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Abstract

Many different types of models are used for evaluating climate-change-related
programs and policies, because analysis requirements can vary widely depending on the
specific nature of the problem being investigated. Limitations on data and methodology
typically ensure that models have various strengths and weaknesses, requiring researchers
to make tradeoffs when choosing models. In the case of energy systems, a frequent
distinction is between “top down” models (e.g., computable general equilibrium, or CGE
models) that address energy systems within the context of the larger economy, versus
“bottom up” models (e.g., so-called E4, or “energy/economy/environment/engineering”
models), that model the energy system at a much higher level of detail, but simplify the
relationship to the rest of the economy. Most attention has been on integrating these two
types of models. However, researchers have also been concerned that E4 models, despite
their vaunted high level of detail, produce results that are an unrealistic representation of
consumer market behavior, calling into question their value for making policy decisions.
This is particularly true for household vehicle technology choice, an important sub-sector of
the energy system.

At the same time, there is a large and well-established literature on modeling
household vehicle choice and usage decisions (using discrete and discrete-continuous
models). But, the methods and approaches used in this literature differ dramatically from
those used in E4 models, and so it has been unclear how to bridge the gap. This paper
demonstrates a practical approach for incorporating behavioral effects from vehicle choice
models into E4 models. It is based on principles of economic theory that form a common
basis for all three types of models (CGE, E4, and vehicle choice/usage models). Derivations
are provided that yield a theory-based approach for modifying E4 models that can be used
without altering the basic software and modeling infrastructure widely used by many
researchers. The approach is illustrated using an empirical application in which the
behavioral assumptions from a nested multinomial choice model in an existing modeling
system (MA3T) are incorporated into a TIMES/MARKAL model.
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1. Introduction

There is a wide diversity of modeling approaches for analysis of policies for
addressing climate change, where the goal is long-term reduction of greenhouse gases from
the energy sector. The issues are challenging, because almost all aspects of economic
activity require some form of energy consumption, using technologies that convert inputs
(electricity, gasoline, etc.) into energy-related services (heating, lighting, transportation).
Meaningful reductions in greenhouse gases will require major changes to complex energy
systems with far-reaching implications for the broader economic system and society at
large, across a wide variety of stakeholders. Models are used to understand and evaluate
how alternative policies might affect the behavior of these systems, and modeling
requirements can vary depending on the specific issues being addressed.

A number of reviews have appeared that summarize and classify models along
multiple dimensions, such as scope (top down, bottom up, hybrid, general equilibrium,
partial equilibrium), mathematical method (optimization, simulation), etc. For a recent
high-level review focused on energy systems models, see Herbst et al. (2012). A typical
practical consideration is the tradeoff between scope and level of detail. Focusing on a
narrower scope by adding more detail helps improve realism and (hopefully) “accuracy,”
but this is frequently obtained at the risk of omitting important interactions with the larger
system environment, as we discuss next.

In this paper, we focus on a specific family of bottom up energy sector models
(MARKAL/TIMES)—also denoted energy/economy/environment/engineering (E4)
models—that are considered to have a high level of technological and economic detail. One
concern in the literature is that the price of this additional detail is the limitation of the
scope to the energy sector: important interactions with the larger economy are not taken
into account. However, there have been other concerns as well, namely, that despite their
characterization as being “highly detailed,” they still do not adequately capture important
features of how consumers behave in real markets, calling into question the validity of their
conclusions when using them to evaluate alternative policy scenarios. This latter concern is
the subject of this paper.

However, as part of this discussion, it will be instructive to begin by reviewing the
“scope versus detail” issue for top-down versus bottom-up models as well. Specifically,
TIMES/MARKAL models can (at best) be viewed as partial equilibrium models designed to
support more detailed analyses of a specific economic sector (energy). In contrast, top-
down models strive to capture general equilibrium effects that take into account
interactions across the entire economy, e.g., effects related to household income, disposition
of capital and labor, and other important macroeconomic factors. However, top-down
models do so at the risk of other types of simplification, applying a high level of aggregation
to economic measures for the purpose of representing the outcomes of various components
of the economic system. The Computable General Equilibrium (CGE) model is one



particular type that has been widely used. Efforts have been made to integrate the two
approaches, as discussed in section 2.

This paper moves in the other direction, seeking to add details that improve the
representation of consumer behavior and market response in a subsector of the energy
sector, specifically: transportation services from personal vehicles. In this case, the model
with the larger scope is TIMES, which has limited detail on consumer choice and usage
behavior for vehicles. The source of “behavioral content” we use for this purpose comes
from the MAST (Market Acceptance of Advanced Automotive Technologies) model,
developed by Zhenhong Lin, David Greene and co-workers at Oak Ridge National
Laboratories (Lin, Greene, and Ward; Lin, Li, and Dong 2014). MA3T has a narrower scope
than E4 models, which is limited to projecting the behavior of the personal vehicle market
in the U.S. under alternative policy scenarios. However, it also operates at a higher level of
detail, capturing important aspects of consumer market behavior. At the same time,
because its definition of “vehicle choice” focuses on future market shares of competing
alternative fuel technologies, its vehicle-type definitions are similar to those used in TIMES
energy sector models developed by researchers at ITS Davis—see Figure 1. The goal is to
integrate the behavioral content of MA3T into a TIMES modeling framework, so that the
TIMES model produces vehicle choices as though they were determined by MAST.

Based on an initial examination of the two models, they would appear to rely on
very different approaches. MARKAL/TIMES results are obtained by solving a deterministic
linear program (LP), which is generated by a software product (VEDA) that acts as a front
end (as well as a back end). In this regard, a MARKAL/TIMES model is frequently used as
something of a “black box” by many researchers (even though the details of the LP model
are visible), but in any case the fundamental structural approach cannot be easily modified.
In most cases the LP objective is to minimize the total discounted monetary cost of the
energy system over a relatively long time horizon, which includes investment costs from
choosing future energy technologies, as well other fixed and variable costs (including fuel
costs) for using those technologies to meet required end-use energy service demands (e.g.,
passenger vehicle miles traveled). Additional details are reviewed in section 3.

In contrast, MAS3T is essentially simulates total vehicle market behavior over time,
where the core behavioral model is a nested multinomial logit discrete choice model that
yields market shares of competing technologies for a large number of consumer segments
that comprise the new vehicle market. Choices are a function of vehicle attributes
(including purchase price, fuel operating costs, etc.), the refueling infrastructure, and
characteristics/preferences of individual consumer segments. It simulates vehicle fleet
turnover as vehicles age and disappear, and includes dynamic effects related to introduction
of new technologies.



Figure 1. Vehicle Technology Options

The differences in behavior between the two models are illustrated in Figures 2 and
3. Figure 2 shows the “all or nothing” behavior that can occur in a TIMES model if it is relies
only on basic inputs and assumptions (e.g., without any ad hoc intervention by researchers,
such as arbitrary constraints on market growth for new technologies, manipulation of
technology-specific hurdle rates, etc.). Figure 3 shows corresponding output from the MA3T

model, which includes many additional behavioral factors.
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Figure 3. New Vehicle Sales Shares from MA3T Model

The goal is to make modifications to TIMES so that it produces output that looks
more like Figure 3, and does so on the basis of a valid theory of consumer choice behavior
rather than through ad hoc user-imposed interventions. However, there is no obvious,
straightforward way to integrate these two methodologies because the their
implementation approaches are incompatible: TIMES is formulated as a standard
(deterministic) LP model based on a single representative decision maker, whereas MA3T
performs a “simulation” that has, at its core, a nonlinear nested logit model of consumer
purchase behavior typical of those used in econometrics.

One goal of this paper is to support the view that, when approaching modeling
challenges of this type, it is helpful to develop a clear understanding of the relationship
between specific modeling approaches and the underlying economic theory and
assumptions on which they are based. All three of the model types considered here (top-
down, bottom-up, and discrete/continuous) are based on the same theoretical economic
framework. Frequently, researchers develop specific methodologies by adding many
simplifying assumptions that are frequently motivated by practical considerations related
to data availability and computing requirements. Passage of time and the relative
complexity of the subject matter ensure that awareness and knowledge of the connection to
underlying theory are often lost.

With this in mind, the structure of the paper is as follows. Section 2 provides
additional context by briefly reviewing elements of the high-level economic framework
shared by these models. Section 3 provides additional background on the MARKAL/TIMES
models we seek to modify. Section 4 focuses on derivation of discrete and discrete-
continuous choice models for vehicle choice and usage, providing results that support a
theory-based approach for integrating behavioral content from these models with



MARKAL/TIMES, and reviews additional features specific to MA3T and MARKAL/TIMES.
Section 5 presents an empirical example in which behavioral factors from MA3T are
sequentially added to MARKAL/TIMES. Section 6 concludes with final comments.

2. Preliminaries

The decisions being modeled are assumed to occur in the context of some economic
system. At the highest level of abstraction, a complete economy can be viewed as consisting
of H households (sometimes referred to as consumers), P producers, and C commodities.
Commodities represent all things that can be exchanged in the economy (goods and
services). Households are endowed with (or otherwise control) a subset of these
commodities, and these are frequently given a special designation as factors of production
that can be “rented” by producers (providing income to the Households) and used as inputs
to production processes (or technologies) to create other (output) commodities. These
commodities can, in turn, be purchased and consumed by Households (using the
aforementioned income) for the purpose of generating “utility.” Households are assumed to
choose quantities for all commodities so as to maximize utility, and Producers are assumed
to make production plans so as to maximize profits.! These decisions clearly depend on the
prices of the commodities, which must be determined in some way by the system. In
addition to the previous assumptions, Households and Producers are assumed to be price
takers, and there is a circular flow of resources in the economy that should obey various
conservation properties. Under these and other assumptions, prices are determined by a
market clearing process that yields a (Walrasian) equilibrium.

The above summary is the typical starting point for discussing general equilibrium
models, and the basics of this theory appear in various textbooks (e.g., (Varian 2000),
(Intriligator 2002)). Takayama and Judge (1971) is a comprehensive early reference that
begins with this general framework and systematically adds assumptions that lead to
various options for modeling general and partial (competitive) equilibrium solutions for
economic systems, addressing both spatial and temporal dimensions. These simplifications
usually involve replacing individual actors (Households and Producers) by representative
agents, so that decisions are made in the aggregate rather than at the individual level. Sue
Wing (2004) discusses the circular flow economy described above (see his Figure 1), and
shows how CGE models can be implemented by assuming that the utility and profit
maximization behavioral models for Households and Producers can be simplified using
Cobb-Douglas utility and production functions, respectively.

The major simplifying assumption yielding a partial rather than a general
equilibrium relates to how household income generation is modeled. The general
equilibrium model assumes that choices governing both income and consumption are made

1 Note that, for households, these choices affect income levels, which in turn determine the budget for
purchasing other commodities, so decisions are interdependent in a complex way.



as part of the same process. If some other process (exogenously) determines household
income, this yields a partial equilibrium. More generally, any analysis limited to a subset
(e.g., sector) of the economy that takes incomes and prices of other (outside) goods as given
yields a partial equilibrium solution. Although the theory starts with utility functions and
profit equations for households and producers, respectively, practical approaches typically
rely on being able to assume the existence and knowledge of (inverse) demand and supply
functions. This is the approach taken by MARKAL/TIMES, which also makes Cobb-Douglas
assumptions, and Sue Wing (2006) shows how these features support integration of a CGE
model with a more detailed MARKAL model. Also, see Schaefer and Jacoby (2005).

Generally speaking, equilibrium conditions that must be satisfied are defined by
mathematical equations (frequently inequalities), which may include expressions involving
the aforementioned demand and supply functions. Rather than solving systems of equations,
a frequent alternative approach is to formulate a mathematically equivalent optimization
problem by defining an objective function that can be viewed as a measure of “quasi-social
welfare” (or “social surplus”). In this case, demand and supply functions are used to
produce expressions for consumer and producer surplus that appear as terms in the
objective function. In this type of model, prices and quantities for all commodities in the
system are endogenously determined by maximizing social surplus, subject to constraints
(defined by the other required conditions).

Because household choice/demand behavior is the main concern of this paper, it is
instructive to review in more detail the constrained utility maximization model from
economics:

maxU(q)
q

C
$4.3,P,4; =Y (1)

J=1

q=0

where g; is the quantity of commodity j that is purchased/consumed, p; is the per-unit price,
y is the available household expenditure budget (“income”) appropriate to the “planning
horizon” (an aspect that is frequently not discussed, but which will be an important
consideration in this work), and U(q) is the utility from consuming the C-vector of
commodities.

In the context of the first paragraph of this section (1) includes all commodities in
the system. As previously noted, the key break between general and partial equilibrium
models (as well as many others) is how y is determined. For our purposes, y is assumed to
be exogenous. The general solution of (1) yields Marshallian demand functions, where,



without additional structural assumptions, demand for each commodity is a function of
prices for all commodities as well as income, i.e., g = w(y, p).2

As has been noted, MARKAL/TIMES is designed to produce partial equilibrium
solutions for energy sector models. It does so using an approach consistent with the
previous description, relying on specific assumptions about the form of demand functions
for end-use energy services (discussed in the next section). Specifically, demand functions
are assumed to take the form

DM ; = K.ip.fj (2)

where p; is the price, E; is an elasticity, and K; is a constant. This is a considerable
simplification versus the general result from (1); nevertheless, the details are still relatively
complex.

Using MARKAL/TIMES requires initial projections of end-use energy service
demands for a Reference Energy System, which are assumed to hold by definition. The
initial solution for the system is obtained by minimizing the NPV of total system costs,
subject to constraints (see the next section). Producing partial equilibrium solutions for
alternative scenarios requires that at least some demands be treated as “elastic” using (2).
The user must provide assumed values for elasticities, and Kj is calibrated using the initial
results. Then, under alternative scenarios these demands are no longer treated as
exogenous, and the objective function is augmented by terms that measure the change in
consumer surplus associated with changes in demand for the relevant services.

However, using the model in this way has a number of challenges, so analyses are
frequently performed that continue to assume exogenous (inelastic) demands. To provide
additional context, a more detailed overview of MARKAL/TIMES is provided in the next
section.

3. Overview of MARKAL/TIMES

As discussed in the introduction, MARKAL/TIMES models operate at a high level of
detail, and implementing the approach described in the previous section is rather complex,
so a complete treatment is well beyond the scope of this paper. The usual references are to
detailed model documentation (e.g., Loulou et al. (2004) for MARKAL, and Loulou et al.
(2005a, 2005b), for TIMES). However, even these references provide limited insight
regarding the relationship between the models and the underlying theory. This section
provides selected additional background to support the needs of this paper.

2 The results in this paper rely heavily on microeconomic theory related to (1): for a useful reference,
see Deaton and Muellbauer (1980).



From Loulou et al. (2005b),TIMES “is an economic model generator for local,
national or multi-regional energy systems, which provides a technology-rich basis for
estimating energy dynamics over a long-term, multi-period time horizon.” Researchers at
University of California, Davis have developed such a model for the state of California’s
energy system (McCollum et al. 2012), as represented in Figure 4. Scenarios require a
database of energy technologies, including projected characteristics (e.g., efficiencies and
costs) for the entire planning horizon. As shown in Figure 4, conversion technologies are
used to process primary energy sources (e.g., crude oil or hydropower) to produce energy
carrier commodities (e.g., gasoline or electricity) that are then used by end-use technologies
(e.g., gasoline or electric cars) to produce end-use energy services (e.g., driving a specified
number of miles). A major feature of TIMES models is that they make investment decisions,
choosing from among competing technologies to meet overall system requirements.
Examples of competing technology options for three types of end-use energy services are
shown in Figure 5.

Primary Energy Converspn End-Use Technologies End—'Use Energy
Supply Technologies Service Demand
(Primary Energy)  (Final Energy) (Useful Energy)
i Transportation Residential
?mg::ﬁe oil Fuel Conversion * Light-duty cars * Space heating
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Renawable Prodicts * FT Liquids plants * Heavy-duty vehicles * Cloth drying « Vehicle-miles traveled
* Hydrogen facilities * Medium-duty * Cooking + Passenger-miles
. Blomass vehicles * Cloth washing traveled
: \S;,l:; * Buses * Dish washing + Ton-miles traveled
« Hydro Electric Generation * Rail *+ Refrigeration * Hours of operation
« Geothermal * Natural Gas * Aviation * Freezing
+ Coal * Marine * Lighting Residential
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+ Natural Gas ° E2t * Pipelines * Other Commercial
* Coal * Wind * PJof energy demand
o Uranium * Hydro Commercial _ * Lumens/trillion sq.ft
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* CHP + Water heatin,
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Figure 4. CA-TIMES: Bottom-Up Model of California's Energy Sector

10



End-use

Light dutv Cars Residential Commercial
demands g Y Heating Refrigeration
Gasoline C
gso bl Electric Radiator
Diesel Cars Electric Heat Supermarket
Gasoline Hybrid e : Compressor Rack
Diesel Hybrid : t f G Supermarket
Natural Gas cars FSr:aie e Condenser Rack
E85 Flex fuel cars Natural G Supermarket
Electric vehicle R:dl:;:or b Display Case
(100 mile & 200 Walk-in
End-use mile range) HafialLs heat Refrigeration
I
technologies Gasoline Plugin iomills Reach-in
” LPG Furnace . :
vehicles e Refrigeration
. . Distillate Furnace ;

Diesel plugin Distillat Reach-in Freezer
vehicles Rlsd‘ E: er Ice Machine
Hydrogen fuel Waoc:ad :eater Beverage

cell vehicle Merchandiser

: Geothermal heat .

E85 plugin Refrigerated
vehicles pump vending machine

—

Figure 5. Technology Options for Three Types of End-Use Energy Services

The purpose of the energy system is to meet the demand for end-use energy
services. As discussed in the previous section, using the model requires demand projections
for an assumed Reference Energy System. An initial LP model is formulated and solved in
inelastic demand mode, i.e.,, projections are treated as exogenous inputs that must be
satisfied. In Loulou et al. (2005b) page 58, this model is depicted in the following simplified
form:

minc'X

sI.ZCAPk’,.(t)ZDM,.(t) i=1,..,1;t=1,....T (3)
k

and BX=2b

where X is the vector of decision variables, I is the number of demand categories, T is the
number of periods (e.g., years), and DM,(t) is demand for demand category i in period t. The
installed capacity of end-use technology k capable of satisfying DM;(t) is denoted CAPx;(t),
and is determined as a function of the X’s3. In this mode, decisions for the energy system are
interpreted as being made by a unitary “cost minimizing social decision maker.” In inelastic
mode, the model is modified as discussed in the previous section, so that the objective
function is interpreted as “net social surplus,” which is maximized to obtain a partial
equilibrium solution.

3 In this type of application, VMT is measured in millions of vehicle miles traveled (MVMT), and
vehicles are measured in thousands of units. In this equation, it is assumed that CAPx;(t) has been
computed so as to have the same units as DM,(t). In fact, the implementation details for (3) differ
somewhat from the literal depiction.
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For this paper we developed a TIMES model (called COCHIN4) that limits the scope
of decision making to household purchase and usage of vehicles, i.e., purchase of end-use
technologies (vehicles), as well as fuel, to satisfy exogenously specified VMT demand (i.e.,
the inelastic case). We now provide a highly stylized example for purposes of illustration.
At the highest level, the model seeks to minimize the net present value (NPV) of total
system costs over a specified time horizon, for all regions:

NPY=Y Y (1+d,)"" x ANNCOST () ()

r=1 yeYEARS

where R is the number of regions (indexed by r), YEARS is the set of years (indexed by y)
that have costs that should be included, d,, is a general discount rate, REFYR is the reference
year for discounting, and ANNCOST(r, y) is the cost for region r in year y. In what follows,
we drop the r index for simplicity, and assume a constant discount rate. Generally speaking,
annual costs can be subdivided into: investment costs, fixed costs, variable costs, and
salvage costs.5 For details, see Loulou et al .(2005a) (page 145).

As noted, investment costs are incurred from making capital expenditures on
technologies to create the necessary capacity for converting energy commodities into
outputs. We now provide a specific example using variable names intended to reflect the
style used in TIMES documentation. A decision variable VAR NCAP(v, k) would be the
number of units of technology type k purchased in year v, with associated capital cost
denoted INVC(v,k). For example, VAR_NCAP(2006, gas-car) and VAR_NCAP(2006, elec-car)
would be the total number of new gasoline and electric cars purchased in 2006,
respectively. These would comprise additional (new) capacity for satisfying VMT in 2006,
and also in future years (determined by the respective vehicle lifetimes). The index v is
used because vehicles are “vintaged,” i.e.,, model year 2006 vehicles have characteristics
(e.g., fuel efficiency) that stay the same over their lifetimes.

The model also includes variables of the form VAR ACT(v,t,k) to represent activity
levels associated with technologies/processes. For example, VAR_ACT(2006, 2007, gas-car)
could denote the activity level for a 2006 gasoline car in calendar year 2007 (in MVMT).
This activity is limited by the capacity that was purchased in 2006, e.g.,

VAR _ACT (2006,2007,gas — car)<16.8-VAR _ NCAP(2006,gas — car) (5)

4 COnsumer CHoice INtegration

5 In elastic mode, additional terms are added to represent (negative) changes in consumer surplus
associated with shifts in end-use service demands that could occur under alternative scenarios, as
discussed in section 2.
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where the number of gasoline cars (000) is multiplied by the constant 16.8
(MVMT/000_cars) to convert capacity units into activity units. In theory, there could be a
variable cost associated with VAR_ACT(v,t,k), e.g., for operations and maintenance; however,
this is assumed to be zero for simplicity.

The primary variable cost of interest is from fuel usage, e.g., gas-car requires an
energy input commodity (gasoline) to generate this activity (measured in petajoules PJ), for
the given year. This input is produced by another technology (gas-station), which for this
example we treat as a production process requiring no additional capital investment. From
the system perspective, there is a variable cost VC(y,k) from using a fuel technology k to
produce, transport, and deliver fuel, which for gas-stations is measured in $M/P]. Extending
the previous example for calendar year 2007, the model must include an equation that
computes the total amount of gasoline produced and used by all vehicles in 2007 (in P]), i.e.,
the activity level VAR ACT(2007, 2007, gas-station).6 One specific term included in this

equation would be (%'FF(2006,gas—car)).VAR_ACT(2006’2007’gas_car)' where

EFF(2006, gas-car) is the efficiency of a model year 2006 gasoline car, in MVMT/P]. (These
types of equations would appear in the matrix B shown above).

In this simplified model, the annual cost can be represented by:

ANNCOST(y)= Y, INVC(y,k)VAR _NCAP(y,y,k)

keVEH _TECH

+ Y VC(.k)VAR_ACT(y,y.k)

keFUEL _PROD

(6)

where VEH_TECH and FUEL_PROD denotes sets of vehicle technologies and fuel production
technologies, respectively.” In this stylized example we have included only investment costs
and variable costs from fuel usage, ignoring many other types of costs (e.g., salvage costs,
fixed operations/maintenance, etc.). Moreover, TIMES has many other features that we
have omitted, e.g., technology-specific discount/hurdle rates, and complex features that
subdivide periods into multiple years and time slices (e.g., day versus night). Main features
to note are that the decision maker is assumed to have complete knowledge of all costs over
the entire planning horizon, i.e., perfect foresight, and as noted, we are considering the
inelastic case where the decision maker is minimizing total monetary costs.

6 Note that this could include gasoline required by multiple types of vehicle technologies, not just
gasoline vehicles, e.g., gasoline and plug-in hybrids. Also, v is set to t in this example because we are
not treating gasoline stations as vintaged technologies.

7 However, TIMES actually implements ANNCOST(y) using a more complex approach, so that it can
always be viewed as the “annualized cost” associated with all decisions. This will be addressed in
more detail in section 4.7.
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To illustrate a point, note that NPV can be decomposed in a variety of ways, and
alternative expressions are possible. For example, it is to isolate NPV of all costs associated
with 2006 model year gasoline cars. Assume that the reference year is also 2006, and that
the vehicle lifetime is L years, yielding:

NPV (2006,gas — car) =
INVC(2006,gas — car)VAR _ NCAP(2006,2006,gas — car)

2006+L—1

+ Z 0-2006) VC(y,gas — station)

VAR _ACT (2006,y,gas — car) (7)
22006 EFF(2006,gas — car)

This is equivalent to how MA3T expresses vehicle purchase cost from the
perspective of a consumer making a decision in 2006. However, in MA3T this is only one
factor that affects the consumer’s purchase decision. Additional factors can be included if
they can be interpreted as “generalized costs” or “disutilities” that are measured in the
appropriate units. Doing this correctly requires an understanding of the relationship
between such costs and the original utility maximization problem defined in (1), and also
provides the means for understanding the relationship between TIMES models and discrete
choice models. This is the subject of the next section.

4. Theory-based Models of Consumer Decision Making

The sub-sector of the energy system considered here is household vehicle choice
and usage, with the goal of improving the realism of behavioral response to market changes
in TIMES models. Because analysis of personal vehicle demand has long been an important
topic, there is a large literature on development of behavioral models and methodologies to
address this problem that goes back decades, spanning multiple academic fields including
economics, transportation, and marketing science. Vehicles are durable goods, infrequently
purchased by households in very small quantities. Because the fundamental choice at the
individual level is discrete (choose one option from a competing set), traditional approaches
of modeling demand based on a single, representative consumer lack important structural
features for adequately modeling aggregate-level demand (as illustrated by the comparison
of Figures 1 and 2). Discrete and discrete-continuous models have been developed to
address these issues, but the methodologies are not immediately compatible with TIMES
models.

However, all of these models can be derived from the same underlying model in (1)
by adding various structural assumptions. This section reviews aspects of the theory that
illustrate how the two types of models can be viewed in a theoretically consistent way.
Useful references are Deaton and Muellbauer (1980) and Pollak and Wales (1978).

An initial step is to partition commodities into groups (and perhaps partitioned
further into sub-groups) based on their similarity in meeting consumer needs/benefits,
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yielding a tree structure. For example, the top level might consist of groups such as food,
housing, clothing, etc. Two commodities within the same group would tend to be much
closer substitutes (e.g., butter versus margarine) than would two commodities in different
groups (butter versus golf balls). The utility function in (1) associated with such a structure
may be assumed to have properties (separability) that impose restrictions on how
preferences for goods in different groups may interact.

These and other assumptions allow household spending decisions to be viewed as a
multi-stage budgeting process, where expenditures are first allocated across groups, and
then group-level budgets are allocated across commodities within the same group. At
higher levels of the “utility tree,” total expenditure allocated to an entire group of
commodities can be viewed as a composite good with an appropriate price index. At lower
levels, modeling choices among competing alternatives within the same group can take into
account more detailed preference tradeoffs, without the need to take into account similarly
detailed tradeoffs between individual commodities in different groups (e.g., butter versus
golf balls). These are the same notions used in developing CGEs to address the energy
sector in relation to the larger economy: see, e.g., the utility tree in Figure 2 of Schaefer and
Jacoby (2005) for the demand side, and Figure 1 of Sue Wing (2006) for the supply side,
respectively.

For our purposes we specifically consider how this theory is applied to develop
discrete and discrete-continuous models for analyzing demand for products within a
specified group (or product category).

4.1 Demand in a Product Category

The specific problem being considered is household demand for personal vehicles,
but other end-use demand categories could be addressed in a similar way. (Because the
treatment presented here can be applied more generally, we may alternate between using
terms specific to vehicles versus more general terminology.) Starting with (1), goods are
partitioned into two groups: vehicles, and all other goods. Commodities within the product
category being analyzed are referred to as inside goods. All other goods (outside goods) are
collapsed into a composite, Hicksian, numeraire good, i.e., a single good with a normalized
price of 1, so that consumption of all other goods is denoted by the expenditure z.

Assume there are ] possible vehicle types (indexed by j = 1, .., /). In the context of
this paper, these correspond to competing vehicle technologies that vary based on the type
of fuel(s) used, efficiencies, costs, and perhaps other characteristics (as in Figure 1). In
addition, consideration will be limited to those households purchasing new vehicles in a
given year, along with various other restrictions. However, the level of detail and other
features could vary widely in other applications, e.g., vehicles could be defined using vehicle
classes (e.g., subcompact car, minivan, pickup, large SUV, etc.), or more detailed vehicle
definitions (e.g., make, model, engine type, etc.). Another possibility is considering both
used and new vehicle purchase behavior.
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Next, we provide a multi-step development of a framework starting with the
following assumption: we consider an individual household making vehicle-related
decisions using a planning horizon of one year, where the unit price for a vehicle of type j is
p;, and the household has an expenditure budget of y (e.g., annual income), so that the
decision problem is defined as:8

maxU(q,z)
q.Z

J
sI.ijqj+Z=y (8)

J=1

q,220

The decision problem in (8) is only a starting point, requiring additional
assumptions to produce specific behavioral models, e.g., the direct utility function in (8) is
completely general with no special structure to address behavior-related factors. These are
developed in the next sections.

4.2 The Discrete-Choice-Only Case

This section reviews assumptions and key features from the extensive literature on
developing discrete choice models consistent with (8) at the individual household level,
where, e.g., a household chooses one alternative from among J available options in a product
category. The first requirement is to clarify the interpretation of q; (whose units have thus
far been left unspecified). If p; is assumed to be the annual (fixed) cost of renting vehicle j,
then g; would be a measure of the number of vehicles of type j rented for the year. Without
additional restrictions (and with an appropriately defined set of J vehicles), (8) could be
used to represent a household’s annual decision of what vehicle fleet to hold (addressing
both the number and types of vehicles).

However, in this section we consider the case where a household chooses one
alternative from among J available options so as to maximize its utility. In this notation,

g.=1 for the (optimally) chosen option ¢ (and ¢ = 0 for j # ¢), and

Uq,z)=U(,...,1....,0,z7)=U(Q,..., 1_,..., 0,y—p.) denotes the household’s
(maximum) utility. The behavioral interpretation is that the household derives a certain
amount of “utility” from “consuming” vehicle ¢ during the one-year period, and also from
consumption of z* = y - p. dollars worth of all other goods. Note that this completely
ignores the variable cost associated with driving, an important issue to be discussed later.
Next, we briefly summarize standard results for this case to provide context (and perhaps a

8 Additional simplifying assumptions to address other behavioral questions that might arise are: the
household repeats this decision process every year, all vehicle types are freely available to the
household for a given year, and that vehicle choices can be made independently of choices in
previous years. In other words, this is a “vehicle holdings choice model” with no transactions cost.
(Later we will change some of these assumptions.)
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review for those having prior familiarity with the topic). For a definitive reference with a
rigorous treatment, see (Manski and McFadden 1981).

The notation for the direct utility function can be extended to include multiple types
of behaviorally related factors. For example, if direct utility is assumed to be a function of
observable vectors of product attributes (x;, j=1,...J), an observable vector of household

characteristics (d), and a vector of preference parameters (f3), it can be written as
U(q,z;x,d,). Note that including d implies that the solution to (8) could be used to

represent market behavior that, e.g., differs across household demographic segments, and
results would need to be combined to represent total market behavior.

Assumptions adopted thus far ensure that (8) can be solved by first determining the
level of utility obtained under the J possible purchase options, and then seeing which one is
largest. Additional behavior-related assumptions on U() play a role in this process. First,
theory suggests that utility would depend only on the attributes of the vehicle being
consumed. Second, utility is typically assumed to be non-decreasing in z, allowing the
constraint in (8) to be expressed as an equality rather than an inequality (<). Under these
assumptions the (conditional, indirect) utility can be written as:

V(y_p];xj’d7ﬁ) = U(O,---’lj,---,O,y—pj;X,d,ﬁ), J = 1,...,.], (9)

and the household chooses the vehicle ¢ for which this value is largest.

In this example the outcome is deterministic, but a major goal is to produce models
appropriate for econometric/statistical analysis of data on consumer behavior. This is
achieved by assuming the direct utility is also a function of additional factors unobservable
by the analyst. It is typical to assume that, e.g., unobservable attributes yield a disturbance

term for each of the J vehicles, i.e., Ej,j =1,...,J . Additional unobserved factors (é) related
to household characteristics and/or preferences may also be included, yielding
U(q,z;x,d,B,e,5).  For now, consider the case of U(q,z;x,d,3,€): repeating and

extending the previous analysis yields choice probabilities given by:
7, =Prob{V(y—p,:x,.d.B.£)=V(y—p;:x,.d,B.€,),j=1....J } (10)

Because it is theoretically valid (under appropriate assumptions) to define the
decision problem in terms of indirect rather than direct utility, publications frequently rely
on (10) to provide the behavioral rationale for discrete choice models. Individuals are
described as making choices consistent with Random Utility Maximization (RUM), where
“random utility” is depicted as
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V,=Vre,j=1d (11)

but, with little reference to the underlying connection to (8), or (frequently) with minimal
consideration of underlying theory-based requirements. The next section returns to a
discussion of theoretical considerations: the remainder of this section reviews additional
details that support empirical application of discrete choice models.

The most well-known discrete choice model (multinomial logit) assumes that the €;
’s in equation (11) are iid Gumbel (with scale parameter (), yielding the following closed

form for choice probabilities?:

T, = ce=1,..J7 (12)

J
>

J=1

For practical empirical work, V is frequently specified as a linear-in-parameters
form that may use any set of scalar functions of the form f,(p;,x;,d) as explanatory

variables, i.e.,

V(p,y.x,.d.8)= B.fi(p,y.x,.d) (13)

Other functional forms might assume a correlation structure among the disturbance
terms, yielding nested multinomial logit models (discussed later) or multinomial probit
models. Random factors that capture unobserved (and perhaps correlated) variation in
preference parameters can be modeled using mixed logit models.

4.3 Extension to Discrete-Continuous Choice

The pure discrete choice framework omits a potentially important behavioral
consideration: a widely accepted tenet in the travel behavior literature is that household
utility is not derived directly from vehicle ownership per se’ (households do not literally
“consume” vehicles), but is more properly viewed in association with the flow of mobility
services that a vehicle provides. In the context of the previous section, a straightforward
modification is to adopt an alternate interpretation of g;. let g; represent (annual) vehicle
miles traveled (VMT), where p; then represents the variable cost of driving (measured in

$/mile).

9 For details on the definition of the Gumbel distribution used here, and a derivation of (6), see
section 5.2 of Ben-Akiva and Lerman (1985).
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Theory-based considerations aside, addressing VMT is important for our purposes
because E4 models measure end-use demand for vehicles in these units, and VMT is the
direct antecedent to emissions. At the same time, the (discrete) choice of vehicle type
continues to be a critical concern, placing us squarely in the domain of discrete-continuous
models.

The solution approach from the previous section is immediately extends to this case,
but with an important difference. The J conditional optimization problems (i.e., /] problems
defined by assuming alternative j is chosen, for j = 1,...,J) are represented by

maxU(O,..,qj,...0,z;x,d,ﬂ,8j)
qj-=

sf.quj +z=Yy (14)
q;,220

but, unlike before, each problem must be solved to determine the optimal value q;

(conditional on j being chosen), and to determine which vehicle c is chosen, q; must be

substituted back into U() to obtain conditional indirect utility. More specifically, when
developing behavioral models via this approach, the first step yields a conditional ordinary

demand function q; (), and the second step yields a conditional indirect utility function V().

However, as implied in the previous section, researchers developing empirical
models frequently take an alternate approach: instead of choosing U() and performing
these steps, they choose a functional form for V(). In this approach it would in fact be
possible to focus only on discrete choice without ever considering VMT, even though the
formal framework is discrete-continuous. However, conditional demand (VMT) functions
can always be derived from V() using Roy’s identity (to be discussed later).

4.4  Aspects of MA®T and TIMES to be addressed

The previous sections establish the initial theoretical results required to support the
stated goal of this paper: integrating behavioral content from MA3T into a TIMES
framework. There are additional steps required, but before discussing them it will be
helpful to first review some specific features of MA3T and TIMES that have a bearing on how
we proceed.

First, consider an important implication of what has been established thus far: these
results suggest that discrete and continuous choices are jointly determined, and, in general,
the choice of VMT will differ depending on which vehicle is chosen. This is a natural outcome
of the assumption that households must allocate a limited monetary budget to cover both
their vehicle-related travel needs and all other expenditures.
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However, this is inconsistent with the modeling assumptions adopted by both MA3T
and TIMES (as will be described). In particular, both MA3T and TIMES (in inelastic mode)
treat household VMT as exogenously determined and independent of vehicle type choice. The
details are a bit more complicated for the elastic case; however, the main goals of this paper
are to (i) establish the relevant theoretical framework, and (ii) apply it for the inelastic case,
which is much more widely used.

Another aspect that can raise complications: long-term vehicle choice and usage
decisions require consideration of both fixed and variable costs, whereas the literature
frequently considers only one or the other, for reasons that will be more apparent shortly.
Addressing this feature requires extending (8), so that the household decision problem
becomes:

maxU(q,z)
q,2

J J

st.ijqj+erI(qj)+z=y (15)
j=1 j=I1

q,2=0

where (as before) p; is the (variable) cost in $/mile for vehicle type j, but in addition, r; is a
(fixed) annual rental cost (in $), and I(q) is an indicator function, i.e., I(q) = 1 if g > 0, and I(q)
=0if g = 0. In the more standard formulation (8) the expenditure constraint is linear, which
has many analytical advantages. In contrast, the constraint in (15) is nonlinear which is
analytically more complex (yielding the aforementioned complications).

But, before addressing (15) more directly, the next section reviews material from
the seminal paper by Hanemann (1984)(hereafter, “Hanemann”). Although based on (8)
rather than (15), it provides useful insight useful for extending the discussion. For
completeness, note that an important early reference addressing discrete-continuous choice
with fixed and variable costs is Dubin and McFadden (1984), who develop models for
household purchase and usage of energy-related appliances. In addition, Bento et al. (2009)
estimate models for the specific case we are considering here (vehicle type and VMT
choice).

A third feature shared by MA3ST and TIMES is that both assume a household decision
framework with a relatively long time horizon (as will be described) and perfect foresight.
Interestingly, although both of these models happen to share this feature, this is, in fact, a
rather uncommon assumption in the empirical choice modeling literature, which is
generally more consistent (albeit perhaps implicitly) with the (one-year) framework
discussed thus far. This will be addressed in section 4.7
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To summarize, we identified three features shared by MA3T and TIMES that differ
from more standard econometric behavioral models, and which also represent potential
complications that need to be taken into account: (i) exogenous VMT, (ii) inclusion of both
fixed and variable costs, and (iii) a long time horizon. Interestingly, the first two of these
can interact in ways that can affect how these theoretical results might be applied (see
section 4.6 ).

4.5 Hanemann (1984) Discrete-Continuous Framework

The framework developed thus has been extended by Hanemann to include features
that are helpful for developing empirical models that are, simultaneously, practical,
behaviorally meaningful, and consistent with theory. First, the utility function in (14) can
be further refined to take the following form:

U(q,z:x,d,B,6)=U(q,,---.9,,2; ¥,(b,,€,),....w (D, ,E,)) (16)

where V¥, is a quality index for alternative j with utility-related interpretations (to be

discussed). It is a function of a vector b; of explanatory variables, and a random disturbance
term &, (both of which are associated with alternative j). The vector b; can be an arbitrary

function of vehicle attributes (x;), demographics (d), and preference parameters. In
addition, he identifies a general family of utility functions of the following form

U=U[S0, S0, S 0. <] a7)

where /(g) is an indicator function that equals 1 if ¢ > 0 and 0 if g = 0. This family and its

subclasses have a very important theoretical property: it incorporates a particular type of
preference structure that ensures the purchase of exactly one product from the category.
Although subtle, early development of discrete choice models (e.g., as described in section
The Discrete-Choice-Only Case) essentially imposed this assumption exogenously, i.e.,
discrete choice was not necessarily an outcome directly attributable to the preference
structure embodied in U().

Moreover, in moving from (16) to (17), the role of the quality index y/; is made
explicit, appearing in expressions of the form y g, or y,;I(q;), which have clear behavior
interpretations. In the first case, y; represents a (constant) rate of sub-utility flow from
consuming j, on a per-unit basis.?® In the second case, Y, represents a fixed amount of sub-

utility that is generated only if alternative j is chosen.

10 This is interpreted as a sub-utility, because the quantity appears in an argument of U(), which must
be combined with other such quantities to obtain total utility.
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For empirical work, Hanemann suggests two alternative forms for y:

v, (b,.)=V ,b)e" =exp(aj+2/3kbjk+ejj, (18)
k
and

v, (b,.e)=W,(b)+e, =, + Y Bb,+€, (19)
k

ie, ln[l/7j(bj)i| and ¥/ ;(D;) take linear-in-parameters forms in (18) and (19), respectively,
where B, 's are preference parameters, and o ’s are alternative-specific constants.

Hanemann provides many examples suitable for empirical work, focusing primarily on two
special cases of the general family in (17):

U(q,z;l//)=U*(Zl//,-q,»,Z) (20)

and

U(q.zv)=U"(Yq;. 2+ 20 ,4,). (21)

In both cases, U*() is a bivariate utility function, where the first argument is
associated with the inside goods and the second argument is associated with the outside
good. The choice of a mathematical form for U*() specifies the preference tradeoff between
“units” of consumption in the two groups?!.

The class (20), where brands are considered “perfect substitutes,” is a frequently
studied case. The class (21) has been characterized as cross-product repackaging, and will
play a role in subsequent discussions. For both classes it is worth considering the effect on
utility of making a marginal change in one of the behavioral factors b, :

U U du, U
= B, 22
ob, ou, db, ou 9P (22)

A

0
)

where u, denotes the argument of U containing b, . The derivative in (22) is zero (ie.,
there is no change in utility) unless g, >0, i.e,, there is no change in utility from a change in
b unless alternative j is being consumed. This property (weak complementarity) is a

logical behavioral requirement, and consistent with these two classes. Moreover, the
overall rate of utility change is a product of two terms: one associated with a change in total

11 A potential question is what role units of measurement might play in each argument, but
as implied previously, we would generally interpret the quantity in each argument to
represent the total sub-utility obtained (directly) from each group.

22



sub-utility u,, and one due to a conditional change in utility associated with the specific

inside good being consumed.

For (20), it can be shown the alternative with the smallest value of pj/l//j will be

chosen, i.e., the alternative with the smallest “price per marginal utility”. Similarly, for (21)
it can be shown that the alternative with the largest value of V,—p, will be chosen, i.e., the

alternative with the largest “net utility per unit” (implying that y/; in this class is measured

in dollars per unit). The main implication is that (for these classes) discrete choice is
independent of the functional form of U*(), and depends only on prices and the index
functions. However, the (conditional) continuous choice g; does depend on the functional

form of U*().

In particular, if (18) is used in association with class (20), and g, ’s are iid Gumbel

(with scale parameter ft), then all discrete choice models in the class are given by the same
multinomial logit model:

e

iT 7
Ser
=1

V

(23)

where v, =In[y(b,)]-In(p;). Similarly, combining (19) with (21) yields (23) with
v, =¥ ,;(b;,)— p, .12 Note that, when estimating (23), the parameter f (which appears in the
terms —uIn(p;) or —up; for class (20) or (21), respectively) can be interpreted as a price

coefficient. However, in statistical procedures it cannot be separately identified from the
parameters (¢, 3 ) in (18) or (19). This means that, at the very least, a decision on whether

to use —tIn(p;) or —up; when specifying a discrete choice model for applications with a

potential continuous-choice aspect can be viewed as making an implicit assumption about
the form of the underlying direct utility function.

We next summarize additional results that address relationships among direct
utility, indirect utility, the continuous choice, index functions, etc. When solving (14) using
classes of the form (20) and (21), the conditional utility maximization problem can be
characterized as:

12 Hanemann uses a different definition for the Gumbel distribution than the one we use here, so that
his version of (23) uses Vl//.t in the exponents.
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max U (w,,w,)

SI.pwtw, =Yy (24)

w,,w, 20

Applying the usual derivation from microeconomics (and standard assumptions),
solving (24) yields ordinary demand functions wj(p,,y) and w;(pl,y), and the indirect

utility function:

Vi(p, ) =U"[w(py)wy(p3) ] (25)

As noted previously, one instead decides to directly specify rather than solve (24),

the ordinary demand function wj(p, ,¥) can be obtained using Roy’s identity!3:

aV*(pl’%
W;F(Pn)’):—*—pl (26)
WV (p,.y)
s

Hanemann shows that, if w,(p,,y), w,(p,.y), and V'(p,,y) are valid solutions to
(24), then the following are valid solutions to (20):

Qj(pjay;Wj):?WI[jayJ

J J

z(pj,y;wj)=wzl[w—’,yj (27)

J

— « P
Vip,.yy;)=V [—’ ,yJ
v

J
Similarly, the following are valid solutions to (21):
q,(p;>ys¥ ;)= W?(p, —l//,,y)

z(pj’y;l//j) = W;I (pj _Wj’y)_l//jw;k(pj _Wj’y) (28)
Vi(p, v ,)= V*(pj _‘/’j’y)

13 Alternatively, one could start by assuming a form for w}k and derive V~ by solving the partial

differential equation embodied in (17), as in, e.g,, Mannering and Winston (1985).
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The usual properties of indirect utility functions are that they are decreasing in the
first argument, and increasing in the second argument. This is the reason for the earlier

statements regarding discrete choice: Alternatives with the lowest values of P and
v,
p; —Vy are chosen for cases (20) and (21) respectively.

However, note that this result depends heavily on the fact that fixed costs have been
omitted. If the preceding results were re-derived based on (15) rather than (14), the
solutions for classes (20) and (21) would be, respectively,

qj(pjay;w]‘):Lw; &’y_rj
v, '\v

J Jj
= ) o P
Z(pj’y’y/j):wll(_’y_rj] (29)
v,

J

_ < P
Vip;ysy))=V (W—’,y—r,}

and
,(p; v )=w;(p,—v,.y-r)
2Py ) =wy(p,—v,y—r)-ww (p,—vw,.y-r) (30)
V.(p, v )=V (p,—v,y-r)

Note that, because including both fixed and variable costs implies simultaneous
changes to both arguments, the strong result that discrete choice depends only on
(variable) prices and quality indexes no longer appliesi4. This will be addressed again
below.

We next turn to an exploration of models at a higher level of detail. In addition to
the previous general results, Hanemann provides many specific functional forms that yield
practical empirical models. In our work we have found it helpful to work with direct utility
functions if possible, because the behavioral interpretation of parameters can be much
more straightforward. However, as implied above, much of the empirical work in the
literature is based on indirect utility functions and/or demand functions, so not
surprisingly, most of his examples are of this type. In fact, he specifically discusses only one

14 For completeness, note also that, either way, these results exclude the notion of a fixed utility
“bump” associated with the purchase of a specific vehicle (i.e., utility comes only from driving the
vehicle).
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form of direct utility, but it is one we find useful. This and other examples are discussed in
the next sections.

4.6 The Blackburn Model

Hanemann’s equation (3.29) is the following direct utility function, which he credits
to Blackburn (1970)

u(qW,z) = qu[lﬂne—1n2q].}+hz+2y/jqj, 0>0,h>0, (31)
J J J

where ¥ ; takes the additive form in (19) to generate a MNL discrete choice model. He also

notes that (31) does not explicitly appear, but is “implicit in his analysis.”1> Other
researchers have also used this form for reasons that will become apparent, but make a
variety of assumptions on how stochastic structure is introduced. For the current
discussion, (31) will be treated as deterministic.

First, note that the two additional behavioral parameters introduced by (31) are 6
and h. Second, Hanemann assigns (31) to a category of “other utility models”; however,
when written in a slightly different but equivalent form, it belongs to the class (21) of cross-
product repackaging models. Specifically, consider the bivariate utility function of the form

U'(w,,w,)=w,(1+In0—Inw,)+hw,, 6>0,h>0. (32)

In this form, utility is additively separable between inside and outside goods. Utility
units appear to be measured in units of consumption of the inside good, so h could be
interpreted as a scale factor that converts units of the outside good ($) to units of the inside
good (in our case, miles). Directly applying (32) to (21) yields the direct utility function

u(q.w,z)= qu [1+1n9—1n2qj]+h[z+21//jqjj, (31)
J j J
a slight variation of (31), and the conditional direct utility is
g,y ) =U"(q,2+y,q)=q,(1+In0~1ng, )+ h(z+y,q; ). (33)

First consider the form of (33) and its interpretation in the context of cross-product
repackaging. The first argument of U*() is a function of VMT only (i.e., there is no quality
index), and yields the first term on the right-hand side of (33). For this term, the subscript j

15 [nterestingly, Blackburn developed this model in the context of analyzing aggregate consumer
travel demand.
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has no relevance: we interpret this term as yielding the contribution to household utility of
VMT as a commodity, i.e., the utility of vehicle VMT as a “basic mobility service,” which is the
same regardless of vehicle type. This term has a clear behavioral interpretation worth
mentioning. First, it approaches 0 as q approaches zero. It is increasing in g, but at a
decreasing rate, reaching its maximum value at 8, with a slope of zero. In other words, 0 is
the maximum (sub-)utility that can be attained from VMT in its role as a commodity.

The second argument of U*() is associated with utility obtained from consumption
of “all other goods,” which is expressed as the second term on the right-hand side of (33).
The interpretation of z+y g, is that vehicle j has certain qualities that generate additional

services under the category “all other goods” (as a function of VMT) in addition to fulfilling
its role as a provider of “basic transportation services.”

As an example, suppose that vehicle j has special HOV or toll lane privileges so that
the vehicle may be used in these lanes without paying congestion fees. This yields direct
monetary savings that, in effect, relaxes the budget constraint to allow additional
expenditures on outside goods, thus generating additional utility. In addition to direct
monetary savings, these privileges also provide additional discretionary time, which can be
devoted to activities that also increase utility.

To complete this discussion we make another modification, rewriting (31’) as

1 ”
u(q,l//,z):quj(1+1n9—1n2q1J+Z+2'~/]]qJ (31 )
J J J

which is equivalent to (31’), except that this form clearly highlights that utility has the same
units as z ($). The conditional ordinary demand function and conditional indirect utility
function associated with (31”) are

q;(p,y,y)=0e"" (34)
* 6 V,=Ppj
V. (pj,w,»,y)=y+ze T (35)

These yield additional observations. First, both household VMT demand and vehicle
choice are unaffected by income in this model. Second, consider the case where y; =0 for

all j, so that vehicle quality differences have no impact on decision making. It is clear that
the vehicle with the lowest operating cost ( p;) would be chosen, and that it would be

driven further than any of the other vehicles. As p; gets smaller, VMT demand approaches

0 and total household utility approaches y+6/h (the maximum possible utility, measured

in dollar units).
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Now, reintroducing y/;, it is clear that (as in earlier discussions) the vehicle with the
largest value of y/; — p; is chosen, and VMT demand increases with increasing y/ ;. If y/; is

specified as in (19) along with the usual assumptions, the discrete choice model is given by
(23).

Now, suppose that fixed costs are included and the above analysis is repeated for
(15). Interestingly, for this case the conditional VMT demand does not change. However,
the conditional indirect utility function in this case is:

0,
Vip, W, »=y—r+ Ze‘”’ & (36)

which, as discussed previously, complicates the determination of which vehicle is chosen.
Although this form can be readily addressed using today’s computational methods for
model estimation, this result is unhelpful for the purpose of this paper.

However, it will now be helpful to consider the implications of imposing an
assumption that VMT is exogenously determined. Let us continue to assume that (31”)
represents a household’s true utility, but that a constraint is added to impose an
exogenously determined level of VMT: qu =¢g". In this case, the household’s conditional

J
utility under each of the J vehicle options is given by:

u(q; v, )=U(q" y=r,-p,q +¥,q")
1., . (37)
=Eq (1+ln9—lnq )+y—rj—qu +V,q

In this case, the utility from the first term (basic transportation service) is the same
for all vehicles and plays no role in the discrete choice. As before, the level of income also
has no effect, and the chosen vehicle is the one with the smallest value of

rADPq Vg (38)
The first two terms of (32) are the total monetary cost of using the vehicle, and
—l;/jq* can be interpreted as the (negative of) the cross-product repackaging benefits due to
the unique quality characteristics of vehicle j. Because (37) is based on a direct utility
model for which utility is measured in dollar units, (38) implies a vehicle choice decision
criterion of “minimizing costs.” The first two terms are monetary costs measured in the
usual way, but the third term must be interpreted as a generalized cost arising from other

factors. This interpretation of “disutility” as a generalized cost is common in the transport
literature, and is used by Lin and Greene (2011) for the MA3T model.
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Alternative terminology arises from dividing (38) by ¢" and incorporating (19),

yielding

1 1
lge; = 7 Py, = g7 rﬁPﬁ%‘Zﬁkbﬁ—g.f (39)
k

where /gc; denotes the levelized generalized cost for vehicle j (or, “generalized cost per

mile”), extending the notion of levelized cost commonly used in the energy systems
literature. An MNL model can be defined by using v, =—Igc; in (23). However, if specific

discrete choice model specifications are developed using (39), it would be important to
recall this behavioral interpretation as a levelized cost.

As a technical matter, it is important to understand that the main factor leading to
these results was the assumption/interpretation of cross-product repackaging, i.e., that the
utility model is a member of class (21), and that these conclusions are true for any

U*(w,,w”) as long as there is some type of separability between the two categories of

goods (inside versus outside):
(g, W) =U"(q;.2+v q)=1u,(q)+u, (z+v ,q,) oru,(q)u,(z+v,q,). (40)

Of course, such assumptions are typical for this type of analysisé. The Blackburn
model assumes that u,() in the additive version of (40) is linear, but this linearity

assumption is not what drives the result.

To review, equation (38) provides the essentials for a theory-based approach to
solving the specific problem addressed in this paper: Incorporating behavioral content
from MAS3T into the TIMES model (when used in inelastic mode). In both approaches, the
assumption that VMT is determined exogenously implies that discrete choice is determined
on the basis of minimizing “generalized cost.” This interpretation is aided by the cross-
product repackaging framework, which is consistent with the notion VMT affects household
utility in two different ways: (i) a direct impact from VMT as a “commodity” (which is the
same regardless of vehicle type), and (ii) an indirect effect due to those features that
differentiate vehicles from one another, through their impact on how utility can be
generated via “all other goods.” However, the tractable forms of equations (38) and (39)
only arise under the additional assumption of exogenous VMT.

As has been shown, this assumption that vehicles with different characteristics
would all be driven the same distance is inconsistent with the underlying economic theory
(as well as empirical observation), and one cost of making this assumption is the loss of the
conditional ordinary demand functions for VMT produced by the theory. This may be one
reason for the apparent gaps between how discrete choice models are typically applied in

16 Note that the last term in (40) can be transformed into an equivalent additive form by taking logs.
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the econometrically oriented literature versus applied energy modeling, adding to the
challenge of cross-fertilization of results. Although the exogenous VMT assumption works
in our favor here, this issue re-emerges for the case of elastic demand and partial
equilibrium modeling. We hope to extend these results to this case in future work.

4.7 L-Period Household Decisions in TIMES and MA3T

The theory and results provided thus far were developed using a 1-year time
horizon, as is typical in the discrete choice modeling literature. However, as shown in
section 3, TIMES assumes a multi-period planning horizon, incorporates a discount rate to
evaluate future costs in current dollars, and assumes that purchasing a vehicle can be
viewed as an investment with a specified lifetime. MA3T also simulates multi-period vehicle
market behavior, and adopts a similar view of household decision-making. Both models
share the following assumptions:

1. Households buy one vehicle at a time, with the expectation of holding the purchased
vehicle for L years (the lifetime of the vehicle).

2. Vehicles are purchased in the new vehicle market, and are driven by households
that purchase them for their entire lifetime. When vehicles are retired, households
repeat the process.

Under these assumptions there is no such thing as a used (or secondary) market in
either model. In addition, all households are essentially treated as one-vehicle households
(i.e., there is no notion of multi-vehicle households where VMT can be allocated across
vehicles), and all vehicles are identical except for body type (limited to two levels: car
versus truck) and fuel technology (see, e.g., Figures 1 and 5). As already discussed, both
models assume that all vehicles are driven the same distance (regardless of type), and that
VMT is exogenously determined. Because any of these simplifying assumptions have
behavioral implications household choice of vehicle fuel technology, they could the subject
of future investigation.

In the remainder of this section, we address features related to the L-period
planning horizon. As a preview (and focusing for the moment on monetary costs only),
what we will show is that (at the individual household level) equation (7) in section 3 is the
extension of equation (38) (the one-period result), to the L-period case.

A frequent assumption in the economics literature is that household utility is
additively separable over periods (years) with a discount rate d (which represents time

1
preference for utility), and an associated discount factor defined as p = ﬁ Under this
+

assumption, consider the (conditional) direct utility function for vehicle j:

U'(q,z)=)Y,p"'U(q,.z,) (41)

t=1
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where the subscript j has been suppressed (for notational convenience, to allow
introduction of subscript t), and U() is an appropriate one-period (bivariate) utility function
of the type used previously. The bold notation here denotes L-vectors of consumption
quantities, e.g., g, is VMT for period ¢, and q =(g,,....q, ).

The household is also assumed to have an expenditure constraint in each period
with known income (y, ), and a known variable cost ( p,q,) of using the vehicle. However, a

complication is that the household can now be viewed as making a capital investment (C) in
period 1 when the vehicle is first purchased (corresponding to the vehicle purchase price),
which would have a differential impact on the period 1 budget constraint. This can be
mitigated by an additional assumption: households are allowed borrow and lend money in
the form of bonds, at a constant interest rate (R).

It can be shown that the initial formulation of the household’s decision problem can
be expressed as

L
H;II%XU(q’Z) = ZPHU(% :Z,)

t=1

subject to (42)
PV. =PV,
q.z=20

where PV, is the present value of consumption expenditure, and PV, is the present value of
income, so that the constraint in (42) can be written as

+ + +
PVCEC"‘qul"‘Zl"‘pzqz L PTG Pl

1+R  (1+R) 1+R)"
(+ry T (1eR) .
Y2 Y3 Vi -
+ - ot —=Lt_— =PV
TR xRy (xRS
The Lagrangian for solving this problem is
L
L(g.z.A)=Y, p"'U(g,.2)+A(PV, - PV,) (44)
=1

and from considering the first-order conditions it can be seen that additional simplification
is possible by making a number of assumptions. First, assume that household’s discount
rate is the same as the borrowing interest rate, i.e, d = R, or equivalently, (1+R)p=1.

Second, assume that income and variable cost is the same for all periods: behaviorally, this
could be interpreted as an assumption on the household’s expectations for future income
and fuel prices.

Under these conditions, it is possible to show that the constraint in (43) can be
replaced by

31



L

PV, = ZH”" : (r+pq+z)z 21+R =PV,  (45)
1

where the capital cost in period 1 has been redistributed (using the borrowing mechanism)
to create an equivalent expression that uses an annual rental cost r, and annual VMT (q),
which under these assumptions will be the same in all periods. For (44) and (45) to be
equivalent, the rental cost r must be chosen so that

(1+R)" 1_( 1 j
1+ R
| (46)
1_(1 R)
jr:Co -li_ L=C‘CRF
1+ R

where CRF is called a capital recovery factor. So, the lifetime cost of vehicle ownership (for
vehicle j) has been redistributed so that it has the same annual cost in all periods: r + pq. In
fact, TIMES actually implements cost calculations this way, using the CRF in (46) to create
the same annual cost for any particular vehicle investment (see footnote 7). At the same
time, the NPV calculations are mathematically equivalent to what would be obtained using
the equations in section 3. Most importantly, under these conditions the solution to this
multi-period problem is equivalent to the one-period problem discussed in section 4, so that
the results and insights from the previous sections can be immediately applied.

Consider the specific case of developing a choice model based on equation (38),
under the assumption that there are S consumer segments (indexed s = 1,..., §). Assume also
that explanatory variables in equation (19) can vary by segment (but not over time), but
that preference parameters and other assumptions are otherwise the same. To be
consistent with TIMES, assume that future fuel prices might vary, but are known to
consumers (who have perfect foresight). Finally, assume that annual VMT is exogenously
specified (but can vary by segment).

The model determining vehicle choice for any particular year (which can be
arbitrarily labeled ‘1’) is given by
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= NPVGijl - 82

where NPVGC; is the NPV of vehicle j's generalized cost for a consumer i

randomly chosen from segment s (in period 1), qf is VMT for s (assumed to be the same for

all members), € is a random term capturing the difference between consumer i’s quality

index for vehicle j and the average for segment s, ¥ is a constant obtained by summing the

discount factors, NPVGCjs is the average NPVGC of vehicle j for segment s, and

8; = j/qjeﬁ. Some features of this example will be used in later discussions.

Although highly specific, (47) illustrates how theory-based assumptions and their
implications can be understood and maintained. Earlier assumptions now yield a model
where “units” are in NPV-dollars, and the first two terms in the middle equation of (47)
coincide with standard financial calculations. The additional generalized cost terms based
on equation (19) apply assumptions so that ¥ ,(b,) and € are interpreted as “generalized

variable costs” measured in units of dollars-per-mile. This is certainly appealing based on
theoretical considerations.

However, at the same time, these expressions rely on the assumption of fixed and
known VMT, so the “variable cost” interpretation is in a sense arbitrary. Combined with
discussion in this section, which shows costs can be expressed in multiple equivalent ways,
it would be possible to develop alternative measures based on fixed annual costs. In fact,

once everything is expressed in NPV dollars for the current period, the quantity NPVGC j,
could be reinterpreted as being equivalent to a single pseudo-capital expenditure in period
1. This is, in effect, what will be done in the next section. This is convenient, because it
provides a mechanism to include generalized costs that, while based on VMT, could be
nonlinear rather than linear, as in equation (19).

One final point: although (47) might be considered “complex”, it still includes many
strong assumptions. For example, preference parameters are assumed to be the same for
all segments, which is an assumption that is frequently relaxed in discrete choice modeling
applications.

To summarize, individual-level consumer vehicle is assumed use a criterion of

minimizing NPV of total lifetime (generalized) costs. To start, these costs are treated as
coming from two sources: a fixed investment cost in the first period (C), and variable costs
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(p,) that occur over all periods during the lifetime of the vehicle.l” Computing the full NPV
requires the annual VMT (q.), and a discount rate (d). This calculation can be performed as
in equation (7) for monetary costs. This can be extended from monetary costs to
generalized costs by augmenting C and/or p, with appropriate generalized cost measures,
which depend on the nature of the cost (investment versus variable), or through other
equivalent approaches. Extending this to include features from discrete/continuous choice
modeling theory, these measures could include uncertain, unobservable random factors
from some specified statistical distribution.

5. Incorporating MA3T Consumer Behavior into TIMES

This section applies material from section 4 to produce empirical results. There are
two main aspects of the MA3T choice model that will yield more realistic market response
when integrated into TIMES: (i) introducing additional product dimensions that
differentiate among competing vehicle fuel technologies, and (ii) introducing consumer
heterogeneity to yield vehicle purchase shares rather than “all or nothing” behavior.

The first aspect (i) recognizes that vehicle choice is affected by factors other that
simple monetary costs, which requires development additional generalized cost measures
that can be justified by theory. These include, for example, lost time due to differences in
refueling characteristics and/or station availability. As discussed below, these can often
interact with the second aspect (consumer heterogeneity). One specific feature of MA3T is
its inclusion of effects that can change over time due to the dynamics of market
penetration—see, e.g., section 5.6.

The second aspect (consumer heterogeneity) can be classified into two types:
observable and unobservable. The first (observable) is associated with consumer
segmentation. For example, some households might live in housing types that can
accommodate at-home recharging of plug-in vehicles, whereas others may not. This affects
the practicality and convenience of owning plug-ins (which can be represented as a
generalized cost), which will differ across segments. Other segmentation dimensions
considered here include: annual VMT (three levels), availability of workplace recharging,
and attitude toward risk for new technologies.

The second type (unobservable) is associated with the random disturbance term
assumed for implementing discrete/continuous models, as in, e.g, (18) and (19). We
propose introducing these effects into energy systems models by generating random draws
from appropriately specified distributions to create multiple “clones” from each consumer
segment.

17 Annual fixed costs could also be included, but in an NPV framework an equivalent calculation could
be performed that would absorb these into the period 1 cost.
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To begin, it is obvious that the two models should be essentially equivalent if the
same basic input assumptions are adopted (vehicle capital costs, efficiencies and lifetimes;
fuel costs; average annual VMT; household population projections; etc.), and decisions were
based only on monetary costs, with no introduction of random disturbance terms.18 Choices
in both models are based on cost minimization using NPV of lifetime vehicle costs. From
this starting point, in what follows we sequentially introduce additional behavioral factors
from MAST into a TIMES model. Section 5.1 reviews results based on monetary costs only.
Sections 5.2 through 5.6 add generalized cost factors that are based on vehicle
characteristics and consumer segmentation (observable heterogeneity). In each of these
sections the basis for computing relevant generalized costs is described. In terms of
implementation, these costs are computed to represent the total lifetime cost associated
with a vehicle purchase, which are added to the investment cost input data in TIMES.
Section 5.7 is focused on introducing unobservable heterogeneity.

To be clear, the results produced here are from a TIMES model intended to address
the same domain as MA3T (i.e., behavior of the household vehicle market in the United
States for the period 2005 to 2050) for purposes of demonstrating the approach. We are
also in the process of introducing these modifications into a model of the California energy
sector (CA-TIMES).

A common set of input assumptions was developed to support comparison and
validation. As noted previously, focus is on choice among vehicle fuel technologies shown in
Figure 1, which are available in two versions: passenger cars and light trucks. All vehicles
compete with one another in the household market, in contrast to many TIMES models
where demand for passenger cars and light trucks are treated separately.

5.1 Capital investment and fuel operating costs

As noted previously, the starting point for this process is to base choice only on
monetary costs, assuming no consumer heterogeneity. The relevant input data (new
vehicle purchase prices, vehicle fuel efficiencies, fuel costs, the year in which a new vehicle
technology is introduced, etc.) are adopted from MAST, which uses vehicle price and
efficiency attributes from the Autonomie Model (2013). One question that can arise in this
type of modeling is how to address the possibility of price reductions from technological
learning that might occur during the period immediately after introduction. To keep things
simple, and because this issue is not central to the purpose of this paper, we use “learned
out costs” to represent vehicle capital investment.

There are many other details required for setting up TIMES models that are beyond
the scope of this paper but could be of interest to some researchers. For example, these

18 [n fact, there would be one slight difference: TIMES assumes perfect foresight and knowledge of
future fuel costs, whereas MA3T assumes that consumers will expect future fuel costs to remain the
same as current fuel costs.
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include details on household population and VMT projections (which grow over time), the
requirement to create 15 initial “cohorts” for the base year vehicle fleet (corresponding to
the vehicle age distribution, assuming a common vehicle lifetime of 15 years), etc. In
addition, as we add consumer segmentation dimensions in later sections, this requires
additional sub-division of these initial cohorts. Another issue is how to properly address
the case of vehicles that use multiple fuel types.

The initial results using monetary costs only are shown in Figure 6. These show
new vehicle sales shares by fuel technology type, i.e., results have been aggregated over cars
and light-duty trucks. These reveal a number of important features. First, these are the
same results as in Figure 2, used to illustrate the well known “all or nothing” (or “knife
edge”) behavior associated with models of this type. Second, the complete switch to
battery-powered EVs starting in 2020 is based on a major oversimplification, specifically, all
households were assumed to have the capability of recharging a plug-in vehicle at home,
and all households are assumed to have the same daily VMT (with no variation). Under the
technology input assumptions, all VMT can be satisfied by an EV that starts out each day
with a full charge, and the household chooses EVs in later years because they have the
smallest levelized cost. However, all of these assumptions are unrealistic and will be
relaxed in later sections. A related observation is that diesel is preferred (briefly) in 2012.
However, this basic model omits the effect of limited diesel refueling stations (see section
5.3). Finally, we note that all of the purchased vehicles are cars (no light-duty trucks).

5.2  Consumer Segmentation by VMT Group

The first added factor recognizes that households can vary in their VMT patterns.
This heterogeneity is introduced by dividing the household population into three VMT
groups based on their average annual driving profile: low annual VMT (8,656 annual miles),
average annual VMT (16,068 annual miles), and high annual VMT (28,288 annual miles)—
see Lin and Greene (2011).The effect of adding this dimension is that total lifetime vehicle
costs vary by group for all vehicle technologies, yielding the results in Figure 7.

These show the effect that VMT heterogeneity can have in a cost-minimization
context. In 2012, each of the VMT groups chooses a different vehicle technology (low VMT =
gasoline, average VMT = diesel, and high VMT = gasoline hybrid). High VMT households
purchase the most fuel-efficient vehicle (gasoline hybrid) despite its higher capital cost, and
when EVs are introduced in 2013, these households are the first to switch to EVs (which
have higher capital cost, but also lower fuel-operating cost). Under the adopted input
assumptions, future vehicle and fuel costs change over time in a way that cause all segments
to eventually shift to EVs.
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5.3 Inconvenience Cost for (Non-electric) Refueling Infrastructure

The next factor introduced relates to the spatial coverage of refueling station
infrastructure. This specifically applies to liquid or gaseous fuels, e.g., diesel, ethanol,
hydrogen, or natural gas, under the assumption that these fuels are only available at
stations away from home. Under the input assumptions adopted here, this turns out to be
relevant only for diesel vehicles. Although the term “inconvenience cost” may suggest some
type of psychological distress or disutility associated with driving out of one’s way to refuel
a vehicle, the measure of inconvenience cost developed for MA3T is consistent with the
generalized cost discussion in section 4.6.

Specifically, while utility from “VMT as a commodity” is the same for all vehicles, a
vehicle requiring fuel with limited refueling infrastructure would, on average, require a
reallocation of time away from other, more desirable activities relative to a comparable
vehicle with ubiquitous infrastructure (e.g., gasoline). This would create a loss of utility, as
measured from a reduction in consumption of other goods. Recall that the outside good is
viewed as a numeraire good (measured in dollars), and in such cases it is common practice
to evaluate its reduction from lost time by using the household wage rate.

Greene (1994) develops an estimate for refueling inconvenience measured as the
additional annual time required by a vehicle fuel technology relative to a comparable
gasoline vehicle. First, required number of (annual) refueling events is estimated. This
depends on the VMT usage pattern, fuel efficiency, and energy storage capacity of the
vehicle. Fuel efficiency and storage capacity are used to compute vehicle range when fully
refueled. Combining this with VMT yields the number of refueling trips required. Second,
the amount of time required per trip depends on two factors: the actual time to refuel the
vehicle, and any extra time required to travel to a refueling station. The first factor depends
on the technology, and the second factor depends on the availability of stations. Station
availability relative to gasoline is measured using an index, for which 100% would be “the
same as gasoline.” Using the estimated number of trips, and extra time required per trip,
the total extra time (relative to gasoline) is computed. This is converted to dollars by
multiplying the estimated average wage rate for households (Lin and Greene 2010; Melaina,
Bremson, and Solo 2013)19.

Under the input assumptions, the results when adding this cost are essentially
identical to Figure 7 (so they are not shown). The only difference is that the diesel vehicles
purchased in 2012 are shifted to gasoline hybrids. This factor becomes much more
important when considering scenarios involving, e.g., vehicles using hydrogen or natural
gas.

5.4 Range Limitation Costs for Vehicles Using Battery Technology

As already discussed, a narrow focus on capital and fuel-operating cost yields the
results shown in Figure 6 where EVs achieve 100% new vehicle sales share starting in 2020.
However, the range and recharging limitations of these vehicles have been a major subject

19 The details are rather complex, and are not included here.
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of concern and discussion for decades. Discrete choice models using stated choice
experiments have been used to empirically estimate measures of “consumer disutility”
associated with range limitations: see, e.g., Bunch et al. (1993) or Brownstone, et al. (2000).
While these empirical measures could be used as a measure of generalized cost, Greene and
co-authors have taken a different approach that relies on a more detailed “bottom up”
exploration of the implications of limited range and its interaction with data on actual
vehicle usage behavior.

For example, suppose that the household driver: (i) has a completely fixed driving
routine that is exactly the same every day, (ii) the routine accounts for all of the household’s
VMT, (iii) the vehicle can be recharged at home overnight and start each day with a full
charge, and (iv) the daily VMT requirement is less than the vehicle range. Then, the results
in Figure 6 might be possible. However, the reality is much more complex.

First, daily VMT requirements are not constant and fixed, but are randomly
distributed. So, there is at least some positive probability that it would be difficult to use a
limited range vehicle on a variety of occasions. Moreover, because VMT needs can be
uncertain even during a given day for an individual driver, as the remaining vehicle range
approaches zero a driver would face the prospect of running out of charge, which would be
extremely inconvenient. Psychologically, concern about this potential risk would lead to
“range anxiety” which, as noted in Lin (2012) is difficult to measure. In the economics-
based behavioral framework developed here, it is possible to perform a type of risk analysis
leading to a measure of (expected) “range limitation cost.” This involves estimating the
probability of “insufficient range events”, and also a way of assigning a cost measure to
such outcomes. For example, if on a particular day a vehicle’s range was insufficient to
satisfy all mobility needs, this would require procurement of additional mobility services
(e.g., a cab, rental car, or asking a favor of one’s brother-in-law) to cover the shortfall. The
goal is to develop an estimate of expected (generalized) cost that, as in earlier discussions,
could be viewed as a measurement of lost utility associated with a reduction in
consumption of the outside (numeraire) good.

However, there are a number of factors that would play a role in such an analysis.
Until now, we have assumed that anyone owning a plug-in vehicle could obtain a full charge
by plugging it in overnight. This is clearly incorrect, because there will be households that
(for all practical purposes) lack home recharging capability. The initial scenario in the
previous sections assumed that all households had access to home recharging. Based on an
analysis of National Household Transportation Survey data (2009), the MA3ST model
assumes that only 52% of households have access to home recharging infrastructure.

But, even if home recharging is unavailable, there are other options. Some
percentage of households will have access to recharging at work (Lin and Greene 2011).
Anecdotally, many EV owners with workplace recharging rarely use home recharging, even
if they have a level 2 charger installed at home. In any case, the availability of both options
would clearly affect the details of the “risk analysis” calculation described above. Finally, a
complete analysis would include the impact of public recharging infrastructure. As in
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section 5.3, one concern is the availability of stations; however, the overall problem
addressed here is very different. The major focus here is the effect that all of these factors
have on the probability that the on-battery driving range of a plug-in vehicle will be
exceeded, affecting the distribution of additional range-related costs.

To review, key factors affecting the probability that on-battery range will be
exceeded are: vehicle range on a fully-charged battery, the distribution of daily VMT (not
just the average), home recharging capability, workplace recharging availability, and public
recharging station availability. Two of these factors (home and work recharging) expand
the number of consumer segments by a factor of 4, and an assessment of how households
are distributed across segments becomes another input assumption requirement. Two of
these (workplace and public station availability) could vary substantially over time, and
could be heavily influenced by policy makers. Also important to note: Although for now our
focus will be on dedicated BEVs, these factors would affect calculation of vehicle fuel cost
estimates for multiple-fuel vehicles (e.g., plug-in gasoline hybrids).

The type of calculations used to estimate range inconvenience costs are discussed in
Lin and Greene (2011). First, they use NHTS data to estimate the distribution of daily VMT
(assumed to be gamma) for each of the three groups discussed previously. Taking into
account the various factors discussed above (which vary by consumer segment), they
estimate the probability that range will be insufficient on any given day (P;). Specifically,
computing P; requires evaluating an integral that depends on the daily VMT distribution for
the segment, the vehicle range on a full charge, and the nature of the portfolio of recharging
options available to the segment. Multiplying P; by 365 gives the expected number of
“insufficient range” days per year. Finally, this is multiplied by a per-day cost penalty to
obtain an annual expected cost.

The daily inconvenience cost penalty (in $/day) is based on researcher judgment
apply arguments discussed previously (i.e., need for substitute mobility services), and we
adopt those used in MAST. In their approach, they link this figure to another consumer
segmentation dimension: attitude toward risk. Households are assumed to fall into one of
three categories (early adopter, early majority, and late majority), and the cost penalty is
assumed to increase with increasing risk aversion (specifically, $10/day for early adopters,
$20/day for early majority and $50/day for late majority)—see Lin and Greene (2011).

Note that these calculations only apply to dedicated BEVs, and not dual-fuel vehicles
such as, plugin hybrid vehicles. In those cases, the approach used to compute the effect of
available recharging options is used to determine the share of electricity used as a fuel. For
example, in a scenario where there is no work or public recharging available, a household
with no home refueling capability would operate a plugin hybrid vehicle the same as a pure
gasoline hybrid vehicle.

The next sequence of results has been produced to illustrate the effects of the
various factors that have been discussed. First, we add range inconvenience cost to the
previous input assumptions, and assume that all households are “late majority.”
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Specifically, all households have access to home recharging (but not work recharging or
public recharging), are “late majority” in their attitude toward risk, but there are three VMT
groups. See Figure 8. Adding range inconvenience cost removes all EVs from the previously
observed mix, and vehicle purchases are almost exclusively gasoline. In some periods the
high VMT households prefer gasoline hybrids based on their lower lifetime costs.

The next results introduce public recharging, using the assumptions shown in
Figure 10. The number of recharging locations starts small, and levels off at a maximum of
about 15,000 in 2035, with an average of three charge-points per station, all Level II
chargers. The results from adding public recharging are shown in Figure 11, and the effect
is relatively small. In later years the high annual VMT drivers switch from gasoline, and
gasoline hybrids, to PHEV 10s.
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Range Limitation Cost + Three VMT Groups

41



16000

14000 7
10000 l/'
8000

6000

5
g
SN

4000

/
-]

No. of Public Recharging Stations

2005
2008
2011
2014
2017
2020 -
2023
2026
2029
2032
2035
2038

Figure 9. Nationwide Public Recharging Station Trajectory Assumption
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Figure 10. New Vehicle Sales Share: Monetary Costs, Refueling Inconvenience Cost, Range
Limitation Cost, Three VMT Groups with Public Recharging Infrastructure

It is important to remember that the Figure 10 assumes that all households have
home recharging. However, MA3T assumes only 52% of households have home recharging
capability. Introducing this factor doubles the number of segments from three to six,
yielding the results in Figure 11. PHEV 10 demand is cut in half, presumably because of
switching by households without home recharging.
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Figure 11. New Vehicle Sales Share: Monetary Costs, Refueling Inconvenience Cost,
Range Limitation Cost, Six Consumer Groups, No Public Recharging Infrastructure

The next step is to add the dimension of workplace recharging. This doubles the
number of consumer segments (again) to 12 groups. Similar to public recharging
infrastructure, we assume a gradual increase in workplace recharging investment over
time, so that in 2050 about 5% of the US population has access to workplace recharging—
see Figure 12. The associated results are shown in Figure 13. The impact of adding this
dimension is that now there are consumer segments for which BEVs are the best option.
Households with both home and workplace recharging have small enough range limitation
costs that these vehicles become viable.
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Figure 12. Nationwide Percentage of Population having access to Workplace
Recharging Trajectory Assumption
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Figure 13. New Vehicle Sales Share: Monetary Costs, Refueling Inconvenience Cost,
Range Limitation Cost + Twelve Consumer Groups

5.5 Effect of Risk Attitude Consumer Groups

In the previous section we focused on introducing segmentation dimensions related
to recharging infrastructure, while assuming that all segments belonged to the same risk-
attitude group (late majority, i.e. the most risk averse). We now formally add this
dimension, tripling the number of consumer segments to 36. (Recall there are three
categories: early adopters, early majority and late majority). This has two major
implications. First, each group is assigned a different range limitation cost, as described in
section 5.4. Early adopters and early majority have lower costs, and Figure 14 shows
results from adding this factor. Compared to Figure 13, Figure 14 shows increased sales of
EV 100 and PHEV 20 vehicles in the later years.

The other effect associated with this dimension is a more direct implementation
how attitude toward risk affects preference for new technologies. For example, a newly
introduced BEV would be perceived as risky by late majority households, which could be
represented by an additional generalized cost, lowering overall preference. As cumulative
sales for these vehicles increases over time, this cost would get smaller, eventually reaching
zero. Similarly, early adopters (a.k.a. innovators) would actually have a higher preference
for newly introduced technology (or a positive utility), which would also diminish as sales
accumulate. MAS3T includes these factors: for a discussion, see Greene (2001). Adding
these yielded results that were indistinguishable from Figure 14, so they are not shown.
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5.6 Vehicle Make/Model Diversity

The next factor we consider relates to the number of vehicle models that are
available for a given vehicle technology. This is a phenomenon that has been studied in the
discrete choice literature. When modeling vehicle choice using a system of “vehicle classes,”
it is important to recognize that the number of makes and models will vary across vehicle
classes, and that the attractiveness of a class increases with the number of models, due to
the increased diversity of the offerings. This additional attractiveness can be represented as
a (negative) generalized cost.

In the context of this paper, note that the set of vehicle technologies in Figure 1 is, in
effect, a system of vehicle classes. When a new vehicle technology is introduced to the
market it will only be available in a limited number of makes and models. Relative to, e.g.,
the established class of gasoline cars, this new class should have an additional generalized
cost because it has many fewer models. However, as the new technology penetrates the
market, manufacturers will add more makes and models, and this cost would diminish.

This model availability cost is modeled in MA3T as described in Greene (2001). A
key feature is that its value changes dynamically as a function of previous sales. For this
application we extract this measure from MAS3T and use it as input data. For more general
use in TIMES models, we have developed iterative procedures to capture this effect.
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Introducing this factor yields the results in Figure 15, and it has a significant effect.
This model availability cost severely penalizes all non-conventional technologies, so that
only a very small number of BEVs and PHEVs are purchased in the latest years.
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Figure 15. New Vehicle Sales Share: Monetary Costs, Refueling Inconvenience Cost,
Range Limitation Cost, Model Availability Cost + Thirty-six Consumer Groups

5.7 Incorporation of Unobserved Consumer Heterogeneity

Previous sub-sections sequentially added behavioral factors related to generalized
costs and consumer segmentation, and an obvious conclusion drawn from the results is that
any combination of such factors could have a dramatic effect on the projected outcome of
vehicle market behavior in a TIMES modeling framework. This is clearly related to the “all
or nothing” phenomenon that occurs as a consequence of the underlying behavioral
assumptions implicit in TIMES. However, it is worth noting that the varying qualitative
nature of these results, while not unexpected, was not necessarily a foregone conclusion: an
alternative possibility was that introducing these factors might have had little effect on the
outcome, e.g., that the results could have been dominated by monetary costs alone.

In any case, because making this determination first required a systematic
development of factors by drawing on insights from discrete choice theory and applications,
it is clearly important to now consider implications from the other aspect of the theory,
namely, unobservable effects that are randomly distributed from the perspective of the
analyst.
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Equation (47) provided a prototype example for this process. Although the specific
assumptions differ, the previous sub-sections represent sequential development of

appropriate segment-level estimates for NPVGC j;1 based on the MA3T model. Recall that

the choice model used by MA3T is a nested multinomial logit model, which is consistent with
the RUM framework discussed in section 4.2, represented by equation (11). The
multinomial logit (MNL) model in equation (12) is a simpler special case of this model.

For purposes of illustration, assume that MA3T is MNL rather than nested logit, and
that a preference model has been formulated as in equation (13) to represent the negative

of NPVGCjs1. The information required to produce choice probabilities using equation

(12) is knowledge of the parameter g, which is a scale parameter for the Gumbel

distribution. Specifically, if the \7] terms in (12) are replaced by —NPVGC j;iterms, a

correctly determined value of y will produce good estimates of purchase shares for
segment s (assuming MNL is an appropriate model). Without going into details, {t can be

determined using statistical estimation or calibration procedures. It would be typical to use
the model to compute vehicle market shares for analysis.

However, the TIMES methodology is very different. Our approach is to create
multiple “clones” for each segment, where, for each clone, random draws are generated for
all the competing vehicles from the appropriate Gumbel distribution and then subtracted
from their mean NPVGC values. This creates additional heterogeneity by replacing the
single representative household for each segment (used previously) by the collection of
clones. The random variation is consistent with the assumptions of MA3T, where
parameters (e.g., i for the MNL model) were calibrated based on empirical data.

Note again that the procedures required for generating random draws from the
MAS3T nested logit model are actually much more complex than for MNL, and to our
knowledge this is the first time anyone has taken this approach in the literature. We are, in
effect, turning TIMES into a simulation-based model to product market share projections
that approximate the behavior of a nested logit model. The reason this has not been done
before is that, in the discrete choice literature, one of the main appeals of nested logit is that
it has a closed-form expression for computing choice probabilities, so there would seem to
be no need for simulating nested logit model disturbance terms. The technical details of
how this is done are provided in a separate report (Bunch 2015).

The impact of this process is shown by first examining the effect of one clone per
segment (recall there are 36). The no-clone results were shown in Figure 15. Figure 16
shows the results of 9 different sets of random draws (where each set generates 36 clones).
Adding even this small number of random draws produces results that are very different
from Figure 15, and as might be expected, there is a substantial amount of variability from
panel to panel.
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Theory would suggest that as the number of clones per segment increases, the
variability should diminish and results will approach smoother patterns of the type
produced by the MA3T model. However, there will be a practical tradeoff between number
of clones used and computational resources required (in both time and memory). Figure 17
shows results for 5 clones per group, which yields a marked improvement in stability.
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Figure 16. New Vehicle Sales Shares: One clone per Consumer Group
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Five clones per Consumer Group

Figure 18 shows the effect of increasing the number of clones to 20 per segment. At
this level it is difficult to distinguish differences across the panels.
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Finally, Figure 19 makes a direct comparison between the 20-clone results and the
results from MA3T. They are very similar, even though they rely on slightly different
assumptions about consumer knowledge of future fuel prices. This difference could have a
larger effect in some scenarios, if they were to have volatile changes in fuel prices over the

planning horizon.

Percent of New Vehicle Sales

~
o

~
o

COCHIN Model: 20 Clones Per Group

: nanEm U XA
g g & 8 38 3§ 3 8
g g

~ ~ ~ ~ ~ ~

@

Percent of new vehicle sales
o 8

2010
2015

Figure 19. Comparison of New Vehicle Sales Shares between COCHIN and MA3T

Models

2010

2018

MA3T Model

50



6. Summary and Conclusions

This report addresses a problem that has been frequently mentioned in the energy
modeling literature: the challenge of producing results consistent with realistic consumer
market response in energy systems models. The treatment here is comprehensive, and
emphasizes the importance of developing methods based on a solid theoretical framework,
which yields insights that allow results and approaches from multiple literatures to be
integrated into the same basic framework.

Our current plans are to apply these approaches in larger energy systems models,
and in addition, to extend the theory to address the issue of elastic demand in a similar
fashion. Finally, in performing this work a number of questions arose about some of the
underlying assumptions that are routinely used in these models. For example, if households
drive vehicles different distances, why would the vehicles all be treated as having the same
lifetime? Similarly, in considering discrete choice models, would the scale of the random
error term be different across segments? These are questions that have not typically arisen
in either literature.
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