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Presented is a tool to estimate fast charger demand and sample results 
on a current and future battery electric vehicle (BEV) scenario. The 
results highlight the data and methods needed to plan for fast charger 
demand. To plan for existing BEVs, origin and destination data are nec-
essary for identifying which traffic is relevant to assess fast-charging 
demand. Also, as the battery size for BEVs increases, demand shifts 
from primarily inside metro areas to long-distance corridors outside 
metro areas. The sample results show the interactions of battery size, 
frequency of charging, and energy needed per charge. Although energy 
per charge increases with battery size, overall electricity demand per 
vehicle decreases with larger batteries.

To achieve the 2025 Corporate Average Fuel Economy standards of 
54.5 mpg average fuel economy, there is growing interest in battery 
electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). 
PHEVs have a significant advantage over BEVs in regard to long-
distance travel since PHEVs have gasoline as an energy source, while 
a BEV’s range is restricted by battery capacity. Improving charging  
infrastructure is crucial to support BEVs for long-distance trips and  
to give range confidence. Recognizing this, the U.S. Department 
of Energy announced 16 electric vehicle planning grants totaling 
$8.5 million in 2011 to help prepare for plug-in electric vehicles 
(PEVs) and charging infrastructure in 24 states (1). These plans were 
quite successful in engaging stakeholders, but the science of fast 
charger placement was not well developed in many cases. Many 
plans either did not focus on this aspect or dealt with it in generalities. 
By building on this stakeholder engagement, these plans should be 
revisited to produce better guidance on fast charger needs. More recent 
behavior data, vehicle growth projections, and battery size projections 
make better planning possible.

There are three common charging levels: alternating current (AC) 
Level 1 uses a standard 120 volt alternating current to provide slow 
charging (typically of 1.4 kW to 1.9 kW); AC Level 2 uses a 208/240 
volt alternating current to provide charge power from about 1.5 kW 
to 19.2 kW; and fast charging typically refers to direct current (DC) 
Level 2 and uses a high voltage direct current to provide power from 
36 to 90 kW, although DC Level 1, which is less than 36 kW, could 

be considered fast charging as well (2). To provide EV drivers access 
to longer-range trips, more fast charging stations will be needed.

Background

There are various DC fast chargers that siting strategy planners have 
used to site fast charging stations (3–5). For example, the Metro-
politan Transportation Commission in the San Francisco Bay Area, 
California, derived trips by potential PEV adopters on the basis 
of their own regional transportation demand model, and used it to 
choose sites for fast charging stations (6). The San Diego Association 
of Governments in California identified sites based on locations of 
existing Level 2 chargers and a list of siting requirements (7, 8). The 
Sacramento, California, Area of Council of Government assessed 
locations by analyzing existing and forecasted PEV owner demo-
graphics, corresponding driving patterns, and land uses (9). Califor-
nia’s North Coast Region built an agent-based model to identify PEV 
infrastructure sites (10, 11). The West Coast Electric Highway Proj-
ect proposed by the State of Washington and the Oregon Department 
of Transportation is an extensive charging network with fast charg-
ing stations located every 25 to 50 mi along Interstate 5 and other 
major roadways (12). However, a lack of consistency among these 
strategies makes comparing results difficult. Further, the data used 
to create these scenarios use regional travel data or simple traffic 
counts and do not have long distance travel, raising two issues. First, 
demand from outside a metropolitan area is not well represented. 
Many times, there is an aggregate inflow of traffic from outside an 
area, but not how far they traveled before drivers arrive at a metro 
area boundary. This makes assessing demand difficult in both the 
likelihood of this traffic being a BEV, and in what energy might be 
needed. Some corridors, such as highways away from cities, have 
primarily long-distance trips, while other highways have a mix of 
long- and short-distance trips. Second, when the origin of a trip is 
not known, there is no opportunity to match known vehicle sales 
data to trip origin. Knowing in detail the origin gives modelers the 
opportunity to identify trips originating in areas with a high PEV 
density. Knowing the destination shows how far the vehicle traveled 
and where along the journey they would need to charge.

This paper presents a model that uses long-distance data and 
addresses demand coming from outside a metro region in the context 
of any battery size. The model will be free for any modeler to use, pro-
viding consistency in modeling fast charging, given sufficient travel 
data. The model incorporates the latest behavior data, can assess the 
potential usage of current stations, and can assess proposed sites 
based on future growth and increase in battery size. A detailed expla-
nation of the model is given. It is followed by two scenarios showing 
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the ability to model any distribution of demand and battery size and 
what effects those parameters may have on any analysis.

Model

A model was built to evaluate BEV charging demand and to assess 
the usage of current and proposed charger locations based on that 
demand. Use of this model is predicated on having access to long-
distance travel data, and it can be used for two analysis purposes: to 
evaluate charging demand based on current and proposed chargers; 
and to propose new locations based on unmet gaps in demand. The 
demand is presented in charge events per day or utility of proposed 
charger locations. Data on California statewide travel in gasoline 
vehicles are provided by a statewide survey done by the California 
Department of Transportation (Caltrans) in 2012 (13).

Charge Windows

Two main concepts are used to evaluate fast charger utility: tours and 
charge windows. A tour is made up of all the travel from the time a 
vehicle leaves home to the time it returns home. This is done because 
charging is likely to be available at home, making it easier to assess 
which travel might require public charging. The concept of a charge 
window is proposed. It refers to a section of a long-distance tour such 

that if a charger were placed anywhere in the window, the vehicle 
could make it to its destination. The inputs that define the charge 
window are chosen by the modeler. For the scenario, a safety buffer 
of 20% state of charge is assumed, such that a vehicle will need a 
charge if it falls below that level. Batteries are assumed to charge 
only to 80% state of charge matching the point where charge rate 
begins to taper on most BEVs. This means that at any fast charger, 
only 60% of a battery can be recovered (48 mi in the BEV 80 case). 
For large batteries the safety buffer can be lowered so that more than 
60% can be recovered.

Charge windows are shown in Figure 1. Assuming that a BEV 
driver wants to travel from Elk Grove to Livermore, California, the 
distance is 85 mi, as Route D in Figure 1 shows. The BEV has a 
range of 80 mi, so one fast charge is needed to reach the destination. 
With a safety buffer of 20%, the vehicle can go only 64 mi before 
needing to charge, creating an upper limit to the charge window. 
The maximum number of miles that can be traveled from a fast 
charger is 48 (from 80% to 20% state of charge), so the lower limit 
of the charge window is 85 – 48, or at mile 37. Thus, the charge 
window for this trip is from mile 37 to mile 64.

Although trips shown in Figure 1 are single trips, most travel in 
the model is round trip to home, creating a tour. For an 85-mi tour, 
the same principles apply, with a slight modification if work charg-
ing is incorporated in the middle of a charge window. Routes A, B, 
and C are important for evaluating utility of multiple tours and are 
explained later.

FIGURE 1    Illustration of charge window.
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Input Parameters

Travel diary or other origin–destination data are necessary to support 
this model. A travel diary consists of respondents’ trip information 
on an assigned survey date, including the location of origin and des-
tination, departure and arrival time, travel mode, trip purpose, and so 
on. It is widely used to analyze travel behavior. The ultimate goal of 
building a charging infrastructure is to enable travel to consumers’ 
chosen destinations. Therefore, the model uses travel in the Caltrans 
survey from trips that are currently taken in gasoline vehicles. How-
ever, alternate data sets that include origin and destination data can 
be used.

To prepare the data, the origin and destination trip data must be 
converted to tour-based data, which, as previously defined, is travel 
done between the time the vehicle leaves home and returns home. 
AC Level 1 and Level 2 charging can also be incorporated, for travel 
diary data include dwell times at locations as well as trip purpose. 
Different Level 1 and Level 2 scenarios can be used to test the effect 
on DC fast charging demand or can be used as analysis outputs 
themselves.

Currently, there are various models of BEVs with different ranges 
available in the market. For example, the 2013 Nissan Leaf has an 
Environmental Protection Agency (EPA) range of 75 mi; the 2012 
Mitsubishi i-MiEV has an EPA range of 62 mi; and the Tesla Model 
S has an EPA range of 208 mi and 265 mi for the 60-kW-h and 
85-kW-h battery, respectively (14). The model can evaluate the 
charging demand of a mix of BEV models by allowing users to 
define county-level ownership of different ranges of BEVs.

In this study, constant BEV range and vehicle efficiency are used 
to calculate charging demand. However, BEVs could have different 
vehicle efficiency on highways and local streets. For example, the 
2013 Nissan Leaf has a miles per gallon equivalent, or mpge, of 129 
in the city and 102 on highways (14). Further analysis will focus on 
improving this evaluation.

Scaling

The scaling factor for each BEV model is calculated as the ratio of 
the number of corresponding BEVs to the number of households in 
each county, so that the product of this scaling factor and the house-

hold weight is the number of BEVs that each sample household 
represents. For example, if there are 1,000 county respondents in 
the survey and the county has 100 vehicles in existence, then each 
household would represent about 1/10th of a vehicle. This of course 
varies since each household’s scaling factor is a little different to 
account for underrepresented or overrepresented groups.

BEV charging is time consuming compared with refueling a con-
ventional vehicle, so consumers’ willingness to choose a BEV for 
a certain trip decreases as the number of charging events necessary 
to complete the trip increases (Figure 2) (15). Thus, the model has 
another scaling factor to account for BEV drivers’ choosing other 
modes as the number of fast charging events increases per tour.

As a result, the weight of each tour is
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where

	Wkx	=	final weight of tourk for BEV with a range of x mi;
	 Cij	=	� household weight of corresponding household from 

countyi, and each household from countyi has a unique 
identification marked as j;

	 Ni	=	� total number of sample households from countyiBix is 
equal to the number of BEVx in countyi; and

	 Rk	=	� scaling factor of number of required charging events within 
tourk.

Two further scaling factors are applied for each tour. Based on 
the travel survey data, not all vehicles were used on the assigned 
day; that could be influenced by many factors, such as vehicle type, 
travel day, and residential location (16). However, for a statewide 
model, one constant vehicle usage rate is acceptable and the idle 
factor, consisting of the households that drive on a certain day are 
divided by the total households in the survey (78% of respondents 
did not travel by car in the California sample). Also, a factor is 
applied to decrease the demand from any one household, since there 
may be two or more drivers and vehicles in the household, only one 
of which may be a PEV. This factor is the number of households that 
drive divided by the number of total tours (48%). That results in a 
combined scaling factor of 36.5% for this analysis. This last scaling 

100%

49%

13%
4% 2% 1%0

20

40

60

80

100

1 2 3 54 6
Maximum Number of Charges per Day

Re
sp

on
de

nt
s (

%
)

FIGURE 2    Maximum number of times per day that subjects are willing to fast charge.
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factor will be updated, for it is a slightly imprecise method of reduc-
ing BEV tour probability. Using only one vehicle in a household is 
also an option, but since there are so few tours, keeping the variety 
of tours—but reducing their value—was preferred.

Evaluation of Charging Demand

Charging demand can be represented as a heat map created with 
charge windows. For each tour, charge windows are generated for 
each respective BEV range. The final weight of each charge window 
is the same as the tour it belongs to. A total charging demand density 
can be calculated as the line density of charge windows multiplied 
by the scaling factor, divided by the length of the charge window to 
normalize long- and short-charge windows. The value of each cell 
represents the number of charging events per unit area.

Assessment of Charger Utility

The utility of each charger is the combined weights of all charge 
windows within a user-defined search radius from the charger. How-
ever, the tool takes two assignment strategies when assessing the 
utility of existing and proposed chargers versus predicting potential 
chargers. Different from existing chargers, the proposed ones have 
been approved to build but not yet been used.

Existing and Proposed Chargers

When assessing the utility of existing and proposed chargers, charg-
ing demand will be assigned evenly to all chargers within the charge 
window. For instance, there are two existing chargers, M and N, that 
can serve the charge windows of Routes A, B, and C (Figure 1). The 
charge window of Route A has a weight of 4, the charge window of 
Route B has a weight of 3, and the charge window of Route C has 
a weight of 6. Charge windows of Routes A and C are within the 
search radius from Charger M, and charge windows of Routes B and 
C are within the search radius from Charger N. Thus, the utility of 
Charger M is 4 + 6/2 = 7, and the utility of Charger N is 6/2 + 3 = 6.

Potential Chargers

At times, modelers want to find which potential sites are the best 
choices. When predicting the utility of potential chargers, all 
unserved charge windows are assigned to all potential chargers. 
Then the charger with the highest utility will get all charge windows 
assigned to it, and the two steps will repeat to assign charge win-
dows to the next highest utility Charger, until no more charge win-
dows can be assigned. Assuming both Chargers M and N in Figure 1 
are potential Chargers after the first round assignment, the utility of 
Charger M is 4 + 6 = 10, and the utility of Charger N is 6 + 3 = 9. 
Charger M has higher utility, so both charger windows of Routes A 
and C are assigned to Charger M, and the final utility of Charger M 
is 10. In the next round assignment, only charge window of Route B  
is assigned to Charger N (since charger window of Route C has 
been assigned to Charger M), so the final utility of Charger N is 3. 
After the desired number of chargers is chosen by the tool, the final 
assignment of demand is again distributed among nearby chargers 
as described in the existing and proposed chargers.

Data

Data Set of California Household Travel Survey

Scenario analysis in this paper uses the data set of the 2010–2012 
California Household Travel Survey conducted by Caltrans, includ-
ing 42,431 households from all of California’s 58 counties (13). 
Since the travel diary does not have detailed information about 
route choice of each trip, the route with the fastest network dis-
tance between origin and destination is used to analyze respondents’ 
travel patterns. Each trip is represented by a line, and the line den-
sity is the traffic density. The highest traffic density is located in the 
Bay Area and Sacramento in Northern California, and Los Angeles 
and San Diego in Southern California (Figure 3).

A potential limitation of the fastest path method is that it might 
not reflect the true traffic demand when there are parallel paths. 
Considering traffic congestion, user equilibrium traffic assignment 
can be a better approximation to real traffic. For example, there 
are three parallel paths from the Bay Area to Los Angeles, includ-
ing Interstate 5, California State Route 99, and U.S. Route 101. 
According to the fastest path method, all traffic will be assigned to 
Interstate 5 because it is the fastest path assuming normal speeds. 
But such assignment could cause heavy congestion on Interstate 5 
and make U.S. Route 101 a quicker path than Interstate 5. A user 
equilibrium algorithm can assign traffic more evenly and better sim-
ulate the travel pattern. However, travel could be completed with 
the assigned paths, and if a modeler has access to actual paths, the 
tool can reflect this demand.

By converting the travel diary into home-based tours, a total of 
70,917 tours can be put into two categories: one has at least one 
trip for work purpose and is called work tour; and the other that has 
no trip for work purposes, so it is called nonwork tour. There are 
47,288 nonwork tours, twice more than work tours. A study about 
Atlanta commute trips has a similar conclusion about the share of 
work and nonwork tours (17). Few work tours are longer than 160 mi, 
a distance requiring more than one extra charge within a day for a BEV 
with a range of 80 mi or less (accounting for most of the popular BEV 
models, except for Tesla). Because users are not expected to fast 
charge every day, work tours are treated separately in the tool. They 
can be included later, included with workplace charging available, 
or excluded. The scenarios that follow mostly show the demand 
from nonwork tours to reflect the nonhabitual use of fast chargers.

BEV Ownership

According to the Clean Vehicle Rebate Project (CVRP) from the 
California Air Resources Board, 22 BEV models are available in 
California. The Nissan Leaf and the Tesla Model S are the two most 
popular models; the Nissan Leaf accounts for nearly half of the BEV 
market share, and the Tesla Model S accounts for around a quarter of 
the share. Currently, most BEV models have a range of around 60 to  
80 mi except for the Tesla Model S. Further, most current fast chargers 
support only the Nissan Leaf and Mitsubishi i-MiEV. Therefore, the 
present scenario considered only the Mitsubishi i-MiEV and Nissan 
Leaf. There are a total of 16,961 Leafs and i-MiEVs combined in the 
analysis, representing those who received a rebate from the CVRP. 
As battery and powertrain technology improve, more long-range 
BEV models are expected to be available in the future, so the future 
scenario with 500,000 BEVs is interpolated by using a combination  
of buying patterns from the Leaf and Tesla (18).
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PEV households have higher income than the general popula-
tion does. According to a previous study about the PEV market in 
California, there is a significant difference in household income 
between internal combustion engine buyers and PEV buyers. Find-
ings are that 51% of new internal combustion engine car buyers 
(or leasers) reported an annual income lower than $100,000, while 
only 11% of PEV owners reported similar income (19). Detailed 
explanations about the BEV types used in the study will be given 
later in the description of each sample scenario.

Sample Scenarios and Results

Present Scenario

The present scenario highlights the ability of the tool to perform 
gaps analysis to show where chargers may be needed in the context 
of existing chargers. Connecting the origins with the destinations 
allows the tours originating in areas with more BEVs to be weighted 
accordingly and reflects where people in those regions would like to 
travel. This is important, because getting spatially resolved demand 
by road segment any other way is difficult. In the present scenario, 
actual BEV ownership is sourced from CVRP rebates and used 
together with travel diaries from the California Household Travel 
Survey to analyze the demand of fast charging.

According to the U.S. Department of Energy, there are 148 existing 
CHAdeMO (a trade name for DC quick charging method) fast charging 
stations in California (20). Additionally, at least 53 more fast charging 
stations have been proposed to be built in the near future. Locations 
of these chargers are used to assess potential use of these stations. 
Using these inputs, statewide fast charging demand was generated by 
the tool (Figure 4). For the current scenario, ranges of 80 and 60 were 
used, with a 20% buffer. The range of vehicles decreases with highway 

speed, but the buffer gives the model some margin for error when 
computing actual vehicle range. Based on the tool’s assessment, the 
average utilization of fast chargers in San Francisco is 3.9 events per 
charger per day; that conforms to the real utilization, which is about 
4.2 charging events per day per charger (21). The modeled usage 
is expected to fluctuate up or down depending on a host of factors, 
including price, nearby services, Level 2 availability, nearby homes of 
PEV customers, and season.

Based on the present scenario’s result, the highest fast charging 
demand density (indicated by colors on the map) is 0.27 charging 
events per square mile. Most fast charging demand is in the Bay 
Area, Los Angeles, and San Diego. A close-up view of fast charg-
ing demand in the Bay Area indicates that most demand is on the 
north–south corridors of U.S. Route 101, Interstate 880, and Inter-
state 680. From the travel survey, these are the routes most likely to 
be used by BEV owners. However, demand on these three freeways 
is not equal. Interstate 680 (center right of Figure 4) has less demand 
than the parallel route on Interstate 880 (center). It could be the real 
charging demand, or it could represent the parallel route problem 
caused by the fastest path method as mentioned earlier. The model 
indicates that the most popular charger locations have a potential 
demand of up to 10 charging events per day.

After demand is served by existing chargers in the model, the tool 
reports the unserved fast charging demand for which there is no fast 
charger within 1 mi of the charge windows. The unserved demand in 
Figure 5 shows the need for chargers south from San Jose connecting 
to Santa Cruz and Gilroy, and east from Livermore to Tracy, California.

The tool can also evaluate proposed chargers in the context of 
existing chargers. A comparison of unserved fast charging demand 
before and after the installation of the 53 proposed chargers tak-
ing Los Angeles as an example is given in Figure 5. The highest 
unserved demand density is 0.082 charging events per square mile, 
which is around one-third of the highest served demand density. With 

FIGURE 3    Traffic density of nonwork purpose tours in California (CA).
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FIGURE 4    Result of present scenario with existing fast chargers.

FIGURE 5    Results of present scenario with existing versus existing and proposed chargers in Los Angeles with utility  
in charging events per day.
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FIGURE 6    Results of fast charging demand in present scenario versus future scenario.

To highlight the change in demand location between the present 
and future scenario, the colors were normalized so that the highest 
demand in each scenario is represented by red. In the future sce-
nario, there is relatively more charging demand on long-distance 
corridors such as Interstate 80 and Interstate 5, reflecting large-
battery BEVs used for longer-distance trips, such as from the Bay 
Area to Los Angeles, or from Sacramento to Oregon. Such trips can 
be made by a BEV 300 with one or two fast charges. Conversely, in 
the near-term scenario, only SR-99, or CA-99, shows up with any 
significant demand, signaling that for a near-term north–south cor-
ridor in California, CA-99 is the clear choice.

To examine the interaction between battery size and number of 
charging events scenario results are shown in Table 1. Since it is 
hypothesized that nonwork tours are more likely to incorporate 
fast charging, they are separated from nonwork tours. Of statewide 
tours, 67% are nonwork tours. Out of 250,000 BEV 80s, they would 
generate 6,731 charging events on any given day on nonwork tours, 
assuming there were no public Level 2. However, comparison of the 
BEV 80 with the BEV 150, shows some important interactions:

1.	 Events per vehicle per day decrease by 63%,
2.	 Electricity dispensed per charge increases by 87%, and
3.	 Energy needed per event in the state decreases by 31%.

Even though the battery size of the BEV 150 is nearly double that 
of the BEV 80, the consumption per day per car decreased by only 
about 31%. This decrease is not only because batteries are bigger, 
but also because trips that are too long for BEV 80s are more palat-
able to BEV 150 customers, since they have to stop fewer times, as 
shown in other studies (3).

When one looks at work trips in Table 1, one sees a large apparent 
potential for fast charging based on distance, but it is hypothesized 

only the existing chargers, most unserved fast charging demand is in 
northwest Los Angeles and Corona, California. But both areas have 
proposed chargers to be installed, and these proposed chargers can 
relieve charging demand to a great extent, according to the results.

Future Scenario

The tool also helps inform policy surrounding future growth in the 
market with larger battery BEVs, and it helps answer the question 
of what sort of infrastructure may be needed and where. The sce-
nario presented here provides insights into what may come. With the 
improvement of battery and powertrain technology, more long-range 
BEV models are expected to be available in the future (18), so BEVs 
with ranges of not only 80 mi but also of 150 mi and 300 mi were con-
sidered in the future scenario. The scenario in this study assumes that 
there are a total of 500,000 BEVs in California, among which 50% 
are BEV 80s, 25% are BEV 150s, and 25% of are BEV 300s. The 
distribution of the 250,000 BEV 80s among California’s 58 counties 
is assumed to be similar to today’s Nissan Leaf customer character-
istics, while the characteristics of Tesla Model S owners were used to 
predict the distribution of BEV 300s. The distribution of BEV 150s 
was a combination of Leaf and Tesla owner demographics. In gen-
eral, the distribution of vehicles was much more widespread than in 
the present scenario because there was not a geographic filter in the 
model. If the household fit the model in regard to income, commute, 
garage, and more, then that household would be equally likely to buy 
as would any other household with similar characteristics.

A prediction of future fast charging demand is given in Figure 6. 
The highest fast charging demand density in the future scenario is 
4.67 charging events per square mile, about 18 times the maximum 
in the present scenario.
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that this demand will not materialize to this degree if workplace 
charging is available as an alternative to fast charging. Owing to 
this large potential demand, some work-based fast charging could 
be expected occasionally in lieu of Level 2.

In the future scenario, a fast charger location might have more 
than 170 charging events per day (Figure 7), so multiple chargers are 
needed for certain areas. Although this demand is represented at one 
point, most likely, the demand will be spread over several locations 
near the point. Charging likewise is not expected to happen evenly 

throughout the day, and charging a Nissan Leaf battery to 80% is up 
to 25 min, assuming use of a 50 kW charger (21). Higher capacity 
chargers corresponding to larger-battery vehicles preserving the 
20- to 30-min charge times are assumed, so each charger is expected 
to serve an average of 15 charging events per day (3). Therefore, a 
location with 170 charging events needs about 12 chargers to satisfy 
all charging demand.

Another feature of the model is to select the best sites from pos-
sibilities input by the user. Analysis for this study used 800 possible 

TABLE 1    Results of Future Scenario

Tour Purpose

BEV 
Range 
(mi)

Number 
of Cars

Total Charge 
Events

Total 
Consumption 
(kW-h)

Average 
Consumption 
(kW-h/car/day)

Average 
Consumption 
(kW-h/charge)

Average 
Charge
Events/Car

Nonwork   80 250,000 6,731 83,562.61 0.33 12.42 0.0269
150 125,000 1,244 28,906.56 0.23 23.25 0.0099
300 125,000 296 13,167 0.11 44.41 0.0024

Work   80 250,000 8,040 117,486.88 0.47 14.61 0.0322
150 125,000 474 12,176.45 0.10 25.71 0.0038
300 125,000 73 3,411 0.03 46.31 0.0006

All   80 250,000 14,770 201,049.48 0.80 13.61 0.0591
150 125,000 1,717 41,083.01 0.33 23.92 0.0137
300 125,000 369 16,578 0.13 44.93 0.0030

A B

FIGURE 7    Future scenario using the model to select 300 additional sites based on potential use.



142� Transportation Research Record 2502

locations beyond the planned and existing sites. The model assessed 
their potential utility based on the method outlined in the section on 
assessing charger utility. The top 300 locations with the most utility 
are presented in Figure 7 as modeled. With the 300 modeled loca-
tions, there will be little significant fast charging demand in California 
based on the input data. This compares well with previous studies (3).

Work Charging

Many Californians will have workplace charging in the future. 
Since people are not as likely to fast charge regularly to or from 
work, work tours were taken out of the foregoing analysis. They can 
be included, however, with or without work charging. Fast charging 
demand reduces because the highest level of demand in the case of 
without work charging does not appear in the case of with work 
charging (Figure 8). Including work charging allows the possibility 
that drivers may have nonhabitual trips starting from work that may 
require fast charging in combination with Level 2 work charging.

The number of charge windows can give a rough estimation of 
fast charging demand. For the present scenario, the number of charge 
windows for work tours decreased by 39.8% after implementation of 
work charging. In the future scenario, work charging can reduce fast 
charging demand by 25.8%. Since the future scenario has more long-
range BEVs, it is reasonable that work charging has less influence on 
fast charging demand.

Limitations of Regional Data

As mentioned before, analysis of fast charging demand benefits from 
travel data beyond a regional context. To illustrate this benefit, the 
results from the future scenario were separated as either coming from 

those living inside a region or from those coming from outside a 
region. The regions were identified by the census urbanized area, 
and four were analyzed: Los Angeles area, San Francisco Bay Area, 
San Diego area, and Sacramento area. The percentage of fast char-
ger demand coming from inside the region varies with battery size 
(Figure 9) (22).

For larger regions such as Los Angeles, the inside demand reaches 
nearly 80% in the BEV 80 case, meaning that a reasonably good 
estimation should be possible with only regional data. As the regions 
get smaller and battery size gets bigger, predicting demand becomes 
more difficult. For example, in Sacramento for BEV 80s, only 32% 
of demand is from local traffic, thus showing the value of statewide 
or greater-region data.

Conclusions

This paper presents a tool that uses travel survey data to evaluate fast 
charging demand and to assess the utility of proposed charger locations. 
Compared with other existing regional planning processes, this model 
can provide a statewide assessment with great consistency, and results 
are comparable among regions. The analysis also shows the impor-
tance of data on long-distance trips to analyze fast charging. Even for 
small-battery BEVs, a significant portion of demand originates outside 
of a region, making analysis with regional data incomplete.

The scenario analysis highlights several aspects important for plan-
ners. First, planning for today’s vehicles is different from planning for 
tomorrow’s vehicles. If the distributions of vehicles shift from today’s 
concentrations to a more even distribution, and battery size grows, 
the demand shifts to more areas, and some demand appears on long-
distance corridors where before there was little. The demand in kW-h 
from fast charging per vehicle decreases as the battery size grows 

FIGURE 8    Influence of work charging on fast charging demand.
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owing to the lower number of events, although per-session energy 
grows. Work-based demand shows an apparent high potential, but 
this demand may not materialize with reliable workplace charging. If 
the number of chargers needed at work is insufficient, fast charging 
may provide an important bridge to ubiquitous Level 2 in the case of 
BEV 80s.

The analysis focuses mostly on corridor charging. Although the 
tool incorporates survey data on willingness to stop, there are still 
many further factors that may affect demand that are not reflected. 
This analysis does not consider Level 2 demand outside of work, 
but this can be included in future scenarios. Likewise, some demand 
for fast charging will come from nearby homes or apartment dwell-
ers who have poor access to charging. However, the tool and analysis 
should help identify places where fast chargers are needed, to enable 
longer trips in BEVs.
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FIGURE 9    Fewer trips originating from within a metro area as battery size grows.


