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Legal Notice 
This report was prepared as a result of work sponsored by the California Energy Commission (Commission).  

It does not necessarily represent the views of the Commission, its employees, or the State of California.  The 

Commission, the State of California, its employees, contractors, and subcontractors make no warranty, express 

or implied, and assume no legal liability for the information in this report; nor does any party represent that 

the use of this information will not infringe upon privately owned rights.  This report has not been approved 

or disapproved by the Commission nor has the Commission passed upon the accuracy or adequacy of the 

information in this report. 

 

Inquires related to this final report should be directed to the Awardee (see contact information on cover page) 
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Abstract 
 

This project developed a lifecycle cost of ownership (LCO) model to support the deployment of plug‐in 

vehicles (PEV) in California.  The model is incorporated into a dynamic analytic tool that can be used to 

understand questions related to LCO. The model uses information from a variety of sources. Detailed drive 

cycle data was recorded from various routes in the Sacramento and San Francisco regions. The drive cycle data 

was input to a dynamic vehicle model, Advisor, which calculated fuel economy values (both electric Wh/mi 

and gasoline gallons/mi) for the various drive cycles. The fuel economy outputs were then input to the LCO 

model along with relevant parameters such as fuel prices, vehicle cost incentives, costs for insurance, parking, 

and maintenance. The fuel and electricity prices were stochastically varied to simulate expected future 

increases and uncertainties. The output of the model is not a fixed cost but rather a distribution of expected 

costs that can have significant variation. The model includes results for three vehicle types – vehicles similar to 

the Nissan Leaf, the GM Volt, and the Chevy Cruze. The Advisor model runs showed that increased accessory 

loads from heating or cooling can have a large effect on fuel economy and range for vehicles operating in 

electric mode. The LCO varied up to 15% based on the choice of drive cycle.  

 

Key Words:  electric vehicles, vehicle efficiency, lifecycle cost of ownership, vehicle simulations, drive cycles 
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Executive Summary  
 

Introduction  

 

While several groups have published LCO analyses, the analyses suffer from a variety of shortcomings such as 

not including risks and uncertainties, excluding time effects in key variables, assuming hypothetical vehicle 

configurations and general vehicle drive cycles rather than ones specific to regions, or excluding real world 

factors (road grades, traffic conditions, ambient conditions, etc.). Since LCO analyses are useful in comparing 

battery electric and plug-in hybrid vehicle ownership costs to those of conventional vehicles, a LCO model 

which eliminates these shortcomings can be especially useful to policy researchers, fleet owners, and other 

people interested in the comparisons on lifecycle ownership costs of PEVs. The overarching goal of this study 

was to offer stakeholders rigorous, context‐specific knowledge about factors that affect the purchase and cost 

of owning PEVs relative to other vehicle platforms. 

 

Project Objectives and Outcomes 

 

The project had six objectives. The objectives are listed below along with the corresponding results.  

 

1. Develop a list of variables identified in the literature to affect vehicle cost of ownership and develop a 

model that includes at least this set of variables.   

 

Discussions with stakeholders, such as automakers and fleet managers, as well as review of other LCO 

models allowed the researchers to settle on the input parameters chosen for the vehicle simulation and 

cost models. Critical parameters are location specific drive cycles, auxiliary loads for heating and 

cooling, battery SOC range, capital cost, incentives, taxes, insurance, parking, maintenance, 

depreciation, average trip length, annual mileage, fuel and electricity prices, and discount rate. The two 

models used in this project, a dynamic vehicle simulation and a cost of ownership tool, incorporate 

these variables. 

 

2. Collect five hours of GPS driving data for each of seven days in at least two metropolitan areas in the 

state of California. 

 

Location specific drive cycles with grade were recorded by driving in specified regions. Drive cycles 

were recorded for both urban and regional trips in both Sacramento and San Francisco. Specific trips 

include Sacramento urban, Sacramento-Davis round trip, Sacramento-Auburn round trip, Sacramento-

Truckee round trip, Davis urban, Davis-Napa round trip, San Francisco urban, San Francisco-Fairfield 

round trip, San Francisco-San Raphael round trip, and San Francisco-Palo Alto round trip.  

 

3. Complete a round of consultations with at least one representative of each of the a) car manufacturers 

with plug-in electric vehicle offerings in the market at the time of starting this project, b) transportation 

agency with jurisdiction in the metropolitan areas where we collect driving data. 

 

A key uncertainty in the analysis is the depreciation of PEVs. Since PEVs have been in the market for 

only a few years, getting useful depreciation values for specific vehicle types was not possible. The 

automaker researchers spoke with suggested that PEV depreciation would be roughly similar to that of 

conventional vehicles so the tool could use conventional vehicle data to estimate PEV depreciation. 
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Stakeholders agreed that location specific drive cycles and grades along with estimates of the auxiliary 

loads added to the usefulness of the LCO model. 

 

4. Perform one set of simulations for each of the driving cycles for which data is collected in task 2. For 

each set, simulations will be performed  for a) cold and hot ambient temperatures b) average speeds 

higher and lower than speeds recorded in task 2 to understand the effect of variation is driving speeds. 

Validate simulation results for vehicle electric range and energy consumption with DOE available test 

data (city and highway). 

 

Researchers used the dynamic vehicle simulation model, Advisor, to estimate range and energy use for 

various vehicles on the measured drive cycles. Appendices I and II show results for the range and 

energy use including results for higher auxiliary loads to handle hot and cold temperatures. 

Simulations for the drive cycles with higher and lower speeds indicate that the energy consumption 

very roughly tracks the average speeds. The researchers compared simulation results from the Advisor 

model with EPA test data for 3 vehicles – Chevy Cruze, Honda Civic, and Hybrid Civic. The most 

difficult parameters to model for vehicles are the engine (manufacturer engine fuel efficiency maps are 

generally not publically available) and the auxiliary loads. The simulation results, shown in Table 10, 

match EPA results reasonably well for the EPA FUDS and Highway tests. 

 

5. Continue runs of the stochastic model until the estimates of vehicle lifecycle cost of ownership 

converge to within 0.1% marginal change. 

 

Since the LCO model included stochastic fuel and electricity pricing, individual cost outputs varied. 

Each “run” of the model consists of a large number of individual iterations. These “runs” output a 

spread of ownership costs with a mean value. Depending on the number of iterations, the spread in 

means can vary significantly. Researchers verified that given enough iterations the marginal change 

remains within 0.1% marginal change. 

 

6. Format analytical tool in a way such that the tool provides estimates of vehicle lifecycle cost of 

ownership with the need of not more than 15 input values.  

 

Researchers have produced a cost of ownership tool to estimate vehicle lifecycle cost of ownership. The 

tool includes many variables, but the inputs required from the user are the following. 

 

 Vehicle type 

 Level of the use of heating and air conditioning 

 Drive cycle 

 Location where the vehicle is registered 

 Expected duration of ownership 

 Average and expected maximum trip length 

 Expected average annual mileage 

 Expected use of parking facilities and toll roads 

 

Conclusions  

 

The dynamic vehicle modeling demonstrated a large potential effect of heating and cooling accessory loads. 

Using a heater in cold weather or air conditioning in warn weather can increase the fuel use of a battery 
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electric vehicle by up to 100% in urban driving and up to 30% in highway driving. The range of the vehicle can 

be reduced by roughly 50% in urban driving and up to 30% in highway driving. This potential range reduction 

can have a large effect on its perceived utility. Plug-in hybrid vehicles also show significant variation in vehicle 

performance based on changes in speed, grade, and accessory loads. These variations have a significant effect 

on both vehicle energy use and range. The vehicle simulations showed clearly that to characterize the 

performance of a plug-in vehicle based on testing at a standard, fixed ambient temperature such as  70 degrees 

F and on a specific driving cycle such as the FUDS and/or the Federal Highway cycle will not yield an accurate 

description of the PEV performance in real-world driving.  

 

The variation in fuel economy and range for both battery electric vehicles and plug-in hybrids can have large 

effects on the LCO. The LCO for specific vehicles can vary up to 15% based on the choice of drive cycle. The 

stochastic treatment of fuel and electricity prices resulted in standard deviations in the LCO of 2-5%  

depending of the gasoline usage of the vehicle. If other parameters such as drive cycle, trip length, accessory 

loads were treated in a stochastic manner, the resulting variation in LCO would be much greater. 

 

Recommendations  

 

The LCO tool would benefit from additional work to refine and extend the modeling and formulations on 

which the tool is based in order to increase its functionality, scope, and benefits for potential users. Potential 

refinements and extensions are: 

 

1. Additional locations/drive cycles 

The present tool includes the Sacramento and San Francisco regions in California. The tool could be 

expanded to include other regions in California (e.g. Los Angeles and San Diego) as well as elsewhere 

in the US. 

 

2. Additional vehicles 

The present tool includes data for vehicles similar to the Nissan Leaf, GM Volt, and Chevy Cruze. 

There are many other PEVs that fleets or consumers will wish to compare to conventional vehicles. The 

Advisor model and the LCO tool could be modified to include data for these other vehicles. 

 

3. Inclusion of other stochastic parameters in the LCO Tool  

Fuel and electricity prices are represented in the tool using a stochastic model that recognizes 

uncertainties in future pricing thus leading to a spread of potential ownership costs.  Other parameters 

such as annual mileage, average trip length and route, ambient conditions and heating and cooling 

loads could also be represented in a stochastic manner. The addition of these parameters would result 

in a more realistic and larger spread of ownership costs. 

 

4. More realistic modeling of the effect of ambient temperature and HVAC operation on PEV energy 

consumption.  

While the tool incorporates the effect of heating and cooling loads, only two values of accessory loads 

were used (400 and 4000W). Additional work to model the heating and cooling of the vehicle could 

result in more accurate estimates of fuel use and vehicle range. These two parameters can significantly 

affect the overall ownership cost. 

  

5. More extensive calculations using the LCO Tool  
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With the improved auxiliary load model and the inclusion of additional stochastic variables, the LCO 

Tool can be run for a large number of vehicles, regions, and economic conditions to determine the effect 

of the various parameters on the economic attractiveness of different PEV designs to consumers having 

different needs. 

 

 

Public Benefits to California  

 

Present markets for PEVs are limited by their higher cost and lower perceived utility compared to 

conventional ICE vehicles.   As the sales of PEVs expand, more customers will need to evaluate the utility and 

economics of the increasing number of PEV options.  The LCO Tool, after further refinement, will allow 

potential PEV consumers (both fleet managers and individuals) to gain better information about the various 

PEV options in the market. This improved information will help to expand the PEV market in California and 

the other States.   Increased information can result in more PEV sales in California and less difficulty in 

meeting the ZEV Mandate for 2015 and beyond.   
 

Based on projected sales of EVs in California over the next 3 years, the researchers estimate that the 

information from this tool could add roughly 5000 additional EV sales in California for an accumulated cost of 

ownership savings of roughly $35 million. 
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Introduction 
 

Understanding the lifecycle cost of ownership (LCO) for advanced technology vehicles is critical to the 

eventual penetration of these technologies into fleets and consumer markets.  Several groups have developed 

methods and models to estimate vehicle LCO. Examples are given below. 

 

Automobile manufacturers have developed their own estimates of PEV LCO and purchase decision factors, 

though naturally these analyses are not public. A Nissan spokesperson, for example, said the lifecycle cost of 

ownership of the Leaf is $28,180. Their estimate includes the cost of the vehicle, the charging station, and the 

electricity over a period of five years [1}. 

 

The Rocky Mountain Institute [2] developed a relatively flexible online calculator that estimates the total 

vehicle cost of ownership. RMI’s calculator accounts for variations in the price of electricity across states and 

permits the comparison of the LCO of two vehicle models at a time. Their calculator is essentially cross 

sectional and does not account for uncertainties. It also assumes a fixed electricity mix (and, consequently, 

carbon emissions) and vehicle fuel economy is taken from EPA’s ratings [3]. 

 

Simpson [4] used dynamic vehicle simulation software to perform a cost‐benefit analysis of plug‐in hybrid 

electric vehicles. He analyzed a number of hypothetical degrees of vehicle hybridizaton for plug‐in platforms, 

looking at the interaction between retail price increases from higher hybridization and reductions in operation 

costs from petroleum fuel savings. He also attempts a simple estimation of lifecycle costs of ownership, 

including only retail price and fuel costs. 

 

Probably the most comprehensive analysis of the lifecycle costs of electric vehicles is that of Delucchi et al. [5]. 

Cuenca et al. [6] did a similarly thorough analysis. Technology, however, has evolved significantly since these 

studies were done. As an example, these studies assumed electric vehicles would be equipped mostly with 

lead‐acid and nickel metal hydride batteries, and that these batteries would have a life of four to six years. 

Electric vehicles presently being marketed are equipped with lithium ion batteries having a stated useful life of 

ten years or more. 

 

Conclusions about the economic competitiveness of plug‐in vehicles have differed widely in the various 

studies. For example, Deloitte [7] argues that the cost of batteries needs to be reduced by 40% for the LCO of an 

EV to be comparable to that of conventional vehicles. Lee and Lovellette [8] found that the cost of purchasing 

and operating a battery electric vehicle is $4,815 higher than that of a conventional vehicle. A recent ITS‐Davis 

study [9], which included comparisons of the initial costs and breakeven gasoline prices of PEVs and 

conventional vehicles, indicated the circumstances under which PHEVs have favorable economics. 

 

Most efforts to estimate the PEV LCO have some combinations of the following shortcomings: 

 Not being comprehensive; 

 Not including time effects in the key variables; 

 Relying heavily on hypotheses (about vehicle configuration, etc.); 

 Being out of date; 

 Not being adaptable to specific regional contexts; 

 Not accounting for real world factors (ambient conditions, road grades, typical traffic conditions, 

battery degradation, etc.); 

 Not accounting for risk and uncertainties; 

 Not accounting for integration of the PEV with the grid; 



 

 

12 

 

 Not incorporating stakeholders’ perspectives; 

 Not designed to be incorporated into program development. 

 

The present study has extended the work done to date in the following ways: 

 

 Focused on EV‐support program development: The focus centered on vehicles in the market for which 

sufficient information is available rather than hypothetical vehicles. The study incorporated new information 

on PEV technology such as updated battery models and data on vehicle accessory loads. 

 Accounted for risk and temporal effects: Most studies to date have relied on point estimates for all or 

some of the key variables that affect LCO, such as fuel prices, technology innovation, traffic conditions, and 

others. This analysis incorporates variation in input variables, specifically electricity and fuel costs, into the 

LCO estimates. 

 Focus on California markets: The study inputs variables that characterize key regions within the state. 

 Utilized advanced vehicle dynamics simulations: The analysis used validated dynamic vehicle 

models for the simulation of energy consumption of real (as opposed to hypothetical) vehicle configurations. 

In addition the models incorporate actual drive cycles measured from real world driving in the Sacramento 

and San Francisco regions. 

 Incorporated stakeholder input: The study team communicated with key stakeholders for guidance in 

general analysis direction and to incorporate policy and regulatory variables. 
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Project Objectives  
 

The overarching goal of the study is to offer stakeholders rigorous, context‐specific knowledge about the 

factors that affect the purchase and cost of owning a plug‐in vehicle, relative to other vehicle platforms. With 

this knowledge, stakeholders such as electric utilities, state agencies, local governments, and consumers can 

make decisions and implement programs to support the adoption of plugin vehicles consistent with extant 

policy and regulatory frameworks. By using real‐world data specific to key regions in the state of California, 

the study will enable stakeholders to develop programs tailored to their areas and that target vehicles 

currently in the market or near production. 

 

The objectives of the project are: 

 

1. Develop a list of variables identified in the literature to affect vehicle cost of ownership and develop a 

model that includes at least this set of variables.     

 

The intent of the project was to improve LCO models to give fleet owners and other users a 

better assessment of vehicle lifecycle costs.  Including correct variables that affect the cost 

increases the effectiveness of the model. 

 

2. Collect five hours of GPS driving data for each of seven days in at least two metropolitan areas in the 

state of California. 

 

Improving LCO models require acquiring drive cycle data for the vehicle efficiencies in order to 

properly input energy efficiencies into the tool.   

 

3. Complete a round of consultations with at least one representative of each of the a) car manufacturers 

with plug-in electric vehicle offerings in the market at the time of starting this project, b) transportation 

agency with jurisdiction in the metropolitan areas where we collect driving data. 

 

Discussions with automakers and other stakeholders helped determine aspects of the analysis 

such as likely market locations in California, PEV resale value, battery performance and 

lifetime.  

 

4. Perform one set of simulations for each of the driving cycles for which data is collected in task 2. For 

each set, simulations will be performed  for a) cold and hot ambient temperatures b) average speeds 

higher and lower than speeds recorded in task 2 to understand the effect of variation is driving speeds. 

Validate simulation results for vehicle electric range and energy consumption with DOE available test 

data (city and highway). 

 

Vehicle simulations provide vehicle fuel economies and range which are important parameters 

for the LCO model. Comparing the model outputs with test data ensures that the model 

matches vehicle performance.   

 

5. Continue runs of the stochastic model until the estimates of vehicle lifecycle cost of ownership 

converge to within 0.1% marginal change. 
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The LCO model does not output a fixed lifecycle ownership cost. The model includes stochastic 

representations of the fuel prices so individual runs of the model will output different means 

and standard deviations of the cost. Determining that the model is repeatable is important in 

verifying the model usefulness. 

 

6. Format analytical tool in a way such that the tool provides estimates of vehicle lifecycle cost of 

ownership with the need of not more than 15 input values.  

 

The tool must be simple enough to use such that fleet managers and individual consumers can 

utilize the tool without too much difficulty. 
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Project Approach 
 

Task 1: Design Analysis 

 

Model/Tool design analysis 

In order to properly estimate the LCO for vehicles, it is necessary to identify a critical set of input variables for 

the model. The researchers reviewed the literature on LCO studies to help determine the necessary input 

variables1,2,4,5,6,7,8,9. These variables included direct cost parameters such as vehicle sales price, incentives, fuel 

price, and taxes. In addition there is a set of parameters that impact the vehicle fuel energy consumption 

(electricity and gasoline) and related costs.  These include the vehicle energy use Wh/mi , miles traveled and 

the price of energy.  

 

While many factors influence energy use, the critical factors included in the present study were the drive cycle, 

weather conditions, road grade, and battery state-of-charge (SOC). The project addressed these factors, but in 

some cases significant further work could enhance the results. A discussion of further work is given in the 

Recommendations section. 

 

Task 2: Collect Data 

 

Most of the data needed for the model/tool was available from the literature and/or contacts with stakeholders.  

The primary new data generated as part of this project consisted of determining driving cycles appropriate for 

various trips in the Sacramento and San Francisco regions.  This was done using a GPS to collect 3-dimensional 

position versus time data along real world driving routes and conditions. In general, routes consisted of round 

trips between the city and various suburbs or between two inter-city locations. The specific drive cycles for the 

two regions are shown below: 

 

Sacramento - Davis urban cycle, Davis-Napa regional cycle, Davis-Sacramento interurban cycle, Sacramento 

urban cycle, Sacramento-Auburn interurban cycle, Sacramento-Truckee regional cycle 

 

San Francisco - San Francisco urban, San Francisco-Fairfield interurban cycle, San Francisco-Palo Alto 

interurban cycle, and San Francisco-San Raphael interurban cycle. 

 

The recorded road data were processed to create drive cycle input files to be used in the dynamic vehicle 

simulations. These input files included the vehicle speed versus time along with the road grade vs. distance for 

every second during the driving. Since the individual data points had uncertainties that would result in 

driving cycles that had sudden transitions from second to second, the data were smoothed to eliminate 

unreasonable vehicle speed changes (accelerations).    

 

Task 3: Communicate with Stakeholders 

 

The research team discussed electric and plug-in hybrid vehicles in conference calls with representatives from 

several automotive companies. The intent was to better understand features of the vehicles that affect the 

lifecycle cost. In addition researchers spoke with representatives of public agencies in order to understand how 

regulators viewed the potential use of the tool. 

 

Task 4: Perform vehicle dynamics simulation 
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The researchers performed simulations of plug-in electric vehicles (PEVs) similar to vehicles currently on the 

market to determine their energy consumption and range for appropriate driving cycles, ambient conditions, 

accessory loads, road grades, and traffic conditions.  These results are needed as inputs to the economic 

ownership analyzes (LCO) discussed in later sections of the report. The approach taken was to obtain realistic 

estimates of vehicle energy consumption and range that reflect the conditions specific to particular regions of 

California.  This permitted the analysis of the ownership costs for those regions. Earlier analyses [10-17] have 

used standard EPA driving cycles used for the fuel economy ratings of conventional ICE cars and EPA ratings 

for electric vehicles.    

 

As part of this project, the simulations were improved by including the effects of real-world cycles (speed and 

grade), vehicle accessories (heating and air-conditioning) and ambient temperature (air density and tire 

pressure).  Special attention was given to the effects of the various factors on the energy consumption (Wh/mi) 

and range of the PEVs. Initial experience with both the Volt and Leaf demonstrate that consumers have 

concerns about the variability of vehicle range with use patterns and driving conditions. Quoting a universal 

range value (e.g. 100 miles) for a PEV is a poor indicator of real-world performance and results in significant 

consumer dissatisfaction. To enable the development of effective PEV support programs/tools, our simulations 

focus on estimates of real-world vehicle range and energy consumption.  

 

A number of driving cycles have been used for the evaluation of PEVs.  In the United States, the driving cycles 

used most often for testing and simulations are the Federal Urban (FUDS) and Federal Highway cycles.  These 

cycles specify vehicle speed as a function of time (V vs t) - all at level grade.  In the real world, elevation 

changes (grade) are always present and should be included in prescribing the driving conditions.  This has 

been done in the present study.  Both the appropriate driving cycle and grade are specific to a particular region 

and trip.  In the present study, trip data were obtained for the Sacramento and San Francisco regions.  The 

specific trips for the two regions are shown in Table 1. As noted previously, this was done by driving a 

conventional ICE car between specific locations with a GPS unit connected to a laptop computer to record the 

appropriate data, which was processed to determine the driving cycle in the form required by Advisor.  The 

speed and elevation vs. time from the GPS data logger were smoothed with an 8-second moving average. The 

distance was calculated from the smoothed speed and time. The road grade was calculated from the filtered 

elevation and the calculated distance.  Typical speed and elevation data for a trip between Auburn and 

Sacramento are shown in Figure 1.  A summary of the trip driving cycle data is given in Appendix I.  Grade is 

input into Advisor as grade vs. distance. Most of the trip driving occurred on highways except for the indicated 

urban areas in Davis and San Francisco. 

 

Table 1. List of drive cycle trips in the Sacramento and San Francisco regions. 

Region Trip 

Sacramento Davis urban 

 Davis – Sacramento 

 Davis-Napa 

 Sacramento urban 

 Sacramento - Auburn 

 Sacramento - Truckee 

San Francisco San Francisco urban 

 San Francisco – San Raphael 

 San Francisco – Palo Alto 

 San Francisco – Fairfield 
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Figure 1: Speed and elevation profile of the Auburn – Sacramento Trip 

 

Getting information concerning ambient conditions and utilizing it to vary the vehicle accessory loads in the 

various seasons is not as straight forward as obtaining driving cycle information, because the operation of the 

climate control system in the vehicle varies with time as the demand on the system changes.   This can result in 

large changes in the accessory load for nearly constant ambient conditions.  The simplest approach is to 

determine an average value for the accessory load for a specified ambient condition.  Analyzes of the load for 

air-conditioning and heating for electric and hybrid vehicles are given in [18-20].  Based on those analyses, 

researchers altered the accessory loads input to Advisor as follows: the baseline accessory load was 400W and 

the heating and cooling load was 4000W.  This is consistent with the NREL study discussed in [5]. 

  

The road load for the vehicles consists of the aerodynamic drag and the tire rolling resistance. The ambient 

temperature affects the air density (proportional to 1/ T) and the tire pressure (proportional to T).   Since the 

aerodynamic drag increases with higher density and the rolling resistance increases as the tire pressure 

decreases [21, 22], both the aerodynamic drag and tire rolling resistance are higher at low ambient 

temperatures (cold weather) than at the baseline temperature of 25 degrees C used for most vehicle testing.  In 

addition, the powertrain friction is higher at low temperatures which increases the effective rolling resistance 

of the vehicle.  This combination of effects will significantly increase the effective road load at low ambient 

temperatures and thus reduce the vehicle range.  These effects have been included in the Advisor simulations 

by increasing the input air density and rolling resistance values in the low temperature runs.  The air density 

was increased up to 9% and the rolling resistance up to 10% in the simulations compared to the values at 25 

degrees C.   

 

The vehicle simulation program used in this study was the UC Davis version of ADVISOR developed initially 

at the National Renewable Energy Laboratory (NREL).  Researchers at UC Davis have modified the NREL 

version to accommodate the various hybrid driveline arrangements and control strategies being marketed by 

the various auto companies [23, 24].  In addition, UC Davis has added files to describe lithium batteries using 

various chemistries based on testing of cells/modules of those batteries in the Battery Laboratory at UC Davis.  

The UC Davis simulation program (UCD-ADVISOR) has been validated using fuel economy data published 
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by the U.S. Department of Energy (DOE) in their Fuel Economy Guide [23, 24]. Some of the recent UC Davis 

work includes simulations of the GM Volt plug-in hybrid vehicle and the Nissan Leaf and Honda EV Fit 

electric vehicles.  Comparisons of the simulation results with published characteristics of those plug-in vehicles 

also show good agreement. 

    

The power requirements for the heating and air-conditioning systems in electric plug-in vehicles are discussed 

in [20, 21].  The reports concluded that the power required for these accessories is 4-6 kW.  In the present 

study, the normal (baseline) accessory load was taken to be 400W and the HVAC (heating and air-

conditioning) load was set at 4 kW.  The effect of ambient temperature was investigated by including its effect 

on ambient air density (increased drag) and the rolling resistance of the tires (decreased tire pressure).   

 

The researchers ran simulations for a Leaf-like electric vehicle for a number of driving cycles and ambient 

temperatures.  The vehicle characteristics are given in Table 2.  The baseline driving cycles are the Federal 

Urban and highway cycles.  These are the cycles for which the energy consumption (Wh/mi) and range are 

given in the literature based on testing done at EPA.  Simulations have also been run for driving cycles 

pertinent to the Sacramento and San Francisco areas.  As discussed previously, these cycles (speed and 

elevation) were determined by actually driving between selected destinations and logging speed and position 

with a GPS.  These cycles are used to illustrate the effect of a real-world driving cycle on energy consumption 

and range.  

 

Table 2:  Characteristics of a Leaf-like EV 

Vehicle parameter  

Test weight (kg) 1666 

Drag coefficient  CD .285 

Frontal area (m2) 2.25 

Rolling resistance (kg/kg) .008 

Wheel radius (m) .35 

Overall gear ratio 7.0 

Electric motor (kW) 81 

Lithium battery (360V, 75Ah)   26 kwh (complete 

disch.) 

 

Simulations were also run for a Volt-like plug-in hybrid vehicle.  The Volt was simulated as a series hybrid.  

The vehicle characteristics used in the simulations are shown in Table 3.  Runs were made for both the 

Sacramento and San Francisco areas using the appropriate driving cycles. 

 

Table 3:  Characteristics of the Volt-like PHEV     

 

Vehicle parameter 

 

Test weight (kg) 1855 

Drag coefficient  CD .285 

Frontal area (m2) 2.44 

Rolling resistance (kg/kg) .007 

Wheel radius (m) .406 

Overall gear ratio 6 

Electric motor (kW) 110 

Lithium battery (310V, 50Ah)   10 kWh used 
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Engine power (kW) 64 

 

The results of the simulations are discussed in Section 4 and tables of the detailed simulation results are given 

in Appendix II. 

 

Task 5: Perform stochastic analysis 

 

For the economic valuation of vehicle platforms, the researchers used a model developed by Logios, 2012 that 

advances the state of the art and current practice. Indeed, the approach to modeling of the lifecycle costs of 

ownership (LCO) of the different vehicle platforms is one of the key advances of this project over previous 

studies of vehicle cost of ownership. The researchers take an asset valuation approach that accounts for 

uncertainties and risk. The researchers move beyond the typical approach to assume fixed values for given 

cost variables and recognize that the value of some of these variables will change over time and may be 

relatively uncertain.  

 

Further, by using data specific to regions of interest, the researchers recognize that the value of cost variables, 

and ultimately the relative cost of owning a given vehicle, will be affected by local conditions. The researchers 

find that the impact of such local conditions on cost of ownership can be significant. Local variables include 

local temperatures (and the use of heating and air conditioning), topography, driving conditions, electricity 

prices, etc.  

 

As a consequence of using stochastic variables, the output of the model will be also stochastic. In other words, 

results are presented in terms of probability distributions, with mean values, spreads, etc. This is important to 

appropriately assess the economics of investments.  With this more granular and context-specific information, 

stakeholders such as electric utilities, state agencies, and local governments can implement programs to 

support the adoption of plug-in vehicles consistent with extant policy and regulatory frameworks.  

 

As discussed in the Introduction, the researchers conducted a thorough review of the literature and the state of 

the art and identified areas where our contribution may be most useful. All previous studies, except for Henry 

and Lovellette (2011)  carried out deterministic analyses, meaning that they assigned all variables a point 

(fixed) value. Stochastic analyses instead recognize that some of the factors affecting LCO are bound to 

variation and uncertainty. One aspect where this tool improves over Lee and Lovellette (2011) is in the 

substantiation of the selection of particular probability distributions by looking at data and/or by consultation 

with relevant stakeholders. The researchers will also improve over the cited reference by incorporating 

temporal effects. For example, the price of gasoline, electricity rates, generation mix, and other variables are 

expected to vary over the time span of vehicle ownership. 

 

As a modeling technique, the researchers use a Monte Carlo simulation. Ideally, one would carefully specify 

the probability distributions for the random variables. For the time being, the researchers use Gaussian 

distributions because of the capability offered by Excel, which is the software platform of our tool. Future 

iterations of our model will be based on more flexible platforms that allow for more case-specific probability 

distributions. The variables that are used in Logios’ model to estimate the lifecycle cost of ownership include: 

 

Outputs from UCD-Advisor: 

 Vehicle average fuel efficiency (Wh/mi and mpg) 

 Vehicle range (mi)  
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User input: 

 Vehicle type 

 Level of the use of heating and air conditioning 

 Drive cycle 

 Location where the vehicle is registered 

 Expected duration of ownership 

 Average and expected maximum trip length 

 Expected average annual mileage 

 Expected use of parking facilities and toll roads 

 

Fixed variables: 

 Vehicle MSRP 

 Vehicle battery size (kWh) 

 Charging station efficiency 

 Onboard charger efficiency 

 Initial price of electricity and gasoline 

 Fuel price volatility 

 Discount rate (6% for this project) 

 Fiscal incentives, state and federal 

 Owner tax credit appetite 

 Sales taxes 

 Local taxes and fees 

 Carbon price 

 Vehicle resale value at the end of ownership 

 Local prices for parking and toll roads 

 Other costs: insurance, vehicle destination & handling, maintenance 

 

After identifying the factors that affect the vehicle lifecycle cost of ownership and obtained data on these 

factors for the regions of interest in the state of California, the researchers proceeded to perform a stochastic 

analysis using those data. The researchers use a Monte Carlo simulation approach. One aspect in which the 

researchers improved over Lee and Lovellette (2011) is in incorporating temporal effects. For example, the 

prices of gasoline and electricity rates are expected to vary over the time span of vehicle ownership. Some 

other variables are expected to vary with uncertainty over time, but the researchers did not have reliable 

information to assign to them probability distributions (e.g. the effect of battery degradation on PEV efficiency 

and range). For this study, the only variables that are modeled as stochastic are the prices of gasoline and 

electricity.  

 

The output of LCO tool is the lifecycle cost of ownership of a variety of vehicles, expressed as probability 

distributions of net present value, as a function of the variables that affect this cost. Forecasting the price of oil 

and gasoline is extremely challenging. Many factors affect the international price of oil, including reservoirs, 

costs, demand, recovery technology, storage, the behavior of markets, and the level of geopolitical stability in 

supply regions. Since most of these factors are stochastic, the instantaneous price, the equilibrium level, the 

trend, the variance (or volatility), and the jumps are all essentially stochastic. On the grounds of economic 

fundamentals, researchers have considered modeling oil prices as an Ornstein-Uhlenbeck mean-reverting 

process. However, it has been shown oil prices are a non-stationary process and that if mean reversion exists, it 

takes place in a time scale of a century or more and that for problems of practical relevance the equilibrium 
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price can be modeled as a geometric Brownian Motion. The researchers choose to model the price of oil and 

gasoline in this manner. 

 

Task 6: Modify analytic tool 

 

While some of the methods used in our estimation of vehicle LCO are not simple, the researchers focused on 

preparing a tool that would be user friendly, yet personalized. For the purposes of this project, the researchers 

used MS Excel, which though simpler is more familiar to most users. Once initial experience is gained with the 

Excel tool, it can be upgraded to more advanced platforms.   
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Project Outcomes 
 

1. Develop a list of variables identified in the literature to affect vehicle cost of ownership and develop a model that 

includes at least this set of variables. 
 

The input parameters used for this project are shown below along with a description. 

 

Model/Tool Input Parameters: 

Vehicle capital cost – The MSRP for a particular model. 

Vehicle Incentives – State and federal incentives available at the time of purchase specific to the vehicle type and 

location. 

Vehicle taxes – Taxes on the purchase price. 

Vehicle insurance, parking, and maintenance – Yearly insurance, parking, and expected maintenance for specific 

vehicle types operating in specific locations. 

Discount rate – The discount rate used to calculate present value. 

Vehicle depreciation – The percentage of the MSRP that the used vehicle is worth after a set number of years. 

Drive cycle and road grade  – The speed versus time and grade for real world driving in specific regions.  

Auxiliary power – Vehicles need electrical power for various auxiliary systems on board such as power steering, 

vehicle computer, and lights. The most significant variation in auxiliary power comes from the use of air 

conditioning and vehicle heating. 

Battery SOC range – The battery SOC range (maximum and minimum) affects the vehicle electric range, battery 

cycle life, and vehicle and charging efficiencies.  

 

Past LCO studies have assumed fixed values for all the input variables. The present study includes the effects 

of uncertainties and temporal changes in some of the variables; in particular, the costs of energy (both gasoline 

and electricity) were used as stochastic variables assuming normal distributions that are time (year) 

dependent.  Other variables such as annual mileage and average trip length could also be treated as stochastic 

variables in future studies within the framework of the LCO tool developed.  In general, the list  of input and 

output variables for the LCO tool are thought to be both useful and adequate for determining the life cycle 

costs of electric vehicles of various classes.  

 

This objective was met. 
 

2. Collect five hours of GPS driving data for each of seven days in at least two metropolitan areas in the state of 

California. 
 

Researchers collected drive cycle data for 10 specific routes in the Sacramento and San Francisco regions. These 

routes consisted of either urban driving or regional driving from a city to a surrounding suburb or other city. 

In general the region driving cycles consisted of round trip data. Details of the driving cycles are given in 

Appendix I. 

 

The GPS data used to determine driving cycles for the various regions in California were taken using a 

conventional ICE vehicle during March-August 2013.  Driving was done on arterial streets and highways such 

as I-80.  All trips were taken in both directions to and from selected locations (see Table 1).  Particular attention 

was given to changes in elevation (grade) for each of the trips.  Repeated trips reflecting different traffic 

conditions were not made, but the trips in the different regions and between different locations in the regions 

did reflect different traffic conditions in those regions.  The ambient conditions of the GPS trips were those 

found in Spring and Summer in Northern California.  As shown in Appendix I, there is a significant variation 
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in drive cycle characteristics (distance, average and peak speed, grade). Other locations in California or 

elsewhere in the US may show somewhat different characteristics that could translate into differing vehicle 

ownership costs.  

 

This objective was met. 
 

3. Complete a round of consultations with at least one representative of each of the a) car manufacturers with plug-in 

electric vehicle offerings in the market at the time of starting this project, b) transportation agency with jurisdiction in the 

metropolitan areas where we collect driving data. 

 

The discussions with automakers focused on the battery life and battery second life, vehicle depreciation, and 

California markets. The relevant conclusions are given below. 

 

Battery life and second life – Battery warranties are expected to be in the 8-10 year range or possibly up to 

150,000 miles. The second use market is rather uncertain. Presently there are no specified markets, and there 

are reasons to be skeptical of significant savings due the present period of rapid changes in battery technology 

and cost.  

 

Vehicle depreciation – After conversations with several automakers the research team concluded that the 

vehicle depreciation for PEVs would be similar to that of conventional vehicles. 

 

Markets – The main California markets are Southern California, San Francisco region, and the Sacramento 

regions. 

 

The discussion with public stakeholders focused on the potential for disseminating the tool for use with fleets 

and consumers. The researchers determined that the stochastic nature of the tool likely will require more 

education for stakeholders not familiar with modeling. In particular, researchers might have to explain the 

causes and significance of the outputs for LCO results (means and standard deviations). 

 

Although the researchers did meet with the majority of OEMs, they were unable to meet with a representative 

of every automaker. The researchers believe that the information obtained from the meetings was sufficient to 

create a useful tool. 
 

4. Perform one set of simulations for each of the driving cycles for which data is collected in task 2. For each set, 

simulations will be performed  for a) cold and hot ambient temperatures b) average speeds higher and lower than speeds 

recorded in task 2 to understand the effect of variation is driving speeds. Validate simulation results for vehicle electric 

range and energy consumption with DOE available test data (city and highway) 

 

The results of the simulations for the Leaf-like EV, the Volt-like vehicle, and the ICE conventional Chevy Cruze 

used in the LCO Tool calculations are given in Tables 4-6 for various driving cycles.   Complete summaries of 

the Advisor calculations for the various vehicles, ambient temperatures, and driving cycles are given in 

Appendix II.  The large effects of the driving cycle and HVAC accessory load on both the energy consumption 

and range are shown in the results given in the Appendix. .  

 

 Table 4:  Leaf-like vehicle on various driving cycles 

                                            400W                           4000W 

 

Cycle  

Wh/mi 

battery 

Range 

mi 

 Wh/mi 

battery 

Range 

 mi 
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FUDS 219 93  403 51 

HW 235 90  312 66 

SF-SanRaf 263 81  328 64 

SanRaf-SF 296 73  367 56 

SF-Fairfield 250 87  348 59 

Fairfield-SF 289 72  367 57 

SF-urban1 174 117  372 54 

SF-urban2 204 101  446 46 

Aub-Sac 222 93  295 69 

Sac-Aub 330 62  399 52 

Davis-Sac 258 81  343 60 

Sac-Davis 264 76  347 60 

Davis-urban 168 121  337 61 

Sac-Truckee 373 56  428 48 

Truckee-Sac 210 98  257 80 

 

 

Table 5: Chevy Volt-like vehicle on various driving cycles 

                                        CD*    400W                        CD  4000W                 CS*  400W   CS  4000W 

 

Cycle  

Wh/mi 

battery 

 

Range 

mi 

 Wh/mi 

battery 

 

Range 

 mi 

  

mpg 

 

mpg 

         

FUDS 226 46  396 25  36.6 20.0 

HW 221 49  286 35  41.2 30.4 

SF-SanRaf 261 41  357 30  34.5 23.5 

SanRaf-SF 296 36  372 28  31.7 23.8 

SF-Fairfield 277 37  360 29  34.5 24.8 

Fairfield-SF 316 34  398 27  30.1 23.9 

SF-urban1 161 60  410 26  46.6 22.3 

         

SF-urban2 193 50  493 21  38.0 18.1 

Aub-Sac 308 33  353 26  43.7 32.3 

Sac-Aub 189 54  267 37  27.4 23.8 

Davis-Sac 235 46  332 30  37.8 27.0 

Sac-Davis 217 49  333 32  36.7 26.8 

Davis-urban 169 61  341 30  49.0 25.0 

Sac-Truckee 339 31  385 27  26.0 22.0 

Truckee-Sac 173 62  259 41  52.3 40.3 

   *CD charge depleting mode:  CS charge sustaining mode        

 

Table 6: Fuel economy for the Chev. Cruze on various cycles 

Cycle  mpg   400W mpg   4000W 

FUDS 25.5 19.9 
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HW 37.3 31.2 

SF-SanRaf 29.9 25.4 

SanRaf-SF 30.0 26.2 

SF-Fairfield 32.3 27.3 

Fairfield-SF 31.8 27.9 

SF-urban1 28.4 21.1 

SF-urban2 25.1 17.7 

Aub-Sac 39.1 33.0 

Sac-Aub 31.3 27.2 

Davis-Sac 34.7 28.8 

Sac-Davis 34.5 29.0 

Davis-urban 32.8 23.9 

Sac-Truckee 28.6 25.3 

Truckee-Sac 39.5 34.7 

 

Note in Tables 4 and 5 that the EV has about a 100 mile range on the FUDS cycle and the Highway cycle with 

the HVAC off, but a much different ranges on other cycles with the HVAC on or off.  The effect of the ambient 

conditions is much smaller than that of the driving cycle and whether the HVAC is on/off.  Hence in 

describing the energy consumption and range of an EV, it is not accurate to quote a single value and it is 

important to know the driving conditions under which the vehicle will operate.       

 

The GPS data was used to develop driving cycles (speed vs time, grade vs. distance) for input into the Advisor 

vehicle simulation program.  No attempt was made to relate the actual driving conditions (traffic and ambient 

temperature), under which the GPS data was taken, to the driving cycle to be used in the vehicle simulations.  

Information was not available to attempt to do that.  What was done was to average the energy use for trips to 

and from a location to determine the energy usage for that trip (driving cycle).   

 

General discussion of the simulation results  

There have been a number of studies [10-16] of the real-world operation of electric and hybrid vehicles.  These 

studies have involved both chassis dynamometer testing [10-13] and computer simulations [14-16] of vehicles.  

The present study involves computer simulations so the available test data on vehicles will be used to compare 

with and validate our simulation results.  Until recently the only test data available to characterize electric and 

hybrid vehicles like the Nissan Leaf and the Chevy Volt were taken by EPA as part of their fuel economy 

program [17].  Those data were taken on a chassis dynamometer at 25 degrees C (about 75 degrees F) using the 

Federal Urban (FUDS) and Highway driving cycles with the HVAC system off.  The data are useful for 

comparing vehicles, but not for determining the energy use and range in real-world conditions for which the 

ambient temperature can be much different than 25 degrees C and the HVAC system is in use.  In addition, the 

driving cycles are not good representations of real world driving for many vehicle owners.  One of the 

objectives of the present study is to project the operation of electric vehicles in real world conditions.  This has 

been done via computer simulations and the examination of recent vehicle dynamometer test data taken under 

conditions more appropriate for real world driving.  Much of this data [10, 11] was taken at the Argonne 

National Laboratory (ANL) with the support of the United States Department of Energy. The chassis 

dynamometer used in the ANL testing is housed in an insulated temperature chamber with the capability to 

simulate solar flux.  The testing was done at temperatures of 20, 72, and 95 degrees F (-7, 22, 35 degrees C) with 

the HVAC system set at 72 degrees F for all the testing.  The driving cycles used in the testing were the Federal 

urban (FUDS), Federal highway, and the US06 cycles.  The vehicles included in the ANL testing included the 
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Nissan Leaf and the Chevy Volt.  The ANL test results for the effect of ambient conditions and HVAC 

accessory loads on vehicle energy use are summarized in Table 7.  

 

Table 7: Percent increase in energy use and decrease in electric range based on the  

              ANL test data   

 

 

Vehicle 

 

 

ICE 

Focus 

 

Leaf 

Wh/mi 

 

Leaf  

Range  

mi 

 

Volt 

Wh/mi  

CD 

Volt  

Range 

mi   CD 

Volt  

mpg  

CS 

       

FUDS       

Cold 

(HT)** 

7 95 48 95 * 23 

Hot 

(AC)** 

28 24 17 38 25 64 

       

HW       

Cold (HT) 4 40 30 60 * 8 

Hot(AC) 14 5 6 20 14 20 

*Volt could not make even one FUDS cycle at cold condition without the engine coming on 

    ** Cold (HT) was with the heater at 20 degrees F; Hot (AC) was with air-conditioning 

         at 95 degrees F  

 

The test results in Table 7 indicate the effect of operation of the heater in the Leaf and Volt is large for both the 

urban FUDS and highway HW cycles.  The large increase in energy consumption results in a significant 

reduction in the electric range of both vehicles. The operation of the air-conditioning also results in increased 

energy consumption and reduced range, but the changes are less than for heating.  In general, the magnitudes 

of the effect of the accessory loads are much higher for the electric drive vehicles than for the conventional ICE 

Focus.  This is especially true of operation with the heater at low ambient temperature.  

 

The simulation results for the Leaf and the Volt have been given in Tables 4 and 5 and in Appendix II.  The 

effect of the heater or AC on the energy consumption and range can be determined by comparing the results 

for accessory loads of 400W and 4000W.  These comparisons are summarized in Tables 8 and 9.   

 

Table 8:  Percentage changes in the energy consumption and range of the Leaf from changes in ambient 

temperature and accessory load 

 

 

Cycle 

Ambient 

temperature 

Accessory 

load (W) 

% increase in 

Wh/mi 

% decrease in 

range miles 

FUDS 25 400 to 4000 92 48 

FUDS 25 to 0 400 3 3 

FUDS 25 to 0 400 to 4000 102 49 

     

HW 25 400 to 4000 34 25 

HW 25 to 0 400 5 5 

HW 25 to 0 400 to 4000 40 29 
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Aub-Sac 25 to 0 400 to 4000 35 26 

Sac-Aub 25 to 0 400 to 4000 25 20 

     

Davis -urban 25 400 to 2000 44 30 

     

SF-SanRaf 25 to 0 400 to 4000 40 30 

SanRaf-SF 25 to 0 400 to 4000 29 24 

     

SF-urban1 25 to 0 400 to 2000 56 36 

SF-urban2 25 to 0 400 to 2000 58 36 

     

 

Table 9:  Percentage changes in the energy consumption and range of the Volt   

                 from changes in accessory load 

                                                                         CD mode                          CS mode 

 

Cycle 

Accessory 

load (W) 

% increase 

in Wh/mi 

% decrease in 

range miles 

% decrease in 

mpg 

FUDS 400 to 4000 75 45 45 

HW 400 to 4000 29 29 26 

     

Aub-Sac 400 to 4000 15 21 26 

Sac-Aub 400 to 4000 41 32 13 

     

Davis -urban 400 to 4000 102 51 49 

     

SF-SanRaf 400 to 4000 37 27 32 

SanRaf-SF 400 to 4000 26 22 25 

     

SF-urban1 400 to 4000 154 57 52 

SF-urban2 400 to 4000 155 58 52 

     

 

The effect of ambient temperature and accessory load for the Leaf-like EV are given in Table 8.  The results 

have been converted to percentage changes relative the baseline case – ambient temperature of 25 degrees C 

and an accessory load of 400W.  Note from the table that changes due to the effect of ambient temperature on 

the road load are small (only a few percent), but changes due to the effect of the heating or cooling load (2000-

4000W) are large being as high as 100% in Wh/mi and 50% in range.  The magnitude of the changes are largest 

for driving cycles with low average speed and many stops (FUDS and urban cycles) and significantly smaller 

for driving cycles with higher average speed (Highway and Aub-Sac).  In the latter cases, the average power of 

the cycle is higher and the accessory load is a smaller fraction of the average power. 

   

Comparison of the simulation results with 400W and 4000W accessory loads for the Volt are shown in Table 8. 

The comparisons indicate that the energy consumption from the battery and the all-electric range of the PHEV 

vary significantly with the driving cycle and the accessory load.  Use of the Highway values to describe the 

Volt-like PHEV can be misleading even for a driving cycle that is primarily highway driving.   The all-electric 

range on the FUDS cycle is 48 miles, but it is sensitive to the accessory load.  The charge sustaining fuel 
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economy (mpg) of a PHEV for a given driving distance is sensitive to the all-electric range for that driving 

cycle and accessory load.  Hence in assessing the energy use (fuel and electricity) of a PHEV it is critical to 

know the all-electric range and electricity use for the driving conditions of the trip.     

 

Comparing the simulation results in Tables 8 and 9 with the test results from Argonne National Laboratory in 

Table 7, one finds good agreement for the large effect of the heating on the energy consumption and electric 

range.  However, the test data indicate the effect of the cooling loads are much less than the heating loads for 

both the Leaf and Volt.  Apparently, the operation of the HVAC in the cooling mode is much more sensitive 

than in the heating mode to variations in the required load after the passenger cabin has reached the desired 

temperature (72 degrees F in the case of the ANL tests).  The variation in the HVAC loads is not included in 

the present heating/cooling model. 

  

Simulations were also performed for conventional ICE vehicles and non-plug hybrid-electric vehicles.  The 

results for the fuel economy of several vehicles are given in Table 10.  Test data from ANL [10,112] for several 

hybrids are given in Table 11.  Of particular interest is the effect of ambient temperature and accessory load on 

the fuel economy of the vehicles.  This effect is expressed quantitatively as the % change/decrease in fuel 

economy referenced to the fuel economy for 72 degrees F with the HVAC off.       

 

Table 10: Simulation results for the fuel economy of the ICE  

                   and hybrid vehicles 

Vehicle accessory load  

400W 

accessory load  

3000W 

% decrease 

in mpg 

Chev. Cruze 

EPA 25/36  

   

FUDS 25.5 19.9 22 

HW 37.3 31.2 16 

SF-SanRaf 29.9 25.4 15 

    

Honda Civic 

EPA 30/39 

   

FUDS 32.7 26.4 19 

HW 46.4 39.8 14 

SF-SanRaf 36.3 31.5 13 

    

Hybrid Civic 

EPA 44/47 

   

FUDS 57.7 33.7 42 

HW 60.3 47.4 21 

SF-SanRaf 53.9 39.8 26 

 

Table 11:  Test data from ANL for the fuel usage and mpg on the FUDS cycle for mild and  

                      full hybrid vehicles with climate control and simulated solar flux  [2] 

 12 deg F 

with heating 

12 deg F with 

no heating 

72 deg with 

no heating or 

AC 

95 deg 

with no 

AC 

 95 deg with 

AC 

       

VEHICLE **       



 

 

29 

 

  Liters of fuel 

use for on 

FUDS cycle 

    

Honda 

Insight HEV  

 

.818 

 

.764 

 

.595 

 

 

  

.745 

Prius HEV .764 .564 .445 .418  .70 

VW Jetta 

HEV 

.891 .760 .627   .90 

       

 mpg * 

12 deg F  

with heating 

 

 

% increase in 

fuel used 

compared to 

72 deg 

mpg  

72 deg F with 

no heating or 

AC 

 

mpg  

95 deg 

with no 

AC 

 

mpg  

95 deg 

F with 

AC on 

 

% increase 

in fuel use 

compared to 

72 deg 

Honda 

Insight HEV 

 

34.9 

 

27.3 

 

48.0 

  

38.4 

 

20.0 

Prius HEV 37.4 41.7 64.2 68.3 40.8 36.4 

VW Jetta 

HEV 

32.1 36.6 50.7  31.8 37.2 

Ford Focus 

ICE 

 15    22 

*  mpg = ( Liters fuel /3.81/7.5) -1 

**All tests were done on the FUDS cycle – 7.5 miles.  Cold start for all the tests.  Tests at 72 deg F had climate 

control off and other tests had climate control set to 72 deg F.   

 

Tables 10 and 11 indicate that the effect of ambient temperature and accessory load is significantly smaller for 

conventional ICE vehicles than for hybrid vehicles and that the differences are largest for the strong hybrids 

like the Prius.  Hence the more efficient the driveline of the hybrid, the more sensitive the fuel economy of the 

vehicles is to the accessory load.    The simulation results (Table 10) are in general in good agreement with the 

test data (Table 11), but additional work on the simulation models is needed to be able to differentiate between 

the effects of  heating and cooling on the fuel economy penalty from the respective  accessory loads.  This is the 

case because the present simulation models do not account for changes in the accessory load as the 

temperature inside the vehicle changes from the ambient value.   This appears to be a more important effect for 

cooling than for heating.  Nevertheless, the simulation results show that real-world driving involving changes 

in ambient conditions and the need for heating or cooling can have a large effect on vehicle energy 

consumption for all vehicle types- ICE, EV, and PHEV. 

 

In order to understand the effect of drivers who might drive faster or slower than the speeds in the recorded 

drive cycles, the researchers modified drive cycles to increase and decrease the speeds. New drive cycles were 

created that had the speeds increased by 5% and decreased by 5% and 10%.  

 

The simulations (Table 12 below) for the Leaf indicate that the change in energy consumption (Wh/mi) of 

electric vehicles on the FUDS driving cycle tracks closely the velocity factor, which is the ratio of the velocity at 

any time to the specified velocity on the FUDS cycle at the same time.   Hence it seems reasonable to adjust the 

range on the driving cycle by the velocity factor. 

 

Table 12: Effect of the velocity factor on the energy consumption of the Leaf 
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Velocity  factor SF-Fairfield Fairfield-SF 

.90 .916 .90 

.95 .95 .963 

1.0 1.0 1.0 

1.05 1.063 -- 

 
The objective was met. 

 

5. Continue runs of the stochastic model until the estimates of vehicle lifecycle cost of ownership converge to within 0.1% 

marginal change. 

 
The LCO tool has been run for four vehicle cases: (1) Leaf with full incentives (Federal plus California $10K), 

(2) Leaf with only the California incentive $2.5K, (3) Chevy Volt with a $9K incentive,  (4) Chevy Cruze as the 

baseline conventional ICE vehicle. The set of vehicles was run for five driving cycles – three for the 

Davis/Sacramento area and two for the San Francisco area.  Runs were made for accessory loads of 400W and 

4000W and for a combined accessory load.  In the case of the Davis/Sacramento area, it was assumed the 

4000W accessory was on 36% of the time and for the San Francisco area the 4000W accessory was on 12% of the 

time, because it is much warmer in the summer in Davis than in San Francisco.  Calculations were made for a 5 

year period for 12, 0000 miles per year.  The energy use values used in the calculation are taken from the 

vehicle simulation results discussed in the previous section.  The primary outputs of the LCO tool are the 

accumulated cost of ownership and the standard deviation of the cost.  The results of the calculations are 

shown in Table 13.   

   

Table 13: Accumulated ownership cost/ standard deviation of cost for a 5 year period                                                                                                                                   

 

Vehicle/trips 

400W accessory 

load-  5 yr  * 

Combined 

accessory load-  5 yr  

* 

Leaf   

Davis-urban 27101/152 27845/224 

Davis-Sac 28750/291 29134/327 

Sac-Auburn 31764/304 32150/342 

SF-urban 30563/182 32296/349 

SF-SanRF 31128/233 31648/282 

   

Volt   

Davis-urban 35457/153 36212/226 

Davis-Sac 37267/266 38398/385 

Sac-Auburn 40299/282 41442/402 

SF-urban 38854/173 43313/672 

SF-SanRF 39502/231 40968/332 

   

Cruze   

Davis-urban 35660/1358 37219/1643 

Davis-Sac 36144/1364 36857/1488 

Sac-Auburn 39202/1351 39922/1475 

SF-urban 40979/1709 44357/2307 

SF-SanRF 39379/1449 40837/1671 
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           * 5 yr, 60,000 miles 

 

Graphic presentations of the results of the LCO tool are shown in Figure 2 for the Davis-Sacramento trip.  The 

consequences of the stochastic character of the electricity and gasoline cost inputs are shown in the distribution 

of the ownership costs.  The results given in Table 13 indicate the magnitude of the standard deviation can 

vary significantly for the various driving cycles and different vehicles.   

 

 
 

                Davis-sac   400W accessory load   60K miles 

 

 
 

           Davis-sac   4000W accessory load   60K miles 
 

Figure 2: Graphic presentations of the LCO tool outputs showing the distributions of ownership costs 

 

A summary of the total ownership costs obtained using a simpler and much less comprehensive approach 

than the LCO tool is shown in Table 14. The costs are broken into component contributions as indicated in the 

table.  Results are shown using inputs from the UCD LCO tool and EPRI 2014 studies of ownership costs.  The 

cost breakdowns are shown for the same three vehicles for which LCO results are given in Table 13.  The cost 
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of the vehicle to the owner is calculated based on a 5% interest loan for 5 years.  No residual value of the 

vehicle is used, because it is assumed the owner will continue to own the vehicle in the future.  The 

maintenance cost was pro-rated from the EPRI study which was done over 150K miles of ownership. All the 

costs in Table 14 seem to be self-consistent for the 60K miles of the calculations and are in reasonable good 

agreement with the LCO Tool results.  Hence this simple exercise acts as a validation of the results from the 

UCD LCO tool and shows good agreement with the EPRI 2014 results. 

  

Table 14:  Summary of the total ownership costs and cost breakdowns 

 

 

Vehicle 

 

Purchase price 

including 

incentives, 

sales tax, 

finance chg. 

 

 

Cost of 

electricity 

 

 

Cost of 

gasoline 

 

 

 

Maintenance 

Simple 

approach 

Total cost of 

ownership 

for 60000 

miles 

 

Software 

calculated 

cost of 

ownership 

2013 Leaf       

UCD 23635 2096  317 26048 28750 

EPRI * 32860 2088  317 35265  

EPRI ** 32860 1500+1328***  317 36005  

       

2014 Volt       

UCD 32292 1668 998 860 34958 37267 

EPRI * 34946 2152 998 860 38996  

EPRI ** 34946 1567 978 860 38391  

       

2014 

Cruze 

      

UCD 28297  7240 1563 37100 36144 

EPRI 30345  7240 1563 39148  

* EPRI does not include incentives in purchase prices, UCD includes an incentive of $10k for the Leaf and       

$9K for the Volt 

**the energy costs shown are those in the EPRI 2014 report, the other energy costs are calculated from the 

Wh/mi and mpg, electricity $.12/kWh, gasoline $3.62/gal 

*** Vehicle replacement cost used in the EPRI calculations of the ownership cost of EVs 

 

The summary of the LCO tool results are given Table 13 and Figure 2.  The results for the several trip/driving 

cycles indicate that the driving patterns and distances can make a significant difference in the ownership cost 

for all the vehicles.  However, the trip/driving cycles does not affect the relative economic attractiveness of the 

vehicles.  For example, the Leaf with the incentives is more attractive than either the Volt or Cruze for all the 

trip/driving cycles and the Volt and Cruze have nearly the same ownership costs for the respective trip/driving 

cycles.   The effect of the accessory load can be relatively small on the total operating costs as shown in Figure 

3.  This is somewhat surprising as the effect of the accessory load on the electricity use and fuel economy in the 

case of the Volt was found to be significant.   However, the effect of higher energy consumption on the total 

ownership costs due to the use of the heater and/or air-conditioner depends on the split between urban and 

highway driving and that was not included in the present study.  It could be included in the LCO tool in 

further work.    
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The LCO model includes stochastic representations of the fuel prices so individual runs of the model will 

output different means and standard deviations of the cost. Determining that the model is repeatable is 

important in verifying the model usefulness. The researchers verified that repeated runs with many iterations 

showed means and standard deviations that were very similar. In particular, the means of repeated runs 

converged as the number of iterations increased.  

 

The objective was met.  

 
6. Format analytical tool in a way such that the tool provides estimates of vehicle lifecycle cost of ownership with the need 

of not more than 15 input values. 

 
In its current format, the tool allows for the simultaneous analysis of four vehicles. Inputs that apply to all 

vehicles being modeled are in cells in the upper left corner of the setup sheet. The only user-defined input 

specific to each vehicle is the retail price, and it is input in the center column of the section corresponding to 

each vehicle. All input variables are indicated with a light blue cell background.      

 

The setup sheet shows in green cells values that are either fixed in the tool (e.g. charger efficiency) or derived 

from user input or from intermediate variables. For example, the size of the onboard battery is derived from 

the vehicle model chosen by the user, and in turn helps calculate the maximum eligibility for federal tax 

incentives. The setup sheet also shows, in the upper right corner, for each vehicle and for each auxiliary load 

operating  mode, the LCO values obtained in the first Monte Carlo run. This is displayed only for reference 

and should not be used to make conclusions concerning the lifecycle cost.  

 

The tool includes output sheets with results and histograms as shown in Figure 3 below. 
  
Nissan 

Leaf 
Driving Cycle 

Davis-Davis 

  
Tax credit 

claimed 10000 

  Auxiliary loads 400W 4000W Combined 

          

  Mean $27,101 $28,685 $27,845 

  Std Dev 152.41 305.72 224.44 

  Skew 0.26 0.26 0.26 

  Kurtosis -0.02 -0.02 -0.02 

  Min $26,582 $27,645 $27,081 

  Max $27,704 $29,896 $28,734 
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                                   Davis-sac   400W accessory load   60K miles 

 

Figure 3. Output sheet for LCO tool. 

 

The table shows for each vehicle modeled the probabilistic characteristics (most importantly the mean and the 

standard deviation) of the LCO for each mode of operation of the auxiliary loads. The plot gives the 

histograms of the Monte Carlo simulations, each of which shows the percentage of times that a given LCO 

range was obtained in Monte Carlo runs.      
 

The objective was met. 
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Summary and Conclusions 

 
1. Develop a list of variables identified in the literature to affect vehicle cost of ownership and develop a model that 

includes at least this set of variables. 

 

Through reviewing the literature on LCO models, the researchers were able to define a set of relevant variables 

that capture aspects of driving that contribute significantly to the lifecycle cost of ownership. These variables 

include vehicle capital cost, vehicle Incentives, vehicle taxes, vehicle insurance, parking, and maintenance, 

discount rate, vehicle depreciation, drive cycle and road grade, auxiliary power for heating and cooling, and 

battery SOC range.  

 

2. Collect five hours of GPS driving data for each of seven days in at least two metropolitan areas in the state of 

California. 

 

To adequately estimate lifecycle cost of ownership for vehicles in specific regions, a critical input variable is the 

vehicle drive cycle. Drive cycles should be recorded for expected driving patterns along both urban and 

regional routes. The drive cycles must include road grade in order to properly estimate the energy 

requirements. 

 

3. Complete a round of consultations with at least one representative of each of the a) car manufacturers with plug-in 

electric vehicle offerings in the market at the time of starting this project, b) transportation agency with jurisdiction in the 

metropolitan areas where we collect driving data. 

 

Battery warranties are likely to last a significant portion of the vehicle life, for example 8-10 years or possibly 

up to 150,000 miles. After use in a vehicle, batteries may be sold into a second life application, but this 

possibility is rather uncertain especially in the near term.   

 

Vehicle depreciation for PEVs is likely to be similar to that of conventional vehicles. 

 

The stochastic nature of the tool likely will require more education for stakeholders not familiar with the tool 

outputs of means and standard deviations. 

 

4. Perform one set of simulations for each of the driving cycles for which data is collected in task 2. For each set, 

simulations will be performed  for a) cold and hot ambient temperatures b) average speeds higher and lower than speeds 

recorded in task 2 to understand the effect of variation is driving speeds. Validate simulation results for vehicle electric 

range and energy consumption with DOE available test data (city and highway). 

 

The researchers found that the driving cycle, grade, and accessory loads can have a large effect on the electric 

energy consumed from the battery in an EV and the fuel economy of both conventional ICE and hybrid 

vehicles.  It was found that Wh/mi of an electric vehicle can increase close to 100% with full heater or air 

conditioner operation in urban driving and by 25-30% in highway driving.  The range of the EV can be 

reduced by about 50% in urban driving and 15-20% on the highway.  To customers the reduction in range is 

particularly significant.  There were also significant variations in plug-in vehicle performance due to changes 

in driving condition of speed and grade appropriate for specific trips.  These variations have significant effect 

on both vehicle energy use and range.  The changes in Wh/mi, range, and mpg can be large-both being larger 

and smaller depending on ambient temperature, average speed, and grade for the trip in the plug-in vehicle.  

The magnitude of these changes is comparable to that calculated for variations in accessory loads.  The vehicle 
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simulations showed clearly that to characterize the performance of a plug-in vehicle based on testing at a 

standard, fixed ambient temperature like 70 degrees F and on a specific driving cycle  like the FUDS and/or the 

Federal Highway cycle will not yield an accurate description of the PEV performance in real-world driving.   

 

5. Continue runs of the stochastic model until the estimates of vehicle lifecycle cost of ownership converge to within 0.1% 

marginal change. 

 

Repeated runs of many iterations show convergence of the mean output. The effect of changes in the 

trip/driving cycle and accessory load on the AOC distributions seemed realistic in that they were consistent 

with prior expectations and not excessively large.  For a particular vehicle and set of inputs other than 

trip/drive cycle and accessory load which were varied the differences were 5-10% in most cases.  Larger 

differences would be expected if other variables such as trip length were given stochastically rather than as 

fixed values.  Further development of the LCO tool seems justified based on the phase one results.  
 

6. Format analytical tool in a way such that the tool provides estimates of vehicle lifecycle cost of ownership with the need 

of not more than 15 input values. 

 

The LCO tool is based on an Excel platform. A user can display and compare the lifecycle cost of ownership for 

several vehicles types within specific regions in California. The number of user inputs are modest and they are 

well defined. 

 

General Conclusions 

 

The overarching goal of this study was to offer stakeholders rigorous, context‐specific knowledge about 

factors that affect the purchase and cost of owning a plug‐in vehicle,(PEVs)  relative to other vehicle platforms. 

With this knowledge, stakeholders such as electric utilities, state agencies, local governments, and consumers 

can make decisions and implement programs to support the adoption of plugin vehicles consistent with extant 

policy and regulatory frameworks. By using real‐world data specific to key regions in the state of California, 

the study will enable stakeholders to develop programs tailored to their areas and that target vehicles 

currently in the market or near production.   

 

Commercialization and Marketing potential 

 

The LCO tool is not intended as a commercial product. The intent is to offer the tool to appropriate 

stakeholders such that they may benefit from the additional information the tool provides. The researchers 

have discussed the tool with a variety of California stakeholders including fleet managers, non-profit 

organizations, and governmental organizations. The goal is to eventually make the tool available either 

directly or perhaps on websites where it could be utilized.  

 

Based on initial discussions, the researchers have determined that the tool may require targeted education in 

order to ensure that the outputs and potential benefits are understood. 
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Recommendations 
 

The research described in this report will give stakeholders such as fleet managers and other potential 

purchasers of PEVs better information on vehicle performance and life cycle costs than are presently available 

allowing them to make more informed decisions concerning their vehicle purchase.  In particular, the research 

demonstrates that several factors, such as drive cycle, location, recharging times, vehicle incentives, and 

weather, can have significant impacts on the lifecycle cost of ownership and vehicle functionality. Cold 

weather, for example, can significantly reduce the range of PEVs and increase energy costs.  The LCO tool 

developed in this project addresses these issues, but there is additional work needed to refine and extend the 

modeling and formulations on which the tool is based that would increase its functionality, scope, and benefits 

for potential users. These extensions and improvement are discussed below. 

 

Additional locations/drive cycles 

The present work includes information for the Sacramento, CA and San Francisco, Ca regions. Drive cycle data 

were collected for those regions only. Since the drive cycle determines the vehicle energy consumption 

(electricity and gasoline), it is a critical input to the lifecycle cost of ownership. The tool could be expanded to 

include other regions in California (such as the Los Angeles and San Diego regions) and elsewhere in the 

United States.  

 

To expand the tool for other regions, urban and regional routes could be driven collecting the vehicle speed 

and elevation versus time data. This data could then be converted into drive cycles appropriate for those 

regions. The Advisor model could then use those drive cycles to calculate the energy consumption and range 

for a variety of PEVs. These energy use and range values , specific to various regions, would then be available 

for use with the tool to calculate lifecycle cost of ownership in additional regions. 

 

Additional vehicles 

The tool presently includes data for vehicles similar to the Nissan Leaf, GM Volt, and Chevy Cruze. There are, 

however, many other conventional and plug-in or electric vehicles that fleets or consumers will want to 

compare. The tool could be expanded to include other vehicle models similar to those becoming available on 

the market. The Advisor input models would be updated to include these additional PEVs with other vehicle 

parameters. Additional runs would then yield their fuel economies and ranges for appropriate drive cycles. 

That data could then be included in the cost tool to allow comparisons for a wider range of vehicles. 

 

Inclusion of other stochastic parameters in the LCO Tool  

The present LCO tool includes stochastic representations of the fuel prices (both gas and electricity). This 

variation yields a spread of potential ownership costs for a given vehicle in a specific region. Other variables, 

such as annual mileage, average trip length and route, vehicle initial price, ambient conditions and heating and 

cooling loads, are represented with fixed inputs.  People do not drive a single drive cycle throughout the year, 

and the pattern of the use of heating or cooling is the same for all drivers.  These parameters could be modified 

such that they are no longer characterized by fixed inputs but rather with stochastic representations. Adding 

additional variation to the input parameters would allow the tool to estimate ownership costs that more 

accurately reflect actual vehicle use. 

 

More realistic modeling of the effect of ambient temperature and HVAC operation on PEV energy consumption  

The present project showed clearly the large effect of ambient conditions and HVAC operation on the energy 

consumption of PEVs and the corresponding effect on the life cycle cost of ownership of the vehicles.  The 

effect of the auxiliary loads also influences the useable range of the PEVs.  The present analysis assumes a 
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fixed value for the auxiliary load meant to represent the average value of the load over the driving cycle.  

Additional work is needed to model the heating and cooling of the vehicle including the effect of changing 

cabin temperature in response to the operation of the HVAC unit and the heat gain or loss to the ambient 

environment as the vehicle moves along the road.  This improved model will yield a variable auxiliary load 

depend on trip length and cycle, ambient temperature, cabin temperature set point, vehicle thermal design and 

HVAC unit efficiency characteristics.  Combining this model with the Advisor simulation program will permit 

more reliable predictions of the energy consumption and range of PEVs in regions having  different climate 

conditions.  

 

More extensive calculations using the LCO Tool  

In the present project, only limited use of the LCO tool was made.  For example, calculations were made for 

only single values of tax incentives and only for single ranges of energy costs.  With the improved auxiliary 

load model and the inclusion of additional stochastic variables, the LCO Tool can be run for a large number of 

vehicles, regions, and economic conditions to determine the effect of the various parameters on the economic 

attractiveness of different PEV designs to consumers having different needs.  
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Public Benefits to California  
 

This work has added to a better understanding of PEV ownership in California and in other States following 

the California Zero Emission Vehicle (ZEV) Mandate.  The present markets for PEVs are limited to early 

adopters who are willing to purchase PEVs in spite of their higher cost and limited utility compared to 

conventional ICE vehicles.   As the sales of PEVs expand into the mass market, it will be necessary for more 

customers to be able to evaluate the utility and economics of the increasing number of PEV options.  The LCO 

Tool developed in the present project is intended to be a valuable tool for potential PEV consumers (both fleet 

managers and individuals) which can help to expand the PEV market in California and the other States.   This 

should result in more PEV sales and lower vehicle emissions in California and less difficulty in meeting the 

ZEV Mandate for 2015 and beyond.    

 

Several groups have projected EV sales in California over the next few years [25, 26]. Table 14 shows a 

summary of those estimates along with the value of those sales assuming $25,000 per EV.  While it’s difficult to 

project the effect of the tool on consumer decisions and thus sales, fleet managers and individual consumers 

having  access to better cost of ownership information are likely to purchase more plug-in vehicles. 

 

Table 15:  Estimated number of EV sales per year in California and the value of those sales. 

 

Year Projected annual sales of EVs 

(vehicles/yr.) * 

Projected value of sales 

($Billion/yr) based on $25,000 per 

vehicle 

2015 27,000 0.67 

2016 33,000 0.83 

2017 42,000 1.05 

2018 57,000 1.43 

2019 84,000 2.1 

*To date about 1/3 of the EVs sold in the United States are sold in California 

 

Assuming that the added information increases the number of EVs sold over the 3 year period from 2015 – 

2017 by 5%, roughly 5000 additional vehicles would be sold in California.  The value of these sales would be 

about $125 million.   Using the LCO results in Table 12, the 5-year cost savings of a Leaf purchaser would be 

about $7000 compared to owning a Cruze.  Hence additional sales of EVs would result in a total ownership 

savings of about $35 million over the 5-years in California.  
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Glossary 

 

AC – air conditioning 

ANL – Argonne National Laboratory 

AOC – accumulated ownership cost 

EPA – Environmental Protection Agency 

EPRI – Electric Power Research Institute 

EV – electric vehicle 

GPS – global positioning system 

HVAC – heating, ventilation, and air conditioning 

ICE – Internal Combustion Engine 

kWh – kilowatt hours 

LCO – Lifecycle Cost of Ownership 

MSRP – manufactures suggested retail price 

NREL – National Renewable Energy Laboratory 

PEV – plug-in vehicle 

PHEV – plug-in hybrid vehicle 

RMI – Rocky Mountain Institute 

SOC – state of charge 

UCD – University of California, Davis 

Wh – watt hours 
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Appendix I:  Summary of the GPS speed-grade driving cycle characteristics 
 

        

Driving 

cycle 

Distance 

miles  

Average 

speed mph 

Maximum 

speed  

mph 

Average 

grade up % 

Average  

grade down 

% 

FUDS 7.45 19.6 56.7 0 0 

FedHW 10.26 48.2 59.9 0 0 

      

Sac area      

Sac-Davis 16.4 44.1 67.8 .4 .3 

Davis-sac 15.4 42.2 68.8 .3 .3 

Sac-auburn 37.4 56.5 69.1 .9 .3 

Auburn-

sac 

36.0 50.0 69.3 .3 .9 

Davis 

urban 

10.2 21.4 38.5 .4 .4 

Davis-

Napa 

46.9 53.2 69.4 .5 .5 

Napa-

Davis 

47.1 53.1 69.3 .5 .5 

Sac-

Truckee 

100.6 59.5 69.3 2.3 1.7 

Truckee-

sac 

100.3 60.0 69.5 1.6 2.2 

      

Bay area      

SF-urban1 9.07 18.3 34.2 2.1 1.9 

SF-urban2 8.8 14.9 29.2 1.7 1.1 

SF-Farfield 49.4 37.3 68.8 1.5 1.6 

SF-San 

Raphael 

31.7 39.3 69.0 2 2 

SF-San 

Raphael 

38.9 49.7 69.1 2.1 2 

Palo-alto-

SF 

15.2 48.7 69.4 2.4 2.5 
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Appendix II:  Summaries of the Advisor simulations for PEVs for various driving  

                            cycles and ambient temperatures 
 

Advisor results for a Leaf-like EV for various driving cycles and ambient temperatures 

Driving cycle Accessories  (W) Ambient temp. Wh/mi 

 

Range (miles)* 

to SOC=.2 

Aub-sac 4000 25 deg C 283 73 

Aub-sac 400 25 210 99 

Sac-aub 4000 25 384 55 

Sac-aub 400 25 321 65 

FUDS 4000 25  381 55 

FUDS 400 25 198 105 

FEDHW 4000 25 294 71 

FEDHW 400 25 219 95 

Davis-urban 400 25 171 120 

Davis-urban 2000 25 246 85 

Aub-sac 4000 10 degC 292 71 

Aub-sac 400 10 218 95 

Sac-aub 4000 10 395 52 

Sac-aub 400 10 329 63 

FUDS 4000 10 384 54 

FUDS 400 10 200 104 

FEDHW 4000 10 300 69 

FEDHW 400 10 225 92 

Aub-sac 4000 0 degC 297 70 

Aub-sac 400 0 223 93 

Sac-aub 4000 0 400 52 

Sac-aub 400 0 335 62 

FUDS 4000 0 389 54 

FUDS 400 0 204 102 

FEDHW 4000 0 306 68 

FEDHW 400 0 230 90 
  *does not account for the effect of temperature on the battery kWh capacity 

 

Advisor results for an EV (Leaf-like) on various driving cycles and ambient temperatures  

                 (San Francisco Bay area) 

Driving cycle Accessories  

(W) 

Ambient temp. 

deg C 

Wh/mi 

 

Range (miles)* 

to SOC=.2 

FUDS 400 25 197 111 

FEDHW   220 100 

SF-urban1   158 138 

SF-urban2   188 114 

SF-Fairfield   228 96 

SF-SanRaf   238 93 

SanRaf-SF   267 83 

PaloAlto-SF   263 84 

SF-urban1   158 135 
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SF-urban2   188 114 

     

FUDS 2000 25 280 79 

FEDHW   254 87 

SF-urban1   246 89 

SF-urban2   297 73 

SF-Fairfield   272 79 

SF-SanRaf   276 79 

SanRaf-SF   298 75 

PaloAlto-SF   291 77 

SF-urban1   246 89 

SF-urban2   297 73 

     

FUDS 4000 25 380 58 

FEDHW   296 87 

SF-urban1   356 61 

SF-urban2   429 51 

SF-Fairfield   329 66 

     

SF-SanRaf   333 65 

SanRaf-SF   344 63 

PaloAlto-SF   338 61 

     

FUDS 6000 25 486 45 

FEDHW   338 65 

SF-urban1   468 47 

SF-urban2   566 39 

SF-Fairfield   398 54 

     

SF-SanRaf   388 56 

SanRaf-SF   388 55 

PaloAlto-SF   388 55 
  *does not account for the effect of temperature on the battery kWh capacity 

 

 

 Advisor simulation results for the VOLT-like PHEV for various driving cycles 

 

 

Driving 

cycle 

 

Ambient 

Temp. 

degC 

 

Accessories 

(W) 

 

Wh/mi from 

battery 

Electric 

range  

(miles) 

 

Fuel economy  (mpg) 

Sac-aub 25 400 308 33 232 

Sac-aub 25 4000 353 26 119 

Aub-sac 25 400 189 54 No fuel used  

Aub-sac 25 4000 267 37 No fuel used 

FEDHW 25 400 206 49 No fuel used 

FEDHW 25 4000 286 35 No fuel used 
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FUDS 25 400 207 48 No fuel used 

FUDS 25 4000 396 25 No fuel used 

FUDS 25 4000 396 up to 25 mi 48 45 

SF-urban1 25 400 161 60 144mpg for 100 miles 

SF-urban1 25 4000 410 26 29 mpg for 100 miles 

SF-urban2 25 400 193 50 93 mpg for 100 miles 

SF-urban2 25 4000 493 21 23 mpg for 100 miles 

SF-Fairfield 25 400 10.5 kWh from the 

battery 

 491 mpg for 49 miles 1-

way 

  87 mpg for 99 miles (2-

way) 

SF-Fairfield 25 4000 10.5 kWh from the 

battery 

 51 mpg for 49 miles 1-way 

  32 mpg for 99 miles (2-

way) 

      

FUDS 0 400W    244 40 No fuel used 

FUDS 0 4000W 434 24 No fuel used 

Aub-Sac 0 4000W 307 33 No fuel used 

Sac-Aub 0 4000W 396 27 No fuel used 

SF-Fairfield 0 4000W 360 29 No fuel used 

SF-Fairfield 0 4000W 10.5 kWh from the 

battery 

 108 miles, 30 mpg 

SF-Fairfield 0 4000W 10.5 kWh from the 

battery 

 286 miles, 25.4 mpg 

      

   400W  4000W 

   

 

Mpg in charge 

sustaining mode 

 

 

Mpg in charge sustaining 

mode 

FUDS 25  36.6  20.0 

HW 25  41.2  30.4 

SF-SanRaf 25  34.5  23.5 

SanRaf-SF 25  31.7  23.8 

SF-Fairfield 25  34.5  24.8 

Fairfield-SF 25  30.1  23.9 

Sac-Davis 25  36.7  26.8 

Davis-Sac 25  37.8  27.0 

SF-urban1 25  46.6  22.3 

SF-urban2 25  38.0  18.1 

Aub-Sac 25  43.7  32.3 

Sac-Aub 25  27.4  23.8 

Davis-urban 25  49.0  25.0 
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 Development Status Questionnaire 

California Energy Commission 
Energy Innovations Small Grant (EISG) Program 

PROJECT DEVELOPMENT STATUS 

Questionnaire 

 

Answer each question below and provide brief comments where appropriate to clarify status.  If you are filling 

out this form in MS Word the comment block will expand to accommodate inserted text. 
 

Please Identify yourself, and your project: PI Name __Andrew Burke________Grant # 11-02TE 
___________ 

 

Overall Status 

Questions Comments: 
1) Do you consider that this research project proved 
the feasibility of your concept? 

Yes, the researchershave developed and demonstrated 
the LCO Tool for meaningful examples. 
 

2) Do you intend to continue this development effort 
towards commercialization? 

The researchers plan to enhance the LCO tool as funding 
is available.  Presently the LCO tool is used for research 
at ITS-Davis and for consulting.  No commercialization of 
the tool is presently planned 

Engineering/Technical 
3) What are the key remaining technical or 
engineering obstacles that prevent product 
demonstration?  

None. 

4) Have you defined a development path from where 
you are to product demonstration?  

The tool can be demonstrated presently. 

5) How many years are required to complete product 
development and demonstration?   

None. 

6) How much money is required to complete 
engineering development and demonstration? 

None, but further money would be necessary to enhance 
the tool.. 

7) Do you have an engineering requirements 
specification for your potential product?   

No. 
 

Marketing 
8) What market does your concept serve? NGOs, public and private fleets, consumers, 

policymakers 
 

9) What is the market need? Having the tool available on appropriate sites along with 
educating stakeholders about the tool is all that is 
necessary. 

10) Have you surveyed potential customers for 
interest in your product? 

Stakeholders. 
 

11) Have you performed a market analysis that takes 
external factors into consideration?   

No. 
 

12) Have you identified any regulatory, institutional or 
legal barriers to product acceptance? 

None. 
 

13) What is the size of the potential market in 
California for your proposed technology?   

NA 
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14) Have you clearly identified the technology that 
can be patented? 

None. 
 

15) Have you performed a patent search?  No 
 

16) Have you applied for patents? No 
 

17) Have you secured any patents? No 
 

18) Have you published any paper or publicly 
disclosed your concept in any way that would limit 
your ability to seek patent protection? 

No 
 

Commercialization Path 
19) Can your organization commercialize your 
product without partnering with another organization? 

NA 
 

20) Has an industrial or commercial company 
expressed interest in helping you take your 
technology to the market? 

NA 
 

21) Have you developed a commercialization plan? NA 
 

22) What are the commercialization risks? NA 
 

Financial Plan 
23) If you plan to continue development of your 
concept, do you have a plan for the required funding? 

Not yet 

24) Have you identified funding requirements for each 
of the development and commercialization phases? 

Development would require similar additional funds to this 
project depending on the details of the enhancements 

25) Have you received any follow-on funding or 
commitments to fund the follow-on work to this grant? 

No 

26) What are the go/no-go milestones in your 
commercialization plan? 

NA 

27) How would you assess the financial risk of 
bringing this product/service to the market? 

NA 

28) Have you developed a comprehensive business 
plan that incorporates the information requested in 
this questionnaire? 

NA 

Public Benefits 
29) What sectors will receive the greatest benefits as 
a result of your concept? 

NGOs, public and private fleets, consumers, 
policymakers 
 

30) Identify the relevant savings to California in terms 
of kWh, cost, reliability, safety, environment etc. 

Additional sales of PEVs due to enhanced knowledge . 
 

31) Does the proposed technology reduce emissions 
from power generation? 

Additional PEVs will reduce emissions from vehicles 
 

32) Are there any potential negative effects from the 
application of this technology with regard to public 
safety, environment etc.? 

No.  There are no safety or environmental issues related 
to the development or use of the LCO tool and use of the 
tool should improve the prospects for the sale of electric 
vehicles, which are environmentally friendly. 

Competitive Analysis 
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33) What are the comparative advantages of your 
product (compared to your competition) and how 
relevant are they to your customers? 

Location specific (very relevant), addition of auxiliary 
loads and their effect on ownership cost (relevant), 
Stochastic handling of parameters (potentially relevant) 

34) What are the comparative disadvantages of your 
product (compared to your competition) and how 
relevant are they to your customers? 

Additional complexity of outputs. Customers must be 
educated on the value of this tool. 
 

Development Assistance 
The EISG Program may in the future provide follow-on services to selected Awardees that would assist them in 
obtaining follow-on funding from the full range of funding sources (i.e. Partners, PIER, NSF, SBIR, DOE etc.).  
The types of services offered could include:  (1) intellectual property assessment; (2) market assessment; (3) 
business plan development etc.   

35) If selected, would you be interested in receiving 
development assistance? 

NA 
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