
122 
471 

0.16 
0.24 
0.40 
1.55 

4 
6 
6 
13 

0.01 
0.02 
0.02 
0.04 

  41 
  61 
112 
447 

0.13 
0.20 
0.37 
1.47 

  57 
  83 
132 
497 

0.19 
0.27 
0.43 
1.63 

630HB 

AC – top 
AC – bottom 

AC – total 
Base 

  59 
  75 
134 
475 

0.19 
0.25 
0.44 
1.56 

3 
7 
6 
8 

0.01 
0.02 
0.02 
0.03 

  51 
  62 
123 
459 

0.17 
0.20 
0.40 
1.51 

  68 
  94 
130 
490 

0.22 
0.31 
0.43 
1.61 

 

The measurements from each test pit show that layer thickness consistency on each test section was fairly 

good based on the low standard deviations recorded. The average base thickness varied between 442 mm 
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(1.45 ft.) on the Rediset section (Section 628HB) and 481 mm (1.58 ft.) on the Control (Section 624HB) 

(somewhat thicker than the design), while the combined asphalt concrete thickness varied between 

122 mm (0.4 ft.) on the Advera section (Section 626HA), slightly thinner than the design, and 143 mm 

(0.47 ft.) on the Control and Rediset sections (Sections 624HB and 628HB), about 23 mm (0.08 ft.) 

thicker than the design. Average asphalt concrete thicknesses measured in the test pits were consistent 

with the measurements from cores discussed in Section 2.7.10. A discussion of the observations from each 

test pit is provided in the following sections. 

 

5.7.1 Section 624HB:  Control (Test #1) 

Observations from the Section 624HA test pit (Figure 5.2) include: 

• The average thicknesses of the top and bottom lifts of asphalt concrete were marginally thicker than 
the design (66 mm [0.22 ft.] and 77 mm [0.25 ft.] respectively). The average combined thickness 
was considerably thicker (143 mm [0.47 ft.]) than the design (120 mm [0.4 ft.]). 

• Rutting was visible in both asphalt layers, with some evidence of rutting was also noted at the top of 
the base (Figure 5.2b). No rutting was measured/observed in the subgrade. Some displacement was 
recorded on either side of the trafficked area in both lifts of asphalt and at the top of the base. 

• The two asphalt concrete layers were well bonded to each other (Figure 5.2c) and well bonded to 
the aggregate base. The precise location of the bond between the two asphalt lifts was clear. The 
prime coat appeared to have penetrated between 10 mm and 15 mm (0.4 in. and 0.6 in.) into the 
base (Figure 5.2d). 

• Apart from rutting, no other distresses were noted in the asphalt layers, apart from some signs of 
segregation and some visible voids in the top lift, attributed to the cool placement temperatures. 

• Base thickness showed very little variation across the profile. The material was well graded and 
aggregates were mostly rounded (little evidence of crushing) with some flakiness. No oversize 
material was observed, and the properties appeared to be consistent (Figure 5.2e). Material 
consistency was rated as very hard throughout the layer. No organic matter was observed. 

• Moisture content in the base was rated as moist, with moisture content appearing to increase near 
the subgrade. There was no indication of higher moisture content at the interface between the base 
and asphalt concrete layers. 

• The layer definition between the base and subgrade was clear. Some punching of the base into the 
subgrade was noted. 

• The subgrade was moist, silty-clay material. Consistency was rated as soft and some shrinkage and 
slickenslides were observed. Some evidence (hydrochloric acid reaction) of the lime treatment 
during the original site preparation for construction of the UCPRC facility in 2008 was noted 
(Figure 5.2f). No organic matter was observed. 
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(a)  General view of test pit (b)  Rutting in top and bottom lifts 

  
(c)  Bond between lifts. Note voids in top lift. (d)  Penetration of prime into base layer 

  
(e)  Consistent base material and clear interface with 

subgrade 
(f)  Hydrochloric acid reaction on subgrade material. 

Note clay texture. 

Figure 5.2:  624HB:  Test pit photographs. 
 

5.7.2 Section 625HA:  Sasobit (Test #1) 

Observations from the Section 625HA test pit (Figure 5.3) include: 

• The average thicknesses of both lifts of asphalt concrete were thicker (67 mm and 72 mm [0.22 ft. 
and 0.23 ft.]) than the design thickness. The average combined thickness was also marginally 
thicker (138 mm [0.45 ft.]) than the design and on average 5.0 mm (0.02 ft.) thinner than the 
Control. 
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a)  General view of test pit. b)  Areas of predominantly fine and coarse 

aggregates. 

Figure 5.3:  625HA:  Test pit photographs. 
 

• Rutting was mostly restricted to the upper region of the top lift of asphalt, although some evidence 
of slight rutting was noted in the bottom lift (about 3 mm to 5 mm [0.12 to 0.2 in.]) and top of the 
base. No deformation was noted in the subgrade. Some displacement was recorded on either side of 
the trafficked area in both lifts of asphalt and at the top of the base. 

• The two asphalt concrete layers were well bonded to each other and well bonded to the aggregate 
base. The precise location of the bond between the two asphalt lifts was clear, but some upward 
penetration of the tack coat into the rubberized asphalt was visible. The prime coat appeared to have 
penetrated into the base in a similar way to that observed on the Control. 

• Apart from rutting, no other distresses were noted in the asphalt layers other than some visible voids 
and some segregation (areas of predominantly fine material and others of predominantly coarse 
material) in the rubberized asphalt layer (Figure 5.3b). 

• Base thickness showed very little variation across the profile. The material was consistent with the 
observations on the Control. 

• Moisture content in the base was rated as moist, with moisture content appearing to increase near 
the subgrade. There was no indication of higher moisture content at the interface between the base 
and asphalt concrete layers. 

• The layer definition between the base and subgrade was clear. Some punching of the base into the 
subgrade was noted. 

• Observations of the subgrade were consistent with those of the Control except that no hydrochloric 
reaction was noted (i.e., no lime was present). 

 

5.7.3 Sections 626HA, 629HB, and 630HB:  Advera 

Observations from the Advera sections test pits (Figure 5.4) include: 

• The top lifts of asphalt in all three test pits were marginally thinner than the design (63 mm, 50 mm, 
and 59 mm [0.21 ft., 0.17 ft. and 0.19 ft.], respectively) and considerably thinner than the Control. 
Bottom lift thicknesses were similar to the Control. The average combined thickness was 
marginally thicker (135 mm, 122 mm, and 134 mm [0.44 ft., 0.4 ft. and 0.44 ft.], respectively) than 
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the design, but between 10 mm and 22 mm (0.03 ft. and 0.08 ft.) thinner than the Control. This 
probably had some influence on the poor performance of these sections. 

• Rutting was clearly evident in all layers and in the subgrade (Figure 5.4b). Some displacement was 
recorded on either side of the trafficked area in both lifts of asphalt. 

• The two asphalt concrete layers were well bonded to each other and well bonded to the aggregate 
base. The precise location of the bond between the two asphalt lifts was clear. The prime coat 
appeared to have penetrated into the base in a similar way to that observed on the Control. 

• Apart from rutting and displacement of material adjacent to the ruts, no other distresses were noted 
in the asphalt layers. 

• Base thickness showed very little variation across the profile. The material was consistent with the 
observations on the Control. 

• Moisture content in the base was rated as moist, with moisture content appearing to increase near 
the subgrade. There was no indication of higher moisture content at the interface between the base 
and asphalt concrete layers. 

• The layer definition between the base and subgrade was clear. Some punching of the base into the 
subgrade was noted (Figure 5.4c). 

• Observations of the subgrade were consistent with those of the Control, although the material 
appeared visibly wetter (Figure 5.4d). No hydrochloric acid reaction was observed. 

 

  
(a)  General view of test pit face (b)  Rutting in both lifts of asphalt 

  
(c)  Stones punched into subgrade (d)  Wet lower base and subgrade 

Figure 5.4:  626HA, 629HB, and 630HB:  Test pit photographs. 
 
UCPRC-RR-2011-03 109 



 

 

5.7.4 Section 627HB:  Astec 

Observations from the Section 627HB test pit (Figure 5.5) include: 

• The average thicknesses of both lifts of asphalt concrete were marginally thicker (67 mm [0.22 ft.] 
and 68 mm [0.23 ft.], respectively) than the design thickness. The average combined thickness was 
therefore also thicker (134 mm [0.44 ft.]) than the design but still less than the thickness of the 
asphalt layers on the Control (143 mm [0.47 ft.]). 

• Rutting was clearly visible in both asphalt layers, and present, but less distinct at the top of the base 
and top of the subgrade. Some displacement was recorded on either side of the trafficked area in 
both lifts of asphalt and at the top of the base. 

• The two asphalt concrete layers were well bonded to each other, and to the aggregate base. The 
precise location of the bond between the two asphalt lifts was clear, but some evidence of moisture 
in the bond was observed (Figure 5.5b). Bleeding was evident in the wheelpaths and some voids 
were visible in the rubberized asphalt layer. The prime coat appeared to have penetrated into the 
base in a similar way to that observed on the Control. 

• Apart from rutting and some bleeding, no other distresses were noted in the asphalt layers. 
• Base thickness showed very little variation across the profile. The material was consistent with the 

observations on the Control. 
• Moisture content in the base was rated as moist, with moisture content appearing to increase near 

the subgrade. There was some indication of higher moisture content at the interface between the 
base and asphalt concrete layers (Figure 5.5a). 

• The layer definition between the base and subgrade was clear. Some punching of the base into the 
subgrade was noted. 

• Observations of the subgrade were consistent with those of the Control, but no hydrochloric acid 
reaction was observed. 

 

 

  
(a)  General view of test pit face (b)  Bleeding on surface and moisture in bond 

between asphalt layers 

Figure 5.5:  627HB:  Test pit photographs. 
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5.7.5 Section 628HB:  Rediset 

Observations from the Section 628HB test pit (Figure 5.6) include: 

• The average thicknesses of both lifts of asphalt concrete were marginally thicker (66 mm [0.22 ft.] 
and 77 mm [0.25 ft.], respectively) than the design thickness and the same as the Control. The 
average combined thickness was 143 mm [0.47 ft.]). 

• Rutting was mostly confined to the top lift of asphalt, with some evidence in the top of the 
underlying layer. Rutting was not visible at the top of the base or in the subgrade. 

• The two asphalt concrete layers were well bonded to each other, and to the aggregate base. The 
precise location of the bond between the two asphalt lifts was clear (Figure 5.6b). Some voids were 
evident in the rubberized asphalt. The prime coat appeared to have penetrated into the base in a 
similar way to that observed on the Control. 

• Apart from rutting, no other distresses were noted in the asphalt layers. 
• Base thickness showed very little variation across the profile. The material was consistent with the 

observations on the Control. 
• Moisture content in the base was rated as moist, with moisture content appearing to increase near 

the subgrade. There was some indication of higher moisture content at the interface between the 
base and asphalt concrete layers. 

• The layer definition between the base and subgrade was clear. Some punching of the base into the 
subgrade was noted. 

• Observations of the subgrade were consistent with those of the Control, but no hydrochloric acid 
reaction was observed. 

 

  
(a)  General view of test pit face (b)  Close-up of asphalt layers 

Figure 5.6:  628HB:  Test pit photographs. 
 

5.8 Forensic Investigation Summary 

A forensic investigation of all test sections indicated that rutting was mostly confined to the upper lift of 

the asphalt concrete, with limited rutting in the bottom lift, base, and top of the subgrade on most sections. 
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However, the test pits on the Advera sections revealed more significant rutting in all layers and in the 

subgrade, as well as notably higher moisture contents at the bottom of the base and in the subgrade when 

compared to the other sections. There was some variation in asphalt layer lift thicknesses among the five 

sections. Materials were consistent throughout and no evidence of moisture damage was noted. There was 

no visible difference in the appearance of the asphalt between the Control and warm-mix sections. 
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6. PHASE 3b LABORATORY TEST DATA SUMMARY 

6.1 Experiment Design 

Phase 3b laboratory testing included rutting performance (shear), fatigue cracking, and moisture 

sensitivity tests. Tests on these mix properties were carried out on beams and cores cut from the test track 

after construction (see Section 2.8). Typical experimental designs used in previous studies were adopted 

for this warm-mix asphalt study to facilitate comparison of results. 

 

6.1.1 Shear Testing for Rutting Performance 

Test Method 

The AASHTO T 320 Permanent Shear Strain and Stiffness Test was used for shear testing in this study. In 

the standard test methodology, cylindrical test specimens 150 mm (6.0 in.) in diameter and 50 mm 

(2.0 in.) thick are subjected to repeated loading in shear using a 0.1-second haversine waveform followed 

by a 0.6-second rest period. Three different shear stresses are applied while the permanent (unrecoverable) 

and recoverable shear strains are measured. The permanent shear strain versus applied repetitions is 

normally recorded up to a value of five percent although 5,000 repetitions are called for in the AASHTO 

procedure. A constant temperature is maintained during the test (termed the critical temperature), 

representative of the high temperature causing rutting in the local environment. In this study, specimens 

were cored from the test track and then trimmed to size. 

 

Number of Tests 

A total of 18 shear tests were carried out on each mix (total of 108 tests for the four mixes) as follows: 

• Two temperatures (45°C and 55°C [113°F and 131°F]) 
• Three stresses (70 kPa, 100 kPa, and 130 kPa [10.2, 14.5, and 18.9 psi]) 
• Three replicates 

 

6.1.2 Flexural Beam Testing for Fatigue Performance 

Test Method 

The AASHTO T-321 Flexural Controlled-Deformation Fatigue Test method was followed. In this test, 

three replicate beam test specimens, 50 mm (2.0 in.) thick by 63 mm (2.5 in.) wide by 380 mm (15 in.) 

long, which were sawn from the test track, were subjected to four-point bending using a haversine 

waveform at a loading frequency of 10 Hz. Testing was performed in both dry and wet condition at two 

different strain levels at one temperature. Flexural Controlled-Deformation Frequency Sweep Tests were 

used to establish the relationship between complex modulus and load frequency. The same sinusoidal 

waveform was used in a controlled deformation mode and at frequencies of 15, 10, 5, 2, 1, 0.5, 0.2, 0.1, 
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0.05, 0.02, and 0.01 Hz. The upper limit of 15 Hz is a constraint imposed by the capabilities of the test 

machine. To ensure that the specimen was tested in a nondestructive manner, the frequency sweep test 

was conducted at a small strain amplitude level, proceeding from the highest frequency to the lowest in 

the sequence noted above. 

 

The wet specimens used in the fatigue and frequency sweep tests were conditioned following the beam-

soaking procedure described in Appendix C. The beam was first vacuum-saturated to ensure a saturation 

level greater than 70 percent, and then placed in a water bath at 60°C (140°F) for 24 hours, followed by a 

second water bath at 20°C (68°F) for two hours. The beams were then wrapped with ParafilmTM and tested 

within 24 hours after soaking. 

 

Number of Tests 

A total of 12 beam fatigue tests and 12 flexural fatigue frequency sweep tests were carried out on each 

mix (total of 148 tests for the four mixes) as follows: 

• Flexural fatigue test: 
+ Two conditions (wet and dry) 
+ One temperature (20°C [68°F]) 
+ Two strains (200 microstrain and 400 microstrain) 
+ Three replicates 

• Frequency sweep test: 
+ Two conditions (wet and dry) 
+ Three temperatures (10°C, 20°C, and 30°C [50°F, 68°F, and 86°F]) 
+ One strain (100 microstrain) 
+ Two replicates 

 

6.1.3 Moisture Sensitivity Testing 

Test Methods 

Two additional moisture sensitivity tests were conducted, namely the Hamburg Wheel-Track test and the 

Tensile Strength Retained (TSR) test. 

• The AASHTO T 324 test method was followed for Hamburg Wheel-Track testing on 152 mm 
(6.0 in.) cores removed from the test track. All testing was carried out at 50°C (122°F). 

• The Caltrans CT 371 test method was followed for the Tensile Strength Retained test on 100 mm 
cores removed from the test track and trimmed to a thickness of 63 mm (2.5 in.). This test method is 
similar to the AASHTO T 283 test, however, it has some modifications specific for California 
conditions. 

 

Number of Tests 

Four replicates of the Hamburg Wheel-Track test and four replicates of the Tensile Strength Retained test 

were carried out for each mix (24 tests per method). 
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6.2 Test Results 

6.2.1 Rutting Performance Tests 

Air-Void Content 

Shear specimens were cored from the test track and trimmed to size. Air-void contents were measured 

using the CoreLok method and results are listed in Table C.1 through Table C.6 in Appendix C. Table 6.1 

summarizes the air-void distribution categorized by mix type, test temperature, and test shear stress level. 

Figure 6.1 presents the summary boxplots of air-void content of all the specimens tested according to 

additive type. The differences in air-void content distributions between the mixes with various additives 

are clearly apparent. There is also a difference between the Day #1 and Day #2 Control mixes, with better 

compaction being achieved on Day #2. The mean difference for the highest mean air-void content (Day #1 

Control) and the smallest mean air-void content (Sasobit and Rediset) could be as high as 4.0 percent. The 

two Control mix specimens had the largest range in air-void content. The Sasobit and Rediset specimens 

had lower mean air-void contents compared to the foaming technologies. 

Table 6.1:  Summary of Air-Void Contents of Shear Test Specimens 
Temperature Stress 

Level 
Day #1 Air-Void Content (%) 

Control #1 Sasobit Advera 
°C °F (kPa) Mean1 SD2 Mean SD   

45 113 
70 

100 
130 

13.4 
13.5 
12.0 

0.4 
1.3 
2.0 

8.2 
8.4 
7.8 

0.7 
0.1 
0.7 

11.1 
10.3 
10.8 

0.4 
0.6 
0.8 

55 131 
70 

100 
130 

12.5 
12.3 
12.2 

1.0 
1.1 
0.2 

8.6 
9.2 
8.6 

0.4 
0.6 
0.2 

10.7 
10.4 
10.5 

0.4 
0.6 
0.4 

Overall 12.7 1.0 8.5 0.4 10.7 0.5 
Temp. Stress 

Level 
Day #2 Air-Void Content (%) 

Control #2 Astec Rediset 
°C °F (kPa) Mean SD Mean SD Mean SD 

45 113 
70 

100 
130 

9.2 
8.3 
8.6 

2.2 
0.4 
0.6 

10.6 
9.5 

10.5 

0.5 
1.0 
0.9 

8.6 
8.6 
8.4 

0.4 
0.8 
0.4 

55 131 
70 

100 
130 

8.7 
9.8 
9.4 

1.8 
3.1 
1.8 

10.5 
9.9 
9.9 

0.6 
0.7 
0.3 

9.3 
7.8 
8.1 

0.7 
0.3 
0.9 

Overall 9.0 1.6 10.2 0.6 8.5 0.6 
1  Mean of three replicates  2  SD:  Standard deviation 
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Figure 6.1:  Air-void contents of shear specimens. 
 

Resilient Shear Modulus (G*) 

The resilient shear modulus results for the six mixes are summarized in Figure 6.2 and Figure 6.3. The 

following observations were made: 

• The resilient shear modulus was influenced by temperature, with the modulus increasing with 
decreasing temperature. Resilient shear modulus was not influenced by stress. 

• The variation of resilient shear moduli at 45°C was higher than at 55°C for all mixes and was 
generally attributed to higher sensitivity to air-void content variation at this testing temperature. 
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Figure 6.2:  Summary boxplots of resilient shear modulus. 
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Figure 6.3:  Average resilient shear modulus at 45°C and 55°C at 100 kPa stress level. 
(Average mix production temperature, binder content, and air-void content shown.) 

 

• Although the warm mixes appear to have slightly higher resilient shear moduli compared to the 
Day #1 Control, attributed in part to the lower air-void content, statistical analyses (t-test and 
Kolmogorov-Smirnov test) indicated that there was no statistically significant difference 
(confidence level of 0.1) in performance between the Controls and the four warm-mixes after 
variation in mix production temperature, binder content, specimen air-void content, actual test stress 
level, and actual test temperature were taken into consideration. This indicates that the use of the 
warm-mix technologies and lower production and compaction temperatures did not significantly 
influence the performance of the mixes in this test. 

 

Cycles to Five Percent Permanent Shear Strain 

The number of cycles to five percent permanent shear strain provides an indication of the rut-resistance of 

an asphalt mix, with higher numbers of cycles implying better rut-resistance. Figure 6.4 and Figure 6.5 

summarize the shear test results in terms of the natural logarithm of this parameter. The following 

observations were made: 

• Variation between results was in line with typical result ranges for this test. 
• As expected, the rut-resistance capacity decreased with increasing temperature and stress level. 
• The Day #1 Control and Advera mixes performed poorly in this test compared to the other mixes. 

This was attributed in part to the higher air-void contents of these specimens. 
• Statistical analyses (t-test and Kolmogorov-Smirnov test) indicated that there was no statistically 

significant difference (confidence level of 0.1) in performance in this test between the Day #2 
Control and the Sasobit, Astec, and Rediset mixes after variation in mix production temperature, 
binder content, specimen air-void content, actual test stress level, and actual test temperature were 
taken into consideration. This indicates that the use of these warm-mix technologies and lower 
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production and compaction temperatures did not significantly influence the performance of the 
mixes in this test. 
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Figure 6.4:  Summary boxplots of cycles to five percent permanent shear strain. 
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Figure 6.5:  Average cycles to 5% permanent shear strain at 45°C and 55°C at 100 kPa stress level. 
(Average mix production temperature, binder content, and air-void content shown.) 

 
Permanent Shear Strain at 5,000 Cycles 

The measurement of permanent shear strain (PSS) accumulated after 5,000 cycles provides an alternative 

indication of the rut-resistance capacity of an asphalt mix. The smaller the permanent shear strain the 
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better the mixture’s rut-resistance capacity. Figure 6.6 and Figure 6.7 summarize the rutting performance 

of the six mixes in terms of the natural logarithm of this parameter (i.e., increasingly negative values 

represent smaller cumulative permanent shear strain). The following observations were made: 

• Variation between results was in line with typical result ranges for this test. 
• As expected, the effect of shear stress level was more significant at higher temperatures, and the 

higher the temperature and stress level the larger the cumulative permanent shear strain. 
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Figure 6.6:  Summary boxplots of cumulative permanent shear strain at 5,000 cycles. 
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Figure 6.7:  Average PSS after 5,000 cycles at 45°C and 55°C at 100 kPa stress level. 
(Average mix production temperature, binder content, and air-void content shown.) 
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• The Day #1 Control and Advera mixes performed poorly in this test compared to the other mixes, in 
line with the results for the number of cycles to five percent permanent shear strain. This was again 
attributed in part to the higher air-void contents of these specimens. 

• Statistical analyses (t-test and Kolmogorov-Smirnov test) indicated that there was no statistically 
significant difference (confidence level of 0.1) in performance in this test between the Day #2 
Control and the Sasobit, Astec, and Rediset mixes after variation in mix production temperature, 
binder content, specimen air-void content, actual test stress level, and actual test temperature were 
taken into consideration. This indicates that the use of the warm-mix technologies and lower 
production and compaction temperatures did not significantly influence the performance of the 
mixes in this test. 

 

6.2.2 Beam Fatigue Tests 

Air-Void Content 

Fatigue beams were saw-cut from the top lift of the slabs sampled from the test track. Air-void contents 
were measured using the CoreLok method and the results are listed in Table C.7 in Appendix C. Table 6.2 
and Table 6.3 summarize the air-void distribution categorized by mix type and test tensile strain level for 
the beam fatigue and frequency sweep specimens, respectively. 
 
Figure 6.8 shows summary boxplots of air-void content for the wet and dry beam fatigue specimens, 
which indicates some differences in air-void content between the specimens used for testing at the 
different strain levels and moisture condition within each mix, with the most variation in the Day #1 
Control mix. 
 

Table 6.2:  Summary of Air-Void Contents of Beam Fatigue Specimens 
Condition Strain Day #1 Air-Void Content (%) 

Control #1 Sasobit Advera 
(µstrain) Mean1 SD2 Mean SD   

Dry 200 
400 

11.8 
12.3 

1.2 
1.4 

9.2 
9.0 

0.2 
0.3 

10.4 
10.5 

0.5 
0.4 

Wet 200 
400 

11.0 
12.2 

0.9 
0.9 

8.8 
9.3 

0.3 
1.1 

10.6 
10.7 

0.3 
0.7 

Overall 11.8 1.1 9.1 0.5 10.5 0.5 
Condition Strain Day #2 Air-Void Content (%) 

Control #2 Astec Rediset 
(µstrain) Mean SD Mean SD Mean SD 

Dry 200 
400 

6.1 
6.4 

0.7 
0.4 

8.4 
8.1 

1.0 
1.0 

8.4 
8.5 

0.3 
0.1 

Wet 200 
400 

6.5 
7.1 

0.4 
0.5 

8.2 
8.7 

0.7 
0.5 

9.0 
9.5 

0.9 
1.4 

Overall 6.5 0.5 8.3 0.8 8.8 0.7 
1  Mean of three replicates  2  SD:  Standard deviation 
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Table 6.3:  Summary of Air-Void Contents of Flexural Frequency Sweep Specimens 
Condition Temperature Day #1 Air-Void Content (%) 

Control #1 Sasobit Advera 
°C °F Mean1 SD2 Mean SD   

Dry 
10 
20 
30 

50 
68 
86 

12.1 
12.0 
11.5 

0.5 
1.1 
2.2 

9.5 
9.2 
7.8 

1.3 
0.4 
0.7 

0.6 
0.1 
0.6 

10.6 
10.7 
10.4 

Wet 
10 
20 
30 

50 
68 
86 

11.7 
10.8 
10.5 

0.3 
2.2 
0.4 

8.8 
9.1 
8.5 

0.7 
0.7 
0.9 

0.0 
1.4 
0.1 

10.5 
11.0 
10.7 

Overall 11.4 1.1 8.8 0.8 10.7 0.5 
Condition Temperature Day #2 Air-Void Content (%) 

Control #2 Astec Rediset 
°C °F Mean SD Mean SD Mean SD 

Dry 
10 
20 
30 

50 
68 
86 

6.5 
7.3 
6.7 

0.4 
0.1 
0.4 

8.0 
8.0 
9.0 

0.9 
0.9 
0.8 

10.6 
9.0 
9.6 

0.9 
0.8 
1.3 

Wet 
10 
20 
30 

50 
68 
86 

7.0 
6. 
7.1 

0.1 
0.1 
0.1 

8.4 
8.6 
9.0 

0.9 
1.2 
0.9 

9.6 
9.1 
8.4 

0.1 
0.1 
0.4 

Overall 6.8 0.2 8.5 0.9 9.4 0.6 
1  Mean of three replicates  2  SD:  Standard deviation 
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Figure 6.8:  Air-void contents of beam fatigue specimens (dry and wet). 
 
Average air-void contents in this Control mix and in the Advera mix were higher than the other mixes, 

similar to those measured in the shear testing specimens. For the Day #2 mixes, the Control mix 

specimens had lower air-void contents than the warm-mix specimens. For the frequency sweep specimens, 

where only two specimens for each variable were tested, the air-void contents show a little more 

variability, but show similar trends to the beam fatigue specimens. Suggested reasons for the difference in 
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air-void content are discussed in Section 2.7. The differences in air-void content were factored into the test 

result analysis discussed below. 

 
Initial Stiffness 

Figure 6.9 illustrates the initial stiffness comparison at various strain levels, temperatures, and 

conditioning for the different mix types. Figure 6.10 and Figure 6.11 show the average results for the dry 

and wet tests, respectively, in relation to production temperature, binder content, and average air-void 

content. The following observations were made: 

• Variation between results was in line with typical result ranges for this test. 
• Initial stiffness was generally strain-independent for both the dry and wet tests. 
• In both the dry and wet tests, similar trends in results to those noted in the shear tests were 

observed. The mixes with the highest air-void contents (Day #1 Control and Advera) had the lowest 
initial stiffnesses. The high binder content on the Rediset mix also appeared to influence initial 
stiffness in this test, as expected. After these factors as well as variation in mix production 
temperature, actual test strain level, and actual test temperature were taken into consideration, there 
was no statistically significant difference (confidence level of 0.1) in performance in this test 
between the different mixes. This indicates that the use of the warm-mix technologies and lower 
production and compaction temperatures did not significantly influence the performance of the 
mixes in this test. 

• A reduction of initial stiffness due to soaking was apparent for each mix type, indicating a potential 
loss of structural capacity due to moisture damage. 
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Figure 6.9:  Summary boxplots of initial stiffness. 
 

 
122 UCPRC-RR-2011-03 



 

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

Control 1 Sasobit Advera Astec Rediset Control 2

In
iti

al
 S

tif
fn

es
s 

(M
Pa

)

0

2

4

6

8

10

12

14

A
ir 

Vo
id

 / 
B

in
de

r C
on

te
nt

 (%
)

200 400 Air Void Content Binder Content

166°C 140°C145°C145°149°C 166°

 

Figure 6.10:  Plot of average initial stiffness for dry test. 
(Average mix production temperature, binder content, and air-void content shown.) 
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Figure 6.11:  Plot of average initial stiffness for wet test. 
(Average mix production temperature, binder content, and air-void content shown.) 

 

Initial Phase Angle 

The initial phase angle can be used as an index of mix viscosity properties, with higher phase angles 

corresponding to more viscous and less elastic properties. Figure 6.12 illustrates the side-by-side phase 

angle comparison of dry and wet tests for the six mixes. Figure 6.13 and Figure 6.14 show the average 
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results in relation to production temperature, binder content, and average air-void content for the dry and 

wet tests, respectively. The following observations were made: 

• The initial phase angle appeared to be strain-independent. 
• Soaking appeared to increase the phase angle slightly on all mixes except the Rediset. This was 

attributed to the higher binder content of this mix. 
• The initial phase angle was highly negative-correlated with the initial stiffness. 
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Figure 6.12:  Summary boxplots of initial phase angle. 
 

0

5

10

15

20

25

30

Control 1 Sasobit Advera Astec Rediset Control 2

Ph
as

e 
A

ng
le

 (D
eg

re
es

)

0

2

4

6

8

10

12

14

A
ir 

Vo
id

 / 
B

in
de

r C
on

te
nt

 (%
)

200 400 Air Void Content Binder Content

166°C 140°C145°C145°C149°C 166°C

 

Figure 6.13:  Plot of average initial phase angle for dry test. 
(Average mix production temperature, binder content, and air-void content shown.) 
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Figure 6.14:  Plot of average initial phase angle for soaked test. 
(Average mix production temperature, binder content, and air-void content shown.) 

 
• Statistical analyses (t-test and Kolmogorov-Smirnov test) indicated that there was no statistically 

significant difference (confidence level of 0.1) in performance between the two Controls and the 
four warm-mixes after variation in mix production temperature, binder content, specimen air-void 
content, actual test strain level, and actual test temperature were taken into consideration. This 
indicates that the use of the warm-mix technologies and lower production and compaction 
temperatures did not significantly influence the performance of the mixes in this test. 

 
Fatigue Life at 50 Percent Stiffness Reduction 

Mix stiffness decreases with increasing test-load repetitions. Conventional fatigue life is defined as the 
number of load repetitions when 50 percent stiffness reduction has been reached. A high fatigue life 
implies a slow fatigue damage rate and consequently higher fatigue-resistance. The side-by-side fatigue 
life comparison of dry and wet tests is plotted in Figure 6.15. Figure 6.16 and Figure 6.17 show the 
average results in relation to production temperature, binder content, and average air-void content. The 
following observations were made: 

• Fatigue life was strain-dependent as expected, with lower strains resulting in higher fatigue life. 
• In both the dry and wet tests, no specimens failed in the 200 microstrain test. 
• In the 400 microstrain test, results varied among the mixes, with air-void content and binder content 

appearing to have the biggest influence on performance.  Soaking generally resulted in a lower 
fatigue life compared to that measured on the unsoaked specimens. 

• Statistical analyses (t-test and Kolmogorov-Smirnov test) indicated that there was no statistically 
significant difference (confidence level of 0.1) in terms of fatigue life at 50 percent stiffness 
reduction performance between the Controls and the four warm-mixes after variation in mix 
production temperature, binder content, specimen air-void content, actual test strain level, and 
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actual test temperature were taken into consideration. This indicates that the use of the warm-mix 
technologies and lower production and compaction temperatures did not significantly influence the 
performance of the mixes in this test. 
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Figure 6.15:  Summary boxplots of fatigue life. 
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Figure 6.16:  Plot of average fatigue life for dry test. 
(Average mix production temperature, binder content, and air-void content shown.) 
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Figure 6.17:  Plot of average fatigue life for wet test. 
(Average mix production temperature, binder content, and air-void content shown) 

 
Flexural Frequency Sweep 

The average stiffness values of the two replicates tested at the three temperatures were used to develop the 

flexural complex modulus (E*) master curve. This is considered a useful tool for characterizing the effects 

of loading frequency (or vehicle speed) and temperature on the initial stiffness of an asphalt mix (i.e., 

before any fatigue damage has occurred). The shifted master curve with minimized residual-sum-of-

squares derived using a generic algorithm approach can be appropriately fitted with the following 

modified Gamma function (Equation 6.1): 
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where: E* = flexural complex modulus (MPa); 
 aTfreqx lnln +=  = is the loading frequency in Hz and lnaT can be obtained from the 

temperature-shifting relationship (Equation 6.2); 
 A, B, C, D, and n are the experimentally determined parameters.  
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where: lnaT = is a horizontal shift to correct the temperature effect with the same unit as ln freq, 
 T = is the temperature in °C,  
 Tref = is the reference temperature, in this case, Tref = 20°C 
 A and B are the experimentally determined parameters.  
 

The experimentally determined parameters of the modified Gamma function for each mix type are listed 

in Table 6.4, together with the parameters in the temperature-shifting relationship.  
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Table 6.4:  Summary of Master Curves and Time-Temperature Relationships 
Mix Conditioning Master Curve Time-Temperature 

Relationship 
Number A B C D A B 

Control #1 
Sasobit 
Advera 
Astec 

Rediset 
Control #2 

Dry 

3 
3 
3 
3 
3 
3 

65185.38 
41636.90 
40030.55 
38307.72 
76405.67 
90900.69 

16.68907 
11.67888 
13.01153 
10.79889 
18.79974 
18.14866 

-10.33457 
-10.41706 
-10.60661 
  -9.57990 
-10.93444 
-10.46183 

166.0683 
233.9687 
195.6566 
270.4176 
137.4891 
195.7631 

-12.8706 
-23.9813 
-24.2057 
-17.6635 
-38.4196 
-10.2721 

  42.2242 
  72.6576 
  62.2001 
  49.1620 
104.5640 
  26.6838 

Control #1 
Sasobit 
Advera 
Astec 

Rediset 
Control #2 

Wet 

3 
3 
3 
3 
3 
3 

26959.08 
27923.74 
42750.11 
21390.42 
22047.36 
42809.53 

10.66411 
  9.82421 
13.69030 
  7.97569 
  9.32112 
11.92817 

-8.921682 
-9.452820 
-9.358028 
-8.707633 
-8.973161 
-9.478977 

233.7634 
281.4075 
148.9378 
244.0572 
163.5170 
203.9396 

    -7.0014 
  -21.5381 
  -22.3126 
-245.7500 
      6.3879 
    52.9295 

   28.1143 
   67.9045 
   60.3803 
 812.8880 
  -20.6931 
-145.2040 

Notes: 

1. The reference temperature is 20°C. 
2. The wet test specimens were soaked at 60°C. 
3. Master curve Gamma-fitted equations: 
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4. Time-temperature relationship: 
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Figure 6.18 and Figure 6.19 show the shifted master curves with Gamma-fitted lines and the temperature-

shifting relationships, respectively, for the dry frequency sweep tests. The temperature-shifting 

relationships were obtained during the construction of the complex modulus master curve and can be used 

to correct the temperature effect on initial stiffness. Note that a positive temperature shift (lnaT) value 

needs to be applied when the temperature is lower than the reference temperature, while a negative 

temperature-shift value needs to be used when the temperature is higher than the reference temperature. 

 

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

-10 -8 -6 -4 -2 0 2 4 6 8 10
Ln(freq) (freq: Hz)

C
om

pl
ex

 M
od

ul
us

 (M
Pa

)

Control #1 Sasobit Advera
Astec Rediset Control #2

 

Figure 6.18:  Complex modulus (E*) master curves (dry) at 20°C reference temperature. 
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Figure 6.19:  Temperature-shifting relationship (dry) at 20°C reference temperature. 
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The following observations were made from the dry frequency sweep test results: 

• The complex modulus master curves appeared to be influenced primarily by specimen air-void 
content and binder content. 

• The temperature-shifting relationships indicate that there was very little difference in temperature 
sensitivity between the six mixes. Higher temperature-sensitivity implies that a per unit change of 
temperature will cause a larger change of stiffness (i.e., larger change of lnaT). 

 

Figure 6.20 and Figure 6.21 respectively show the shifted master curves with Gamma-fitted lines and the 

temperature-shifting relationships for the wet frequency sweep tests. The comparison of dry and wet 

complex modulus master curves is shown in Figure 6.22 and Figure 6.23 for each mix type. The following 

observations were made with regard to the wet frequency sweep test results: 

• The complex modulus master curves appeared to be influenced primarily by specimen air-void 
content and binder content and showed similar trends to the dry tests. 

• There was a small difference in temperature-sensitivity among the six mixes at lower temperatures 
(i.e., lower than 20°C). At higher temperatures (i.e., higher than 20°C), the Day #1 Control 
appeared to be less temperature sensitive than the other mixes. 

• Some loss of stiffness attributed to moisture damage was apparent in all six mixes, with air-void 
content having the biggest influence. 
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Figure 6.20:  Complex modulus (E*) master curves (wet) at 20°C reference temperature. 
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Figure 6.21:  Temperature-shifting relationship (wet) at 20°C reference temperature. 
 

6.2.3 Moisture Sensitivity:  Hamburg Wheel-Track Test 

Air-Void Content 

The air-void content of each core was determined using the CoreLok method. Results are summarized in 

Table 6.5. The air-void contents ranged between 11.1 and 14.0 percent and showed similar trends to those 

observed for the specimens used in the other tests. 

Table 6.5:  Summary of Air-Void Contents of Hamburg Test Specimens 
Day #1 Air-Void Content (%) 

Control #1 Sasobit Advera 
Mean1 SD2 Mean SD Mean SD 

13.7 1.7 11.2 1.0 11.5 0.6 
Day #2 Air-Void Content (%) 

Control #2 Astec Rediset 
13.5 0.7 14.0 0.4 11.1 0.7 

1  Mean of four replicates  2  SD:  Standard deviation 
 

Testing 

The testing sequence of the specimens was randomized to avoid any potential block effect. Rut depth was 

recorded at 11 equally spaced points along the wheelpath on each specimen. The average of the middle 

seven points was then used in the analysis. This method ensures that localized distresses are smoothed and 

variance in the data is minimized. It should be noted that some state departments of transportation only 

measure the point of maximum final rut depth, which usually results in a larger variance in the test results. 

Average maximum rut depths after 10,000 and 20,000 passes and the creep and stripping slopes are 

summarized in Table 6.6. There was no apparent stripping inflection point. 
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Figure 6.22:  Comparison of dry and wet complex modulus master curves (Day #1). 
(Includes percent reduction in stiffness at each frequency from dry to wet master curve.) 
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Figure 6.23:  Comparison of dry and wet complex modulus master curves (Day #2). 
(Includes percent reduction in stiffness at each frequency from dry to wet master curve.) 
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Table 6.6:  Summary of Results of Hamburg Wheel-Track Tests 

Test 
Set 

Rut Depth (mm) for Day #1 Mixes 
Control #1 Sasobit Advera 

Mean SD Mean SD Mean SD 
10,000 passes 

1 
2 

5.7 
6.4 

0.9 
0.6 

4.5 
4.4 

0.7 
0.5 

5.2 
5.3 

0.0 
0.3 

Overall 6.0 0.7 4.4 0.5 5.2 0.2 
 20,000 passes 

1 
2 

7.4 
7.9 

0.4 
0.9 

5.3 
5.7 

0.7 
0.4 

7.4 
6.5 

0.2 
0.4 

Overall 7.6 0.6 5.5 0.5 6.9 0.6 
 Creep Slope (mm/pass) 

1 
2 

-0.0003 
-0.0003 

 -0.0003 
-0.0003 

 -0.0003 
-0.0003 

 

Overall -0.0003  -0.0003  -0.0003  
 Stripping Slope (mm/pass) 

1 
2 

-0.0003 
-0.0003 

 -0.0003 
-0.0003 

 -0.0003 
-0.0003 

 

Overall -0.0003  -0.0003  -0.0003  

Test 
Set 

Rut Depth (mm) for Day #2 Mixes 
Control #2 Astec Rediset 

Mean SD Mean SD Mean SD 
10,000 passes 

1 
2 

6.5 
6.6 

0.7 
0.7 

6.6 
7.7 

0.1 
1.6 

2.2 
5.7 

0.3 
0.1 

Overall 6.6 0.6 7.1 1.1 4.0 2.0 
 20,000 passes 

1 
2 

8.6 
8.5 

1.4 
0.8 

9.1 
10.4 

0.8 
2.6 

3.7 
7.1 

0.7 
0.2 

Overall 8.5 0.9 9.7 1.8 5.4 2.0 
 Creep Slope (mm/pass) 

1 
2 

-0.0003 
-0.0003 

 -0.0003 
-0.0003 

 -0.0003 
-0.0003 

 

Overall -0.0003  -0.0003  -0.0003  
 Stripping Slope (mm/pass) 

1 
2 

-0.0003 
-0.0003 

 -0.0003 
-0.0003 

 -0.0003 
-0.0003 

 

Overall -0.0003  -0.0003  -0.0003  
1  Mean of four replicates  2  SD:  Standard deviation 

 

Figure 6.24 shows the average rut progression curves of all tests, and Figure 6.25 and Figure 6.26 show 

the average rut progression curves and average maximum rut for each mix, respectively. No clear 

stripping inflection points were noted in any tests (even when the tests were continued to 

50,000 repetitions [Figure 6.26]), indicating that no stripping occurred in any of the mixes. 

 

The mixes all show similar trends. The Sasobit and Rediset mixes had the smallest rut depths and 

performed better than the Control mixes. The Advera mix performed similarly to the Control mix. Rut 

depths on the Astec mix were marginally higher than those on the Control mixes. 
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Figure 6.24:  Hamburg Wheel-Track rut progression curves for all tests. 
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Figure 6.25:  Average Hamburg Wheel-Track rut progression curve for each mix. 
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Figure 6.26:  Average Hamburg Wheel-Track rut depth for each mix. 
(Average mix production temperature, binder content, and air-void content shown.) 

 

6.2.4 Moisture Sensitivity:  Tensile Strength Retained (TSR) 

Air-Void Content 

The air-void content of each core was determined using the CoreLok method. The air-void contents 

ranged between 6.7 and 11.1 percent and were consistent with those measured for the other tests 

(Table 6.7). It should be noted that laboratory TSR tests that are carried out as part of a mix design require 

a specimen air-void content of seven percent.  Most specimens had air-void contents above this value. 

Table 6.7:  Summary of Air-Void Contents of Tensile Strength Retained Test Specimens 
Condition Day #1 Air-Void Content (%) 

Control #1 Sasobit Advera 
Mean1 SD2 Mean SD Mean SD 

Dry test 
Wet test 

  9.7 
10.0 

0.9 
0.6 

7.8 
7.7 

0.6 
0.9 

11.0 
11.1 

0.4 
0.6 

Condition Day #2 Air-Void Content (%) 
Control #2 Astec Rediset 

Mean SD Mean SD Mean SD 
Dry test 
Wet test 

7.2 
6.9 

0.4 
0.5 

9.1 
8.4 

0.7 
0.5 

7.1 
6.7 

0.4 
0.4 

1  Mean of six replicates  2  SD:  Standard deviation 
 

Testing 

Results of Tensile Strength Retained (TSR) tests are listed in Table C.7 in Appendix C and summarized 

for each mix in Table 6.8. A plot of the average results is shown in Figure 6.27. The results indicate that: 

• On the Day #1 mixes, the Sasobit mix performed better than the Control and Advera in terms of 
both dry and wet strengths. 
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Table 6.8:  Summary of Tensile Strength Retained Test Results 
Parameter Indirect Tensile Strength (kPa) for Day #1 Mixes 

Control #1 Sasobit Advera 
Mean1 SD2 Mean SD Mean SD 

Dry 
Wet 

720 
522 

78 
65 

878 
696 

22 
33 

636 
429 

23 
26 

TSR 73 79 67 
Damage - Yes - Yes - Yes 
Parameter Indirect Tensile Strength (kPa) for Day #2 Mixes 

Control #2 Astec Rediset 
Mean SD Mean SD Mean SD 

Dry 
Wet 

689 
606 

52 
55 

802 
519 

60 
46 

766 
594 

35 
11 

TSR 88 65 78 
Damage - Yes - Yes - Yes 
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Figure 6.27:  Average tensile strength retained for each mix. 
 

• On the Day #2 mixes, the Astec and Rediset mixes had higher dry strengths than the Control, but in 
terms of wet strength, the Astec mix was lower than the Control and Rediset mixes, which had 
similar strengths. 

• The recorded TSR values varied considerably between the mixes and appeared to be influenced by 
air-void content. 

• The Astec and Advera mixes, both of which had high air-void contents, did not meet the minimum 
tentative criteria of 70 percent for low environmental risk or the minimum 75 percent for medium 
and high environmental risk regions in the Caltrans Testing and Treatment Matrix to ensure 
moisture resistance. The Day #1 Control did not meet the 75 percent requirement. The Day #2 
Control, Sasobit, and Rediset mixes exceeded both requirements. Treatment would typically be 
required for mixes that do not meet these minimum requirements at seven percent air-void content 
in order to reduce the risk of moisture damage in the pavement in these regions. 
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The results generally did not show similar trends to the Hamburg Wheel-Track test results; however, the 

warm-mixes had the same ranking in terms of performance (i.e., Rediset followed by Sasobit, Advera, and 

then Astec). 

 

Observation of the split faces of the cores revealed very little internal stripping (loss of adhesion between 

asphalt and aggregate evidenced by clean aggregate on the broken face) after moisture conditioning. 

 

6.3 Summary of Laboratory Testing Results 

The laboratory test results indicate that use of the warm-mix technologies assessed in this study, which 

were produced and compacted at lower temperatures, did not significantly influence the performance of 

the asphalt concrete when compared to control mixes produced and compacted at conventional hot-mix 

asphalt temperatures. Specific observations include: 

• Laboratory performance in all tests appeared to be mostly dependent on air-void content and binder 
content, as expected, and less dependent on mix production temperature. 

• The water-based warm-mix technology mixes (Advera and Astec) appeared to have lower moisture 
resistance compared to the other three mixes in all the moisture sensitivity tests. 

• Test results were influenced by mix production temperatures, actual binder content, specimen air-
void content, actual stress and strain levels, and actual test temperature. Variation in these 
parameters needs to be taken into consideration when comparing performance between the different 
mixes. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

This first-level report describes part of the third phase of a warm-mix asphalt study comparing the 

performance of two gap-graded rubberized asphalt control mixes, produced and constructed at 

conventional hot-mix asphalt temperatures (335°F [166°C]), with four warm-mixes produced at between 

35°F (17°C) and 50°F (26°C) lower than the controls. The technologies tested included an organic wax-

based additive (Sasobit®, produced at 300°F [149°C]), a chemical foaming agent (Advera WMA®, 

produced at 295°F [145°C), water injection (Astec Double Barrel Green®, produced at 295°F [145°C]), 

and a chemical surfactant (RedisetTM, produced at 285°F [140°F]). The test track layout and design, mix 

design and production, and test track construction are discussed, as well as results of Heavy Vehicle 

Simulator (HVS) and laboratory testing. 

 

Key findings from the study include the following: 

• A consistent subgrade was prepared and consistent base-course and underlying dense-graded hot-
mix asphalt concrete layers were constructed on the test track using materials sourced from a nearby 
quarry and asphalt plant. Thickness and compaction of the base and bottom layer of asphalt were 
consistent across the test track. 

• Asphalt plant modifications were required to accommodate the three powder/pellet based warm-mix 
technologies. The delivery systems were approved under the Caltrans Material Plant Quality 
Program. The water injection equipment was integral to the asphalt plant. 

• A number of problems related to blocked nozzles occurred during the production of the water-
injection–technology mix (Astec); these problems resulted in a seven-day delay in construction of 
the Astec and the Rediset mix sections so equipment could be replaced and additional binder 
sourced. This also resulted in the need to construct a second Control section.  Target mix production 
temperatures (335°F, 300°F, 295°F, 295°F, and 280°F [166°C, 149°C, 145°C, 145°C, and 140°C] 
for the Control, Sasobit, Advera, Astec, and Rediset mixes respectively), set by the warm-mix 
technology providers, were all achieved. There was some variation in binder content among the six 
mixes, with the Rediset mix having a significantly higher binder content compared to the other 
mixes and to the design. 

• Compaction temperatures varied between 279°F (137°C) and 259°F (126°C) for the Control and 
Rediset mixes, respectively, and were consistent with production temperatures. As expected, the 
mixes produced at lower temperatures lost heat during transport and placement at a slower rate than 
the mixes produced at the higher temperatures. Compaction was generally poor on all sections, 
especially on the Day #1 Control and Advera sections. 

• Smoke and odors were significantly more severe on the Control section compared to the warm-mix 
sections. 

• Workability of the mix, determined through observation of and interviews with the paving crew, 
was considerably better on the warm-mix sections compared to the Control. 
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• Average thicknesses of the top (rubberized) and bottom asphalt layers across the four sections were 
0.22 ft. (66 mm) and 0.24 ft. (74 mm), respectively. The average thickness of the combined two 
layers was 0.45 ft. (137 mm), 0.5 ft. (17 mm) thicker than the design thickness of 0.4 ft. (120 mm). 
General consistency of thickness across the track was considered satisfactory and representative of 
typical construction projects. 

• Nuclear gauge–determined density measurements were inconsistent with core-determined air-void 
contents. The core-determined air-void contents indicated that slightly higher density was achieved 
on the warm-mix sections compared to the Control sections (88 percent of the RICE specific 
gravity) compared to the warm-mix sections (92, 89, 91, and 92 percent for the Sasobit, Advera, 
Astec, and Rediset sections, respectively). Compaction across the test track appeared to be 
consistent and demonstrated that adequate compaction can be achieved on rubberized warm-mixes 
at lower temperatures. Based on observations from the test track construction and interviews with 
roller operators, optimal compaction temperatures will differ among the different warm-mix 
technologies. Roller operators will also need to consider that there might be differences in roller 
response between warm-mix and conventional hot-mixes, and that rolling operations and patterns 
may need to be adjusted to ensure that optimal compaction is always achieved. 

• HVS trafficking on four of the five sections indicated generally consistent performance among the 
mixes. Unexpected poor performance was measured on the Advera section (Section 626HA) and 
additional tests on this section as well as on the Control and Sasobit sections were undertaken to 
determine the cause and to eliminate possible seasonal and machine-related testing variables. The 
cause of this poor performance was attributed to a combination of high subgrade moisture content 
and thinner combined asphalt layers, identified during the forensic investigation. The duration of 
the tests to terminal rut (12.5 mm [0.5 in.]) on the five sections varied from 73,500 load repetitions 
(Section 629HB, Advera Test #2) to 365,000 load repetitions (Section 625HA, Sasobit Test #1). 

• The duration of the embedment phases on all sections except the Advera section were similar. Apart 
from the Advera section, the depth of the ruts at the end of the embedment phases differed only 
slightly among sections, with the Astec (7.5 mm [0.3 in.]) having a slightly deeper embedment than 
the Control, Sasobit, and Rediset sections, which had similar embedment (6.5 to 6.7 mm [0.26 in.]). 
This is opposite to the early rutting performance in the Phase 1 study and is being investigated in a 
separate study. 

• Rut rate (increase in rut depth per load repetition) after the embedment phase on the Control and 
Sasobit sections was almost identical. On the Astec and Rediset sections, the rut rate was slightly 
higher and was attributed to some moisture in the asphalt layer and in the subgrade in the Astec 
section (determined during the forensic investigation), and to the higher binder content on the 
Rediset section. Although lower production and paving temperatures typically result in less 
oxidation of the binder, which can influence early rutting performance, differences in production 
and placement temperatures did not appear to influence performance in this set of tests.  

• The laboratory test results indicate that use of the warm-mix technologies assessed in this study, 
which were produced and compacted at lower temperatures, did not significantly influence the 
performance of the asphalt concrete when compared to control specimens produced and compacted 
at conventional hot-mix asphalt temperatures. Specific observations include: 
+ Laboratory performance in all tests appeared to be mostly dependent on air-void content and 

binder content, as expected, and less dependent on mix production temperature. 
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+ The water-based warm-mix technology mixes (Advera and Astec) appeared to have lower 
moisture resistance compared to the other three mixes in all the moisture sensitivity tests. 

+ Test results were influenced by mix production temperatures, actual binder content, specimen 
air-void content, actual stress and strain levels, and actual test temperature. Variation in these 
parameters needs to be taken into consideration when comparing performance between the 
different mixes. 

 

The findings of the study are also summarized below in the form of answers to the questions identified in 

Section 1.3. 

 

7.1.1 Comparative Energy Usage 

Comparative energy usage could not be assessed in this study due to the very small quantities produced. 

These studies will need to be carried out during larger full-scale pilot studies on in-service pavements 

when large quantities of mix are produced (i.e., more than 5,000 tonnes). 

 

7.1.2 Achieving Compaction Density at Lower Temperatures 

Compaction measurements during construction indicated that average air-void contents on the warm-mix 

sections were marginally higher than on the Control sections, but were typical of full-scale construction 

projects. Based on these observations it is concluded that adequate compaction can be achieved on warm-

mixes at lower temperatures. Optimal compaction temperatures will differ among the different warm-mix 

technologies. Roller operators will need to consider that there might be differences in roller response 

between warm-mix and conventional hot mixes, and that rolling operations and patterns may need to be 

adjusted to ensure that optimal compaction is always achieved. Contractors will need to determine mix 

production temperatures based on required compaction temperatures, and take loss of temperature during 

silo storage and transportation into consideration. 

 

7.1.3 Optimal Temperature Ranges for Warm-Mixes 

Optimal compaction temperatures will differ between the different warm-mix technologies. This study has 

shown that temperatures of at least 35°C (60°F) lower than conventional temperatures are appropriate for 

producing and compacting the modified mixes. 

 

7.1.4 Cost Implications 

The cost benefits of using the warm-mix technologies could not be assessed in this study due to the very 

small quantities produced. 
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7.1.5 Rutting Performance 

Based on the results of HVS testing, it is concluded that the use of any of the three warm-mix asphalt 

technologies used in this experiment will not significantly influence the rutting performance of the mix, 

provided that standard specified construction limits for hot-mix asphalt are met. 

 

7.1.6 Moisture Sensitivity 

Laboratory moisture sensitivity testing indicated that the water-based technologies (Astec and Advera) 

showed lower moisture resistance compared to the other mixes, and did not meet Caltrans-specified 

performance requirements. This was attributed in part to the high air-void content of the tested specimens. 

No moisture sensitivity was noted during accelerated pavement testing. 

 

7.1.7 Fatigue Performance 

Laboratory fatigue testing indicated that the warm-mix technologies used in this study will not influence 

the fatigue performance of a mix. 

 

7.1.8 Other Effects 

Smoke and odors were significantly reduced during construction of the warm-mix sections compared to 

the Control. The workability of the warm-mixes in terms of raking and shoveling was also considerably 

better than the Control mix. 

 

7.2 Recommendations 

The HVS and laboratory testing completed in this phase have provided no results to suggest that warm-

mix technologies should not be used in gap-graded rubberized mixes in California, provided that standard 

specified construction and performance limits for hot-mix asphalt are met. Significant reductions in smoke 

and odors and improved workability of the warm-mixes also support wider use of these technologies. 

Consideration should be given to further study into the effects of warm-mix asphalt technologies, and 

production and placement of warm-mixes at lower temperatures, on binder oxidation/aging rates and the 

effects that these may have on performance over the life of the asphalt surfacing. Research in this study 

has shown differences in early rutting performance between conventional and rubber mixes, between 

mixes tested after different curing periods, and between pavements subjected to mostly shade and mostly 

sun, respectively. 
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APPENDIX A: TEST PIT PROFILES 

A.1 Dynamic Cone Penetrometer 
Dynamic cone penetrometer (DCP) profiles taken outside and within the wheelpath are shown in 

Figure A.1 through Figure A.7. Profiles were taken after removal of the asphalt concrete during 

excavation of the test pits. DCP profile details are as follows: 

• Figure A.1:  624HB:  Phase 3b Control (Test #1) 
• Figure A.2:  625HA:  Phase 3b Sasobit (Test #1) 
• Figure A.3:  626HA:  Phase 3b Advera (Test #1) 
• Figure A.4:  627HB:  Phase 3b Astec 
• Figure A.5:  628HB:  Phase 3b Rediset 
• Figure A.6:  629HB:  Phase 3b Advera (Test #2) 
• Figure A.7:  630HB:  Phase 3b Advera (Test #3) 

 

DCP tests were not undertaken on Section 631HB (Sasobit #2) and Section 632HA (Control #2). 

 

A.2 Layer Thickness and Rutting 
Test pit profiles for each test section are shown in Figure A.8 through Figure A.15. All test pits were 

excavated between Station 9 and Station 11. All profiles show the test pit face at Station 9. Test pit details 

are as follows: 

• Figure A.8:  624HB:  Phase 3b Control (Test #1) after 320,000 repetitions 
• Figure A.9:  625HA:  Phase 3b Sasobit (Test #1) after 365,000 repetitions 
• Figure A.10:  626HA:  Phase 3b Advera (Test #1) after 50,000 repetitions 
• Figure A.11:  627HB:  Phase 3b Astec after 242,000 repetitions 
• Figure A.12:  628HB:  Phase 3b Rediset after 309,000 repetitions 
• Figure A.13:  629HB:  Phase 3b Advera (Test #2) after 73,500 repetitions 
• Figure A.14:  630HB:  Phase 3b Advera (Test #3) after 5,000 repetitions 

 

Test pits were not excavated on Section 631HB (Sasobit #2) and Section 632HA (Control #2). 
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Figure A.1:  624HB:  Control DCP profile (untrafficked [left] and wheelpath [right]). 
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Figure A.2:  625HA:  Sasobit #1 DCP profile (untrafficked [left] and wheelpath [right]). 
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Figure A.3:  626HA:  Advera #1 DCP profile (untrafficked [left] and wheelpath [right]). 
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Figure A.4:  627HB:  Astec DCP profile (untrafficked [left] and wheelpath [right]). 
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Figure A.5:  628HB:  Rediset DCP profile (untrafficked [left] and wheelpath [right]). 
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Figure A.6:  629HB:  Advera #2 DCP profile (untrafficked [left] and wheelpath [right]). 
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Figure A.7:  630HB:  Advera #3 DCP profile (untrafficked [left] and wheelpath [right]). 
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Figure A.8:  624HB:  Control #1 test pit profile (after 320,000 load repetitions). 
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Figure A.9:  625HA:  Sasobit #1 test pit profile (after 365,000 load repetitions). 
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Figure A.10:  626HA:  Advera #1 test pit profile (after 50,000 load repetitions). 
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Figure A.11:  627HB:  Astec test pit profile (after 242,000 load repetitions). 
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Figure A.12:  628HB:  Rediset test pit profile (after 309,000 load repetitions). 
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Figure A.13:  629HB:  Advera #2 test pit profile (after 73,500 load repetitions). 
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Figure A.14:  630HB:  Advera #3 test pit profile (after 5,000 load repetitions). 
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APPENDIX B: BEAM FATIGUE SOAKING PROCEDURE 

B.1 Preparation of Specimens 
Prepare the specimens as follows: 

1. Measure and record the bulk specific gravity, width, and height of each beam. 

2. Dry each beam is dried at room temperature (around 30°C) in a forced draft oven or in a concrete 

conditioning room to constant mass (defined as the mass at which further drying does not alter the 

mass by more than 0.05 percent at two-hour drying intervals). Record the final dry mass. Note:  

Place beams on a rigid and flat surface during drying. 

3. Using epoxy resin, bond a nut to be used for supporting the LVDT to the beam. Record the mass 

of the beam with the nut. 

 

B.2 Conditioning of Specimens 
1. Place the beam in the vacuum container supported above the container bottom by a spacer. Fill the 

container with water so that the beam is totally submerged. Apply a vacuum of 635 mm (25 in.) of 

mercury for 30 minutes. Remove the vacuum and determine the saturated surface dry mass 

according to AASHTO T-166. Calculate the volume of absorbed water and determine the degree 

of saturation. If the saturation level is less than 70 percent, vacuum saturate the beam for a longer 

time and determine the saturated surface dry mass again. 

2. Place the vacuum-saturated beam in a water bath with the water temperature pre-set at 60°C. The 

beam should be supported on a rigid, flat (steel or wood) plate to prevent deformation of the beam 

during conditioning. The top surface of the beam should be about 25 mm below the water surface. 

3. After 24 hours, drain the water bath and refill it with cold tap water. Set the water bath 

temperature to 20°C. Wait for two hours for temperature equilibrium. 

4. Remove the beam from the water bath, and determine its saturated surface dry mass. 

5. Wrap the beam with Parafilm to ensure no water leakage.  

6. Check the bonded nut. If it becomes loose, remove it and rebond it with epoxy resin. 

7. Apply a layer of scotch tape to the areas where the beam contacts the clamps of the fatigue 

machine. This will prevent adhesion between the Parafilm and the clamps. 

8. Start the fatigue test of the conditioned beam within 24 hours. 

 

 

 

 

 
UCPRC-RR-2011-03 157 



 

 

 

 

 

 
158 UCPRC-RR-2011-03 



 

APPENDIX C: LABORATORY TEST RESULTS 

C.1 Shear Test Results 
Shear test results are summarized in Table C.1 through Table C.6. 

 

C.2 Beam Fatigue Test Results 
Beam fatigue test results are summarized in Table C.7. 

 

C.3 Tensile Strength Retained Test Results 
Tensile Strength Retained test results are summarized in Table C.8. 
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Table C.1:  Summary of Shear Test Results for Day #1 Control Mix 

Specimen 
Designation 

Air-Void 
Content 

 
(%) 

Test 
Temp. 

 
(°C) 

Test Shear 
Stress Level 

 
(kPa) 

Initial 
Resilient Shear 

Modulus 
(kPa) 

Percent 
Permanent 

Shear Strain at 
5,000 Cycles 

Cycles to 5% 
Permanent 

Shear Strain 

R1-31-ST-7045 
R1-32-ST-7045 
R1-36-ST-7045 

13.5 
13.0 
13.8 

44.91 
45.15 
44.76 

  75.68 
  73.85 
  71.76 

134.45 
160.36 
110.30 

0.027014 
0.025312 

  0.178203* 

  48,724* 
  50,859* 

  1,058 
R1-20-ST-10045 
R1-29-ST-10045 
R1-35-ST-10045 

12.1 
14.0 
14.5 

44.93 
44.74 
45.01 

101.32 
102.97 
  98.84 

155.11 
155.82 
118.47 

0.031164 
0.029631 

  0.087648* 

26,960 
20,932 
  1,864 

R1-12-ST-13045 
R1-22-ST-13045 
R1-28-ST-13045 

  9.8 
12.5 
13.6 

44.86 
44.91 
44.88 

135.92 
136.71 
132.97 

178.80 
148.64 
140.71 

0.028223 
0.031044 
0.038342 

  34,131* 
16,137 
  9,032 

R1-19-ST-7055 
R1-25-ST-7055 
R1-30-ST-7055 

11.4 
13.0 
13.2 

54.96 
55.07 
54.90 

  70.80 
  72.19 
  72.41 

  90.59 
  84.58 
  84.30 

0.033646 
0.047268 
0.040965 

  33,321* 
  5,623 
  7,636 

R1-21-ST-10055 
R1-26-ST-10055 
R1-33-ST-10055 

12.7 
11.1 
13.1 

54.93 
54.75 
55.07 

  97.46 
  98.23 
  98.11 

  78.66 
  73.35 
  78.59 

0.084152 
0.080088 
0.068328 

  1,284 
  1,365 
  1,968 

R1-16-ST-13055 
R1-17-ST-13055 
R1-23-ST-13055 

12.3 
12.2 
12.0 

55.42 
55.03 
55.42 

127.82 
125.77 
127.48 

  88.90 
  84.45 
  85.12 

  0.094993* 
  0.092445* 
0.082965 

  1,338 
  1,258 
  1,876 

*:  Extrapolated results 

 

 

Table C.2:  Summary of Shear Test Results for Sasobit Mix 

Specimen 
Designation 

Air-Void 
Content 

 
(%) 

Test 
Temp. 

 
(°C) 

Test Shear 
Stress Level 

 
(kPa) 

Initial 
Resilient Shear 

Modulus 
(kPa) 

Percent 
Permanent 

Shear Strain at 
5,000 Cycles 

Cycles to 5% 
Permanent 

Shear Strain 

R2-16-ST-7045 
R2-29-ST-7045 
R2-30-ST-7045 

8.3 
7.5 
8.8 

44.50 
44.48 
44.68 

  72.77 
  78.60 
  72.99 

195.26 
189.53 
194.07 

0.023079 
0.021908 
0.021346 

160,205* 
456,084* 
276,430* 

R2-14-ST-10045 
R2-21-ST-10045 
R2-28-ST-10045 

8.4 
8.5 
8.3 

44.34 
44.74 
44.52 

103.46 
103.20 
100.09 

125.79 
200.18 
210.53 

0.038150 
0.026781 
0.027088 

17,043 
60,334* 
121,710* 

R2-12-ST-13045 
R2-13-ST-13045 
R2-36-ST-13045 

7.4 
7.5 
8.6 

44.39 
44.30 
44.29 

139.44 
137.64 
137.46 

193.33 
209.39 
176.47 

0.052433 
0.028695 
0.037159 

4,128 
81,630* 
17,769 

R2-17-ST-7055 
R2-25-ST-7055 
R2-35-ST-7055 

8.2 
8.6 
8.9 

55.20 
54.89 
54.83 

  75.56 
  73.52 
  73.08 

107.74 
117.27 
101.62 

0.032001 
0.038319 
0.038975 

123,092* 
15,895 
27,682 

R2-20-ST-10055 
R2-23-ST-10055 
R2-32-ST-10055 

8.7 
8.9 
9.9 

55.32 
55.09 
54.93 

102.49 
100.68 
100.54 

102.54 
109.96 
110.74 

0.057227 
0.045258 
0.049428 

2,831 
7,436 
5,240 

R2-22-ST-13055 
R2-26-ST-13055 
R2-37-ST-13055 

8.8 
8.5 
8.4 

54.54 
55.01 
54.97 

133.58 
132.20 
132.71 

  87.41 
  99.76 
  95.85 

0.066995 
0.053350 
0.067065 

1,811 
3,856 
1,601 

*:  Extrapolated results 
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Table C.3:  Summary of Shear Test Results for Advera Mix 

Specimen 
Designation 

Air-Void 
Content 

 
(%) 

Test 
Temp. 

 
(°C) 

Test Shear 
Stress Level 

 
(kPa) 

Initial 
Resilient Shear 

Modulus 
(kPa) 

Percent 
Permanent 

Shear Strain at 
5,000 Cycles 

Cycles to 5% 
Permanent 

Shear Strain 

R3-31-ST-7045 
R3-32-ST-7045 
R3-36-ST-7045 

11.0 
10.8 
11.6 

45.05 
44.95 
45.11 

  75.36 
  74.27 
  75.56 

201.40 
164.61 
171.98 

0.032298 
0.039039 
0.034009 

25,614 
21,343 

  33,527* 
R3-20-ST-10045 
R3-29-ST-10045 
R3-35-ST-10045 

  9.8 
10.3 
10.9 

44.76 
44.55 
44.82 

  98.32 
  98.77 
102.45 

120.26 
185.63 
167.72 

0.068785 
0.040804 
0.027837 

 1,705 
 9,642 

  70,054* 
R3-13-ST-13045 
R3-22-ST-13045 
R3-28-ST-13045 

11.5 
  9.9 
11.0 

44.55 
44.53 
44.69 

131.26 
130.12 
131.78 

130.77 
153.97 
126.29 

0.061142 
0.060857 
0.060570 

 2,616 
 2,650 
 2,251 

R3-12-ST-7055 
R3-25-ST-7055 
R3-30-ST-7055 

10.4 
10.6 
11.1 

55.10 
55.21 
54.93 

  71.37 
  73.80 
  72.33 

  86.44 
  90.59 
112.56 

0.065630 
0.046866 
0.054301 

 1,998 
 6,732 
 3,212 

R3-17-ST-10055 
R3-21-ST-10055 
R3-27-ST-10055 

10.7 
  9.8 
10.8 

55.04 
55.05 
55.21 

  98.30 
  98.56 
100.64 

  81.26 
  87.78 
  98.19 

0.052208 
0.080845 
0.060136 

 4,442 
    912 
 2,415 

R3-18-ST-13055 
R3-23-ST-13055 
R3-26-ST-13055 

10.7 
10.0 
10.8 

54.96 
54.96 
54.95 

131.68 
131.60 
134.81 

  82.76 
  93.70 
107.20 

  0.133551* 
  0.118659* 
  0.095263* 

    302 
   523 
1,042 

*:  Extrapolated results 

 

 

Table C.4:  Summary of Shear Test Results for Astec Mix 

Specimen 
Designation 

Air-Void 
Content 

 
(%) 

Test 
Temp. 

 
(°C) 

Test Shear 
Stress Level 

 
(kPa) 

Initial 
Resilient Shear 

Modulus 
(kPa) 

Percent 
Permanent 

Shear Strain at 
5,000 Cycles 

Cycles to 5% 
Permanent 

Shear Strain 

R4-25-ST-7045 
R4-34-ST-7045 
R4-36-ST-7045 

10.2 
10.4 
11.1 

44.65 
44.88 
44.85 

  75.28 
  76.06 
  72.03 

207.04 
197.56 
147.22 

0.019115 
0.021865 
0.023562 

643,073* 
326,655* 
  93,997* 

R4-15-ST-10045 
R4-16-ST-10045 
R4-17-ST-10045 

  8.6 
  9.5 
10.5 

44.84 
44.63 
44.78 

101.20 
100.85 
100.39 

197.67 
193.50 
176.56 

0.025980 
0.025247 
0.026183 

134,218* 
106,765* 
  59,103* 

R4-13-ST-13045 
R4-33-ST-13045 
R4-35-ST-13045 

  9.6 
10.5 
11.4 

45.09 
45.45 
45.00 

133.19 
131.58 
133.02 

126.02 
192.22 
166.94 

0.060883 
0.027905 
0.040040 

  2,358 
  34,921* 

  8,783 
R4-14-ST-7055 
R4-26-ST-7055 
R4-27-ST-7055 

  9.9 
10.7 
11.0 

54.83 
55.44 
54.80 

  72.75 
  70.71 
  71.88 

102.57 
  95.60 
  99.31 

0.042144 
0.040546 
0.032384 

10,487 
10,996 

  31,239* 
R4-12-ST-10055 
R4-29-ST-10055 
R4-32-ST-10055 

  9.2 
10.5 
  9.9 

55.02 
54.86 
54.82 

100.11 
  98.76 
101.21 

  79.79 
112.51 
100.56 

0.057220 
0.037991 
0.055054 

  3,015 
17,560 
  3,294 

R4-22-ST-13055 
R4-28-ST-13055 
R4-30-ST-13055 

10.2 
  9.6 
10.0 

54.89 
54.88 
55.43 

130.44 
132.24 
129.85 

  97.09 
103.55 
104.55 

  0.092999* 
0.062089 
0.072688 

     809 
  2,663 
  1,504 

*:  Extrapolated results 
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Table C.5:  Summary of Shear Test Results for Rediset Mix 

Specimen 
Designation 

Air-Void 
Content 

 
(%) 

Test 
Temp. 

 
(°C) 

Test Shear 
Stress Level 

 
(kPa) 

Initial 
Resilient Shear 

Modulus 
(kPa) 

Percent 
Permanent 

Shear Strain at 
5,000 Cycles 

Cycles to 5% 
Permanent 

Shear Strain 

R5-20-ST-7045 
R5-27-ST-7045 
R5-30-ST-7045 

8.2 
8.6 
9.0 

44.76 
45.44 
45.48 

  71.93 
  75.16 
  77.44 

164.29 
195.39 
148.37 

0.025277 
0.023406 
0.025348 

559,897* 
212,741* 
193,639* 

R5-16-ST-10045 
R5-29-ST-10045 
R5-34-ST-10045 

7.7 
8.9 
9.1 

45.45 
44.60 
44.64 

101.95 
104.14 
106.35 

177.13 
177.65 
176.02 

0.028307 
0.023962 
0.027925 

  73,270* 
152,183* 
  84,933* 

R5-17-ST-13045 
R5-23-ST-13045 
R5-33-ST-13045 

8.2 
8.1 
8.9 

44.65 
45.42 
44.56 

133.31 
128.97 
136.54 

169.06 
165.14 
151.48 

0.032424 
0.033216 
0.036737 

 25,491 
  57,707* 
 16,738 

R5-25-ST-7055 
R5-31-ST-7055 
R5-35-ST-7055 

8.5 
9.5 
9.8 

55.21 
55.13 
55.06 

  72.40 
  74.06 
  71.90 

146.27 
  93.29 
  91.91 

0.027586 
0.037766 
0.035769 

  69,258* 
 19,522 

  30,837* 
R5-14-ST-10055 
R5-18-ST-10055 
R5-21-ST-10055 

7.9 
7.5 
8.0 

55.14 
55.22 
54.98 

100.93 
  99.55 
  99.65 

102.85 
117.46 
  97.14 

0.042148 
0.040252 
0.045899 

 12,308 
 16,443 
   7,561 

R5-13-ST-13055 
R5-19-ST-13055 
R5-32-ST-13055 

7.8 
7.4 
9.2 

55.16 
55.12 
54.90 

131.80 
132.53 
131.08 

104.87 
106.50 
  99.47 

0.048412 
0.052786 
0.066947 

   5,721 
   3,977 
   1,715 

*:  Extrapolated results 

 

 

Table C.6:  Summary of Shear Test Results for Day #2 Control Mix 

Specimen 
Designation 

Air-Void 
Content 

 
(%) 

Test 
Temp. 

 
(°C) 

Test Shear 
Stress Level 

 
(kPa) 

Initial 
Resilient Shear 

Modulus 
(kPa) 

Percent 
Permanent 

Shear Strain at 
5,000 Cycles 

Cycles to 5% 
Permanent 

Shear Strain 

R6-21-ST-7045 
R6-28-ST-7045 
R6-37-ST-7045 

  8.1 
  7.7 
11.7 

45.35 
45.31 
45.45 

  76.62 
  75.49 
  74.36 

205.73 
220.56 
217.22 

0.019402 
0.017354 
0.018232 

382,855* 
618,069* 
  75,685* 

R6-14-ST-10045 
R6-20-ST-10045 
R6-31-ST-10045 

  7.9 
  8.7 
  8.4 

45.39 
45.49 
45.39 

103.42 
103.84 
100.95 

216.21 
195.89 
185.23 

0.023595 
0.019845 
0.026529 

246,707* 
181,498* 
  73,364* 

R6-23-ST-13045 
R6-25-ST-13045 
R6-32-ST-13045 

  7.9 
  8.8 
  9.1 

45.40 
45.38 
45.45 

133.91 
138.24 
136.72 

184.48 
200.44 
166.88 

0.028475 
0.032840 
0.034835 

  38,118* 
20,255 
17,809 

R6-13-ST-7055 
R6-19-ST-7055 
R6-34-ST-7055 

  7.5 
  7.8 
10.7 

54.91 
55.13 
55.02 

  73.29 
  77.28 
  71.91 

120.96 
  88.21 
102.07 

0.031077 
0.028503 
0.040829 

  52,138* 
  30,474* 

11,006 
R6-15-ST-10055 
R6-33-ST-10055 
R6-36-ST-10055 

  6.6 
10.2 
12.7 

54.77 
54.86 
54.93 

103.90 
  99.62 
  98.92 

118.16 
102.84 
  84.20 

0.036335 
0.049357 
0.066558 

22,754 
  5,189 
  2,319 

R6-18-ST-13055 
R6-27-ST-13055 
R6-35-ST-13055 

  8.8 
  8.0 
11.5 

55.06 
54.56 
55.02 

133.18 
135.57 
134.23 

102.74 
101.26 
107.49 

0.062227 
0.068083 
0.076238 

  2,886 
  1,575 
  1,990 

*:  Extrapolated results 
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Table C.7:  Summary of Beam Fatigue Test Results 

Mix Cond. Specimen 

Air-Void 
Content1 

 
(%) 

Test 
Temp. 

 
(°C) 

Test 
Strain 
Level 

(µstrain) 

Initial 
Phase 
Angle 
(Deg.) 

Initial 
Stiffness 

 
(MPa) 

Fatigue Life 
 
 

(Nf) 

Control #1 

Dry 

R1-5-B1 
R1-6-B3 
R1-7-B2 
R1-4-B1 
R1-6-B1 
R1-7-B1 

12.29 
10.41 
12.75 
11.67 
11.35 
13.86 

20.91 
19.95 
20.12 
20.16 
20.74 
21.09 

0.000208 
0.000206 
0.000209 
0.000414 
0.000423 
0.000409 

24.11 
24.04 
22.07 
23.92 
27.96 
26.25 

2,831 
3,243 
2,791 
2,618 
2,405 
2,323 

8,110,882,139* 
   173,356,206* 
   285,818,397* 
     1,678,854 

       4,957,819* 
        630,417 

Wet 

R1-6-B2 
R1-7-B4 

R1-10-B2 
R1-4-B2 
R1-7-B3 
R1-8-B4 

11.48 
10.02 
11.55 
13.08 
12.00 
11.40 

20.40 
20.37 
19.99 
19.74 
20.21 
19.87 

0.000213 
0.000210 
0.000206 
0.000414 
0.000414 
0.000406 

26.14 
26.74 
25.29 
23.31 
26.21 
25.41 

2,219 
2,275 
2,691 
2,094 
2,122 
2,571 

  874,229,361* 
  593,232,143* 
  490,506,070* 

    1,967,977 
    3,505,168 
    2,298,217 

Sasobit 

Dry 

R2-2-B2 
R2-3-B3 
R2-4-B2 
R2-3-B1 
R2-4-B4 
R2-6-B2 

  9.04 
  9.35 
  9.21 
  8.61 
  9.12 
  9.12 

20.36 
19.98 
19.78 
19.71 
19.78 
19.73 

0.000211 
0.000201 
0.000207 
0.000410 
0.000410 
0.000408 

21.41 
20.85 
19.74 
20.07 
17.50 
18.08 

4,355 
4,278 
4,436 
3,959 
4,089 
3,790 

    84,594,738* 
  559,960,138* 
  249,202,486* 

    1,376,406 
    2,245,868 
    1,029,086 

Wet 

R2-3-B3 
R2-4-B1 
R2-6-B3 
R2-1-B2 
R2-5-B4 
R2-10-B1 

  8.42 
  9.01 
  8.88 
10.32 
  8.10 
  9.60 

20.46 
20.04 
20.15 
19.72 
19.72 
20.43 

0.000211 
0.000204 
0.000206 
0.000417 
0.000413 
0.000419 

23.60 
27.75 
21.77 
20.76 
21.82 
28.96 

3,697 
3,696 
3,422 
3,006 
2,629 
2,634 

  906,950,935* 
  189,025,577* 
  526,658,625* 

       476,567 
    2,540,975 
    2,402,629 

Advera 

Dry 

R3-1-B2 
R3-8-B2 

R3-10-B1 
R3-3-B3 
R3-5-B2 
R3-5-B3 

10.35 
10.96 
  9.90 
10.77 
10.06 
10.53 

20.33 
19.93 
20.14 
19.74 
19.96 
19.75 

0.000209 
0.000203 
0.000207 
0.000413 
0.000406 
0.000411 

23.01 
21.95 
21.73 
18.83 
22.45 
17.18 

3,718 
3,526 
3,755 
3,088 
3,569 
3,428 

  468,624,752* 
  142,256,890* 
  194,527,402* 

   1,660,123 
      878,898 
   1,407,957 

Wet 

R3-2-B1 
R3-2-B3 
R3-8-B1 
R3-3-B2 
R3-4-B3 
R3-6-B3 

10.65 
10.26 
10.78 
11.44 
10.57 
10.14 

19.90 
20.25 
20.47 
19.72 
20.02 
19.96 

0.000207 
0.000204 
0.000210 
0.000416 
0.000411 
0.000411 

24.96 
23.44 
25.07 
24.58 
26.76 
26.34 

2,768 
2,672 
2,708 
2,180 
2,452 
2,365 

 130,337,988* 
 130,472,271* 
 289,428,299* 

     750,056 
  1,103,501 
     802,595 

Astec 

Dry 

R4-2-B2 
R4-7-B2 
R4-8-B4 
R4-1-B4 
R4-4-B2 
R4-9-B1 

  9.37 
  8.53 
  7.34 
  9.20 
  7.69 
  7.28 

20.35 
20.15 
20.00 
19.91 
19.68 
19.95 

0.000209 
0.000206 
0.000203 
0.000409 
0.000408 
0.000408 

22.02 
21.73 
21.65 
21.75 
17.51 
16.18 

4,019 
4,057 
4,434 
3,125 
3,962 
4,223 

  247,111,697* 
  419,207,740* 
4,021,157,645* 

    1,425,860 
    1,001,722 
    1,515,270 

Wet 

R4-2-B4 
R4-4-B1 
R4-4-B3 
R4-2-B3 
R4-9-B3 
R4-10-B3 

  8.94 
  7.73 
  7.86 
  9.30 
  8.52 
  8.30 

20.52 
20.36 
19.90 
19.72 
19.69 
19.73 

0.000208 
0.000209 
0.000202 
0.000412 
0.000414 
0.000413 

24.98 
23.56 
22.63 
20.56 
18.21 
20.06 

3,092 
3,525 
3,636 
3,004 
3,358 
3,320 

    80,566,677* 
  272,620,714* 
  172,727,226* 

       354,704 
    1,550,170 
       998,652 

Rediset 

Dry 

R5-7-B2 
R5-7-B3 
R5-8-B1 
R5-4-B2 
R5-5-B2 
R5-6-B3 

  8.78 
  8.24 
  8.20 
  8.59 
  8.58 
  8.35 

20.18 
19.95 
20.34 
20.14 
20.46 
19.75 

0.000208 
0.000203 
0.000212 
0.000407 
0.000415 
0.000412 

23.87 
23.34 
24.70 
27.22 
26.27 
21.30 

3,158 
3,664 
3,374 
3,009 
3,044 
3,217 

3,046,527,044* 
   767,058,429* 
   850,588,788* 
     4,789,879 
     2,488,669 

       6,071,302* 

Wet 

R5-3-B1 
R5-3-B2 
R5-8-B3 
R5-1-B2 
R5-4-B1 
R5-6-B2 

  9.16 
  9.76 
  7.93 
11.15 
  8.93 
  8.51 

20.11 
19.79 
20.25 
19.88 
19.96 
20.40 

0.000207 
0.000208 
0.000205 
0.000409 
0.000410 
0.000417 

24.56 
22.15 
25.12 
27.20 
28.09 
27.27 

2,422 
2,275 
2,935 
2,306 
2,209 
2,664 

  346,251,170* 
  909,512,175* 
  621,041,766* 

       859,240 
    3,118,440 
     1,520,703 
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Table C.7:  Summary of Beam Fatigue Test Results (continued) 

Mix Cond. Specimen 

Air-Void 
Content1 

 
(%) 

Test 
Temp. 

 
(°C) 

Test 
Strain 
Level 

(µstrain) 

Initial 
Phase 
Angle 
(Deg.) 

Initial 
Stiffness 

 
(MPa) 

Fatigue Life 
 
 

(Nf) 

Control #2 

Dry 

R6-4-B2 
R6-5-B4 
R6-9-B2 
R6-6-B1 

R6-10-B1 
R6-10-B3 

  6.62 
  6.40 
  5.29 
  6.74 
  5.91 
  6.55 

20.03 
20.39 
20.13 
19.72 
19.74 
19.69 

0.000202 
0.000208 
0.000206 
0.000408 
0.000408 
0.000406 

22.42 
23.09 
21.89 
17.28 
17.50 
18.91 

4,016 
4,138 
3,695 
4,474 
4,373 
4,400 

   498,038,192* 
3,090,912,600* 
1,202,309,566* 
     3,747,132 

     11,432,335* 
       9,442,018* 

Wet 

R6-6-B2 
R6-6-B4 
R6-8-B4 
R6-2-B3 
R6-3-B3 
R6-4-B3 

6.84 
6.07 
6.62 
7.65 
6.87 
6.82 

19.91 
20.48 
20.52 
19.75 
20.16 
19.76 

0.000202 
0.000209 
0.000209 
0.000414 
0.000410 
0.000411 

25.90 
25.44 
24.76 
20.30 
25.29 
20.22 

3,670 
3,658 
3,477 
2,620 
2,948 
2,972 

   520,856,476* 
   283,832,508* 
1,028,364,717* 
     1,667,126 
     3,686,245 
    1,757,852 

*  Extrapolated results    1  Air-void content was measured with the CoreLok method. 
 

 
164 UCPRC-RR-2011-03 



 

Table C.8:  Summary of Tensile Strength Retained Test Results 

Mix Condition Specimen Air-Voids 
(%) 

Strength 
(kPa) 

Average 
(kPa) 

Std. 
Dev. 

TSR 
(%) 

Control #1 

Dry 

R1-56-T 
R1-53-T 
R1-55-T 
R1-57-T 
R1-54-T 
R1-63-T 

8.63 
9.17 
9.33 
9.61 
9.94 

11.22 

772.14 
712.77 
818.56 
746.21 
672.72 
598.57 

720.16 77.66 

72.5 

Wet 

R1-65-T 
R1-60-T 
R1-59-T 
R1-61-T 
R1-62-T 
R1-58-T 

11.29 
9.66 

10.00 
9.62 
9.63 
9.92 

403.21 
515.95 
585.87 
516.68 
568.20 
543.34 

522.21 64.57 

Sasobit 

Dry 

R2-62-T 
R2-55-T 
R2-64-T 
R2-61-T 
R2-66-T 
R2-54-T 

7.48 
7.98 
8.23 
6.77 
8.34 
8.14 

879.15 
845.01 
895.93 
906.34 
866.05 
872.57 

877.51 21.84 

79.4 

Wet 

R2-65-T 
R2-58-T 
R2-56-T 
R2-68-T 
R2-60-T 
R2-63-T 

6.89 
6.73 
7.68 
9.30 
7.72 
7.98 

702.16 
714.16 
708.69 
633.07 
725.54 
695.30 

696.49 32.74 

Advera 

Dry 

R3-61-T 
R3-67-T 
R3-53-T 
R3-58-T 
R3-56-T 
R3-60-T 

11.04 
10.10 
11.03 
11.43 
10.96 
11.14 

610.94 
648.82 
669.14 
648.66 
614.27 
622.57 

635.73 23.25 

67.4 

Wet 

R3-63-T 
R3-64-T 
R3-65-T 
R3-68-T 
R3-59-T 
R3-66-T 

11.55 
11.42 
11.24 
10.07 
11.61 
10.60 

422.64 
412.61 
450.89 
427.81 
393.21 
464.47 

428.61 25.80 

Astec 

Dry 

R4-62-T 
R4-67-T 
R4-68-T 
R4-54-T 
R4-66-T 
R4-63-T 

9.99 
8.96 
9.48 
8.88 
8.04 
9.13 

745.50 
804.19 
787.56 
910.47 
748.40 
815.90 

802.00 60.39 

64.7 

Wet 

R4-61-T 
R4-64-T 
R4-58-T 
R4-65-T 
R4-55-T 
R4-57-T 

9.44 
8.39 
8.27 
7.96 
8.37 
8.25 

464.50 
481.70 
504.00 
520.50 
551.50 
589.00 

518.53 45.92 

Rediset 

Dry 

R5-63-T 
R5-61-T 
R5-65-T 
R5-59-T 
R5-53-T 
R5-62-T 

6.51 
7.59 
7.50 
6.83 
7.49 
6.90 

790.05 
712.12 
785.56 
798.92 
776.80 
731.70 

765.86 35.33 

77.5 

Wet 

R5-64-T 
R5-56-T 
R5-58-T 
R5-66-T 
R5-57-T 
R5-60-T 

6.11 
6.48 
6.64 
7.19 
6.99 
6.80 

598.20 
601.40 
594.30 
607.00 
577.50 
584.70 

593.85 10.96 
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Table C.8:  Summary of Tensile Strength Retained Test Results (continued) 

Mix Condition Specimen Air-Voids 
(%) 

Strength 
(kPa) 

Average 
(kPa) 

Std. 
Dev. 

TSR 
(%) 

Control #2 

Dry 

R6-57-T 
R6-56-T 
R6-66-T 
R6-60-T 
R6-65-T 
R6-64-T 

6.75 
7.24 
7.31 
6.69 
7.57 
7.60 

704.50 
733.80 
697.25 
745.61 
631.20 
621.20 

688.93 51.88 

88.0 

Wet 

R6-59-T 
R6-62-T 
R6-61-T 
R6-8-T 

R6-67-T 
R6-63-T 

6.80 
6.98 
6.61 
6.69 
7.93 
6.51 

626.65 
644.21 
633.12 
635.37 
498.61 
598.15 

606.02 54.92 
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