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Abstract	
	

Addressing	anthropogenic	climate	change	will	require	a	variety	of	novel	technology	

solutions.	Where	will	these	solutions	come	from,	and	how	can	we	foster	their	

development?		To	answer	these	questions,	it	is	important	to	delve	into	the	process	of	

technology	innovation.	We	need	to	better	understand	how	technological	transitions	

happen,	and	we	need	to	figure	out	how	innovation	can	be	directed.		

While	the	existing	work	on	technology	innovation	is	abundant,	the	innovation	

process	largely	remains	a	“black	box,”	shrouded	in	mystery.	Energy	models	that	

incorporate	innovation	concepts,	such	as	experience	curves,	fail	to	consider	the	

fundamental	processes	that	drive	innovation.	More	nuanced	approaches	to	innovation,	

however,	are	largely	qualitative	and	difficult	to	model	or	to	employ.	This	makes	it	hard	to	

draw	objective	conclusions,	or	to	make	predictions	about	technologies	moving	forward.		

This	dissertation	research	establishes	a	set	of	methodological	approaches	to	better	

break	in	to	this	innovation	black	box,	aiding	in	the	quantification	of	the	more	qualitative	

approaches	to	innovation.	These	methods	are	applied	to	better	examine	low-carbon	

technology	innovation	in	transportation.	Specifically,	this	dissertation	looks	at	biofuel	

innovation	and	the	more	recent	diffusion	of	electric	vehicles.		

Patent	trends,	one	traditional	approach	for	quantifying	innovations,	are	used	to	

provide	a	point	of	comparison	for	the	novel	methodologies	employed.	This	research	shows	

that	the	innovation	narrative	and	conclusions	that	can	be	drawn	from	patent	data	are	

largely	dependent	on	how	patents	are	classified.		

Employing	statistical	models	in	conjunction	with	computational	linguistics	and	

machine-learning	algorithms,	it	is	possible	to	classify	large	bodies	of	text.	This	
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methodology	is	applied	to	a	large	selection	of	patents	to	better	classify	biofuel	technologies.	

Additionally,	this	method	is	applied	to	a	large	repository	of	textual	media,	such	as	

newspaper	articles	and	trade	journals,	to	select	for	specific	technologies,	and	to	classify	

articles	by	the	type	of	information	they	convey.	This	Technology	Innovation	System	(TIS)	

database	is	believed	to	adequately	proxy	the	flow	of	information	over	time,	due	to	the	large	

number	of	documents	collected.		

The	innovation	trends	captured	in	the	TIS	database	align	well	with	the	biofuel	

narrative	established	in	literature.	There	is	also	good	alignment	between	patent	data	

classified	through	this	methodology	and	the	TIS	database.	

Through	use	of	the	TIS	database	in	conjunction	with	deployment	data	and	policy	

data,	this	dissertation	demonstrates	several	applications	for	assessing	technology	

innovation.	Results	can	be	used	to	provide	suggestions,	supported	by	the	data,	which	may	

foster	improved	innovation	outcomes	for	low-carbon	transportation	technologies.	 	
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Chapter	1: 	A	Brief	Discussion	of	Technology	Innovation	
	

This	is	an	original	work	at	the	intersection	of	economics	and	engineering;	what	it	

lacks	in	one,	it	attempts	to	make	up	for	in	the	other.	In	short:	this	is	an	interdisciplinary	

dissertation.	The	goal	and	aim	of	this	work	is	to	provide	a	resource	and	a	new	set	of	

methods	for	researchers	and	policy	makers	that,	when	applied,	may	better	inform	their	

decisions	regarding	low-carbon	technologies	and	transition	strategies.		

I	am	of	the	belief	that	the	most	promising	route	forward	for	addressing	climate	

change	is	through	the	diffusion	of	low-carbon	technologies	that	can	compete	with,	and	

ultimately	displace	fossil	fuel	alternatives	(e.g.	Grubler,	2012;	J.	Jenkins	et	al.,	2012;	J.	D.	

Jenkins,	2014;	T.	Nordhaus,	Shellenberger,	&	Navin,	2008).	For	this	to	occur,	we	need	to	

learn	how	to	better	direct	and	promote	low-carbon	technology	innovation.	

In	this	section	I	provide	a	brief	discussion	of	innovation	and	how	the	study	of	

innovation	has	evolved	over	time,	predominately	within	the	economics	literature.	I	then	

briefly	look	at	the	methods	commonly	used	for	forecasting	technology	adoption	and	

diffusion	–	engineering	tools,	in	kind.		

It	is	my	intent	to	show	that	common	economic	and	engineering	approaches	for	

incorporating	innovation	lack	in	explanatory	or	predictive	power,	and	that	new	methods	

and	approaches	for	assessing	innovation	are	needed.	Additional	tools	are	also	necessary	to	

evaluate	policy	efficacy	in	promoting	innovation,	especially	for	targeted	end-goals	such	as	

low-carbon	technology	transitions.	Important	to	this	discussion	is	an	understanding	of	

what	technology	innovation	is,	which	I	cover	in	Chapter	1.	

To	further	explore	this	concept	of	technology	innovation,	I	develop	and	build	out	my	

own	methods	for	innovation	assessment	in	Chapter	2.	To	provide	a	basis	for	assessment,	I	



	

	 -2-	

examine	a	traditional	approach	for	evaluating	technology	innovation,	patent	activity	and	

trends.	My	work	shows	that	the	innovation	narratives	supported	by	patent	activity	are	

largely	dependent	on	how	patents	are	classified	and	grouped	together.	I	employ	machine-

learning	algorithms	in	an	attempt	to	improve	on	this	weakness	for	the	case	of	biofuels.	

Moving	from	patent	activity,	I	continue	to	employ	machine-learning	methods	to	facilitate	

the	use	of	a	novel	data	set	for	assessing	technology	innovation,	text-based	news	sources.	In	

Chapter	4	I	examine	how	well	the	innovation	narrative	is	captured	through	textual	media,	

and	compare	this	to	what	patenting	activity	tells	us.	I	further	go	on	to	explore	the	case	of	

California,	and	how	policies	may	impact	the	overall	innovation	system	and	technology	

outcomes.		

In	Chapter	5,	I	employ	deployment	data	for	electric	vehicles	alongside	textual	media	

and	meetings	with	experts.	Combined,	these	data	help	further	vet	the	methodologies	I	put	

forward	for	assessing	technology	innovation.	I	find	that	there	is	reasonable	alignment	

between	the	expert	interviews	and	the	innovation	system	approached	that	I	employ.	I	

further	demonstrate	the	possibility	of	linking	textual	media	to	vehicle	deployment	data.	

This	is	one	approach	that	my	methodology	enables	which	can	help	support	or	direct	state-

level	policy	or	plans	of	action	going	forward	for	fostering	electric	vehicle	adoption.	

	

Without	further	ado,	I	turn	to	the	question	of	innovation.	

	

1.1	What	is	Innovation?	

Innovation	is	often	used	to	refer	to	the	commercialization	of	new	products	or	

processes	–	those	that	mark	a	substantial	departure	from	their	known	predecessors	
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(Fagerberg,	2003).	The	smart	phone,	for	instance,	is	an	icon	of	innovation;	it	marks	not	only	

a	departure	from	traditional	cell	phones	(which	marked	a	departure	from	landline	

technology),	but	also	a	departure	from	personal	computing	devices	(such	as	laptops).	

Although	the	smart	phone	is	the	embodiment,	of	innovation,	it	is	not	fully	indicative	of	the	

innovation	process	that	led	up	to	its	creation	and	eventual	commercialization.	Ultimately,	

the	technology	innovation	process	must	be	placed	in	a	broader	context.		

Innovation	allows	for	new	things	to	happen,	including	social	and	economic	shifts.	

Joseph	Schumpeter’s	early	research	into	economic	development	led	to	his	seminal	works	

on	innovation	(Schumpeter,	1934,	1942).	Schumpeter	established	the	importance	of	

innovation	in	driving	economic	growth.	Schumpeter	also	ingrained	in	society	the	role	of	the	

entrepreneur	as	a	driver	of	innovation.	At	what	point,	however,	does	innovation	occur,	and	

when	is	something	innovative?		

Schumpeter’s	work	established	a	very	clear	distinction	between	invention	and	

innovation.	“Invention”	is	framed	as	the	development	of	an	original	idea	for	a	new	product	

or	process,	while		“innovation”	is	the	conversion	of	that	product	or	process	into	something	

commercially	viable	that	is	subsequently	diffused.	In	other	words,	for	innovation	to	occur,	

both	invention	and	the	exploitation	of	that	invention	is	required	(Popp,	2005).		

While	intuitively	it	is	easier	to	understand	innovation	as	the	development	and	use	of	

physical	products,	that	is	not	always	the	case.	New	processes	or	methods	may	also	be	

innovative,	and	can	contribute	substantially	to	economic	growth.	Similarly,	the	

establishment	of	governments,	regulation,	and	law	in	and	of	itself	may	be	innovations.	

Drawing	from	the	work	of	Carlsson	and	Stankiewicz	(1991),	I	choose	to	define	innovation	

here	as:	the	creation,	dissemination,	and	use	of	new	information.	Physical	systems	and	
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products	can	then	be	viewed	as	carriers	or	embodiments	of	innovation,	as	opposed	to	

being	“the”	innovation	itself.		

I	choose	to	frame	innovation	like	this	because	it	stresses	the	importance	of	

information	flow	while	deemphasizing	the	physical	product.	Revisiting	the	innovation	

example	of	the	smart	phone,	it	becomes	apparent	that	the	smartphone	is	a	product	of	

innovation	–	an	instance	where	accumulated	knowledge	and	information	culminate	in	one	

specific	use	case.	The	success	of	the	smartphone	required	the	flow	and	exploitation	of	

information	across	different	areas,	ranging	from	consumer	acceptance	and	use	of	hand-

held	electronics	to	streamlined	manufacturing	and	internet	connectivity.	In	turn,	the	

smartphone	has	contributed	to	the	creation	and	dissemination	of	new	information	that	can	

be	used	in	new	ways	to	further	facilitate	innovation.	

It	is	important	to	recognize	that	under	my	framing	of	innovation,	the	innovation	is	

not	the	smartphone	itself,	but	the	utilization	and	grouping	together	of	knowledge	and	

information	to	achieve	a	novel	result.	It	is	the	exploitation	and	aggregation	of	information	

and	knowledge	associated	with	the	smartphone	that	is	innovative.	From	this	framing,	a	

natural	transition	to	a	network	view	of	the	innovation	process	is	possible:	nodes	represent	

knowledge	and	information,	and	the	structural	components	(like	companies	or	actors)	that	

contribute	to	the	flow	of	knowledge	connect	nodes	together.	Figure	1.1	visualizes	what	a	

network	mapping	might	look	like	for	technologies	that	undergo	incremental	innovations,	

compared	to	those	that	undergo	a	creative	destruction	process,	where	a	novel	network	

emerges	that	ultimately	displaces	the	previous	technological	system.	Similarly,		“hype”	

might	be	represented	by	a	small	network	of	knowledge	nodes,	where	connectivity	is	
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substantial	only	for	a	few	nodes,	but	not	the	larger	network.	This	could	ultimately	lead	to	

the	perception	that	the	network	is	larger	and	better	connected	than	it	is.	

While	the	iPhone	may	be	one	physical	embodiment	of	innovation,	numerous	other	

smartphone	models	are	all	derived	from	the	same	core	information	and	knowledge	flows.	

Once	knowledge	and	information	is	sufficiently	accumulated	and	connected	within	a	

network,	the	physical	manifestation	of	this	innovation	is	trivialized.	If	one	network	link	

were	to	drop	out,	it	is	likely	that	another	actor	would	emerge	to	recreate	that	link,	if	the	

system	is	supported	well	enough.	
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Figure	1.1	Stylized	representation	of	an	information	network	and	the	process	that	may	

ultimately	contribute	to	incremental	innovation,	or	to	creative	destruction.	

	
1.2	The	Study	of	Innovation	

To	better	understand	how	innovation	occurs,	I	first	look	at	the	body	of	research	

concerned	with	economic	growth.	This	research	motivated	the	study	of	innovation,	leading	

to	work	aimed	to	establish	the	factors	that	drive	and	contribute	to	the	innovation	process.	

Starting	in	1956,	Robert	Solow	released	his	pioneering	work	on	economic	growth,	

where	he	identified	two	explicit	factors	that	drive	economic	growth:	capital	and	labor	
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(Solow,	1956,	1957).	Solow’s	novel	contribution	to	growth	economics,	however,	was	the	

identification	of	a	third,	implicit	factor:	technical	change.		

While	Solow’s	work	considerably	improved	the	model	for	economic	growth,	

technical	change	was	left	as	a	“black	box,”	with	no	formalization	for	how	technical	change	

manifests.	It	is	also	from	this	third,	poorly	understood	factor	that	most	economic	growth	

stems	(Solow,	1994).	Due	to	this	weakness,	the	Solow	model	has	often	been	caricatured	as	

treating	technical	change	as		“manna	from	heaven”	(Audretsch,	2007).	The	Solow	model	

recognizes	that	innovation	drives	technical	change,	thereby	contributing	to	economic	

growth,	but	the	factors	that	drive	innovation	are	not	captured.	

Since	Solow’s	work,	there	have	been	attempts	to	better	model	and	endogenize	the	

innovation	“black	box”	(Paul	M.	Romer,	1986;	Paul	M	Romer,	1990).	Even	after	expansion	

of	Solow’s	model,	it	still	remains	difficult	to	study	the	process	of	technical	change,	and	the	

specific	innovations	that	bring	it	about.	Economics	does	not	adequately	capture	the	drivers	

of	technology	innovation,	and	is	unable	to	answer	the	question	“what	happens	after	

investment	into	R&D	is	made?”	(Solow,	1994).	This	remains	a	weakness	of	neoclassical	

economics.		

One	way	to	remedy	the	weakness	of	the	neoclassical	models	is	to	start	innovation	

analysis	at	the	micro	level,	taking	into	account	the	importance	of	the	entrepreneur	and	the	

firm-specific	decisions	that	drive	innovation	(Solow,	1994).	The	neoclassical	models	of	

innovation	assume	that	firms	have	perfect	knowledge	and	are	able	to	perfectly	optimize	

their	behavior	(Carlsson	&	Eliasson,	1995).	Firms,	however,	do	not	operate	with	perfect	

knowledge,	and	they	often	utilize	different	knowledge	bases,	skillsets,	and	assumptions	

concerning	technology	and	markets;	this	heterogeneity	between	firms	merits	a	different	
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theoretical	framework	for	analyzing	innovation	(Carlsson	&	Stankiewicz,	1991).	Historical	

case	studies	of	innovative	technologies	can	facilitate	this	process	(Fouquet	&	Pearson,	

2012;	Grubler,	2012).		

Ultimately,	the	need	to	better	understand	how	innovation	manifests	has	culminated	

in	the	development	of	a	systems	approach	to	thinking.	This	systems	approach	is	more	

dynamic,	and	places	technology	at	the	forefront,	building	upon	Schumpeter’s	second,	and	

less-appreciated	work	on	innovation	that	emphasizes	the	effects	of	actor-agent	networks	

(Schumpeter,	1942).	This	view	broadens	the	definition	of	the	entrepreneur,	allowing	for	a	

network	of	actors	and	agents	to	play	a	role	in	the	innovation	process.		

At	its	core,	the	Schumpeterian	view	of	innovation	recognizes	that	there	are	two	

main	patterns	of	innovation:	a	creative	destruction	pattern	and	a	creative	accumulation	

pattern	(Stefano	Breschi,	Malerba,	&	Orsenigo,	2000;	R.	R.	Nelson	&	Winter,	1982).		

Creative	destruction	is	a	process	in	which	established	technologies,	sectors,	or	firms	

are	overturned	(“destroyed”)	by	newer,	superior	technology	(“creation”).	Given	how	I’ve	

defined	innovation,	I	think	it	is	worth	conceptualizing	this	view	in	terms	of	information	

flow.	Creative	destruction	embodies	the	process	in	which	one	network	is	destabilized	and	

starts	to	diminish	due	to	the	creation	of	a	newer	network	that	supports	or	promotes	a	

given	technology.	For	instance,	new	information	no	longer	promotes	and	connects	to	as	

many	previous	points	of	knowledge,	and	instead	integrates	into	a	different	and	distinct	

network,	often	at	odds	with	the	previous	network	of	knowledge	flows.		

In	contrast,	creative	accumulation	is	the	process	where	sectors	continue	along	the	

same	trajectory,	making	incremental	improvements	in	the	technologies	at	hand.	Or	in	a	
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network	view,	the	network	continues	to	evolve	and	embody	new	actors	and	institutions,	

with	new	nodes	and	connections	that	are	still	strongly	integrated	into	the	existing	network.	

Schumpeter’s	work	has	fostered	considerable	study	into	innovation,	leading	to	a	

systems	view	of	the	innovation	process,	in	which	the	conventional	entrepreneur	is	just	one	

actor	within	a	more	complicated	system.	Carlsson	and	Stankiewicz	(1991)	define	

innovation	systems	as:	

A	network	of	agents	interacting	in	a	specific	technology	area	under	a	particular	

institutional	infrastructure	to	generate,	diffuse,	and	utilize	technology.	Technological	

systems	are	defined	in	terms	of	knowledge	or	competence	flows	rather	than	flows	of	

ordinary	goods	and	services.	They	consist	of	dynamic	knowledge	and	competence	

networks.	

The	innovation	system	approach	recognizes	that	innovation	is	the	product	of	an	

interactive	process	across	a	wide	variety	of	actors.	This	process	is	not	solely	driven	by	the	

independent	efforts	of	one	entrepreneur.	Stress	is	placed	on	the	importance	of	a	network,	

recognizing	that	firms	do	not	innovate	in	isolation	(Malerba,	2005).	Institutions	also	shape	

firm	innovation	and	interactions,	which	includes	policies,	regulations,	and	governments	

(Carlsson	&	Eliasson,	1995;	Lundvall,	Johnson,	Andersen,	&	Dalum,	2002;	R.	Nelson,	1993).		

The	systems	approach	to	innovation	provides	a	new	framing,	in	which	the	

development	of	a	network	is	fundamental.	Networks	act	to	bring	about	new	technologies	

and	to	defend	incumbent	technologies.	From	this	lens,	it	is	possible	to	ascertain	what	

developments	take	place	that	ultimately	lead	to	innovation.	A	specific	entrepreneur,	

product,	or	innovation	is	treated	as	the	result	of	a	strong	network.	To	put	this	in	the	

transportation	context:	with	a	sufficiently	strong	innovation	network,	if	Ford	had	not	
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employed	the	assembly	line	process	for	automobiles,	it	is	inevitable	that	another	

entrepreneur	would	have	successfully	employed	a	similarly	effective	process.		

To	better	understand	the	importance	of	networks	in	driving	innovation,	I	discuss	

several	different	innovation	systems	frameworks	and	how	they	approach	the	innovation	

process.	

	

1.3	The	Innovation	Process	

Researchers	have	used	case	studies	and	historical	accounts	of	technology	

development	and	diffusion	to	better	study	and	understand	the	innovation	process	(e.g.	

Bergek	&	Jacobsson,	2003;	Geels,	2002;	Grübler,	Nakićenović,	&	Victor,	1999).	Case	studies	

have	helped	researchers	develop,	and	ultimately	establish	a	set	of	commonalities	and	

themes	for	technologies,	firms,	and	sectors	as	part	of	the	larger	innovation	process	

(Grubler,	2012;	Johnson,	2001).		

From	these	case	studies,	two	dominant	approaches	to	innovation	assessment	have	

emerged.	Some	researchers	utilize	historic	relationships	to	explore	deployment-focused,	

predictive	models	for	technology	diffusion,	often	relying	on	experience-curve	relationships	

to	improve	neo-classical	models	(Grübler	et	al.,	1999).	Alternatively,	researchers	have	also	

used	case	studies	for	more	qualitative	innovation	assessment;	an	approach	that	promotes	

system-based	frameworks	and	thinking.	The	qualitative	innovation	frameworks	have	

largely	been	used	to	study	innovation	at	national,	regional,	sectoral	and	technological	levels	

(Johnson,	2001).		

These	qualitative	frameworks	for	innovation	help	determine	which	details	and	

features	are	important	for	achieving	a	given	innovation	objective	–	be	it	to	promote	growth	
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within	a	specific	sector	or	even	a	specific	firm,	or	to	promote	technological	transitions	at	a	

national	level.		

Predictive	models	for	innovation	often	rely	on	experience	curves.	These	models	

tend	to	treat	the	very	factors	that	explain	the	experience	curve	as	exogenous,	relying	on	

“typical”	scenarios	and	assumptions	about	what	might	happen,	rather	than	incorporating	

the	factors	that	can	influence	or	drive	the	“typical”	values	(Grübler	et	al.,	1999).	While	

informative,	models	that	merely	incorporate	experience	curves	and	learning	effects	are	

likely	inadequate	for	exploring	what	can	be	done	to	change	or	accelerate	the	innovation	

process.	

Because	my	research	is	primarily	concerned	with	aiding	the	advancement	of	low-

carbon	technologies,	as	opposed	to	aiding	advancement	of	all	technology	or	promoting	

economic	growth	in	general,	I	choose	not	to	discuss	some	of	the	broader	innovation	system	

frameworks,	such	as	the	national	or	regional	innovation	systems	(Lundvall,	1992,	2007;	

Lundvall	et	al.,	2002).	Instead,	I	limit	my	focus	to	the	set	of	frameworks	and	analytical	

methods	that	deal	with	specific	technology	innovations.	

What	follows	is	a	brief	discussion	of	the	most	pertinent	technology	innovation	

system	frameworks	that	I	have	come	across	in	my	research	on	the	topic	of	innovation.	I	

also	summarize	some	of	the	case	studies	to	which	these	frameworks	have	been	applied.	

Table	1.1	serves	to	summarize	the	approaches	to	innovation	that	I	look	at	here	

	



 

 

Table 1.1 
 
Summary of different technology innovation assessment frameworks and methods 
 
 

 

Sectoral 
Systems of 
Innovation 

 

Socio-Technical 
Systems 

 

Technology Innovation 
Systems 

 
Experience Curves 

 
Diffusion Curves 

 
 
Summary 

 
Qualitative 

assessment of 
specific firms 
in an already-

existing 
network 

working to 
diffuse and 
develop a 

novel 
technology 

 

 
Qualitative assessment 
of the user-groups that 

gradually adopt and 
utilize a novel 

technology 

 
Qualitative assessment of 

the networks of actors 
and agents that exist and 

come into existence to 
utilize, diffuse, and 

develop a novel 
technology 

 
Mathematical 

relationship that 
predicts how technology 
cost decreases based on 

the diffusion of that 
technology. 

 
Mathematical 

relationship that 
determines the 

market penetration 
of a technology with 

respect to time. 

Benefits Allows for in-
depth 

consideration 
of the current 

agents and 
actors 

working to 
promote a 

specific 
technology. 

Allows for in-depth 
consideration of 

technology use cases. 
This framework enables 

niche-marketing 
strategies and thinking 
to facilitate technology 

diffusion 

Allows for consideration 
of different networks of 
actors and agents that 

promote or block 
technology innovation. 
Actors and institutions 

are mapped to functions 
to better explore the 
innovation process 

Can be incorporated into 
models to better 

approximate the process 
of innovation 

responsible for cost 
reductions 

Can be incorporated 
into models to 

better approximate 
the rate at which a 

new technology can 
be expected to enter 

the market 
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Weaknesses Does not 

consider 
blocking 

effects that 
hinder 

innovation 
outcomes, nor 
can it account 

for out-of-
network 

effects that 
could 

promote or 
detract from 

successful 
innovations. 

The 
framework is 

largely 
qualitative. 

Does not consider 
blocking effects that 

work against 
innovation, focusing 

instead on a demand-
pull view to innovation. 

The framework is 
largely qualitative. 

Reduces the innovation 
process down to a set of 

"functions," or things that 
have to exist for 

innovation to occur. 
Functional fulfillment is 
difficult to assess. The 
framework is largely 

qualitative. 

The rate of cost 
reduction is based on 
historical accounts of 

similar technologies and 
expected outcomes. 

Because the relationship 
is logarithmic, small 
differences in curve 

expectations can result 
in order of magnitude 

discrepancies with 
actuality. The experience 
curve relationship does 

not endogenize all 
factors of the innovation 

process, and assumes 
that deployment alone is 

sufficient for reducing 
costs 

 

The parameters that 
effect the rate of 

diffusion are highly 
variable, and 

approximated based 
on past technology 

diffusion events that 
may or may not 

accurately reflect 
the true rate of 

diffusion for the 
technology being 

modeled 
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There	are	three	prevalent	and	influential	technology	innovation	frameworks	used	in	

the	literature	to	analyze	and	assess	the	innovation	process	for	specific	technologies	

(Coenen	&	Díaz	López,	2010).	These	frameworks	are:	(1)	Sectoral	Systems	of	Innovation	

(SSI),	(2)	Social	Technical	Systems	(ST-Systems)	of	innovation,	and	(3)	Technology	

Innovation	Systems	(TIS).	Each	of	these	frameworks	has	its	advantages	and	disadvantages,	

and	each	framework	can	be	applied	in	its	own	right	to	energy	transitions	and	the	adoption	

of	low-carbon	technologies.		

The	SSI	framework,	for	instance,	looks	at	how	existing	firms	operate	in	a	space	to	

promote	or	adopt	new	technologies.	For	instance,	the	SSI	framework	could	be	applied	to	

better	reveal	for	how	existing,	large	automotive	manufacturers,	like	Ford	or	General	

Motors,	contribute	to	electric	vehicle	adoption	through	the	incremental	adoption	of	

electrification	in	drivetrains.	For	instance,	increased	fuel	efficiency	standards	can	lead	to	

increased	vehicle	hybridization,	which	eventually	leads	to	fully	electric	vehicle	models.		

The	ST-System	of	innovation	instead	looks	at	how	technologies	diffuse	through	

society,	moving	from	one	user-group	to	another,	slowly	improving	as	new	user-groups	find	

novel	applications	for	the	technology.	For	instance,	this	framework	can	be	used	to	better	

understand	how	second	generation	biofuel	innovation	is	being	promoted	through	niche-

adoption	and	use	in	the	military.	The	military	may	find	that	biofuels	offer	considerable	

supply	chain	advantages	for	combat	situations	compared	to	fossil	fuels.	In	turn,	learning	

and	scaling	up	of	the	technology	for	these	military	operations	may	find	further	application	

in	the	aviation	sector,	before	being	deployed	at	a	much	larger	commercial	scale.		

The	TIS	framework,	in	comparison,	looks	at	how	a	network	of	actors	and	

institutions	develops	over	time	to	use,	improve	on,	and	further	diffuse	a	technology.	The	
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TIS	approach	helps	to	reveal	where	weaknesses	exist	in	the	network	that	can	block	or	

hinder	innovation	outcomes.	TIS	incorporates	elements	from	both	the	ST-Systems	and	SSI	

frameworks.	For	example,	the	TIS	framework	could	be	used	to	discuss	the	emergence	of	a	

set	of	actors	and	policies,	and	how	they	interact	with	one	another	and	in	the	context	of	the	

larger	network	to	promote	or	detract	from	electric	vehicle	innovation.	This	could	include	

assessment	of	manufactures,	like	Tesla,	and	policies	like	the	Zero	Emission	Vehicle	

Mandate	in	California.	In	turn,	the	TIS	framework	can	be	used	to	facilitate	discussion	about	

how	an	incumbent	network,	such	as	large	automotive	manufactures,	are	hindering	or	

contributing	to	the	development	or	deployment	of	this	new	network	(e.g.	lobbying	against	

policies,	or	hindering	vehicle	adoption	through	existing	dealership	models).	

I	further	explore	the	use	of	and	background	for	each	of	these	frameworks	below.	

	

1.3.1	Sectoral	Systems	of	Innovation	

The	SSI	framework	places	system	dynamics	and	process	transformation	at	the	

center	of	analysis.	Under	this	framework,	both	learning	and	knowledge	are	key	elements	

for	changing	the	economic	system	(Malerba,	2005).	The	SSI	framework	is	limited	in	focus	

to	firms,	assessing	how	established	firms	operate	within	a	technology	system	over	time.	As	

such,	SSI	primarily	covers	incremental	innovation	processes	(Malerba,	2005).		

	 Malerba	(2002)	describes	the	innovation	process	as	“a	set	of	new	and	established	

products	for	specific	uses,	and	a	set	of	agents	carrying	out	activities	and	market	and	non-

market	interactions	for	the	creation,	production,	and	sale	of	those	products.”		Because	the	

SSI	approach	to	innovation	is	very	product	driven,	it	fails	to	capture	many	of	the	actors	that	
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operate	alongside	of	established	product	firms,	and	has	difficulty	in	considering	the	

development	of	other	networks	or	how	core	networks	may	transition	over	time.		

As	previously	discussed,	I	have	chosen	a	broader	definition	of	innovation,	in	which	

the	flow	and	creation	of	knowledge	is	important,	as	opposed	to	derivative,	physical	

embodiments	of	this	information.	While	the	methods	promoted	through	the	SSI	framework	

are	well-suited	for	assessing	incremental	or	accumulative	innovations,	like	the	efficiency	

changes	that	might	take	place	within	a	sector	(gradual	electrification	of	vehicles),	it	fails	to	

capture	dynamic	shifts	across	sectors	to	novel	technological	landscapes	(automotive	

manufacturers	like	Tesla	and	the	associated	supply	chains),	as	would	occur	through	a	

creative	destruction	process	(Coenen	&	Díaz	López,	2010).		

According	to	Malerba	(2005),	the	evolutionary	approach	utilized	within	the	SSI	

framework	relies	on	three	economic	processes	for	driving	innovation:	(1)	processes	that	

create	a	variety	of	technologies,	products,	firms	and	organizations,	(2)	processes	of	

replication,	that	generate	inertia	and	continuity	in	the	system,	and		(3)	processes	of	

selection,	that	reduce	variety	in	the	economic	system	(e.g.	emergence	of	a	few	dominate	

electric	vehicle	manufactures).	From	this,	the	SSI	framework	is	distilled	to	3	main	essential	

processes	that	need	to	exist	to	promote	innovation:		

	

1. Knowledge	and	technology	(the	actual	technology)	

2. Actors	and	networks	(the	people/organizations	that	employ	and	promote	the	

technology)	

3. Institutions	(the	policies	and	legal	frameworks	that	promote	or	facilitate	technology	

use)	
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Within	this	SSI	framework,	analysis	beyond	what	happens	within	a	sector,	such	as	the	

societal	patterns,	actors,	and	the	innovations	that	create	a	sector	in	the	fist	place,	is	limited.	

This	can	be	illustrated	by	applying	the	SSI	framework	to	the	semiconductor	sector	as	was	

done	by	Adams,	Fontana,	and	Malerba	(2013).	Within	this	construction,	it	was	recognized	

that	different	“user	firms”,	firms	that	utilize	the	product	or	have	demand	for	the	product	

due	to	intrinsic	values,	acted	as	primary	drivers	for	innovation	within	the	sector.	The	case	

study	presented	below	shows	a	process	for	innovation	driven	by	an	already	existing	sector	

and	set	of	firms.	These	established	firms	continued	to	experiment	with	a	specific	

technology,	making	incremental	improvements	to	the	process	and	supply	chain	over	time.	

Missing	from	the	narrative	is	the	development	of	external	networks	and	the	information	

that	accumulated	to	facilitate	successful	innovation	outcomes,	as	well	as	the	networks	or	

mechanisms	that	existed	to	slowdown	or	deter	innovation.	

	

The	case	of	semiconductor	development	within	the	SSI	framework	

The	demand	for	semiconductors	can	be	traced	to	the	early	markets	that	were	

established	by	the	military,	aerospace,	and	the	computer	industries	(Langlois	&	

Steinmueller,	1999;	Malerba,	1985a).	In	the	1970s,	new	markets	began	to	emerge	in	

telecom,	automobiles,	and	consumer	electronics,	which	led	to	different	and	new	

applications	for	semiconductor	technology	(Malerba,	1985b).	Throughout	the	1980s	and	

1990s,	two	related	factors	directed	semiconductor	developments:	the	widespread	use	of	

semiconductors	in	mass	consumer	products,	and	the	increased	adoption	of	a	new	

production	process.	These	changes	weakened	the	requirement	that	product	design	and	
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manufacturing	by	handled	by	the	same	company,	which	ultimately	facilitated	the	entrance	

of	smaller	firms,	at	both	the	design	and	manufacturing	stages,	into	the	market	(Adams	et	

al.,	2013).	

At	the	same	time,	firms	such	as	Samsung	and	Philips,	large	firms	that	relied	on	

existing	chips	to	make	a	variety	of	different	consumer	electronics,	gradually	increased	their	

demand	for	specialized	chips	for	new	applications.	At	the	same	time,	it	became	increasingly	

more	difficult	to	transfer	the	specific	knowledge	required	to	design	customized	

semiconductor	devices	to	the	incumbent	semiconductor	suppliers.	Rather	than	try	to	use	

chips	that	already	existed	in	the	market,	or	wait	for	semiconductor	suppliers	to	design	

chips	suitable	for	the	required	applications,	these	user	firms	gained	access	to	the	tools	and	

knowledge	necessary	to	design	their	own,	customized	chips	in-house.	Given	the	complexity	

in	chip	designs,	user	firms	further	had	to	interact	directly	with	smaller,	specialized	

semiconductor	manufacturers,	dramatically	shifting	the	supply	chain	away	from	the	

integrated	semiconductor	suppliers	(Glimstedt,	Bratt,	&	Karlsson,	2010).	Given	this	need	

for	user	firms	to	design	custom	semiconductor	devices,	alongside	the	reduction	in	

production	costs	due	to	new	production	processes,	user	firms	were	able	to	eventually	

direct	the	path	of	semiconductor	innovation	(Adams	et	al.,	2013;	C.	Brown	&	Linden,	2009;	

Ernst,	2005).	

		 In	this	semiconductor	analysis,	Adams	et	al.	assess	the	transition	of	the	

semiconductor	industry	over	a	period	of	time.	Using	the	SSI	framework,	the	transition	is	

firm	centric;	it	occurred	because	existing	user	firms	demanded	specialized	products	for	

specific	applications.	These	specialized	chips	did	not	exist	in	the	market,	and	so	firms	

developed	in-house	knowledge	and	expertise	to	implement	the	necessary	technology	
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improvements	and	modifications.	This	case	study	portrays	an	instance	where	innovation	

was	driven	by	already	existing	firms	acting	within	an	established	sector.	Firms	like	

Samsung	and	Phillips	took	an	existing	product	(semiconductors)	and	incrementally	

improved	upon	the	product	to	meet	their	needs	without	developing	revolutionary	new	

technologies,	or	systems	to	bring	about	this	change.	

Through	the	SSI	framework	and	the	semiconductor	case	study,	the	demand	for	a	

novel	product	can	be	recognized	as	a	primary	driver	of	innovation.	The	SSI	innovation	

narrative,	however,	only	considers	the	demand	side	from	specific	user	firms,	and	fails	to	

explore	the	network	of	actors	or	external	economies	that	came	into	existence	to	directly	

support	or	motivate	these	firm-level	innovations	in	the	first	place.	The	SSI	approach	does	

not	consider,	for	instance,	why	or	how	the	demand	for	consumer	electronics	changed	such	

that	it	required	customized	chip	applications,	nor	does	it	consider	the	policies	or	

institutional	factors	that	may	have	affected	this	transition.	Similarly,	limited	consideration	

is	given	to	the	incumbent	industry,	and	the	ongoing	effects	or	adaptations	that	took	place	

within	that	industry	to	accelerate,	impede,	or	inhibit	semi-conductor	innovation	over	the	

same	period	of	time.		

Rather	than	assessing	how	two	or	more	innovation	networks	shifted	overtime,	or	

came	into	existence,	or	dropped	out	of	existence,	the	SSI	framework	instead	focuses	on	the	

incremental	incorporation	of	knowledge	and	information	into	an	already	strong	and	

established	network.	While	SSI	is	a	useful	framework	for	thinking	about	some	innovations,	

this	restricted	view	is	best	used	for	assessing	incremental	innovations	within	already	

developed	networks,	as	opposed	to	assessing	innovations	that	fall	into	the	“creative	

destruction”	category.	Innovations	that	are	disruptive,	by	definition,	are	innovations	that	
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manifest	from	new	and	different	networks,	ultimately	displacing	the	previously	dominant	

network.		

Given	the	need	to	transition	from	a	society	that	is	heavily	reliant	on	fossil	fuels	to	a	

low-carbon	one,	a	radically	new	network	of	actors	and	institutions	will	have	to	form.	In	

turn,	this	network	will	need	to	supplant	the	existing	fossil	fuel	network.	This	transition,	to	

me,	appears	to	be	radically	different	from	an	incremental	approach	to	innovation.	Although	

some	low-carbon	innovations	may	ultimately	follow	incremental	pathways	(e.g.	increased	

vehicle	hybridization	leading	to	fully	electric	vehicles),	it	is	also	likely	that	“creative	

destruction”	will	occur	(e.g.	fully	autonomous	vehicles	that	radically	alter	our	current	

transportation	system).	 Given	this	need,	I	think	that	alternative	innovation	frameworks	

may	better	capture	the	elements	required	to	support	a	low-carbon	technology	transition.	

		

1.3.2	Social	Technical	Systems	

The	ST-Systems	framework	consists	of	a	multi-level	perspective	for	innovation,	in	

which	innovation	systems	and	regimes	are	established	through	a	set	of	actors,	institutions,	

and	social	frameworks,	operating	at	different	levels,	to	build	a	technological	landscape	

(Figure	1.2).	At	the	lowest	level,	technologies	are	experimented	with	and	pulled	into	the	

market	through	the	use	of	market	niches,	which	act	as	test	beds	and	engines	for	change	

(Geels,	2002).	This	framework	relies	on	the	establishment	of	initial	niches	and	provides	

descriptions	for	the	formation	of	technological	landscapes	as	technologies	move	out	of	

niche	use	into	society	at	large.	

ST-Systems	explore	the	development	of	niches	over	time,	recognizing	that	as	

individual	niches	build	up,	there	will	be	spillover	effects	to	different	levels	of	the	
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technological	landscape.	As	these	spillovers	take	place,	new	niche	markets	will	be	enabled	

due	to	links	within	the	technological	regime.	This	eventually	may	create	a	virtuous	cycle	

that	brings	technology	into	the	market	in	the	form	of	a	comprehensive	technological	

landscape.	

	

	

Figure	1.2.	Multiple	levels	as	a	nested	hierarchy	(Geels,	2002)	

The	ST-Systems	framework	can	be	illustrated	through	the	adoption	of	the	steamship	

as	portrayed	by	Geels	(2002).	

	

The	case	of	the	steamship	within	the	ST-Systems	framework		

Geels	(2002)	characterizes	steamship	adoption	in	three	distinct	phases:	the	

emergence	of	steamships	in	shipping,	the	period	of	sailing	clippers	and	steamship	use	for	

passenger	transport,	and	the	phase	of	competition	between	steamships	and	sailing	ships	in	

freight.	

The	first	phase	began	during	the	18th	century	when	shipping	was	surrounded	by	

uncertainty	and	irregularity,	with	ships	leaving	ports	when	they	were	full	and	arrival	
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depending	on	weather	conditions.	Shipbuilding	was	seen	as	an	art,	rather	than	a	science,	

and	involved	a	set	of	skilled	laborers	relying	on	intuition	rather	than	calculations.	The	

British,	with	a	shipping	monopoly,	encouraged	the	production	of	a	single	ship-type	thereby	

limiting	design	innovations.	Innovations	were	only	truly	adopted	after	American	

Independence	from	Britain	when	American	innovation	led	to	faster	ship	designs	(clipper	

ships).	

As	merchants	and	professional	ship	owners	became	increasingly	prevalent,	a	

secondary	shipping	market	emerged	reliant	on	contractual	arrangements	and	the	certainty	

of	goods	being	carried	between	regions.	The	functioning	of	the	shipping	regime	began	to	

change	due	to	institutional	innovations	associated	with	increasingly	more	dense	networks	

of	specialized	middlemen	(financiers,	brokers,	etc.).	Innovations	were	made	to	promote	the	

circulation	of	information	(like	journals	of	prices	or	commercial	newspapers)	rather	than	

just	goods,	which	led	to	a	new	niche	market	for	shipping	(Beniger,	1986).		

	 The	first	intended	steamboat	application	was	a	steam	tug	to	pull	ships	through	

canals	and	harbors,	first	used	in	America	in	1807,	and	Britain	began	a	commercial	

steamboat	passenger	services	shortly	after	in	1812.	The	steamer	niche	was	limited	to	

places	where	there	was	large-scale	passenger	and	mail	traffic,	supplemented	by	special	

low-volume	high-value	cargo.		

	 Eventually,	the	steam	engine	found	a	new	niche	when	used	as	an	auxiliary	add-on	to	

sailing	ships	to	provide	additional	power	when	there	was	limited	wind.	From	the	mid-

1830s	onward	the	shipping	regime	changed	as	trade	expanded,	stimulated	by	relaxation	of	

the	Navigation	Laws,	and	economic	liberalization	in	Britain.	British	mail	subsidies	

stimulated	the	use	of	steamships	for	mail	transportation,	and	a	global	network	of	steam	
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companies	was	created.	The	British	mail	subsidies	created	a	protected	environment	

allowing	for	the	use	and	development	of	oceanic	steamships,	encouraging	shipbuilders	to	

emerge	that	specialized	in	the	design	and	innovation	of	steamships.	The	use	of	oceanic	

steamers	also	added	additional	functionality	in	shipping	by	allowing	for	fixed	departure	

and	arrival	times	(Geels,	2002).		

	 During	this	phase,	experimentation	began	to	increase	the	strength	of	boilers	to	

provide	more	power	and	higher	efficiency.	This	resulted	in	heavier	steam	engines,	in	turn	

leading	to	iron	shipbuilding	and	additional	spillover	effects.		

	 The	second	phase	of	the	steam	engine	is	characterized	by	developments	from	the	

1840s	through	the	1870s,	where	a	slew	of	social	and	economic	conditions,	like	the	Irish	

potato	famine	and	the	gold	rush	in	California,	led	to	shifts	in	technological	landscapes	and	

new	steam	engine	applications.	Transatlantic	transport	of	passengers	provided	the	first	

major	market	niche	for	steamships;	rich	emigrants	were	willing	to	pay	extra	for	the	

advantages	that	steamships	offered,	and	after	the	mid-1850s	steamships	quickly	captured	

the	majority	of	the	emigrant	market	(Geels,	2002).		

	 As	iron	ships	became	increasingly	more	prevalent	and	were	adopted	by	the	Navy,	

incremental	improvements	in	boiler	technology	took	place	to	promote	higher	efficiency	

and	increased	speed.	The	introduction	of	compound	engines	made	it	possible	to	use	

steamships	in	particular	long-distance	market	niches	in	freight	shipping.	In	1866,	steamers	

with	compound	engines,	using	40%	less	fuel,	competed	successfully	in	the	China	tea	trade	

with	sailing	ships	(Geels,	2002).	

	 The	third	phase	for	steamship	adoption	is	defined	by	increased	competition	with	

the	incumbent	sailing	ship	market.	Emigration	to	America	sped	up	through	the	1880s	and	
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1890s,	providing	a	profitable	market	niche	for	steamships	while	expansion	also	occurred	in	

freight	transportation.	The	opening	of	the	Suez	Canal	in	1869	not	only	shortened	distances	

to	the	east,	but	was	unsuitable	for	sailing	ships	due	to	few	and	variable	winds.		

	 Nevertheless,	the	diffusion	of	steamships	was	gradual	and	sailing	ships	continued	to	

be	used	well	into	the	20th	century.	Steamship	adoption	was	hampered	because	knowledge	

and	technology	centered	on	improving	engine	efficiency	and	material	integrity	took	time	to	

develop.	Additionally,	sailing	ships	turned	to	efficiency	improvements	of	their	own	by	

increasing	ship	size	and	lowering	the	cost	of	freight	transport.	Metalworking	also	improved	

which	further	lowered	the	cost	of	shipbuilding,	and	improvements	in	rigging	decreased	

labor	requirements	for	sailing	ships.	Eventually,	incremental	improvements	in	the	

steamship	design	led	to	lower	fuel	costs,	and	decreased	costs	for	freight	transportation.	As	

sailing	ship	markets	continued	to	erode	and	port	and	harbor	sizes	increased	to	

accommodate	ever-larger	steamships,	the	steamship	became	ubiquitous.	

	 From	the	above	narrative,	it	is	clear	how	the	ST-Systems	framework	is	applied.	A	

technology	is	spread	through	one	market	niche	after	another,	where	different	advantages	

of	that	technology	are	realized,	before	it	is	able	to	compete	with,	and	eventually	displace	a	

previously	dominant	technology.	While	the	ST-Systems	literature	provides	a	robust	

framework	for	describing	the	adoption	of	technology	through	ever-prolific	niche	markets	

and	provides	some	narrative	on	the	creation	of	agent	networks,	it	does	not	offer	a	dynamic	

view	of	the	agent	network	(how	it	shifts).	The	ST-Systems	framework	also	does	not	fully	

consider	how	the	blocking	and	inducement	mechanisms	may	deter	or	promote	the	

formation	of	specific	networks	(Coenen	&	Díaz	López,	2010).	To	better	understand	why	

technology	uptake	can	occur	or	not	occur	in	specific	niche	markets,	and	to	understand	how	
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to	foster	the	development	of	new	niches,	a	different	approach	is	still	necessary.	Of	the	

frameworks	I	have	looked	at,	I	find	that	the	Technology	Innovation	Systems	framework	is	

better	suited	for	exploring	these	dynamic	processes.	

	

1.3.3	Technology	Innovation	Systems	

	 The	TIS	framework	is	similar	to	the	SSI	framework:	it	is	founded	on	principles	of	

evolutionary	economics	as	a	means	of	describing	technological	innovations	(Bergek	&	

Jacobsson,	2003;	Carlsson	&	Stankiewicz,	1991).	The	difference	from	the	SSI	framework,	

however,	is	that	TIS	focuses	on	the	network	of	actors	and	the	dynamics	of	developing	an	

innovation	system	that	promotes	innovation,	as	opposed	to	assessing	individual	

innovations	that	occur	strictly	at	the	firm	level.		

	 Within	the	presence	of	an	entrepreneur,	and	when	a	given	technology	network	has	

received	sufficient	critical	mass,	the	network	may	be	transformed	into	a	development	block	

–	or	a	synergistic	cluster	of	firms	and	technologies	operating	within	an	industry	or	group	of	

industries	(Carlsson	&	Stankiewicz,	1991).	This	transformation	is	similar	to	what	is	

described	by	the	ST-Systems	framework	in	relation	to	niche	market	proliferation.	The	TIS	

framework	deals	primarily	with	flows	of	knowledge	and	competence,	and	the	networks	

that	develop	to	use	this	knowledge	over	time,	rather	than	just	the	flows	of	ordinary	goods	

and	services	(Carlsson	&	Stankiewicz,	1991).	Because	the	TIS	framework	considers	

network	dynamics,	it	offers	opportunities	to	better	explore	technology	transitions,	and	how	

different	networks	come	into	existence,	or	falter	over	time.	TIS	provides	a	frame	for	

assessing	how	policy	intervention	may	help	direct	or	assist	technology	transitions.	
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	 The	work	of	Bergek,	Jacobsson,	Carlsson,	Lindmark,	and	Rickne	(2008)	has	further	

refined	the	innovation	system	put	forward	by	Carlsson	and	Stankiewicz	(1991)	to	develop	

a	set	of	seven	functional	forms	that	exist	within	an	innovation	system	(Table	1.2).	These	

functions	were	developed	through	use	of	previous	literature	on	innovation	and	through	

expert	opinion	on	the	innovation	process	(Bergek	et	al.,	2008).	

	
Table	1.2	

The	seven	innovation	functions	(Bergek	et	al.,	2008)	
	
	
1.	Knowledge	development	and	diffusion	
	
	
2.	Entrepreneurial	experimentation	
	
	
3.	Influence	on	the	direction	of	search	
	
	
4.	Market	formation	
	
	
5.	Development	of	positive	external	economies	
	
	
6.	Legitimation	
	
	
7.	Resource	mobilization	
	
	
	 These	7	functions	are	useful	for	understanding	what	specifically	occurs	in	the	

process	of	innovation.	Each	function	represents	something	that	happens	in	the	innovation	

process.	Actions	can	be	taken	that	either	support	a	function,	or	that	block	a	function.	The	

relative	level	of	support	or	hindrance	ultimately	affects	the	innovation	network,	and	path	of	
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innovation.	If	any	given	function	does	not	receive	sufficient	support,	innovation	is	

ultimately	deterred.	

	 In	turn,	it	is	possible	to	use	these	functions	as	a	means	to	map	existing	actors	on	to	

an	emerging	technology.	This	provides	insight	into	the	development	and	the	trajectory	of	

the	innovation	system.	For	instance,	if	a	given	function	has	received	minimal	support	

within	the	TIS,	or	there	are	a	number	of	blocking	mechanisms	(e.g.	lawsuits	are	preventing	

an	advanced	biofuel	mandate	from	being	enacted,	detracting	from	market	formation),	

innovation	and	development	is	likely	to	be	deterred.	Assessment	and	discussion	of	

innovation	system	weakness	has	been	demonstrated	in	the	case	of	the	Swedish	wind	

turbine	industry	(Bergek	&	Jacobsson,	2003).	In	Sweden,	diffusion	and	adoption	of	wind	

turbines	was	hindered	due	to	inadequate	functional	fulfillment;	there	was	inadequate	

knowledge	development	for	wind	turbines	while	market	formation	support	was	strong	due	

to	implemented	policy.	This	weakness	in	functional	fulfillment	ultimately	lead	to	the	

deployment	of	lack-luster	technology	lacking	in	legitimacy.		

	 Unlike	the	SSI	framework	that	focuses	on	firms,	or	the	ST-Systems	framework	that	

focuses	on	the	use	niche	markets,	the	TIS	framework	focuses	on	the	development	of	actor	

networks,	which	may	include	firms	and	niche	markets.	This	distinction	can	be	seen	in	the	

case	study	of	the	Dutch	biofuel	innovation	system,	in	which	technology	development	and	

innovation	is	assessed	through	a	series	of	events	that	link	back	to	a	set	of	functions	

analogous	to	those	found	in	Table	1.2.	

	

The	case	of	Dutch	biofuels	within	the	TIS	framework	
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	 Suurs	and	Hekkert	(2009)	note	that	there	are	two	distinct	technology	classes	within	

the	Dutch	Biofuel	Technology	Innovation	System	(BFTIS).	These	technology	classes	consist	

of	first	generation	biofuels	(1G)	and	second	generation	biofuels	(2G),	where	the	1G	fuels	

originate	out	of	the	agricultural	TIS,	and	the	2G	fuels	stem	from	bioscience-based	

technologies.	

	 The	biofuel	technology	case	traces	its	origins	to	agriculture,	where	massive	crop	

production	led	to	a	surplus	of	food	supply	in	Europe	and	decreased	revenues.	As	a	means	

to	support	the	agriculture	industry,	Europe	instituted	a	number	of	generic	tax	exemptions	

that	influenced	the	direction	of	search	toward	biofuels.	Farmers	were	offered	a	premium	

for	the	cultivation	of	non-food	crops	to	promote	biofuels	as	a	new	market	for	agriculture	

products.		

	 The	first	phase	of	the	Dutch	BFTIS	began	to	take	shape	when	a	group	of	

entrepreneurs	in	the	Netherlands	started	using	biofuels,	making	use	of	their	own	funding	

as	well	as	European	subsidies	(“resource	mobilization”).	Despite	this	initial	market,	

biofuels	had	low	economic	feasibility	and	were	unable	to	compete	with	fossil	fuels.	At	this	

time,	the	Dutch	government	provided	no	support	for	biofuels,	and	the	government	agency	

for	energy	(Novem)	was	against	the	use	of	biofuel,	viewing	it	as	too	expensive	compared	to	

co-firing	biomass	in	power	plants	(Suurs	&	Hekkert,	2009).	This	hindered	the	legitimacy,	

and	influenced	the	direction	of	search	away	from	biofuels.	Although	Novem	expressed	

doubt	about	biofuels,	the	Dutch	Ministry	of	Agriculture	favored	biofuel	development;	these	

contradictory	positions	from	different	government	departments	led	to	market	uncertainty	

(detracting	from	“direction	of	search”),	which	was	compounded	by	a	lack	of	monetary	

support	(“resource	mobilization”).	
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	 The	second	phase	of	the	Dutch	BFTIS	was	shaped	through	entrepreneurial	

experimentation,	knowledge	development	and	diffusion,	and	through	public	opinion	and	

industrial	actors	influencing	the	direction	of	search	toward	biofuels.	Climate	issues	also	

became	a	matter	of	political	interest	(“exogenous	external	economies”),	and	biomass	was	

recognized	as	an	important	consideration	in	the	energy	sector.		

	 Two	boating	companies	experimented	with	biodiesel	use	at	this	time,	later	leading	

the	companies	to	demand	a	national	fuel	tax	exemption	for	the	project,	which	the	

provincial	government	and	the	district	board	of	agriculture	supported	(“influence	the	

direction	of	search”,	”resource	mobilization”,		and	“legitimacy”).	A	tax	exemption	was	

provided,	and	a	virtuous	cycle	emerged	when	several	other	boating	projects	started	that	

also	demanded	tax	exemptions	(Suurs	&	Hekkert,	2009).	

	 In	1995,	Nedalco,	an	alcohol	producer,	along	with	other	connected	companies	

pressured	the	national	government	to	change	the	tax	scheme	and	issue	a	tax	exemption	for	

an	ethanol	production	facility;	a	tax	exemption	for	the	annual	production	of	30	million	

liters	of	bioethanol	was	provided	in	1997.	Although	the	tax	exemption	ended	up	being	

insufficient	to	cover	facility	investments	and	the	project	was	discontinued,	Nedalco	

successfully	eroded	the	Dutch	government's	resistance	to	(1G)	biofuels	(Suurs	&	Hekkert,	

2009).	

	 The	third	phase	in	the	Dutch	BFTIS	is	marked	by	the	creation	of	a	carbon-neutral	

energy	carrier	program	(GAVE)	initiated	by	the	Dutch	agency	for	energy	and	motivated	due	

to	climate	change	concerns.	An	influential	study	authorized	by	GAVE	indicated	that	biofuel	

production	could	be	favorable	and	that	a	range	of	alternative	energy	sources	already	

existed	for	electricity	production	(“legitimacy”,	“influence	the	direction	of	search”).	This	
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argument	led	to	a	national	agenda	for	alternative	fuel	development	which	strongly	favored	

2G	technologies,	resulting	in	the	development	of	two	major	industrial	coalitions	–	one	

spurred	by	Nedelco	and	another	by	TNO,	Shell,	and	Wageningen	University		(Suurs	&	

Hekkert,	2009).	The	promise	of	2G	technologies	created	positive	BFTIS	dynamics	at	the	

same	time	the	negative	aspects	of	1G	biofuels	were	being	stressed	by	academics	and	

environmentalists,	stagnating	entrepreneurial	experimentation	and	knowledge	

development	of	1G	fuels.	

	 The	fourth	phase	in	the	Dutch	BFTIS	was	marked	by	additional	support	from	the	

GAVE	program	aimed	at	guiding	entrepreneurs	toward	demonstration	projects.	Due	to	a	

limited	budget,	however,	commercial	facility	plans	were	discontinued	and	the	subsidy	

programs	stopped;	the	absence	of	sufficiently	powerful	market	creation	policies	formed	a	

critical	barrier	for	further	development	of	the	BFTIS	(Suurs	&	Hekkert,	2009).	

	 The	fifth	phase	was	marked	by	European	intervention	triggered	by	the	2003	EU	

biofuel	directive,	a	directive	that	forced	EU	member	states	to	substitute	a	percentage	of	

automotive	fuels	for	biofuels	(“market	formation”).	As	the	EU	initiative	did	not	dismiss	1G	

biofuels,	a	new	wave	of	1G	promotion	in	the	Netherlands	occurred.	Nedalco	continued	to	

influence	the	field	and	drafted	a	proposal	for	a	large-scale	1G	bioethanol	facility.	Despite	

the	lack	of	a	national	policy	to	promote	biofuels,	several	other	1G	fuel	projects	supported	

by	various	corporate	coalitions	commenced,	triggered	solely	by	the	EU	initiative.	The	

controversy	around	1G	and	2G	continued	to	increase,	yet	the	choice	for	1G	or	2G	biofuels,	

which	was	first	presented	as	a	dichotomy,	became	irrelevant	in	the	BFTIS.	

	 The	final	phase	studied	by	Suurs	and	Hekkert	(2009)	is	characterized	by	a	slew	of	

Dutch	policies	mandating	the	use	of	biofuels	and	providing	R&D	support	and	subsidy	for	2G	
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biofuels.	At	the	same	time,	the	resistance	to	biofuels	(both	1G	and	2G)	increased,	and	

biofuel	use	remained	surrounded	by	controversy	associated	with	land-use	for	energy	

crops,	rising	food	prices,	and	the	deforestation	of	vulnerable	natural	areas	like	rainforests.	

Additionally,	potential	2G	biofuel	producers	were	deterred	from	producing	due	to	the	

uncertainty	in	the	biofuel	market	as	it	remained	to	be	seen	whether	or	not	2G	biofuels	

could	compete	with	1G	biofuels,	which	already	had	issues	competing	with	cheap	biofuel	

imports	and	conventional	fuels.		

	 The	event	sequence	related	to	1G	biofuels	is	characterized	by	market	formation,	

further	encouragement	in	the	direction	of	search,	and	additional	entrepreneurial	

experimentation	and	resource	mobilization	to	support	those	efforts.	The	use	of	2G	biofuels	

in	the	Netherlands	was	only	driven	by	entrepreneurial	experimentation,	plagued	by	

considerable	uncertainty	due	to	the	rapid	expansion	of	1G	biofuels	and	controversy	over	

the	use	of	biofuels	in	general,	which	undermined	the	long-term	perspective	for	

development	of	biofuel	technologies.	

	 This	actor-network	narrative	for	the	Dutch	biofuel	case	provides	a	compelling	story	

for	the	shift	of	a	technology	sector	over	time,	and	allows	for	incorporation	of	firm-based	

innovations	and	niche	market	strategies	as	part	of	the	discussion.	Given	this	unique	

characteristic,	the	TIS	framework	is	effective	for	exploring	innovation	system	transitions	

and	for	assessing	the	role	that	policies	may	play	in	fostering	transformational	technological	

shifts.	

	 All	of	the	frameworks	for	technology	adoption	that	have	been	discussed	above	have	

a	set	of	similarities:	namely	that	innovation	is	an	ongoing	process	that	requires	a	network	
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of	different	actors	and	agents	diffusing	and	utilizing	information	to	progress.	With	this	

framing	in	mind,	I	turn	to	the	body	of	work	for	forecasting	innovation.	

	

1.4	Forecasting	Technology	Innovation	

	 Economists	have	traditionally	looked	at	technology	innovation	from	a	

macroeconomic	view	to	better	understand	how	innovation	drives	economic	growth.	

Engineers,	on	the	other	hand,	are	interested	in	the	application	of	innovation	to	specific	

technologies,	and	have	the	need	to	forecast	improvements	that	can	be	expected	to	occur	for	

technologies	over	time.	I	now	turn	to	the	engineering	side	of	the	problem	–	bottom-up	

approaches	that	explore	technology	innovation.		

Technologies	in	their	earliest	versions	are	often	costly	and	provide	limited	use.	To	

achieve	widespread	deployment	and	market	uptake,	these	technologies	require	large	

reductions	in	cost	alongside	performance	improvement.	The	previously	presented	

steamship	case	study	perfectly	exhibits	this	process.	Many	important	technologies	have	

experienced	a	process	of	steady	and	consistent	cost	reductions	and	performance	

improvements	over	time.	Semiconductors,	cellular	phones,	photovoltaics,	and	gas	turbines	

have	all	experienced	innovations	that	have	decreased	costs,	facilitating	increased	market	

penetration	and	use.	This	relationship	between	cost	and	deployment	is	captured	

by	“experience	curves,”	a	mathematical	formulation	that	illustrates	a	simple,	quantitative	

relationship	between	the	price	of	a	technology	and	its	cumulative	production	or	use	(IEA,	

2000).		

	 Wright	(1936)	first	introduced	the	concept	of	technological	learning,	where	he	

established	that	the	labor	hours	required	for	constructing	an	airframe	decreased	with	
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increasing	production.	In	1962,	the	concept	of	learning-by-doing	was	introduced	to	

endogenous	growth	models	(Arrow,	1962).	A	variety	of	studies	have	since	found	support	

for	the	use	of	experience	curves	to	forecast	innovation	(e.g.	Alberth,	2008;	Rubin,	Yeh,	

Antes,	Berkenpas,	&	Davison,	2007;	Yeh	&	Rubin,	2012).	

	 Forecasts	for	technology	costs	and	adoption	frequently	rely	on	this	well-established	

correlation	between	scale	and	cost,	and	this	simplistic	relationship	often	factor	into	the	

engineering-systems	literature	to	forecast	price	improvements	for	specific	technologies	

(e.g.	IEA,	2000;	Söderholm	&	Klaassen,	2007).	For	low-carbon	energy	technologies,	there	

has	been	increased	reliance	on	the	experience-curve	model.	Today’s	deployment	policies	

and	integrated	assessment	models	(IAM)	rest	on	the	assumption	that	a	steady	decline	in	

technology	costs	can	be	achieved	mainly	by	boosting	installed	capacity	or	unit	production	

(Loulou,	Kanudia,	Lehtila,	&	Goldstein,	2005;	U.S.	Energy	Information	Administration,	

2012;	van	der	Zwaan,	Gerlagh,	G,	Klaassen,	&	Schrattenholzer,	2002).	As	a	result,	these	

policies	and	models	often	focus	on	an	approach	dubbed	“riding	down	the	experience	

curve”	for	reducing	the	costs	and	improving	the	competitive	advantage	of	low-carbon	

technologies	compared	to	fossil	incumbents	(IEA,	2000;	van	der	Zwaan	et	al.,	2002).		

	 In	the	best-case	scenarios,	IAMs	incorporate	“endogenous	technological	learning”	

that	makes	use	of	experience	curves	to	shift	the	equilibrium	state	of	technological	

deployment.	These	simplistic	learning	curve	models	assume	costs	will	decrease	a	certain	

percent	for	each	unit	of	additional	production.	There	are	two	important	weaknesses	with	

this	approach:	(1)	the	rate	of	the	decrease	is	highly	uncertain,	and	may	not	follow	historical	

rates	for	similar	technologies,	and	(2)	these	models	assume	that	technologies	are	already	at	

a	commercial	stage	and	are	capable	of	following	a	standard	learning	trajectory	(Lohwasser	
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&	Madlener,	2013;	W.	Nordhaus,	2009).	In	reality,	however,	the	progress	ratio	(rate	at	

which	technology	costs	decrease	per	unit	of	deployment)	is	variable,	and	experience	curves	

become	increasingly	less	accurate	as	the	magnitude	of	deployment	increases	(Alberth,	

2008;	van	Sark,	Alsema,	Junginger,	de	Moor,	&	Schaeffer,	2008).		

	 Given	the	weaknesses	of	these	“single-factor”	experience	curves,	the	model	has	been	

expanded,	in	some	instances,	to	include	“two-factor”	learning	(Lohwasser	&	Madlener,	

2013).	Two-factor	models	add	a	parameter	for	R&D,	which	is	used	to	overcome	the	bias	for	

early-stage	technologies	(Yeh	&	Rubin,	2012).	These	“two-factor”	models	try	to	incorporate	

knowledge	development,	or	a	proxy	for	how	much	knowledge	about	a	technology	currently	

exists.	To	add	knowledge	stocks	to	the	model,	patent	counts	are	often	used	as	a	proxy	to	

establish	how	mature	the	technology	is	(Jamasb,	2007;	Kouvaritakis,	Soria,	&	Isoard,	2000).	

	 The	experience	curve	model	of	the	innovation	process	is	specifically	concerned	with	

cost	reductions,	assuming	that	a	decrease	in	cost	is	the	desirable	outcome	of	innovation,	

ultimately	leading	to	a	positive	feedback	loop	which	generates	expanded	deployment	and	

further	reductions	in	cost.	Various	deployment	policies	are	based	on	this	model,	assuming	

that	mandated	deployment	would	eventually	reduce	costs	for	low-carbon	technologies.	

Renewable	electricity	mandates,	tax	incentives	and	feed-in	tariff	policies,	low-carbon	and	

renewable	fuel	standards,	and	even	cap-and-trade	and	carbon	taxes	are	all	assumed	to	

drive	down	the	costs	of	clean	energy	sources	over	time	by	spurring	deployment	and	

accelerating	experience	curves.	

	 However,	these	policies	are	overly	reliant	on	the	assumption	that	deployment	alone	

is	enough	to	drive	reductions	in	cost,	and	do	little	to	ensure	that	costs	follow	the	trends	

associated	with	the	experience	curve	(Jamasb,	2007).	While	the	correlation	outlined	in	
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experience	curves	tends	to	hold	true	across	a	variety	of	industries,	policies	designed	to	

bluntly	accelerate	experience	curves	ignore	the	underlying	and	interrelated	causal	factors	

of	technological	change	at	work.	For	instance,	policies	have	been	effective	at	accelerating	

the	deployment	of	wind	turbines,	but	costs	have	not	declined	as	predicted	by	historic	

progress	ratios,	and	have	gone	up	in	recent	years	(IPCC,	2011).	Similarly	Germany’s	Feed-

in	Tariff	policy	has	resulted	in	substantial	deployment	of	rooftop	solar,	but	has	not	resulted	

in	reductions	in	cost	that	follow	historic	progress	ratios	for	photovoltaic	technology	(Wand	

&	Leuthold,	2011).	Missing	from	the	experience-curve	approach	is	the	nuance	of	actor-

agent	networks	and	a	systems	view	of	innovation.	Instead,	the	use	of	experience	curves	

rests	on	the	assumption	that	deployment	is	a	causal	driver	of	price	reduction,	and	that	

government-supported	deployment	in	and	of	itself	is	sufficient	for	driving	innovation.		

	 As	a	result	of	the	over-simplification	to	these	innovation	models,	past	and	current	

energy	policies	over-rely	on	scale	to	achieve	cost	reductions	while	routinely	ignoring	

the	near-ubiquitous	role	of	the	other	factors	necessary	to	optimally	incorporate	learning	

feedbacks	and	the	benefits	of	experience.	Technology	deployment	policies	reliant	on	

experience	curves	therefore	overestimate	the	technological	change	resulting	from	

deployment	alone	and	risk	continually	underperforming	cost	reduction	objectives	

(Schmalensee,	2015).	

	 A	different	modeling	approach	for	the	adoption	of	innovative	technologies	and	

innovation	takes	shape	in	the	form	of	the	diffusion	curve	(Meade	&	Islam,	2006).	Diffusion	

curves	have	traditionally	been	modeled	as	S-shaped-curves,	following	a	standard	logistics	

regression	(Figure	1.3).	One	possible	explanation	for	this	diffusion	pattern	is	that	different	

markets	(or	individuals)	have	need	for	the	technology,	or	are	curious	about	the	technology	
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in	its	nascent	stages	(Meade	&	Islam,	2006).	The	first	adopters	of	a	given	technology	are	

often	called	the	“innovators.”		Innovators	are	defined	by	their	willingness	to	take	risks	in	

technology	adoption,	deriving	some	benefit	(either	intellectual	curiosity,	or	otherwise)	

from	a	technology	that	is	likely	inferior	and	more	expensive	than	a	similar	technology	that	

already	exists	on	the	market.	There	has	been	some	evidence	to	support	the	idea	that	

innovators	are	wealthier	and	that	diffusion	to	the	masses	is	driven	by	income	and	

technology	price	(Karshenas	&	Stoneman,	1992;	Wareham,	Levy,	&	Shi,	2004).	As	the	

technology	matures,	early	adopters	begin	to	purchase	and	experiment	with	the	technology.	

As	the	technology	is	further	utilized,	diffusion	starts	to	increase	until	it	is	commonplace,	

and	a	large	subset	of	the	maximum	theoretical	market	is	employing	the	technology.	Even	at	

this	stage,	there	is	still	some	resistance	to	adoption	–	this	market	segment	that	resists	

adoption	is	termed	the	“laggards.”		Figure	1.3	shows	the	logistic	curve	used	to	represent	

typical	diffusion.	

	

Figure	1.3.	The	standard	model	for	diffusion.	Innovators	or	2	standard	deviations	or	more	

above	the	mean.	
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	 Models	that	make	use	of	these	curves	often	provide	exogenous	adoption	

timeframes,	and	use	the	curve	to	inhibit	product	uptake	independent	of	price	(U.S.	Energy	

Information	Administration,	2012).	While	limiting	uptake	in	this	fashion	is	not	entirely	

baseless,	the	time-frame	for	adoption	depends	widely	on	technology	specifics,	as	well	as	

other	socio-technical	factors	(Van	den	Bulte,	2000).	Numerous	modifications	and	

improvements	have	been	made	to	the	standard	diffusion	model	to	try	to	better	account	for	

adoption	rates.	These	modifications	and	developments	range	from	considering	diffusion	in	

two	or	more	stages	(Kalish,	1985),	to	examining	the	deterrents	to	adoption	and	the	role	of	

advertisement	(Horsky	&	Simon,	1983).	Increasingly	more	complex	model	formulations	

and	parameters	have	been	added	to	the	diffusion	model	to	try	to	improve	model	prediction	

of	ultimate	technology	adoption	(Meade	&	Islam,	2006).	

	 Despite	improvements	in	diffusion	modeling,	there	still	remains	uncertainty	

associated	with	the	parameters	and	deterrents	of	diffusion	especially	when	limited	data	

exist.	Furthermore,	when	diffusion	of	technology	ultimately	depends	on	displacing	an	

incumbent	technology,	and	allocating	scarce	resources	to	achieve	this	result,	the	diffusion	

models	can	offer	only	limited	guidance.		

	 In	terms	of	evaluating	the	economic	tradeoffs	between	traditional	R&D	

expenditures,	additional	advertisement,	improvements	in	technology	costs	through	

economies	of	scale,	or	further	demonstration	and	legitimation	of	the	technology,	today’s	

existing	models	remain	lacking.	Missing	from	these	models	is	the	need	for	a	more	nuanced,	

system	view	of	the	innovation	process.		

	

	 	



	

-38-	
	

1.5	The	Need	for	Better	Approaches	to	Innovation	

	 Both	the	top-down	macroeconomic	models	and	the	bottom-up	engineering	

approaches	to	innovation	have	been	used	to	motivate	innovation	policy.	These	innovation	

policies	seek	to	influence	energy	technologies	in	two,	disconnected	ways	that	may	

ultimately	undermine	policy	efficacy	and	societal	goals.	One	of	the	methods	employed	to	

promote	innovation	is	through	the	use	of	deployment	policies	to	accelerate	adoption.	

Deployment	policies	often	target	and	favor	more	mature	technologies	but	are	poorly	

optimized	to	drive	down	costs	or	promote	non-incremental	innovation.	The	second	method	

is	through	public	funding	for	R&D	efforts.	These	efforts	focus	on	nurturing	nascent	

technologies	with	no	consideration	of	their	commercial	applications.	The	resulting	R&D	

and	deployment	policies	are	fragmented,	inadequately	supporting	and	accelerating	many	

of	the	underlying	technological,	industrial,	and	economic	factors	necessary	to	drive	

the	feedback	loops	that	bring	down	technology	costs	and	drive	innovation	(J.	Jenkins	et	al.,	

2012;	Sagar	&	van	der	Zwaan,	2006).	

	 Similarly,	a	new	approach	is	necessary	to	break	into	the	“innovation	black	box”	for	

both	the	engineering	and	macroeconomic	innovation	models.	These	models	could	greatly	

be	improved	by	better	capturing	the	effects	that	drive	and	promote	technology	innovation.	

A	scalable	approach	is	necessary,	one	that	can	be	employed	across	regions,	considering	a	

myriad	of	technologies	with	different	costs,	while	building	on	existing	innovation	theory	to	

better	assess,	work	with,	and	understand	innovation.	From	this	need,	my	work	hopes	to	

provide	tools	that	can	be	readily	applied	to	help	break	into	the	innovation	black	box.	It	is	

my	goal	that	the	methods	and	data	employed	here	may	help	to	discern	what	is	happening	

with	a	technology,	and	can	be	used	to	aid	policy	makers	in	determining	where	scarce	



	

-39-	
	

resources	may	be	better	allocated	to	promote	specific	technology	innovation	goals	going	

forward.	 	
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Chapter	2: Methodologies	for	Building	on	the	Innovation	Systems	Framework	
	
	 As	innovation	studies	continue,	there	is	hope	to	eventually	break	into	the	innovation	

black	box,	elucidating	the	levers	and	mechanisms	that	can	be	turned,	twisted,	and	caressed	

to	yield	desirable	economic	outcomes.	Despite	the	recognition	that	innovation	and	the	

innovation	process	is	important	to	both	assessing	technology	uptake,	as	well	as	economic	

systems	at	a	macro	level,	approaches	capable	of	better	quantifying	the	innovation	process	

have	been	limited.		

	 Bottom-up	models	of	innovation	make	use	of	diffusion	curves	and	experience	

curves,	simplistic	models	with	high	uncertainty	that	fail	to	account	for	the	drivers	of	

innovation	beyond	cumulative	deployment	and	R&D	investment.	Top-down	models	

similarly	struggle	with	innovation,	failing	to	endogenize	all	aspects	of	the	innovation	

process.	It	is	therefore	unsurprising	that	many	innovation	system	frameworks	have	

emerged,	facilitating	qualitative	assessment	of	the	innovation	process	at	the	micro-level,	

providing	a	means	for	better	conceptualizing	innovation.	

	 It	is	these	innovation	frameworks	that	I	find	to	be	the	most	promising.	My	research	

therefore	builds	on	the	Technology	Innovation	System	framework	for	innovation.	I	aim	to	

create	a	set	of	tools	and	methods	that	can	be	employed	to	better	inform	policy	makers,	

modelers,	and	stakeholders	about	the	innovation	process,	directing	them	toward	desirable	

policy	approaches	that	support	the	transition	to	a	low-carbon	society.		

	 For	my	research,	I	use	a	broad	definition	of	innovation,	which	I	initially	established	

in	chapter	one:	the	creation,	dissemination,	and	use	of	new	information.	My	approach	to	

understanding	and	predicting	innovation	outcomes	draws	on	the	idea	that	innovation	can	

be	tracked	and	understood	by	analyzing	the	flow	of	information	relating	to	specific	
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technologies.	Schumpeterian	entrepreneurs	rely	on	information	flows	to	create,	diffuse,	

and	utilize	novel	technologies	and	groundbreaking	innovations.	In	turn,	these	very	actors	

contribute	to	these	information	flows,	strengthening	the	network,	and	further	supporting	

innovation.	This	conceptualization	emerges	from	the	TIS	literature,	which	focuses	on	the	

idea	that	the	structural	arrangement	(specific	actors)	of	the	innovation	system	emerge	

when	adequate	support	is	provided	for	the	levers	(TIS	functions)	that	serve	to	promote	

these	structural	components	(Bergek	et	al.,	2008).		

	 Despite	the	quintessential	role	that	information	plays	in	driving	entrepreneurship	

and	fostering	innovation,	modeling	approaches	usually	fail	to	account	for	the	importance	of	

information.	Even	the	best	models	apply	only	a	superficial	overlay	of	“knowledge	stock	

proxies”	(e.g.	Popp	(2004)).		

	 As	discussed	in	chapter	one,	innovation	relies	on	networks	of	agents	that	have	

access	to	information	and	that	are	capable	of	utilizing	the	information.	I	posit	that	the	

integration	of	innovation	into	models	and	policy	discussion	can	be	improved	by	tracking	

the	flows	of	information	that	are	available	across	different	networks.	It	is	important	to	

consider	not	only	the	quantity	of	information	being	produced,	but	also	how	the	information	

is	accessed,	how	readily	available	it	is,	and	the	quality	and	type	of	that	information.		

	 It	is	impossible	to	obtain	and	assess	all	the	information	associated	with	a	given	

technology,	and	it	is	even	harder	to	establish	the	set	of	actors	that	may	use	or	build	on	that	

information,	and	how	they	come	into	contact	with	it.	Nonetheless,	there	are	certain	

informational	sources	that	may	serve	to	capture	part	of	the	available	knowledge	base.		

	 Patents	represent	but	one	type	of	data	believed	to	capture	part	of	the	information	

flow	that	drives	innovation	(Agrawal	&	Henderson,	2002;	S.	Breschi,	2001).	In	addition	to	
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the	use	of	patents,	I	turn	to	newspaper	articles	and	trade	journals,	as	well	as	in-person	

meetings	to	better	assess	different	information	flows.	While	incomplete,	these	

informational	resources	provide	some	insight	into	the	types	and	quantity	of	information	

relevant	to	technology.	As	such,	these	resources	can	act	as	possible	proxies	for	technology	

innovation.		

	 Due	to	the	heavy	reliance	on	patents	as	a	proxy	for	innovation	in	the	literature,	I	

also	utilize	patenting	activity	to	assess	innovation.	I	further	use	this	conventional	

innovation	proxy	as	a	baseline	for	comparing	other	possible	innovation	proxies.	To	

establish	this	baseline,	I	look	at	patent	activity	for	one	of	the	most	mature	alternative	fuel	

technologies:	biofuel.		

	 After	using	patents	to	establish	the	baseline	of	innovative	activity	for	biofuels,	I	

explore	the	use	of	newspaper	data	as	an	alternative	proxy	for	technology	innovation	in	

Chapter	5.	In	turn,	I	make	direct	comparisons	between	the	article	innovation	proxy	and	the	

patent	data	associated	with	biofuels.	Building	on	these	results,	I	assess	the	use	of	the	article	

innovation	proxy	for	an	emerging	technology	field:	electric	vehicles.	I	further	corroborate	

these	results	through	qualitative	research	methods,	namely	in-person	meetings	in	several	

states	in	the	U.S.,	to	develop	a	more	complete	picture	of	the	technology	innovation	

narrative	for	electric	vehicles.	

	 To	better	characterize	and	understand	the	information	I	have	gathered,	I	draw	on	

computational	approaches	to	information	theory.	I	use	these	approaches	for	two	main	

purposes:	(1)	to	better	classify	and	group	patents	together	to	assess	how	patenting	activity	

for	specific	types	of	technologies	has	changed	over	time,	and	(2)	to	better	classify	and	sort	

the	information	I	gather	into	innovation	functions,	or	the	specific	kinds	of	events	and	



	

-43-	
	

actions	that	occur	to	guide	the	structural	development	of	the	innovation	system	in	specific	

ways.	To	achieve	these	classifications,	I	use	natural	language	processing	(NLP)	and	apply	it	

to	large	bodies	of	text.		

	 NLP	is	a	technique	that	uses	computational	approaches	and	statistical	models	to	

analyze	text	for	the	purpose	of	achieving	human-like	language	processing	(Liddy,	2001).	

NLP	is	based	on	a	set	of	theories	and	technologies,	and	remains	an	active,	ongoing	area	of	

research	(Cambria	&	White,	2014).	NLP	offers	the	advantage	of	being	able	to	search	

through	large	bodies	of	text	for	users	seeking	to	paraphrase,	translate,	or	answer	questions	

about	the	content	of	the	text.	While	NLP	systems	are	not	able	to	directly	draw	inferences	

from	the	text,	NLP	can	provide	the	user	with	the	necessary	tools	and	results	to	better	or,	

more	simply,	draw	meaningful	inferences.	For	my	research,	I	extensively	use	the	Stanford	

NLP	Classifier		(available	from:		http://www.nlp.stanford.edu/software/classifier.shtml).	

	 The	NLP	approach	that	I	rely	on	is	called	“supervised	learning.”		This	approach	is	

used	to	train	machine-learning	algorithms	for	the	purpose	of	classifying	texts.	Classifying	

text	through	a	supervised	learning	method	is	accomplished	through	a	two-step	process:	the	

first	step	is	to	develop	the	classification	model	by	creating	a	“training”	set	of	texts,	and	the	

second	step	is	to	classify	other	texts	using	the	“trained”	model	(Grimmer	&	Stewart,	2013).	

To	train	the	model,	a	small	subset	of	manually	classified	texts	is	utilized.	These	texts	are	

read	in	full,	and	then	sorted	into	one	or	more	user-defined	classifications.	From	these	user-

defined	territories,	the	NLP	algorithm	is	able	to	break	each	text	down	into	a	set	of	

components	and	features,	which	can	then	be	used	to	create	a	statistical	model	to	predict	

how	new	texts	should	be	classified.	
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	 Additional	parameters	are	provided	to	specify	how	the	text	should	be	parsed	and	

broken	down	into	its	component	elements.	This	may	include	things	such	as	article	length,	

word	pairs	(e.g.	“the	hat”	or	“electric	vehicles”),	and	stemming	properties	(“run”	versus	

“running”).	The	model	is	then	optimized	to	improve	accuracy	and	prediction	for	text	

classification	within	the	training	set.		

	 After	the	text-classification	model	has	been	trained,	the	remaining	set	of	texts	can	be	

tested	against	the	model	to	provide	insight	into	how	accurate	the	model	is	at	classifying	

new	text	documents.		

	
2.1	Using	Patents	to	Assess	Biofuel	Innovation	

To	establish	an	initial	narrative	for	biofuel	innovation	in	the	United	States	context,	a	

literature	review	was	conducted	prior	to	the	collection	of	patent	data.	The	Google	Scholar	

electronic	database	was	utilized	to	find	relevant	journal	articles	and	government	reports	to	

provide	historical	context	for	biofuel	developments.	The	following	keyword	search	was	

initially	used:	“Biofuel	+	History	+	United	States.”	The	electronic	database	returned	

thousands	of	results	based	on	this	search	query.		

	 To	further	refine	the	selection	of	relevant	articles,	results	were	sorted	by	relevance,	

and	all	article	titles	within	the	first	100	results	were	read	in	full	to	assess	whether	or	not	

the	article	was	relevant	to	the	greater	historical	context	of	U.S.	biofuel	developments.	All	

papers	deemed	to	be	relevant	were	downloaded	and	read	in	full.	Additional	historical	

context	for	the	narrative	was	established	by	examining	the	works	cited	in	the	papers	from	

this	initial	survey.	Well-cited	articles	not	found	in	the	initial	survey	of	literature,	but	that	

appeared	in	the	citations	of	these	initial	publications,	were	also	downloaded	and	read	to	

aid	in	the	construction	of	the	biofuel	narrative.	Articles	associated	with	biofuel	
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development	in	the	broader	U.S.	context	were	chosen	as	the	key	articles	with	which	to	

construct	the	biofuel	narrative	in	Chapter	3.	Articles	that	were	too	narrow	in	scope,	

focusing	only	on	a	single	biofuel	technology	without	broader	historical	context,	were	

omitted.	

	 From	the	biofuel	literature	review,	a	biofuel	narrative	emerged.	The	validity	of	this	

narrative	was	assessed	at	several	academic	conferences	through	in-person	meetings,	as	

well	as	public	presentations.	Experts	in	the	field	offered	many	helpful	suggestions.	Using	

this	approach,	a	“default”	biofuel	narrative	has	been	established,	which	I	have	used	to	

shape	and	facilitate	the	discussion	and	analysis	associated	with	the	patent	data	I	collected.		

	 Patent	databases	represent	an	appealing	data	source	for	tracking	and	assessing	

innovation.	Patent	data	is	publicly	available,	and	patent	systems	have	been	instituted	as	a	

means	to	protect	valuable	intellectual	property	(Mogee,	1991).	Patents	are	therefore	a	

public	record	of	invention	–	inventions	that	may	ultimately	be	used	and	deployed.	As	such,	

patents	provide	one	measure	of	the	flow	of	information	associated	with	technology	

innovation.		

	 Patent	analysis	has	been	used	to	track	trends	in	knowledge	development	and	

diffusion	related	to	new	technologies	and	inventions	(Hekkert,	Suurs,	Negro,	Kuhlmann,	&	

Smits,	2007;	Popp,	2005).	Patenting	behaviors	can	also	reveal	overall	trends	in	entry	and	

exit	of	firms	in	the	market	(if	firms	continue	to	file	for	patents	or	stop	patenting),	and	

ultimately	the	direction	and	maturity	of	innovation	processes.	Patent	analysis,	however,	is	

not	straightforward.	It	is	difficult	to	assess	the	value	or	quality	of	any	individual	patent,	and	

there	are	differences	in	patenting	activity	between	sectors;	this	makes	the	absolute	level	of	

technology	innovation	ambiguous	(Archibugi,	1992;	Peeters	&	Pottelsberghe	de	la	Potterie,	
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2006;	Qian,	2007).	Innovation	also	depends	on	a	number	of	conditions	that	are	not	fully	

captured	in	the	patent	dataset.	Patent	data	therefore	capture	an	incomplete	picture	of	the	

innovation	process.	Additionally,	patenting	does	not	necessarily	indicate	that	anything	

useful	has	been	created,	and	an	increase	in	patenting	could	possibly	retard	innovation,	as	

opposed	to	accelerate	it	(Heller,	1998;	Moser,	2013).	Furthermore,	there	is	a	long	lag-time	

between	the	point	that	a	patent	is	filed,	and	the	point	at	which	it	is	granted	(Popp,	Juhl,	&	

Johnson,	2003).	This	lag-time	also	makes	it	difficult	to	use	patents	as	a	real-time	measure	of	

innovation.		

	 Despite	patent	data	limitations,	I	aim	to	assess	the	overall	trends	associated	with	

patent	filing	for	biofuels	under	the	assumption	that	these	trends	may	adequately	represent	

significant	shifts	within	the	biofuel	innovation	system.	Patents	contain	specific	textual	

information	concerning	individual	technologies.	Using	patent	classification,	it	possible	to	

obtain	some	disaggregation	of	the	technology	innovation	process	compared	to	aggregate	

data	such	as	R&D	expenditures	(Popp,	2005).	I	look	at	the	existing	biofuel	innovation	

narrative	in	the	U.S.	to	establish	if	patent	activity	adequately	captures	many	of	the	

innovation	system	changes	that	have	occurred.	For	instance,	limited	patenting	activity	

followed	by	a	sudden	surge	in	patenting	activity,	regardless	of	the	actual	quality	or	value	of	

any	individual	patent,	may	be	indicative	of	substantial	shifts	in	that	technology’s	innovation	

system.		 	 Additionally,	there	are	few	publicly	accessible	datasets	that	can	

replace	the	use	of	patents	as	a	proxy	for	innovation.	However,	when	utilizing	patents	to	

assess	knowledge	stock,	there	is	significant	subjectivity	in	selecting	classifications	that	

relate	to	technologies	(S.	Breschi,	2001).	For	emerging	or	innovative	technologies,	this	can	

be	especially	difficult	if	classifications	cover	the	invention	inadequately,	or	if	the	invention	
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builds	on	a	large	body	of	research	in	another,	related	field.	Rather	than	relying	solely	on	the	

classification	scheme	established	by	patent	examiners	as	the	basis	for	technology	

classification,	I	employ	NLP	techniques	to	create	a	unique,	technology-specific	statistical	

model	to	aid	in	patent	grouping	and	classification.	I	classify	patents	into	1	of	10	possible	

technology	categories:	1st	and	2nd	generation	ethanol	and	biodiesel,	renewable	diesel	or	

drop-in	fuels,	other	renewable	fuels,	Fischer-Tropsch	synthesis	not	based	on	renewable	

feedstock,	oil	recovery,	other	non-renewables,	and	non-applicable	(NA)	patents.	This	

approach	can	increase	the	precision	and	accuracy	in	tracking	patent	activity	associated	

with	individual	technologies.	

	 While	assessment	of	patent	quality	is	not	a	direct	requirement	for	characterizing	

shifts	in	a	technology’s	innovation	system,	further	investigation	into	innovation	system	

strengths	or	levels	of	inventiveness	requires	more	consideration	of	the	quality	of	patents.		

	 I	rely	on	three	patent	classification	systems	to	assess	patents	as	a	proxy	for	shifts	in	

the	biofuel	innovation	system.	I	utilize	(1)	The	Green	Inventory	for	biofuel,	a	system	based	

on	a	selection	of	International	Patent	Classification	(IPC)	codes,	(2)	the	existing	

Cooperative	Patent	Classification	(CPC)	scheme	for	biofuel,	and	(3)	my	own	derived	

methodology	that	makes	use	of	natural	language	processing	and	machine-learning	

algorithms	to	independently	classify	patents.	I	used	a	multi-step	process	to	collect	a	set	of	

relevant	patents	from	the	United	States	Patent	and	Trademark	Office	(USPTO)	for	this	

analysis.	

	 I	collected	patent	counts	for	patents	applied	for	in	each	year	for	CPC	and	IPC	

classification	approaches.	These	counts	were	obtained	from	the	USPTO	using	built-in	

search	functionality	to	search	by	classification	code.	Both	the	CPC	biofuel	classification	
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scheme	and	the	IPC	Green	Inventory	were	created	to	capture	a	substantial	portion	of	

patents	likely	to	be	associated	with	biofuel	technologies	across	a	large	portion	of	the	

biofuel	supply	chain.	Table	2.1	provides	a	list	of	the	patent	classification	identifiers	used	to	

construct	the	Green	Index	and	CPC	biofuel	patent	trends	used	for	analysis.	

Table	2.1		

	
Patent	Classification	identifiers	for	BioPat	patents	and	CPC	biofuel	patents	
	
	
Technology	
	

	
Green	Index	(IPC)	
	

	
CPC	Classifications	
	

	 	 	 	 	
Biodiesel	 	 C07C	67/00,	

C07C	69/00,	
C10G,	C10L	1/02,	
C10L		1/19,	C11C	
3/10,	C12P	7/64	
	

	 Y02E50/13	

Bioethanol	 	 C10L	1/02,	C10L	
1/182,	C12N	
9/24,	C12P	7/06-
7/14	
	

	 Y02E50/17	

2G	Alcohol	 	 NA	
	

	 Y02E50/18	

Cellulosic	Ethanol		 NA	
	

	 Y02E50/16	

Pyrolysis	 	 NA	 	 Y02E50/14	
	 	 	 	 	
Note:	C07C	relates	to	organic	chemistry	and	cyclic	or	carbocyclic	compounds;	C10G	relates	
to	the	production	of	liquid	hydrocarbon	mixtures	and	cracking	hydrocarbon	oils;	C10L	
relates	to	fuels	not	otherwise	captured	in	C10G	and	C10K;	C11C	covers	fatty	acids	obtained	
from	fats,	oils,	or	waxes;	C12P	relates	to	fermentation,	and	C12N	relates	to	
microorganisms.	Conversely,	Y02E50	covers	to	the	production	of	fuels	of	non-fossil	origin	
with	/13	covering	biodiesel,	/17	covering	grain	bio-ethanol,	/18	covering	bio-alcohols	
produced	through	methods	other	than	fermentation,	/16	covering	cellulosic	bio-ethanol,	
and	/14	covering	bio-pyrolysis.	
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	 To	establish	an	initial	repository	of	patents	likely	to	be	associated	with	biofuel	

innovation	for	my	own	classification	methodology,	126	biofuel-relevant	keywords	were	

utilized	to	search	the	USPTO	patent	database.	This	keyword	list	was	originally	developed	as	

part	of	the	Biopat	database	research	conducted	by	Costantini,	Crespi,	and	Curci	(2013)	and	

is	contained	in	the	appendix.	These	keywords	were	established	by	Costantini	et	al.	(2013)	

using	expert	elicitation	and	a	review	of	relevant	biofuel	research	literature.	This	keyword	

set	is	believed	to	describe	adequately	capture	the	technologies	and	processes	employed	

across	biofuel	production.	These	keywords	are	often	very	broad,	including	words	such	as	

“ethanol,”	an	industrial	solvent	and	chemical	with	a	myriad	of	uses	and	applications	outside	

of	biofuels.		

	 The	combined	keyword	search	of	the	USPTO	database	returned	more	than	2.4	

million	patents,	capturing	a	greater	subset	of	possible	biofuel	patents	than	covered	under	

the	BioPat	database	(47,500	patents)	or	the	CPC	classification	scheme	(3,300	patents).	This	

approach	generated	a	repository	similar	in	breadth	to	the	World	Intellectual	Property	

Organization’s	(WIPO)	IPC	Green	Inventory	for	biofuels.	Accounting	for	duplicate	patents1	

in	the	patent	dataset	yields	a	full	patent	dataset	to	assess	for	biofuel-relevance	of	over	

755,000	patents.		

	 To	better	assess	patent	trends	and	meanings,	it	is	important	to	disaggregate	and	

properly	classify	relevant	patents	(Popp,	2005).	Because	keyword	searches	capture	a	

number	of	patents	that	have	no	relation	to	biofuels,	a	more	robust	method	for	classifying	

biofuel	patents	is	necessary.	I	have	chosen	to	utilize	natural	language	processing	to	

																																																								
	
	
1	Patents	may	have	more	than	one	keyword	associated	with	them.	
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augment	the	other	biofuel	patent	classification	schemes	(Adelman	&	Deanglis,	2007;	

Allison	&	Lemley,	2000).		

	 The	patent	text	and	associated	assignee	information	and	patent	classifications	for	

each	patent	was	downloaded	in	full	and	retained	in	a	local	patent	database.	To	create	a	

classification	model	for	biofuel	patents,	1000	patents	were	randomly	selected	from	the	

patent	database.	Each	of	these	patents	was	read	in	full,	and	then	was	manually	sorted	into	1	

of	10	categories	based	on	the	technology	use	implications.		

	 Patents	classified	as	relating	to	ethanol	or	biodiesel	were	also	classified	as	being	

either	1st	or	2nd	generation	technologies	based	on	whether	or	not	the	technology	made	

direct	use	of	conventional	food	crops.	Technologies	making	use	of	non-food	or	non-

conventional	resources	were	sorted	into	2nd	generation	technologies,	which	included	

technologies	like	cellulosic	ethanol	production	from	corn	stover,	biodiesel	production	from	

algae,	and	thermal	chemical	conversion	processes.		

	 For	manual	classification,	I	did	not	differentiate	between	process-oriented	patents	

and	feedstock-oriented	patents,	and	instead	classified	patents	based	on	their	relation	to	the	

overall	biofuel	production	processes.	Process	technologies	for	fuels	meant	to	be	direct	

replacements	to	conventional	gasoline	and	diesel	were	sorted	into	the	renewable	diesel	or	

drop-in	fuel	class,	which	I	include	in	the	2nd	generation	technology	classification.	Patents	

relevant	to	thermochemical	production	of	biofuel	were	only	classified	as	biofuel	patents	

when	biomass-related	feedstock	or	applications	were	directly	mentioned	or	cited	within	

the	patent.		

	 Utilizing	the	Stanford	NLP	Classifier,	I	created	a	model	for	classifying	all	755,000	

patents	in	the	patent	database.	The	model	was	built	using	700	randomly	selected	patents	
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from	the	initial	repository	of	1000	manually	classified	patents	in	the	patent	database	

(Kessler,	2015c).	The	model	was	then	assessed	for	accuracy	using	the	remaining	300	

manually	classified	patents	that	were	not	used	to	create	the	model.	Model	accuracy	for	each	

category	varies,	with	overall	classification	improving	for	technologies	with	a	greater	

representation	in	the	random	sample.		

	 Due	to	the	small	random	sample	of	the	total	patents	used	for	manual	classification,	

not	all	categories	have	sufficient	information	for	producing	meaningful	inferences.	I	have	

therefore	aggregated	model	classification	results	into	five	main	categories:	not-applicable	

patents,	1st	generation	patents,	2nd	generation	patents,	ethanol	patents,	and	biodiesel	

patents.	Table	2.2	shows	the	bin	sizes	and	relative	accuracy	for	the	biofuel-relevant	

classifications.		

	
Table	2.2	

Validation	results	for	biofuel	technology	classifications	
	
	
Biofuel	Patent	
Type	
	

	
Correctly	
Classified	

	
Not	Classified	as	
Biofuel	

	
Total	in	
test	set	

	
Total	in	
training	set	

	
Classification	
Accuracy	

	 	 	 	 	 	
1st	Generation	
	

121	 10	 131	 148	 92%	

2nd	Generation	
	

27	 24	 51	 42	 53%	

Ethanol	
	

87	 26	 113	 119	 77%	

Biodiesel	 57	 4	 61	 60	 93%	
	 	 	 	 	 	
	
	
	 The	provided	classification	accuracy	is	based	off	of	the	number	of	patents	correctly	

identified	by	the	model	as	belonging	to	a	specific	class	of	biofuel	patent	in	the	test	set	
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compared	to	the	total	number	of	patents	that	were	manually	classified	as	that	type	of	

biofuel	patent	in	the	same	test	set.	Figure	2.1	is	visual	representation	of	the	different	levels	

of	data	considered	for	this	classification	approach.	

	

Figure	2.1.	Graphical	representation	of	the	patent	data	captured	and	assessed	to	create	and	

evaluate	a	biofuel	classification	model.	

	
	 Costantini	et	al.	(2013)	created	a	unique	biofuel-specific	patent	database	built	

around	keyword	searches	and	patent	classification	codes	from	the	WIPO	Green	Inventory.	

Their	approach	has	been	shown	to	substantially	improve	on	the	Green	Inventory,	a	biofuel	

patent	classification	scheme	where	a	set	of	relevant	International	Patent	Classifications,	

believed	to	provide	a	good	match	to	biofuel-relevant	patents,	is	used	for	selecting	biofuel	

patents.	The	NLP	model,	at	the	aggregate	level,	correctly	classifies	84.7%	of	all	biofuel	

patents.	Further	assessing	the	validated	data	reveals	minimal	error	associated	with	the	

number	of	patents	classified	as	“not	applicable”	that	are	actually	biofuel	patents.	This	error	

		

	

	

	

Complete	set	of	patents	captured 

Manually	classified	patents 

Training	
Set 

Test	Set 

	
Biofuel-
relevant	
patents 

Patents	not	
related	to	biofuel 
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in	classification	accounts	for	0.67%	of	all	“NA”	patents.	Assuming	this	level	of	accuracy	

holds	for	the	entire	database	of	patents,	the	biofuel	patent	database	effectively	captured	

58%	to	80%	of	all	available	biofuel	patents	associated	with	the	initial	keyword	searches.	

Based	on	the	sample	size	and	a	confidence	level	of	99%,	the	classification	approach	put	

forward	correctly	identifies	a	patent	as	a	biofuel-relevant	patent	82%	to	96%	of	the	time.	

This	is	a	substantial	improvement	in	biofuel	patent	classification	and	categorization	

compared	to	either	the	green	patent	inventory	(up	to	14%	accurate	at	selecting	for	biofuel-

relevant	patents)	that	makes	use	of	the	IPC	system,	or	the	BioPat	database	(up	to	23%	

accurate	at	selecting	for	biofuel-relevant	patents)	as	reported	by	Costantini	et	al.	(2013).		

	 Due	to	the	overall	dominance	of	non-biofuel	related	technologies,	followed	by	1st	

generation	technologies	in	the	random	patent	sample,	I	only	use	the	classification	results	to	

assess	patent	trends	for	1st	generation	and	2nd	generation	biofuel	technologies,	as	well	as	

for	assessing	trends	associated	with	ethanol	and	biodiesel.	These	classifications	could	be	

expanded	on	by	sampling	more	patents,	or	by	using	keyword	filters	or	other	first-pass	

classification	methods	to	better	select	for	certain	types	of	biofuel-related	patents	that	have	

been	under-represented	in	the	manually	classified	data.	

	 The	new	international	standard	for	patent	classification,	Cooperative	Patent	

Classification,	has	since	started	to	replace	the	IPC	classification	model	and	offers	a	number	

of	improvements	to	IPC	classification	(Lasevoli,	2013).	Because	biofuel	technologies	have	

emerged	out	of	several	different	sectors,	it	is	likely	difficult	to	capture	all	patents	relevant	

to	biofuel	innovation	with	only	a	few	CPC	classes.	The	biofuel	supply	chain	makes	use	of	a	

myriad	of	technologies,	that	are	all	undergoing	dynamic	shifts	(Yue,	You,	&	Snyder,	2014).	

It	is	therefore	important	to	not	only	capture	biofuel	production	processes	innovations,	but	
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also	relevant	feedstock	innovations	and	other	pathway	innovations,	such	as	enzyme	

development.	The	Y02E50	CPC	classification,	for	instance,	contains	patents	associated	with	

technologies	for	the	production	of	fuel	of	non-fossil	origin,	but	is	unlikely	to	capture	

relevant	technologies	for	extracting	saccharides	from	cellulose,	as	may	be	captured	in	the	

C12P19	class	for	the	CPC.	While	the	CPC	system	offers	improvements	to	the	IPC	

classification	scheme,	relying	solely	on	CPC	aggregation	for	patents	is	unlikely	to	provide	

the	level	of	precision	in	classification	compared	to	either	the	NLP	method	of	classification	

presented	here,	or	to	the	methods	proposed	by	Costantini	et	al.	(2013).		

	 To	provide	additional	assessment	of	CPC	classification	in	relation	to	biofuel	

innovation	system	shifts,	I	have	created	an	NLP-CPC	concordance	for	biofuel.	This	is	a	table	

that	provides	a	set	of	CPC	classifications	that	capture	many	of	the	patents	that	my	NLP	

method	identified	as	being	biofuel	patents.	This	can	serve	to	expand	the	CPC	patent	dataset	

to	include	patents	from	related	fields	that	are	not	directly	captured	by	the	Y02E50	

classification,	but	are	captured	through	my	NLP	classification	methodology.	I	have	

extracted	the	CPC	classification	code	from	each	patent	in	my	NLP-classified	biofuel	patent	

database,	and	created	a	frequency	distribution	for	the	occurrence	of	each	CPC	code.	I	then	

selected	the	top	20	most	frequently	occurring	CPC	classes	for	1st	generation,	2nd	generation,	

ethanol,	and	biodiesel	biofuel	technologies.	These	classifications	are	provided	in	the	

appendix	as	a	CPC-NLP	patent	classification	lookup	table.	In	Chapter	3,	I	refer	to	trends	

from	this	lookup	table	as	CPC*.	The	CPC*	classification	approach	contains	many	more	

patents	than	the	other	classification	approaches,	as	it	expands	the	scope	of	what	is	

considered	to	be	part	of	the	biofuel	technology	innovation	system,	without	removing	the	

patents	captured	that	are	not	associated	with	biofuel	technologies.		



	

-55-	
	

	 Because	biofuel	technology	could	not	exist	without	reliance	on	other	sociotechnical	

systems,	I	have	also	collected	additional	patent	data	to	elucidate	trends	in	related	sectors.	

1st	generation	biofuels	are	often	thought	to	originate	from	the	agriculture	industry	while	

2nd	generation	fuels	originate	from	more-science	based	technologies,	such	as	biotechnology	

and	thermochemical	processes	(Suurs	&	Hekkert,	2009).	Because	it	is	believed	that	biofuels	

originate	from	two	distinct	sectors,	I	have	collected	patent	data	associated	with	the	

agriculture	industry	as	well	as	patent	data	associated	with	biotechnology.	Given	the	

breadth	of	topics	covered	by	these	two	sectors,	I	utilized	traditional	classification	methods	

based	on	the	IPC	and	CPC	classification	systems	to	establish	patent	count	estimates	for	

these	sectors	rather	than	relying	on	NLP	approaches.		

	 Biotechnology	sector	patenting	activity	was	approximated	by	utilizing	30	USPTO	

patent	subclasses	as	identified	by	Adelman	and	Deanglis	(2007).	I	performed	a	count	of	all	

patents	associated	with	these	30	subclasses	from	the	USPTO	from	1976	through	2013.	For	

the	agriculture	sector,	patenting	activity	was	approximated	through	use	of	the	CPC,	where	

all	patents	from	the	A01	subclass		(“Agriculture”)	were	counted	from	1976	through	2013.	

	 Because	biofuels	are	intended	to	displace	traditional	fossil	resources	in	

transportation,	I	have	also	collected	patent	data	associated	with	the	oil	and	gas	sector.	U.S.	

patent	data	was	collected	for	the	five	largest	oil	and	gas	companies	traded	on	the	New	York	

Stock	Exchange	in	2014	(BP,	Chevron,	Conoco,	ExxonMobil,	and	Shell).	Patents	were	

collected	by	searching	for	all	USPTO	patents	assigned	to	each	of	the	five	companies	(9,300	

patents).	All	patents	assignee	results	were	then	reviewed	manually,	and	any	patents	

assigned	to	unrelated	companies	were	removed.	

	



	

-56-	
	

2.2	TIS	Analysis	of	Biofuels	

	 In	addition	to	using	patent	data	to	assess	biofuel	innovation,	I	turn	to	another	data	

source	for	information:	newspapers	and	trade	journals.	As	previously	established,	

innovation	relies	on	the	flow	and	use	of	information.	Patents	have	traditionally	been	used	

as	a	proxy	for	knowledge	stocks	–capturing	some	of	the	information	that	inventors	and	

entrepreneurs	utilize	which	can	ultimately	lead	to	innovation	(e.g.	J.	Wu	&	Shanley,	2009;	

Zucker,	Darby,	Furner,	Liu,	&	Ma,	2007).	However,	innovation	relies	on	a	large	network	of	

actors	and	institutions	working	to	generate,	diffuse,	and	utilize	information.	This	group	of	

actors	is	unlikely	to	rely	solely	on	patents	for	information,	and	so	patents	cannot	be	

expected	to	capture	the	complete	story	of	what’s	going	on	in	a	technology’s	innovation	

system	(Moser,	2013).	Instead,	different	agents	rely	on	a	number	of	different	sources	of	

information,	of	which	patents	may	be	a	part	(Acs,	Anselin,	&	Varga,	2002).	One	other	

common	source	for	information	is	textual	media	(either	online	or	in	print)	(Tichenor,	

Donohue,	&	Olien,	1970).		

	 Newspaper	articles	and	trade	journals	are	likely	to	report	on	important	inventions	

and	innovations	as	they	gain	social	relevance	(Acs	et	al.,	2002).	Often,	articles	may	be	

speculative	in	nature,	or	may	even	be	antagonistic	toward	a	technology.	As	a	technology	

becomes	more	relevant	to	society	and	to	other	niches,	there	is	likely	to	be	more	reporting	

about	that	technology.	If	only	a	small	number	of	informational	sources	are	evaluated,	there	

is	the	danger	of	over-representing	the	connectivity	and	size	of	the	technology	innovation	

system.	This,	in	turn,	could	result	in	a	“hype”	bubble	(Melton	&	Axsen,	2015).	As	more	

information	is	evaluated	and	considered,	a	more	nuanced	view	of	the	innovation	system	

should	emerge,	reducing	the	risk	of	hype	cycles.	In	turn,	hype	can	ultimately	contribute	to	
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the	development	of	stronger,	more	connected	networks,	by	motivating	actors	and	

institutions	to	invest	in	the	technology,	further	leading	to	the	creation	of	new	knowledge	

and	knowledge	flows.	

	 Crowds	have	been	shown	to	be	efficient	predictors	of	events	–	ranging	from	the	

probability	of	discovering	the	Higgs	boson	to	movie	box	office	sales	and	politics	(Pennock,	

Lawrence,	Giles,	&	Nielsen;	Ray,	2006).	Social	media	trends	have	similarly	been	shown	to	

be	good	predictors	for	movie	revenues,	and	the	use	of	internet	participants	in	games	has	

even	been	shown	to	be	effective	at	predicting	low-energy	configurations	for	proteins	(Asur	

&	Huberman,	2010;	Savage,	2012).		

	 Given	the	“wisdom	of	crowds”	phenomenon,	tracking	technology	as	it	is	written	

about	in	the	media	may	also	provide	a	good	proxy	for	technology	innovation.	Surowiecki	

(2005)	writes	that	the	“wisdom	of	crowds”	is	often	good	for	making	predictions	about	the	

likelihood	of	future	outcomes,	and	when	they	will	occur,	as	long	as	four	factors	hold:	(1)	

Diversity:	each	person	adds	private	information	or	bias,	(2)	Independence:	people	form	

their	own	opinions,	(3):	Decentralization:	people	draw	their	own	specialized	knowledge,	

and	(4)	Aggregation:	a	mechanism	exists	to	turn	private	judgments	into	a	collective	action.	

	 Given	that	newspapers	and	trade	journals	operate	in	different	regions	and	cater	to	

different	reader	demographics,	their	writers	are	likely	to	report	on	different	technologies	

differently,	and	will	gain	information	about	these	technologies	through	different	networks.	

They	may	therefore	choose	not	to	report	on	technologies	at	all.	This	makes	the	information	

contained	in	newspapers	both	diverse	and	decentralized.	Because	the	content	being	

published	is	ultimately	left	to	the	editor,	information	pertaining	to	the	technologies	

featured	and	how	often	a	specific	technology	is	featured	is	likely	to	be	established	
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independently,	and	take	into	account	the	likely	importance	to	the	readership	of	that	

specific	source.	As	such,	aggregation	of	newspaper	data	across	a	large	enough	set	of	media	

sources	is	likely	to	exhibit	“wisdom	of	crowds”	behaviors	for	capturing	innovation	system	

trends,	and	therefore	reduce	the	risk	of	capturing	“hype,”	which	may	happen	if	only	a	small	

number	of	newspaper	sources	are	utilized	(Melton	&	Axsen,	2015).		

	 For	instance,	as	electric	vehicles	deployment	increases	across	the	United	States,	we	

would	initially	expect	to	see	articles	and	information	associated	with	EVs	to	show	up	in	

news	sources	relevant	to	the	areas	that	receive	electric	vehicles	first,	or	areas	that	are	more	

interested	in	EV	technology.	As	time	goes	on,	other	local	newspapers	and	news	stories	are	

likely	to	write	about	EVs,	or	to	more	frequently	mention	of	the	technology.	If	some	regional	

news	sources	do	not	think	electric	vehicles	are	relevant,	they	may	choose	not	to	write	

about	or	discuss	the	technology.	As	the	technology	becomes	increasingly	more	

indispensible	to	society,	there	should	be	more	articles	discussing	that	technology	overtime.	

Take	gasoline	and	oil,	for	example,	where	prices	and	price	implications	and	changes	are	

often	discussed	across	a	wide	variety	of	news	sources,	with	entire	sections	dedicated	to	the	

discussion	of	oil	and	gasoline	market	trends.		

If	a	large	enough	number	of	informational	sources	are	drawn	from,	a	more	accurate	

representation	of	the	technology	can	be	expected	–	more	important	and	socially	relevant	

technologies	are	likely	to	receive	more	press	(be	it	from	pricing	reports,	or	deep-dives	into	

technological	opportunities	and	uses).	The	reporting,	or	lack	of	reporting,	that	takes	place	

across	a	large	set	of	information	sources	is	likely	to	result	in	different	trends	than	if	only	

larger,	national	sources	of	information	are	drawn	from	to	make	conclusions,	such	as	the	

New	York	Times	or	Wall	Street	Journal.		
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In	addition	to	providing	a	wisdom-of-crowd	approach	for	assessing	technology,	

articles	allow	for	more	nuanced	categorization	and	classification	of	innovation	trends	than	

is	possible	with	patents,	similar	to	how	patents	provide	further	detail	and	disaggregation	

on	the	innovation	process	than	simply	looking	at	R&D	investments.	Negative	press	about	

EVs,	or	highlights	of	EV	deployment	failure,	for	instance,	can	be	captured.	This	could	

include	instances	where	batteries	explode,	or	where	someone	reports	on	how	their	EV	ran	

out	of	electricity	two-miles	from	their	home.	This	negative	press	could	ultimately	detract	

from	the	advancement	of	the	technology.	

Across	different	regions,	and	over	time,	articles	will	report	on	technologies	in	a	

variety	of	different	ways.	Events	that	are	important	receive	wider	attention	and	increased	

replication.	As	industries	mature,	reporting	is	likely	to	increase,	and	new	information	

sources	(such	as	trade	journals)	may	emerge.	Additionally,	the	information	contained	in	

newspapers	and	trade	journals	can	provide	a	more	immediate	snapshot	of	the	innovation	

system	than	is	possible	with	patents.	Despite	the	seeming	appeal	of	newspapers	as	a	means	

to	assess	innovation,	there	are	still	drawbacks.	One	of	the	biggest	drawbacks	of	newspaper	

data	is	that	access	to	the	data	is	often	limited.	There	are	a	myriad	of	different	news	sources	

across	regions;	not	all	of	them	are	in	the	same	language,	and	not	all	of	them	have	the	same	

publishing	reach.	Capturing	articles	from	a	large	variety	of	sources	can	be	a	difficult	task.	

Choosing	which	sources	to	draw	from	while	ignoring	other	sources	may	bias	the	results.	

Furthermore,	not	all	newspapers	maintain	long-term	digital	archives	that	are	publicly	

accessible.	Without	capturing	a	large	enough	set	of	diverse	newspaper	sources,	it	is	likely	

that	the	data	will	be	biased,	and	not	exhibit	“wisdom	of	the	crowd”	behaviors.	
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In	addition	to	the	boundary	condition	and	data	source	concerns,	there	is	also	one	

other	substantial	concern:	classification	and	use	of	the	data.	Once	newspaper	data	is	

collected,	it	can	be	difficult	to	use	the	data	in	a	quantitative	or	meaningful	fashion.	One	

individual	might	be	able	to	read	hundreds,	or	even	thousands	of	newspaper	articles	related	

to	a	given	subject,	but	it	would	be	impossible	for	that	individual	to	read	all	newspaper	

articles	that	could	be	captured.	There	is	therefore	a	tradeoff	between	establishing	a	large	

enough	newspaper	dataset	to	work	with	so	that	trends	remain	unbiased,	and	in	being	able	

to	read	and	gain	insight	from	the	data.	

To	relate	newspaper	articles	to	technology	innovation,	I	rely	on	an	event	analysis	

approach	to	article	classification.	That	is,	I	assume	that	each	article	represents	an	event,	or	

a	specific	occurrence	that	is	relevant	to	the	technology	innovation	system.	For	instance,	if	

legislation	were	passed	to	provide	a	tax	incentive	for	biofuels,	this	would	mark	an	event	

that	occurred	and	is	being	written	about	to	inform	the	public.	Alternatively,	if	a	long-form	

informational	piece	about	biofuels	is	published,	the	article	itself	may	represent	the	event,	

or	may	reflect	a	non-obvious	event	that	triggered	the	writing	or	publication	in	the	first	

place	(e.g.	a	biofuel	production	facility	in	a	nearby	county	went	bankrupt	or	was	involved	in	

a	scandal).	More	important	events	are	likely	to	receive	more	media	attention	across	a	

wider	variety	of	newspaper	sources.	In	this	fashion,	articles	that	effectively	duplicate	the	

same	new	story	help	to	internalize	the	magnitude	of	the	effect	of	that	event.	

Event	analysis,	however,	is	a	non-trivial,	time-intensive	process	that	is	not	without	

faults	and	limitations.	Event	analysis	has	been	used	in	a	number	of	different	innovation	

studies	(e.g.	Tigabu,	Berkhout,	&	van	Beukering,	2015;	Van	de	Ven	&	Poole,	1990),	and	has	
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previously	been	used	to	investigate	technology	innovation	systems	for	European	biofuels	

(Negro,	Hekkert,	&	Smits,	2007;	Suurs	&	Hekkert,	2009).		

The	event	analysis	work	by	Suurs	and	Hekkert	(2009)	uses	a	number	of	journal	

articles	associated	with	specific	biofuel	topics.	Their	team	sorted	through	those	articles	to	

find	a	small	subset	of	articles	that	were	then	selected	to	inform	a	technology	innovation	

narrative.	Similarly,	work	by	Negro	et	al.	(2007)	uses	a	small	subset	of	articles	and	media	

sources	to	construct	an	event	narrative.	Inherent	to	these	event	analysis	approaches	is	

general	content	analysis,	where	the	content	of	specific	written	media	is	read,	analyzed,	and	

coded	so	that	details	can	quickly	and	readily	be	accessed	through	a	database.	This	process	

can	be	very	detailed,	listing	frequency	distributions	of	the	words	used	in	a	specific	article,	

for	instance,	or	can	be	more	general,	like	specifying	the	subject	of	the	article	with	a	single	

keyword.	

Content	analysis	is	not	only	time-intensive,	but	also	subjective	in	how	articles	are	

grouped	and	coded.	Furthermore,	there	is	selection	bias	associated	with	the	media	sources	

utilized	as	only	a	small	subset	of	sources	can	be	read	in	full	and	coded	(Grimmer	&	Stewart,	

2013;	Hopkins	&	King,	2010)		

Although	TIS	event	analysis,	relying	on	content	analysis,	has	its	limitations,	new	

approaches	have	made	headway	in	overcoming	some	of	these	limitations.	Specifically,	

content	analysis	methodologies	employed	by	Sengers,	Raven,	and	Van	Venrooij	(2010)	

substantially	expand	the	article	datasets	usable	for	TIS	analysis	through	use	of	a	

computational	tool	kit	for	content	analysis,	T-lab.	T-lab	allows	articles	to	be	clustered	by	

word	choice	similarities	and	placed	into	specific	groups.	By	breaking	a	large	set	of	articles	

into	groups,	temporal	trends	across	groups	can	be	evaluated,	leading	to	additional	insights	
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for	technology	innovation	and	shifts	in	the	TIS	over	time	without	needing	to	manually	read	

and	code	each	article.	Approaches	like	this	can	help	to	remove	some	of	the	selection	bias	

that	is	inherent	to	content	analysis.	While	Sengers	et	al.	(2010)	track	specific	shifts	in	

computationally	established	clusters,	it	is	unclear	how	each	cluster	relates	to	overall	TIS	

outcomes,	or	if	this	approach	is	best-suited	for	TIS	analysis.		

Rather	than	relying	on	pre-built	content	analysis	software	that	is	limited	in	scope	to	

word	clustering	to	derive	technology	groupings	and	trends,	I	combine	content	analysis	

techniques	alongside	computational	linguistics	to	further	improve	upon	traditional	event	

analysis.	Following	the	approach	I	used	for	classifying	patents,	I	utilize	a	supervised	

learning	method	to	train	a	myriad	of	custom	machine-learning	models	that	make	use	of	

NLP	to	better	classify	and	sort	articles	into	specific	TIS	functions.	The	7	TIS	functions	were	

developed	for	the	purpose	of	better	classifying	and	grouping	the	types	of	actions	that	can	

be	taken	to	promote	the	formation	of	structural	elements	of	the	innovation	process.	Small-

business	loans,	for	instance,	could	be	used	to	increase	the	number	of	entrepreneurial	firms	

in	the	market.	Alternatively,	research	grants	could	be	used	to	increase	basic	knowledge	

about	the	technology.	These	are	direct	actions	that	can	fit	within	the	7	different	TIS	

functions	and	can	be	used	to	promote	a	specific	kind	of	network	formation.	

For	this	analysis,	I	created	15	binary	models	to	classify	each	document	by	

technology	type	(e.g.	ethanol,	biodiesel,	etc.),	technology	generation	(1st	or	2nd	generation),	

direction	of	support	(blocking/hindering	or	supporting/promoting),	and	innovation	

function	(Table	2.3).	All	texts	I	collected	were	tested	against	each	of	the	15	models	to	

provide	unique	classification	results.	
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The	text	corpus	I	use	is	made	up	of	newspaper	articles	and	metadata	associated	

with	articles	from	the	LexisNexis	Academic	newspaper	database.	LexisNexis	tracks	over	

6000	English-language	news	sources,	each	containing	a	large	number	of	articles	and	

original	content.	To	make	the	data	collection	process	feasible,	I	only	chose	to	analyze	

biofuel	texts	from	1995	through	2013	–	the	complete	collection	of	texts	analyzed	was	

approximately	973,000.	

The	initial	article	repository	was	established	by	conducting	keyword	searches	on	

LexisNexis	with	the	following	6	keywords,	relevant	to	biofuel	technology:	Biofuel,	

Biodiesel,	Drop-in	Fuel,	Ethanol,	Renewable	Diesel,	and	Biogas.	Given	the	broad	nature	of	

the	search	terms,	I	believe	that	the	articles	captured	are	likely	to	contain	most	print-media	

articles	concerned	with	biofuels	for	the	available	sources.	

I	used	the	built-in	LexisNexis	algorithms	to	find	and	remove	duplicate	articles	from	

within	keyword	searches,	and	utilized	title	and	date	identifiers	to	remove	duplicate	articles	

across	keywords	(if	an	article	showed	up	in	both	Ethanol	and	Biodiesel	keyword	searched,	

it	would	not	be	counted	twice).	Removing	all	duplicate	articles	created	a	newspaper	

repository	of	approximately	634,000	biofuel-related	articles.	

I	performed	the	initial	content	analysis	across	a	small	subset	of	articles;	1001	

articles	from	the	newspaper	data	repository	were	randomly	selected	and	read	in	full.	To	

better	elucidate	meaningful	trends	associated	with	the	technology	innovation	system,	I	

read	and	classified	articles	according	to	TIS	functions	(Table	2.3).	I	also	classified	articles	

into	technology	types,	technology	generation,	and	the	direction	of	support	(supporting	or	

blocking).	
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I	used	only	two	technology	generations	for	this	classification	analysis:	1st	

generation	and	2nd	generation	biofuel	technologies.	Articles	discussing	technologies	that	

make	direct	use	of	conventional	food	crops	were	viewed	as	1st	generation	technologies,	

while	technologies	that	use	non-food	or	non-conventional	resources	were	classified	as	2nd	

generation	technologies.	2nd	generation	technologies	include	technologies	like	cellulosic	

ethanol	production	from	corn	stover	using	biochemical	or	thermochemical	pathways,	and	

biodiesel	production	from	algae.	

For	each	of	the	7	TIS	functions,	the	supporting	classification	was	defined	based	on	

the	tone	and	the	direction	of	functions	exhibited	in	the	article.	If,	for	instance,	the	article	

mentioned	a	government-issued	tax	incentive	for	ethanol,	that	article	was	classified	as	

supporting	the	technology;	if,	however,	the	article	mentioned	removal	of	a	tax	incentive,	or	

discussed	an	opinion	that	the	tax	incentive	should	be	removed,	that	article	was	considered	

a	blocking	event.	Manual	classification	allowed	for	each	article	to	capture	more	than	1	TIS	

function	and	several	different	technologies.	Table	2.3	shows	the	general	criteria	I	used	for	

manually	classifying	articles	into	functions.	These	criteria	were	established	as	guidelines	

for	making	decisions	on	classification.	Other	experts	in	the	field	may	develop	a	similar,	or	

more	comprehensive	set,	which	may	result	in	slightly	different	classification	results.	 	
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Table	2.3		

	
Criteria	for	article	classification	
	
	 	
Function	
	

Characteristics	of	Articles	

	 	

Resource	mobilization	
	
	

Government	subsidies,	research	grants,	
venture	capital,	IPOs,	direct	investment	of	
capital	from	third	parties	
	
	

Market	formation	
	
	

Government	policy	incentives,	long-term	
contracts	for	product	
	
	

Legitimation	
	
	

Sign	of	product	usage,	product	discussion,	
showing	of	support,	success	or	failure	
stories,	expectation	or	projections	
	
	

Knowledge	development	and	diffusion	
	
	

Discussion	of	R&D	efforts,	educational	
events,	patent	implications	or	filed	
applications,	“Basic	Research”	or		
Knowledge	sharing,	pilot	facilities	
	
	

Influence	on	the	direction	of	search	
	
	

Government	policy	incentives,	highlights	of	
positive	or	negative	commercial	outcomes	
	
	

Entrepreneurial	experimentation	
	
	

Discussion	of	joint-ventures,	
commercialization	activity,	business	
mergers	and	acquisitions,	launching	a	new	
product	or	production	facility	
	
	

Development	of	positive	external	economies	
	
	

Involvement	of	seemingly	different	sectors,	
usage	of	product	for	different	applications	
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I	built	15	different	NLP	models,	which	enabled	me	to	analyze	all	634,000	articles,	

attaching	15	different	classifications	to	each	article.	The	classification	models	I	created	

made	use	of	several	article	characteristics	and	parameters.	First,	each	article	was	split	into	

specific	words;	word	tokens	in	each	article	were	defined	as	items	starting	with	a	letter,	

followed	by	any	number	of	ASCII	digits,	numbers,	percent	expressions,	money,	and	white	

spaces.	I	then	stripped	and	ignored	the	white	spaces	around	each	word	token.	The	length	of	

each	article	was	established	based	on	binned	sets	of	tokens:	500,	1500,	4500,	and	13500	

word	tokens.	Word	pairs	were	also	utilized,	but	word	triplets	were	not	found	to	improve	

classification	results.	This	resulted	in	a	set	of	unique	characteristics	and	words	to	describe	

each	document	analyzed.	The	Stanford	NLP	Classifier	than	utilizes	statistical	models	and	

algorithms	to	determine	the	set	of	features	that	most	consistently	predict	the	correct	

article	classification.	The	trained	classification	models	used	roughly	24,000	different	

textual	features	in	the	decision	making	process	for	whether	or	not	an	article	belongs	to	a	

specific	technology	class.		

Because	I	created	15	different	classification	models,	each	article	can	be	classified	as	

fitting	one	or	more	different	technology,	and	as	supporting	or	blocking	one	or	more	

different	TIS	functions.	Of	the	1001	articles	that	I	manually	classified,	I	utilized	the	same	

random	selection	of	770	articles	to	train	each	of	the	15	different	classification	models.	The	

remaining	231	articles	were	later	utilized	to	perform	model	validation	and	to	assess	model	

accuracy,	precision,	and	classification	error.	Aggregate	details	for	article	classification	

based	on	manual	classification	and	the	classification	model	output	is	provided	in	Table	2.4.	
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Table	2.4	
	
The	number	of	articles	classified	into	each	category	manually,	and	automatically	using	NLP	

algorithms	

	
	
Classification	
Model	
	

	
Manually	
Classified	count	

	
%	of	manually	
classified	articles	

	
Automatically	
classified	count	
	

	
%	of	all	
articles	

	 	 	 	 	
1G	
	

852	 85%	 620287	 98%	

2G	
	

197	 20%	 58408	 9%	

Biodiesel	
	

389	 39%	 231295	 36%	

Biogas	
	

95	 9%	 39560	 6%	

Blocking	
	

192	 19%	 74028	 12%	

Development	of	
Positive	External	
Economies	
	

292	 29%	 55172	 9%	

Drop-in	
	

37	 4%	 455	 0%	

Entrepreneurial	
Experimentation	
	

270	 27%	 144391	 23%	

Ethanol	
	

511	 51%	 336331	 53%	

Influence	the	
Direction	of	Search	
	

178	 18%	 63200	 10%	

Knowledge	
development	and	
diffusion	
	

116	 12%	 22606	 4%	

Legitimation	
	

607	 61%	 434230	 68%	

Market	Formation	 143	 14%	 61748	 10%	
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Resource	
Mobilization	
	

146	 15%	 60141	 9%	

supporting	 776	 78%	 611353	 96%	
	 	 	 	 	
 

	

As	evident	by	Table	2.4,	there	is	a	substantial	difference	for	the	percent	of	articles	

classified	into	each	class	for	the	manually	classified	data	subset	and	the	overall	article	

database	(to	which	the	classification	models	were	applied).	This	difference	can	likely	be	

attributed	to	the	modeling	error	for	each	classification	model,	or	may	indicate	that	the	

initially	classified	articles	were	not	selected	in	a	truly	random	fashion.	At	a	95%	confidence	

level,	only	article	counts	attributed	to	the	ethanol	and	biodiesel	classification	models	show	

no	significant	deviation	from	the	manually	classified	counts.	To	better	ascertain	model	

quality,	I	have	validated	the	models	by	using	the	remaining	231	articles	that	were	manually	

classified	and	not	used	to	build	each	model.	

Figure	2.2	shows	that	model	accuracy	is	above	60%	for	all	models	(the	number	of	

biofuel	articles	and	non-biofuel	articles	correctly	classified).	The	recall	value	indicates	the	

percent	of	the	in-class	signal	that	is	accurately	captured	through	the	classification	model;	

this	value	shows	the	accuracy	of	the	model	for	only	the	correctly	identified	positive	results,	

and	does	not	include	the	correctly	identified	negative	results.	In	other	words,	the	recall	

value	for	1G	biofuels	represents	the	number	of	1st	generation	biofuel	articles	that	were	

correctly	classified	as	1st	generation	biofuel	articles,	and	does	not	consider	the	number	of	

articles	that	were	correctly	classified	as	being	unrelated	to	1st	generation	biofuels.		
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Figure	2.2.	Accuracy	of	the	supervised	learning	methodology	employed	to	create	15	

different	binary	classification	models.	

	
When	looking	at	recall	values,	it	appears	that	some	of	the	classification	models	

perform	substantially	better	than	others.	As	is	the	case	with	machine-learning	algorithms,	

classification	accuracy	is	strongly	correlated	with	the	size	of	the	training	set	used,	in	which	

larger	training	sets	can	often	improve	classification	results	(Foody	&	Mathur,	2004;	

Hopkins	&	King,	2010;	Zhuang,	Engel,	Lozano-Garcia,	FernÁNdez,	&	Johannsen,	1994).	

For	the	models	used	to	classify	articles	into	the	7	innovation	functions,	the	average	

model	accuracy	is	78%,	with	an	average	recall	value	of	0.33	and	a	mean	average	precision	

of	0.60	(Figure	2.3	graphically	represents	recall	and	precision).	These	values	are	

substantially	higher	or	on	par	with	similar	in-class	classification	methods	utilized.	For	

instance,	default	patent	classifications	often	capture	a	low	number	of	patents	relevant	to	

the	technologies	being	studied	(Costantini	et	al.,	2013;	Herbert,	Szarvas,	&	Gurevych,	2010;	

C.-H.	Wu,	Ken,	&	Huang,	2010).	Even	the	BioPat	database,	a	database	established	by	
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Costantini	et	al.	(2013)	to	improve	patent	classification	for	biofuels,	shows	a	recall	value	of	

only	0.23.	

	

	

Figure	2.3.	Graphical	representation	of	precision	and	recall	for	information	retrieval.	

	

Usage	restrictions	prevent	me	from	making	article	data	from	the	LexisNexis	article	

database	publicly	available.	Instead,	I	have	publicly	released	classification	identifiers	

alongside	article	titles	and	sources	when	possible	(Kessler,	2015a).	

	
2.3	TIS	Analysis	of	EVs	

The	final	portion	of	this	dissertation	is	devoted	to	assessing	an	emerging	

transportation	technology.	Specifically,	I	choose	to	focus	on	electric	vehicles.		
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Given	that	the	innovation	narrative	for	electric	vehicles	is	still	developing,	I	met	with	

numerous	stakeholders	to	gain	insight	into	what	has	occurred.	In	turn,	I	compare	the	

narrative	that	emerged	through	stakeholder	discussions	with	the	innovation	narrative	that	

can	be	revealed	by	the	textual	analysis	methodologies	used	in	the	previous	sections.		

To	better	ascertain	how	the	innovation	process	is	unfolding	for	electric	vehicles,	I	

met	with	a	number	of	important	and	relevant	actors	in	the	EV	landscape	for	three	different	

states.	These	actors	come	from	a	variety	of	different	organizations,	including	state	and	local	

governments,	non-profit	groups,	car	dealerships,	utilities,	infrastructure	companies,	and	

research	institutions.	This	research	was	done	as	part	of	a	greater	study	(results	

forthcoming)	supported	by	The	National	Center	for	Sustainable	Transportation	and	the	

Zero	Emission	Market	Acceleration	Partnership	(ZE	MAP)	at	the	University	of	California,	

Davis.	I	communicated	with	representatives	from	three	main	states:	Washington,	Colorado,	

and	Georgia.	

Utilizing	contacts	from	ZE	MAP,	an	email	was	sent	out	to	point	people	in	

Washington,	Colorado,	and	Georgia.	The	email	requested	that	these	contacts	provide	a	set	

of	actors	that	they	thought	were	relevant	for	promoting	electric	vehicle	uptake	within	the	

state.	An	example	of	the	form	used	to	collect	this	data	is	shown	in	Figure	2.4.	
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Figure	2.4.	Form	used	to	collect	possible	stakeholders	for	in-person	meetings	

	

From	these	emails,	I	obtained	a	set	of	contacts	to	schedule	for	in-person	meetings.	

Each	contact	was	emailed,	and	a	set	of	possible	times	and	dates	were	provided	for	them	to	

meet.	Response	rates	were	greater	than	80%	for	each	state.		

To	better	construct	a	technology	innovation	narrative,	Gustavo	Collantes,	the	lead	

ZE	MAP	researcher,	and	myself	developed	a	protocol	to	guide	the	discussion.	Discussion	

was	structured	around	the	seven	functions	of	the	Technology	Innovation	System	

framework.	Careful	consideration	was	made	for	developing	each	question	to	better	align	

the	discussion	with	the	core	attributes	of	TIS	functions.	Meeting	participants	were	asked	to	

provide	information	related	to	electric	vehicle	uptake	in	their	state,	which	included	both	

fully	battery-electric	and	extended	range	hybrids	(Plugin	Electric	Vehicles	-	PEVs).	

	
To	assess	Resource	Mobilization,	information	was	gathered	that	pertained	to	the	

following	questions:	
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1. Could	you	share	with	us	information	about	amounts	and	allocation	of	funding	

related	to	PEVs?	 	

	

2. Are	more	resources	needed?	 	

	

3. What	are	the	main	sources	of	uncertainty	for	whether	resources	will	be	allocated	

now	and	in	the	future?	 	

	

4. What	role	is	the	Governor’s	Office	playing	in	PEV	discussions	in	your	state?	

	 	 	 	 	

To	assess	Market	Formation,	information	was	gathered	that	pertained	to	the	following	

questions:	

	

1. Are	there	local	incentives	in	place	to	help	users	and	fleets	adopt	PEVs?	

	

2. What	kind	of	support/incentive	is	there	for	the	deployment	or	use	of	charging	

equipment?		

	

3. Have	there	been	marketing	campaigns	developed	to	generate	public	interest	in	

PEVs?	 	

	 	 	 	

To	assess	Legitimation,	information	was	gathered	that	pertained	to	the	following	

questions:	
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1. How	informed	is	the	general	public	in	your	state	about	PEVs?	

	

2. What	images	do	people	associate	with	PEVs?	Are	these	positive	or	negative	images?	 	

	

3. Who	are	the	primary	market	segments	that	purchase	PEVs	in	your	state?	Why?	 	

	

4. Are	there	important	stakeholders	that	are	antagonistic	toward	PEVs?	 	 	

	

5. Is	there	market	demand,	and	does	local	government	or	advocacy	groups	support	

PEV	adoption?	 	 	 	 	 	 	 	

	

To	assess	Knowledge	Development	and	Diffusion,	information	was	gathered	that	

pertained	to	the	following	questions:	

	

1. What	are	the	more	critical	factors	that	drive/deter	the	market	adoption	of	PEVs	in	

your	state?		

	

2. How	do	stakeholders	in	your	state	learn	about	the	fact	that	these	factors	are	critical?		

	

3. Do	most	stakeholders	agree	on	the	importance	of	these	factors?	
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To	assess	Influence	on	the	Direction	of	Search,	information	was	gathered	that	pertained	

to	the	following	questions:	

	

1. How	do	existing	state/local	actions	influence	activities	to	support	plug-in	vehicle	

adoption?	

	 	

2. What	laws,	regulations,	competing	technologies,	or	organizations	prevent	PEVs	

from	getting	more	attention	from	stakeholders?	

	 	 	

3. How	has	media	affected	PEV	adoption	in	your	state?	 	

	

4. Is	there	a	PEV	action	plan	in	place?		

	

5. Are	there	automaker	or	fleet	EV	requirements?	 	

	

6. Have	there	been	clear	statements	or	expression	in	support	for	EVs	from	the	political	

leadership?	 	 	 	 	 	 	

	

To	assess	Entrepreneurial	Experimentation,	information	was	gathered	that	pertained	to	

the	following	questions:	

	

1. Are	there	companies	in	your	state	that	supply	parts,	services	or	technology	for	the	

production	of	PEVs	or	charging	infrastructure?	
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2. Are	there	exceptional	PEV	champions	in	your	state?	

	

3. Have	there	been	innovative	ideas	that	were	proposed	and	tested	in	your	state	to	

support	PEV	markets?	 	

	

4. Do	you	know	of	companies	or	organizations	that	are	developing	and/or	testing	new	

technologies	or	services?	 	 	 	 	 	 	

	

	

To	assess	Development	of	Positive	External	Economies,	information	was	gathered	that	

pertained	to	the	following	question:	

	

1. What	external,	economic	benefits	do	you	think	EVs	can	offer?		This	includes	things	

such	as	fostering	jobs,	environmental	benefits,	or	aiding/supporting	alternative	

industries	

	 	 	 	 	
Over	a	1-month	period,	31	individuals	across	3	different	states	participated	in	meetings	

to	assess	EV	Innovation.	Meetings	took	place	during	a	45-minute	period,	in	which	questions	

were	asked	in	accordance	with	the	established	protocol.	Meeting	notes	were	summarized	

and	retained.	These	notes	have	been	used	to	inform	the	EV	technology	innovation	narrative	

for	each	state.	Responses	from	the	individuals	have	been	kept	anonymous	to	better	protect	

participants.	In	addition	to	utilizing	these	notes	as	an	important	dataset	for	my	
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dissertation,	the	responses	are	also	being	incorporated	into	work	by	the	National	Center	

for	Sustainable	Transportation	and	ZE	MAP	(not-yet	published).	

Alongside	stakeholder	discussions,	I	have	also	used	data	from	ZE	MAP	associated	with	

electric	vehicle	deployment	for	each	state	at	a	monthly	interval	from	January	2010	through	

November	2014.	This	data	contains	vehicle	make,	model	and	registration	information,	so	

that	monthly	uptake	associated	with	electric	vehicles	can	be	determined.	The	vehicle	

registration	dataset	consists	of	24	states:		Arizona,	California,	Colorado,	Connecticut,	

Florida,	Georgia,	Illinois,	Indiana,	Maine,	Maryland,	Massachusetts,	Michigan,	Minnesota,	

New	Jersey,	New	Mexico,	New	York,	North	Carolina,	Oregon,	Rhode	Island,	Tennessee,	

Texas,	Vermont,	Virginia,	and	Washington.	Additional	monthly	data	for	each	of	these	states	

has	been	obtained	from	ZE	MAP	which	includes	rural	and	urban	vehicle	miles	traveled,	and	

average	residential	electricity	prices.	Gasoline	prices	were	obtained	from	the	Energy	

Information	Administration	for	all	states	in	2010	(Energy	Information	Administration,	

2015).	The	average	monthly	price	for	each	month	in	2010	was	used	to	model	monthly	

gasoline	prices	in	each	state	over	time.	

Newspaper	data	associated	with	electric	vehicles	was	collected	to	assess	innovation	

system	trends	as	portrayed	by	print	media.	The	text	corpus	I	use	is	made	up	of	newspaper	

articles	and	metadata	associated	with	articles	from	the	LexisNexis	Academic	newspaper	

database.	I	have	collected	data	from	1994	through	2014	–	the	complete	collection	of	

electric	vehicle	articles	analyzed	was	approximately	134,000.	

The	initial	article	repository	was	established	by	conducting	a	keyword	search	on	

LexisNexis	using	the	following	keyword:	Electric	Vehicle.	I	used	the	built-in	LexisNexis	

algorithms	to	find	and	remove	duplicate	articles	and	also	utilized	title	and	date	identifiers	
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to	remove	any	additional	duplicate	articles.	Removing	all	duplicate	articles	created	a	

newspaper	repository	of	approximately	133,500	EV-related	articles.	

Again,	I	utilized	machine-learning	algorithms	and	a	small	subset	of	manually	

classified	articles	to	provide	insight	into	the	technology	innovation	system	based	on	the	

collected	newspaper	data.	I	selected	a	small	subset	of	random	articles	from	the	electric	

vehicle	database.	These	1000	articles	were	manually	classified	into	the	7	technology	

innovation	system	functions.	The	same	criteria	for	classification	as	shown	in	Table	2.3	were	

utilized	for	manually	classifying	these	articles.		

To	further	validate	this	manual	classification	methodology,	I	trained	another	student	to	

identify	and	classify	articles	into	corresponding	innovation	system	functions.	An	initial	45-

minute	training	session	took	place	where	the	student	was	exposed	to	the	fundamental	

aspects	of	the	TIS	theory,	and	introduced	to	the	content	analysis	system	that	I	designed.	

The	student	and	I	read	articles,	and	specified	TIS	classifications,	discussing	overall	

categorization	until	classification	consensus	was	achieved.	Training	was	believed	to	be	

adequate	once	consensus	had	been	achieved	for	five	articles	in	a	row	prior	to	discussion.	

Feedback	from	this	student	on	the	classification	process	is	provided	below:	

	
The	categories	overall	seemed	clearly	defined.	Most	of	the	difficulty	in	making	the	

distinction	between	categories	was	gray	area	in	the	extent	to	which	an	event	warranted	

inclusion	in	one	or	more	categories.	For	example,	an	a	topic	may	have	elements	of	

knowledge	development	and	diffusion,	but	to	a	very	weak	degree.	Additionally,	some	

articles	mention	plug-in	vehicles	to	a	varying	extent,	so	it	is	up	to	the	evaluator	to	judge	

between	relevant	and	not	applicable	to	the	plug-in	category.		
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While	manual	classification	of	articles	is	not	without	problem,	I	was	able	to	demonstrate	

consistency	in	teaching	and	applying	this	process.	This	is	indicative	of	the	possibility	to	

further	extend	this	methodology	to	other	fields	of	interest,	and	to	assess	other	

technologies.		

From	the	1000	manually	classified	articles,	700	were	utilized	to	create	a	

classification	training	set.	The	remaining	300	articles	were	utilized	to	validate	the	

classification	models.	10	different	binary	classification	models	were	created:		one	for	each	

of	the	7	different	innovation	functions,	one	for	articles	that	support	the	functions	(those	

articles	that	are	positive	about	the	technology,	likely	promoting	electric	vehicles),	and	one	

for	articles	that	block	functional	fulfillment	(articles	that	are	negative	about	the	technology,	

or	report	on	negative	outcomes,	such	as	battery	failures),	and	one	to	classify	if	an	article	

did	not	relate	to	the	EV	Innovation	System,	and	was	therefore	inapplicable.	Classification	

validation	results	from	this	are	shown	below.	

	

	

Figure	2.5.	Accuracy	of	the	supervised	learning	methodology	employed	to	create	10	

different	binary	classification	models.	
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As	indicated	in	Figure	2.5,	model	accuracy	is	above	50%	for	all	models.	The	number	

of	false	negatives	and	false	positives	reported	by	each	model,	however,	skews	model	

accuracy.	The	recall	value	indicates	the	percent	of	the	in-class	signal	that	is	accurately	

captured	through	the	classification	model.	For	instance,	this	value	shows	the	number	of	

articles	manually	classified	as	knowledge	development	and	diffusion	that	were	then	

automatically	classified	as	knowledge	development	and	diffusion.	It	does	not	consider	the	

articles	that	were	correctly	identified	as	not	relating	to	knowledge	development	and	

diffusion.	The	mean	average	precision	is	0.55.	

To	further	test	the	defining	characteristic	of	the	7	innovation	functions	as	

established	in	the	TIS	literature,	I	conducted	robustness	tests	using	5	different	TIS	

classification	models	on	a	different	subset	of	324	manually	classified	electric	vehicle	

articles.	

	
Model	1	(Biofuel	Naïve):	This	is	a	Naïve	model,	or	a	simplistic	model	with	limited	

complexity	that	acts	as	a	baseline	guess	for	what	will	occur	without	using	additional	

data.	The	general	ratios	of	TIS	functions	in	a	small	subset	of	biofuel	articles	(700)	

were	used	to	extrapolate	likely	trends	for	the	EV	TIS	

	

Model	2	(EV	Naïve):	This	is	a	Naïve	model,	or	a	simplistic	model	with	limited	

complexity	that	acts	as	a	baseline	guess	for	what	will	occur	without	using	additional	

data.	The	general	ratios	of	TIS	functions	in	a	small	subset	of	EV	articles	(300)	were	

used	to	extrapolate	likely	trends	to	the	EV	TIS	
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Model	3	(Biofuel	ML):	The	Biofuel	machine-learning	(ML)	model			Without	further	

modifications	or	re-training,	the	biofuel	classification	model	(discussed	previously)	

was	utilized	to	classify	EV	articles	into	TIS	functions.		

	

Model	4:	A	machine-learning	model	created	using	the	remaining	EV	articles	not	in	

the	324	EV	article	test	set.	

	

Model	5:	A	pooled	model,	where	a	training	set	of	676	EV	articles	and	the	complete	

set	of	manually	classified	biofuel	articles	were	combined	to	create	a	pooled	

machine-learning	training	set,	made	up	of	two	markedly	different	technologies.	

	
Figure	2.6	shows	how	well	each	model	predicted	the	number	of	articles	associated	

with	a	given	TIS	function	in	the	article	subset.	If	the	bar	falls	above	the	line,	the	model	over-

predicted	the	number	of	TIS	functions	of	a	given	type	in	the	actual	dataset.	If	the	bar	falls	

below	the	line,	the	model	under-predicted	the	number	of	TIS	functions	of	a	given	type	in	

the	actual	dataset.	
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Figure	2.6.	Percent	difference	from	actual	article	counts	–	the	machine	learning	models	

show	better	fit	to	actual	article	counts	compared	to	the	Naïve	models	

	

As	evident	in	Figure	2.6,	the	Naïve	Biofuel	model	substantially	over-estimates	the	

number	of	articles	associated	with	a	given	innovation	function	for	all	but	the	Knowledge	

Development	and	Diffusion	function.	This	model	is	useful	for	directly	comparing	how	the	

biofuel	TIS	has	been	supported	relative	to	how	the	EV	TIS	has	been	supported	–	the	larger	

the	magnitude	of	the	bar,	the	greater	disparity	there	is	between	the	two	innovation	

systems	for	a	given	function.	Both	the	Combined	ML	model	and	the	EV	ML	model	

substantially	out-perform	the	naïve	forecasts.	

The	machine-learning	model	for	Biofuel	classification	does	not	improve	EV	

classification	results	compared	to	the	Naïve	EV	model		(blue	and	red	bars	respectively).	The	

magnitude	of	classification	error	for	both	the	Biofuel	ML	model	and	the	Naïve	EV	model,	

however,	is	similar	for	many	of	the	functions	being	assessed,	although	the	Biofuel	ML	

model	consistently	underestimates	the	number	of	EV-related	articles	associated	with	each	

innovation	function.		

The	Biofuel	ML	model	therefore	provides	conservative	estimates	of	TIS	functional	

support	for	EVs	compared	to	regularly	overestimating	the	functional	support	for	EVs	as	is	

done	by	the	Biofuel	Naïve	model.	This	suggests	that	a	machine-learning	approach	to	

classifying	articles	could	be	used	to	provide	a	first-pass,	conservative	estimate	for	how	well	

supported	a	technology’s	innovation	system	is.	Increasing	the	number	of	articles	and	

technologies	utilized	in	creating	a	TIS-classification	model	could	help	to	eliminate	some	of	

this	error,	as	indicated	by	the	Combined	ML	model.	
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To	further	assess	the	objectivity	of	classification	models	in	predicting	TIS	functional	

fulfillment,	I	create	a	“pooled,”	or	combined	classification	model.	For	this	model,	I	utilize	

676	manually	classified	articles	from	the	electric	vehicle	newspaper	dataset,	and	combine	

this	with	1000	manually	classified	articles	from	the	biofuel	newspaper	dataset.	This	

combined	set	of	1676	articles	is	utilized	as	the	training	set,	which	is	then	validated	against	

the	remaining	324	articles	pertaining	to	electric	vehicles.	Classification	accuracy	from	this	

approach	is	shown	below.	

	

	

Figure	2.7.	Accuracy	of	the	supervised	learning	methodology	utilizing	two	distinct	

technology	classification	subsets	

	
Based	on	the	results	of	the	pooled	classification	model,	in	addition	to	the	model	

robustness	tests	shown	in	Figure	2.6,	I	am	led	to	believe	that	given	the	size	of	the	dataset	

and	the	independent	nature	of	the	two	topics,	customized	innovation	models	are	likely	to	

yield	better	results	than	pooled	models.	Nonetheless,	classification	accuracy	is	still	

reasonably	high	across	the	pooled	dataset;	all	models	are	at	least	50%	accurate,	and	recall	
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values	are	on	par	with	classification	accuracy	of	other	innovation	data	sources,	such	as	

patents	(Costantini	et	al.,	2013).	Given	these	results,	and	that	the	mean	average	model	

precision	is	0.52,	the	pooled	NLP	model	could	likely	be	used	as	a	first-pass	option	for	

estimating	technology	innovation	fulfillment	for	other	technologies.	All	ML	classification	

models	used	have	been	made	publicly	available	(Kessler,	2015b).	

The	ML	EV	model	has	been	used	to	classify	the	remaining	articles	in	the	electric	

vehicle	article	database.	Once	classified,	articles	were	filtered	using	LexisNexis	metadata	to	

correspond	with	state	geographies.	Analysis	and	results	for	electric	vehicle	innovation	is	

further	discussed	in	Chapter	5.	 	
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Chapter	3: 	Assessing	Patents	as	a	Proxy	for	U.S.	Biofuel	Innovation	

In	this	chapter,	I	explore	the	use	of	natural	language	processing	(NLP)	as	a	means	to	

improve	classification	accuracy	and	precision	for	biofuel	patents.	This	dataset	is	later	used	

in	Chapter	4	to	compare	the	validity	of	using	a	different	innovation	proxy.	Trends	and	

patterns	associated	with	patenting	are	highly	dependent	on	how	patents	are	classified	and	

grouped	together.	I	find	that	U.S.	biofuel	patenting	activity	closely	corresponds	to	the	

sociotechnical	shifts	described	in	the	biofuel	innovation	narrative	presented	below.		

Using	NLP	and	machine-learning	algorithms,	I	am	able	to	expand	patent	

classification	capabilities,	by	capturing	a	greater	selection	of	patents,	and	by	classifying	

relevant	biofuel	patents	more	precisely	than	could	be	done	with	keyword	searches	alone.	I	

find	a	better	match	for	patent	activity	with	the	U.S.	biofuel	innovation	narrative	when	using	

the	NLP-derived	patent	dataset	compared	to	standard	patent	classification	schemes.		

Results	indicate	that	after	the	initial	establishment	of	the	biofuel	industry,	there	

were	two	surges	in	biofuel	innovation:	1995-2000,	characterized	by	heavy	patenting	by	1st	

generation	(food-based)	biofuel	firms;	and	2005-2010,	characterized	by	a	second	surge	of	

innovation	by	those	same	large	firms,	complemented	by	a	large	number	of	biotechnology	

firms	producing	a	relatively	small	number	of	2nd	generation	biofuel	patents.	This	analysis	

corroborates	the	idea	that	the	first	surge	in	biofuel	innovation	was	linked	to	innovation	in	

genetically	engineered	food	crops,	while	the	second	surge	of	biofuel	innovation	was	driven	

by	policies	mandating	and	incentivizing	biofuels,	with	the	biotechnology	industry	

cautiously	experimenting	with	non-food-based	biofuels.		
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3.1	The	U.S.	Biofuel	Innovation	Narrative	

This	biofuel	innovation	narrative	was	developed	through	a	review	of	the	relevant	

literature,	in	addition	to	discussion	with	experts.	Experts	have	reviewed	the	narrative,	and	

feedback	from	this	review	process	has	been	incorporated.	

The	1970s	oil	crisis	spurred	alternative	energy	research	in	the	United	States,	

rekindling	interest	in	the	use	of	biofuel	for	transportation	(United	States	Congress,	1979).	

Biofuel	production	and	innovation	in	the	U.S.	traces	its	origin	to	the	energy	policies	enacted	

in	the	late	1970s.	Substantial	support	for	biofuel	first	emerged	in	1978	in	the	form	of	a	tax-

exemption	of	$0.40	(1978	USD)	per	gallon	of	ethanol.	This	tax	measure	remained	in	place,	

at	various	levels,	for	several	decades,	expiring	only	at	the	end	of	2011	(Eggert	&	Greaker,	

2014;	Tyner,	2008).	During	this	same	time	period	a	$0.40	(1980	USD)	per	gallon	import	

tariff	was	also	imposed	against	ethanol	imports,	serving	to	encourage	the	development	of	a	

domestic	ethanol	industry.	From	1980	through	2000	the	ethanol	tax	credit	directed	

between	$8.6	billion	and	$12.9	billion	dollars	($2006)	in	support	for	ethanol	(Koplow,	

2006).	

This	generous	ethanol	subsidy	in	conjunction	with	high	crude	oil	prices	effectively	

established	an	ethanol	industry	in	the	U.S.	(Tyner,	2008).	With	oil	prices	remaining	high,	

the	fixed	ethanol	tax	credit	facilitated	rapid	growth	of	ethanol.	The	U.S.	biofuel	industry	

expanded	production	from	almost	nothing	at	the	start	of	the	1980s	to	about	1.3	billion	

gallons	of	ethanol	by	1993.	Modest	support	for	this	expansion	also	came	in	the	form	of	The	

Intermodal	Surface	Transportation	Efficiency	Act	of	1991	which	provided	states	with	

transportation	project	funding	for	increased	use	of	ethanol	(Kelly	&	Brannon,	1996),	and	

the	Energy	Policy	Act	of	1992	which	encouraged	governments	at	all	levels	to	purchase	
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alternative	fuel	vehicles	for	their	fleets	so	that	ethanol	could	be	consumed	at	higher	

quantities	(Corts,	2010;	Winebrake	&	Farrell,	1997).	Although	the	ethanol	tax	incentive	

remained	in	place,	production	volumes	stagnated	from	1993	through	1999,	as	ethanol	

demand	became	saturated.	

At	the	same	time	that	growth	in	ethanol	production	slowed,	other	socioeconomic	

shifts	were	underway.	The	agriculture	sector	went	through	a	technological	transition	when	

a	subset	of	seed	companies	started	using	genetic	engineering	technologies	to	improve	

specific	traits	of	seeds.	In	1996,	the	first	commercial	genetically	engineered	(GE)	crops	

became	available,	offering	higher	crop	yields	and	increased	resilience	to	pests	and	

herbicides	(Dill,	2005;	Fernandez-Cornejo,	2009).	GE	crops	quickly	became	dominant	in	the	

United	States	(Fernandez-Cornejo,	Wechsler,	Livingston,	&	Mitchell,	2014).	The	abundance	

of	new	crop	technologies	alongside	continuous	federal	support	for	ethanol	created	a	

positive	feedback	loop	(Fausti,	2015).	U.S.	agriculture	and	energy	policy	choices	merged	to	

incentivize	U.S.	corn	production.	Further	advancements	in	GE	seed	and	ethanol	production	

technologies	facilitated	efficiency	gains	in	biofuel	production	(Fausti,	2015).	

New	demand	for	ethanol	materialized	in	1999	when	California,	followed	by	other	

U.S.	states,	adopted	legislation	to	ban	the	use	of	methyl	tert-butyl	ether	(MTBE),	an	anti-

knocking	fuel	additive	blended	into	gasoline	(U.S.	Environmental	Protection	Agency,	2004).	

Alongside	the	substantial	subsidies	for	ethanol	production,	increased	corn	crop	yields,	and	

the	need	to	replace	MTBE	as	an	oxygenate,	the	ethanol	industry	could	one	again	grow	

production	volumes,	increasing	production	to	3.4	billion	gallons	of	ethanol	in	2004.		

The	U.S.	Biodiesel	industry	can	similarly	trace	its	origin	to	government	intervention	

in	the	1990s.	The	Energy	Policy	Act	of	1992,	once	modified	by	the	Department	of	Energy,	
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recognized	biodiesel	as	an	alternative	fuel	capable	of	complying	with	alternative-fueled	

vehicle	mandates	for	government	and	state	motor	fleets	(Koplow,	2006).	Additional	

support	for	biodiesel	came	with	the	establishment	of	the	National	SoyDiesel	Development	

Board	in	1992,	which	later	became	the	National	Biodiesel	Board	(Howell,	1997).	In	1993	

dozens	of	demonstrations	of	biodiesel	began,	and	in	1996	the	first	two	major	biodiesel	

companies	started	commercial	scale	production.		

Additional	support	for	the	biodiesel	industry	came	in	1998	with	the	Conservation	

Reauthorization	Act,	a	law	that	amended	the	Energy	Policy	Act	of	1992	to	include	biodiesel	

fuel-use	credits	(Koplow,	2006).	This	added	cash	support	for	the	Bioenergy	Program	(M.	

Carriquiry,	2007).	Annual	capacity	for	biodiesel	production	increased	during	this	time	

period	from	only	0.5	million	gallons	in	1999	to	20	million	gallons	in	2003	(Koplow,	2006).	

The	American	Jobs	Creation	Act	of	2004	provided	the	first	tax	subsidies	targeted	directly	at	

biodiesel,	a	model	that	closely	followed	the	ethanol	excise	tax	credit	implementation.	

Biodiesel	derived	from	virgin	vegetable	oils	or	animal	fats	earned	a	credit	of	$1/gallon,	

while	biodiesel	from	waste	oils	earned	$0.50/gallon	(Koplow,	2006).	With	implementation	

of	the	tax	credit,	biodiesel	production	increased	from	20	million	gallons	in	2003	to	112	

million	gallons	by	2005	(M.	Carriquiry,	2007).	

Starting	in	2005,	the	Energy	Policy	Act	established	the	Renewable	Fuel	Standard	

(RFS)	in	addition	to	a	small	biodiesel	producer	tax	credit.	The	RFS	called	for	production	of	

4	billion	gallons	of	renewable	fuels	in	2006,	rising	to	7.5	billion	by	2012	(Koplow,	2006).	

The	RFS	was	the	first	policy	to	provide	direct	support	for	2nd	generation	and	advanced	

biofuel,	biofuel	derived	from	non-food	or	non-conventional	resources,	by	allowing	
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cellulosic-derived	ethanol	to	count	as	2.5	times	that	of	corn-based	ethanol	for	complying	

with	the	standard	(Solomon,	Barnes,	&	Halvorsen,	2007).		

In	2007	the	RFS	was	renewed	and	expanded	(RFS2),	greatly	increasing	volume	

requirements	for	1st	generation	biofuels,	but	also	creating	specific	requirements	for	the	

phase-in	of	2nd	generation	biofuel	technologies	(Tyner,	2012).	The	RFS2	required	the	use	of	

36	billion	gallons	of	renewable	fuel	by	2022.	Within	the	nested	volume	structure	of	the	

policy,	only	15	billion	gallons	were	allowed	to	come	from	conventional,	starch-based	

ethanol,	while	the	bulk	of	the	mandate	required	advanced	or	cellulosic	fuels	for	

compliance.	With	the	RFS2	in	place,	ethanol	consumption	continued	to	increase,	growing	to	

13	billion	gallons	of	fuel	by	2010,	or	just	over	9%	of	the	U.S.	gasoline	market	by	volume	

(U.S.	Energy	Information	Administration,	2015a).	The	biodiesel	market	remained	much	

smaller	than	the	market	for	ethanol,	growing	to	250	million	gallons	by	2006	(M.	Carriquiry,	

2007).	2014	Production	of	biodiesel	was	just	under	1.3	billion	gallons	of	fuel	(U.S.	Energy	

Information	Administration,	2015b).	Despite	the	rapid	growth	of	biofuel	following	

implementation	of	the	RFS	and	RFS2,	concerns	over	biofuel	were	soon	raised	due	to	

uncertainty	regarding	the	environmental	impacts	of	biofuel	alongside	the	global	food	crisis	

of	2007	and	2008	(Janda,	Kristoufek,	&	Zilberman,	2012;	Searchinger	et	al.,	2008).	

1st	generation	biofuel	concerns	have	escalated,	and	an	increased	sense	of	urgency	

has	been	developed	to	move	2nd	generation	biofuels	into	commercial	production	(M.	A.	

Carriquiry,	Du,	&	Timilsina,	2011).	In	general,	it	is	believed	that	2nd	generation	biofuels	may	

increase	the	sustainability	of	biofuel	production	(Balan,	Chiaramonti,	&	Kumar,	2013).	

Although	the	RFS2	mandated	the	production	of	cellulosic	biofuels,	originally	requiring	100	

million	gallons	of	fuel	in	2010	before	ramping	up	to	1	billion	gallons	by	2013,	it	took	until	



	

-90-	
	

2012	for	any	cellulosic	biofuels	to	be	delivered.	In	2012,	only	20,000	gallons	of	cellulosic	

ethanol	were	produced,	a	fraction	of	the	original	expectation	(Schnepf	&	Yacobucci,	2012).	

Current	volumes	of	cellulosic	and	advanced	biofuels	remain	far	below	original	

expectations,	with	no	strong	indication	that	the	industry	will	mature	to	the	levels	desired	in	

the	near-term	(Fulton,	Morrison,	Parker,	Witcover,	&	Sperling,	2014).	

1st	and	2nd	generation	liquid	biofuels	have	been	subsidized	largely	on	the	premise	

that	they	are	domestic	substitutes	for	imported	oil	and	that	they	can	reduce	greenhouse	

gas	(GHG)	emissions	(Koplow,	2006).	Numerous	models	indicate	that	biofuels	are	likely	to	

play	some	role,	and	that	some	biofuel	technologies	can	be	effective	at	reducing	carbon	

emissions	in	the	long-term	(e.g.	Clarke,	Jablonski,	Moran,	Anandarajah,	&	Taylor,	2009;	Gül,	

Kypreos,	&	Barreto,	2007;	Sarica	&	Tyner,	2013;	Yeh,	Farrell,	Plevin,	Sanstad,	&	Weyant,	

2008).	As	we	move	forward	into	a	world	that	requires	increased	decarbonization	of	fuel,	it	

is	imperative	to	better	promote	innovations	in	the	biofuel	landscape	to	decrease	the	carbon	

intensity	of	these	fuels.	The	overall	biofuel	innovation	narrative	timeline	is	presented	

graphically	below	in	Figure	3.1.	
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Figure	3.1.	Biofuel	Innovation	Timeline	

	

3.2	What	Do	the	Patent	Trends	Tell	Us?	

To	assess	patent	activity	in	relation	to	the	U.S.	Biofuel	Narrative,	I	use	three	different	

patent	classifications:	(1)	I	use	IPC	codes	and	the	Green	Index	for	biofuels	(GI),	(2)	I	use	the	

CPC	classification	scheme	for	biofuels	(CPC),	and	(3)	I	use	natural	language	processing	

approach	to	independently	classify	patents	(NLP).	I	have	made	effort	to	compare	patent	

classification	across	these	three	different	methods,	but	not	all	classification	systems	can	be	

used	directly	to	track	the	same	thing.	The	Green	Index,	for	instance,	does	not	facilitate	

direct	comparison	between	1st	and	2nd	generation	technology.	To	compare	Green	Index	

patent	activity,	I	use	ethanol	activity	as	a	proxy	for	1st	generation	biofuels.	For	the	CPC	

classification	scheme,	I	have	combined	Y02E50/16	(Cellulosic	bio-ethanol)	and	Y02E50/18	
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(Bio-alcohols	produced	by	other	means	than	fermentation)	to	represent	2nd	generation	

ethanol	technology.	Similarly,	I	assume	Y02E50/14	(Bio-pyrolysis)	is	representative	of	2nd	

generation	biodiesel	or	renewable	diesel.	For	classification	and	comparison	purposes,	I	

look	at	the	filing	year	(application	year)	for	accepted	patents	as	opposed	to	the	year	that	

the	patent	was	officially	granted.	Figure	3.2	shows	the	overall	breakdown	of	results,	where	

patent	counts	were	normalized	by	the	total	number	of	patents	that	were	filed	in	the	United	

States	in	each	year.	

The	order	of	magnitude	across	all	classification	methods	is	similar,	with	the	

exception	being	the	modified,	extended	CPC	classification	(CPC*).	CPC*	takes	the	default	

CPC	classifications	for	biofuels	(Y02E50),	and	adds	in	an	additional	set	of	CPC	classes	to	

capture	relevant	biofuel	patents	that	were	not	captured	in	Y02E50	–	this	can	include	things	

like	feedstock	and	associated	innovation.	
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Figure	3.2.	Biofuel	patent	trend	comparison	for	Natural	Language	Processing	(NLP)	patent	

classification,	Cooperative	Patent	Classification	(CPC),	Green	Index	(GI)	patent	

classification,	and	a	modified	CPC-NLP	patent	classification	(CPC*).	Trends	are	shown	for	

1st	generation	biofuels	(A),	2nd	generation	biofuels	(B),	ethanol	(C),	and	biodiesel	(D).	

	

Furthermore,	there	appears	to	be	one	very	consistent	trend:	starting	in	2005,	there	

was	an	increase	in	the	amount	of	support	for	both	1st	and	2nd	generation	biofuels.	Prior	to	
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there	is	a	29-month	lag	time	in	the	review	of	patents	filed	with	the	USPTO	(U.S.	Patent	and	

Trademark	Office,	2013).	Given	that	this	dataset	was	collected	from	2013	through	early	

2015,	it	is	likely	that	the	number	of	patents	recorded	from	2012	onward	is	lower	than	the	

true	number	of	filed	patents,	and	therefore	interpretation	of	trends	or	results	past	2011	is	
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unreliable.	This	long	lag-time	associated	with	the	patent	review	process	is	one	of	the	

limitations	in	using	patent	data	to	assess	innovation.		

	
3.3.1	First-generation	Biofuels	

The	NLP	methodology	for	analysis	of	1st	generation	biofuel-patenting	activity	(figure	

3.1A)	shows	two	distinct	periods	of	patent	filing	(as	sorted	by	application	year).	The	first	

period	from	1995	through	2000	was	one	of	rapid	expansion	in	biofuel	patenting,	followed	

by	stagnation	of	activity,	and	then	a	second	surge	from	2005	through	2010.	The	existing	

biofuel	narrative	suggests	that	the	first	period	of	biofuel	innovation	was	linked	to	

innovation	in	genetically	engineered	food	crops	used	in	1st	generation	technology	

processes,	and	that	the	second	surge	in	innovation	was	driven	by	policies	mandating	and	

incentivizing	the	production	and	use	of	biofuels.		

Although	there	was	surge	in	biofuel	patents	from	1995	through	2000	in	the	NLP	

classification	data,	this	result	does	not	appear	for	the	CPC	or	GI	classification	methods.	

Instead,	GI	ethanol	data	show	an	increase	in	patents	leading	up	to	1995,	followed	by	a	

gradual	decline	until	2005,	while	CPC	data	show	a	decline	in	patent	activity	starting	in	

1980,	only	picking	up	after	2005	–	a	contradictory	result	to	the	1980s	and	onward	

narrative	of	a	growing	ethanol	industry.	Figure	3.3	shows	overall	1st	and	2nd	generation	

trends	for	ethanol	and	biodiesel	for	the	CPC	and	NLP	classifications.	When	I	modified	the	

CPC	classification	scheme	(CPC*)	by	including	additional	CPC	classes,	as	selected	based	on	

the	NLP-CPC	concordance	table,	the	data	show	a	surge	in	patenting	activity	from	1995	

through	2000	
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Figure	3.3.	Biofuel	patent	trend	comparison	for	(A)	Natural	Language	Processing	(NLP)	

patent	classification	and	(B)	Cooperative	Patent	Classification	(CPC)	
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market	conditions,	and	coalitions	evolved	that	facilitated	the	later	emergence	of	biofuel	
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methodologies	used,	only	the	NLP-based	approach	corroborates	this	story,	suggesting	that	

support	for	biofuel	in	the	90s	was	aided	by	the	agriculture	sector	and	GE	crops.	

I	utilize	a	general	linear	modeling	approach	to	better	assess	the	patent	classification	

datasets	to	determine	if	1st	generation	biofuel	patent	activity	was	linked	to	GE	crop	

spillovers.	Patent	counts	are	sometimes	zero,	patent	counts	cannot	be	negative,	and	there	is	

an	overall	exponential	trend	toward	later	years	in	the	patent	count	data.	I	further	checked	

the	data	for	overdispersion,	which	turned	out	to	be	significant.	Because	of	these	properties	

to	the	data,	I	utilize	a	quasipoisson	(QP)	and	a	negative	binomial	(NB)	model.	Both	of	these	

models	are	well	suited	for	dealing	with	count	data,	and	accounting	for	overdispersion	

issues	(Ver	Hoef	&	Boveng,	2007).	The	following	reduced-form	model	is	used:	

ln !!!,! = !!!!"",! + !!!!",! + !!!!"#$!,! + !!!!"#$,!!! + !!!!"#,!!! + !! !" ! + !! !"# !

+ ! + !!	

Where	C1G	is	the	1st	generation	biofuel	patent	count,	CAll	is	the	count	of	patents	in	all	

sectors,	CAg	is	the	count	of	agriculture	patents,	CBtech	is	the	count	of	biotechnology	patents,	

Pcorn	is	the	price	per	bushel	of	corn	adjusted	for	inflation	(National	Agricultural	Statistical	

Service,	2015),	Poil	is	the	price	per	barrel	of	crude	oil	adjusted	for	inflation	(McMahon,	

2015),	GE	is	a	dummy	value	of	0	or	1	for	whether	or	not	GE	crops	are	commercially	

deployable,	RFS	is	a	dummy	value	of	0	or	1	for	the	Renewable	Fuel	Standard	being	in	place,	

a	is	the	intercept	and	ε	is	the	residual.	I	also	added	a	1-year	time	lag	to	oil	and	corn	prices	to	

allow	time	for	any	price	effects	to	change	patenting	behavior.	I	used	the	Akaike	Information	

Criterion	(AIC)	to	compare	models,	and	to	assess	the	corn	and	oil	lag	structure	(Sakamoto,	

Ishiguro,	&	Kitagawa,	1986).	I	looked	at	no	lag,	1-year	lag,	2-year	lags,	and	3-year	lags	for	
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these	variables.	The	AIC	values	indicated	that	a	1-year	lag	improved	overall	model	fit	

compared	to	the	other	lag	structures.	

Results	from	both	the	QP	and	NB	models	are	presented	as	there	is	no	general	

answer	for	which	model	is	the	best	to	use	(Ver	Hoef	&	Boveng,	2007).	The	regression	

results	in	Table	3.1	indicate	that	RFS	adoption	and	agriculture	patents	are	significant	

variables	for	all	models	and	patent	data	sets.	The	lagged	price	of	corn	also	appears	to	be	a	

significant	predictor	for	1st	generation	patent	counts	in	the	NLP	dataset.	Both	the	NLP	and	

CPC	datasets	suggest	that	spillover	effects	from	GE	crop	proliferation	may	explain	some	of	

the	increase	in	1st	generation	biofuel	patenting	activity.		

Both	the	CPC	and	the	GI	patent	classifications	show	biotech	patents	as	a	significant	

predictor	of	1st	generation	patenting	activity.	The	direction	of	the	effect,	however,	is	

different	for	each	classification	set.	This	discrepancy	highlights	the	importance	in	choosing	

correct	patent	classification	approaches	when	it	comes	to	interpreting	results	correctly.	All	

three	classification	sets	show	different,	confounding	results	for	whether	or	not	biotech	

patenting	activity	can	explain	1st	generation	biofuel	patents.	Given	that	two	classification	

models	show	different	directions	of	effect,	it	seems	likely	that	biotech-patenting	activity	is	

not	a	significant	driver	of	1st	generation	biofuel	patents.	

Only	the	NLP	patent	classification	results	remain	consistent	across	both	statistical	

models	(negative	binomnial	and	quasipoisson).	The	CPC	results	show	a	negative	effect	of	

corn	prices	on	patent	counts,	as	well	as	a	negative	effect	of	biotech	patenting	activity	on	

biofuel	patent	counts,	results	at	stark	contrast	with	the	GI	patent	classification	and	the	NLP	

approach.		
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Table	3.1	

Marginal	effects	from	GLM	regressions	of	1st	generation	biofuel	technology	for	three	different	

patent	classification	methods	

	 NLP	 	 CPC	 	 GI	
	 QP	 NB	 	 QP	 NB	 	 QP	 NB	
	 	 	 	 	 	 	 	 	
Other	Sector	Patents	
	
	

-8.7E-05	 3.5E-04	 	 2.1E-04	 2.8E-05	 	 -1.1E-04	4.1E-06	

Ag	Patents	
	
	

0.062	***	0.04	*	 	 0.014	.	 0.019	*	 	 0.068	*	 0.049	.	

Biotech	Patents	
	
	

2.1E-04	 2.0E-03	 	 -0.003	**	-0.0028	**		 0.0076	*	 0.0088	**	

Corn	Price	
	
	

15.3	*	 17.4	**	 	 -3.0E+00	-5.2	 	 29.8	**	 24.5	*	

Oil	Price	
	
	

4.1E-02	 -2.8E-01		 0.31	*	 0.40	***	 	 4.1E-01	 3.1E-01	

GE	Crops	
	
	

81.532	**	42	*	 	 1.3E+01	 22.5	*	 	 -4.2E+01	-3.3E+01	

RFS	 93.8	***	 115	***	 	 29.8	**	 31.1	**	 	 123	**	 126	***	
Note.	*	=	p	≤	.05,	**	=	p	≤	.01,	***	=	p	≤	.001.	
	

In	2005,	a	new	wave	of	biofuel	innovation	began.	I	included	an	RFS	dummy	variable	

in	the	regression	analysis	to	ascertain	whether	or	not	implementation	of	the	RFS	explains	

shifts	in	biofuel	patent	trends.	Given	the	narrative	of	the	dutch	biofuel	innovation	system,	

in	which	1st	generation	technologies	originate	from	the	agriculture	sector	(Suurs	&	

Hekkert,	2009),	I	would	also	expect	agriculture	patenting	activity	to	be	significant	in	

explaining	patent	trends	for	1st	generation	technologies	in	the	US.	As	shown	in	Table	3.1,	

implementation	of	the	RFS	appears	to	be	extremely	significant	across	all	patent	
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classification	methods	and	both	statistical	models	for	1st	generation	biofuel	patent	counts.	

Agriculture	patents	are	also	positive	and	significant	for	all	patent	classification	methods,	

with	increased	statistical	significance	for	the	NLP	classification	data.	This	suggests	that	

trends	associated	with	agriculture	patenting	activity	are	similar	to	the	trends	associated	

with	biofuel	patenting	activity.	

Based	on	the	biofuel	technology	narrative	shown	previously,	it	appears	that	patent	

activity,	at	least	for	1st	generation	biofuel	patents,	aligns	with	many	of	the	sociotechnical	

shifts	occurring	within	the	industry.	The	patent	data	support	the	narrative	that	spillovers	

from	the	agriculture	industry	affected	biofuels,	and	that	the	RFS	has	been	a	significant	

driver	of	biofuel	growth.		

Of	the	patent	classification	methods	chosen,	the	NLP	methodology	appears	to	

provide	results	that	are	consistent,	and	that	better	align	with	the	literature-based	biofuel	

innovation	narrative	compared	to	the	other	two	patent	classification	sets.	The	NLP-

classified	patents,	for	instance,	specifically	show	an	increase	in	patenting	activity	during	

the	90s,	a	period	marked	by	shifts	in	agriculture	and	the	rise	in	GE	crop	usage.	The	data	

also	show	a	gradual	build-up	of	patenting	activity	starting	after	1980.	In	contrast,	the	CPC-

selected	biofuel	patents	are	considerable	starting	in	1980,	and	go	through	a	steady	decline	

before	surging	again	after	enactment	of	the	RFS	(Figure	3.3).	The	activity	portrayed	by	CPC	

patents	is	contradictory	to	the	biofuel	narrative,	in	which	limited	production	of	or	interest	

in	ethanol	existed	prior	to	enactment	of	ethanol	policy.	Additionally,	the	NLP	approach	is	

the	only	approach	that	aligns	with	the	biodiesel	innovation	narrative:	limited	interest	in	

biodiesel	until	1992,	where	interest	gradually	increased	and	commercialization	began	later	

in	the	decade.		
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Using	the	NLP	classification	dataset,	I	also	assess	patenting	activity	for	firms.	The	

number	of	firms	filing	for	1st	generation	biofuel	patents	increased	from	less	than	10	at	the	

start	of	the	1990s	to	over	60	by	the	end	of	the	decade	(Figure	3.4).	This	is	consistent	with	

the	biofuel	policy	at	the	time,	where	additional	support	for	developing	ethanol	production	

facilities	came	from	the	small	ethanol	producer	tax	credit.	This	credit	was	first	passed	in	

the	Omnibus	Budget	Reconciliation	Act	of	1990,	and	gave	certain	producers	a	10¢/gallon	

credit	on	their	first	15	million	gallons	produced	each	year.	Plants	with	a	nameplate	capacity	

in	excess	of	30	million	gallons	a	year	were	not	eligible	(Koplow,	2006).	Correspondingly,	

Boone	and	Ozcan	(2013)	show	a	substantial	increase	in	the	number	of	small	ethanol	

cooperatives	that	emerged	after	1991,	while	the	larger	corporate-owned	facilities	

stagnated	until	the	start	of	2005.	This	narrative	continues	to	align	with	the	patent	data	

collected	using	the	NLP	classification	methodology.	

	

	

	

Figure	3.4.	Number	of	firms	filing	for	biofuel	patents	in	a	given	year	(classified	using	NLP)	
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Looking	at	which	firms	filed	for	patents	in	the	NLP	patent	dataset,	it	appears	that	

the	dominant	and	established	biofuel	technology	firms	that	emerged	out	of	the	agriculture	

sector	in	the	1990s	continued	to	actively	pursue	food-related,	1st	generation	biofuel	

patents.	According	to	the	NLP-classified	patent	data,	from	1990	through	2011	the	top	5	

firms	filing	for	1st	generation	patents	were	all	agribusinesses	–	Mertec,	Monsanto,	Pioneer	

Hi-Bred,	Stine	Seed	Farm,	and	Syngenta.	These	firms	hold	61%	of	all	1st	generation	biofuel	

patents,	and	have	filed	an	average	of	45	biofuel-related	patents	per	year.	

	
3.3.2	Second-generation	Biofuels		

Prior	to	2005,	there	was	limited	patent	activity	associated	with	2nd	generation	

biofuels	for	the	NLP	dataset	(Figure	3.2B).	Similarly,	tangible	policy	support	for	2nd	

generation	biofuels	only	emerged	with	the	RFS,	and	there	was	no	production	of	2nd	

generation	biofuel	until	2012.	After	enactment	of	the	RFS	in	2005,	there	was	moderate	

growth	in	2nd	generation	biofuel	patents.	2nd	generation	technologies	have	been	supported	

on	the	premise	of	improved	environmental	benefits	and	elimination	of	the	food-vs-fuel	

issues	associated	with	1st	generation	technologies	(Tyner,	2008,	2012).	Further	enthusiasm	

for	the	use	of	2nd	generation	biofuels	has	come	from	the	biotech	industry,	with	support	for	

the	use	of	biotechnology	as	a	means	to	address	the	low-carbon	energy	challenge	(Lynd	et	

al.,	2008;	Sanderson,	2006;	Schubert,	2006).		

To	better	assess	2nd	generation	biofuel	trends,	I	employ	general	linear	modeling.	I	

use	both	a	negative	binomial	model	as	well	as	a	quasipoisson	model	to	test	CPC	data	and	

NLP-classified	patent	data.	I	use	the	following	reduced	form	model:	
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where	C2G	is	the	patent	count	for	2nd	generation	biofuels.	As	shown	in	Table	3.2,	both	

the	enactment	of	the	RFS	as	well	as	oil	pricing	were	significant	predictors	of	patenting	

activity	for	NLP-classified	patents	as	well	as	for	CPC	patents.	Implementation	of	the	RFS	

starting	in	2005	appears	to	have	had	a	considerably	diminished	effect	on	2nd	generation	

patents	compared	to	that	for	1st	generation	biofuel	technologies	across	both	classification	

methods.	 	
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Table	3.2		

	
Marginal	effects	from	GLM	regressions	of	2nd	generation	biofuel	technology	for	three	different	

patent	classification	methods	

	 NLP	 	 CPC	
	 QP	 NB	 	 QP	 NB	
	 	 	 	 	 	
Other	Sector	Patents	
	
	

8.9E-05	 6.7E-05	 	 1.2E-04	 1.2E-04	

Ag	Patents	
	
	

3.4E-03	 2.6E-03	 	 0.034***	 0.031	***	

Biotech	Patents	
	
	

0.0014	*	 0.0016	**	 	 -0.0030	**	 -0.0024	**	

Corn	Price	
	
	

1.9E+00	 1.1E+00	 	 2.9E+00	 1.8E+00	

Oil	Price	
	
	

0.25	*	 0.24	**	 	 0.60	***	 0.64	***	

GE	Crops	
	
	

1.6E+00	 3.6E+00	 	 -6.3E+00	 -6.1E+00	

RFS	 24.4	**	 26.3	***	 	 27.5	**	 28.1	**	
	 	 	 	 	 	
Note.	*	=	p	≤	.05,	**	=	p	≤	.01,	***	=	p	≤	.001.	
	

Disagreement	between	the	two	classification	approaches,	however,	occurs	when	

looking	at	the	role	of	agriculture	patents	and	biotech	patents.	For	NLP-based	classification,	

it	appears	that	biotech	patents	are	significant,	positive	predictors	of	2G	biofuel	patenting	

activity	whereas	biotech	patents	are	a	significant,	negative	predictor	for	CPC	patent	

activity.	The	NLP	classification	results	support	the	idea	that	1st	and	2nd	generation	

technologies	have	very	different	sectors	of	origin,	whereas	the	CPC	results	indicate	that	
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agriculture	patenting	activity	is	still	a	dominant	predictor	of	2G	patent	trends.	This	once	

again	highlights	the	fact	that	different	patent	classification	schemes	or	groupings	can	result	

in	radically	different	interpretations	of	events.		

2nd	generation	biofuels	have	been	promoted	on	the	premise	that	they	do	not	

compete	directly	with	food	crops,	and	that	they	may	offer	further	environmental	benefits.	

CPC	trends	suggest	that	patenting	activity	in	the	agriculture	sector	is	predictive	of	

patenting	activity	for	2nd	generation	biofuels.	Given	this	desire	to	decouple	2nd	generation	

biofuels	from	traditional	agriculture,	the	significance	of	agricultural	patents	as	a	positive	

predictor	for	2nd	generation	CPC	patent	counts	is	concerning.	The	CPC	data	also	indicates	

that	more	2nd	generation	biofuel	patents	were	filed	compared	to	1st	generation	patents	

during	the	90s.	Given	the	limited	demand	for	biofuels	in	the	90s,	and	that	1st	generation	

ethanol	production	stagnated	prior	to	expanding	during	a	period	of	MTBE	bans,	

interpretability	of	CPC	patent	trends	are	suspect.	NLP	patent	classification	results	suggest,	

however,	that	2nd	generation	biofuels	are	significantly	decoupled	from	trends	in	the	

agriculture	sector.	The	patent	data	derived	from	the	NLP	approach	better	corresponds	to	

the	2nd	generation	biofuel	technology	narrative	obtained	from	the	literature,	where	interest	

in	2nd	generation	biofuels	was	limited	prior	to	the	adoption	of	the	RFS	in	2005,	and	then	its	

subsequent	modification	in	2007	resulting	in	direct	support	for	advanced	biofuel.	

I	again	use	the	NLP	patent	dataset	to	assess	patent	trends	for	2nd	generation	biofuel	

firms.	Analysis	of	this	dataset	shows	that	patents	came	from	firms	more	closely	linked	to	

the	biotechnology	sector	(e.g,	Novozymes,	as	opposed	to	Monsanto).	From	1990	through	

2011,	the	top	5	firms	that	filed	for	2nd	generation	patents	were	Danisco,	Genencor,	Iogen,	
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the	Midwest	Research	Institute,	and	Novozymes.	These	firms	filed	an	average	of	2.4	

biofuel-related	patents	per	year.	

The	increase	in	2nd	generation	biofuel	patenting	activity	by	biotech-related	firms	

may	be	the	same	spillover	phenomenon	observed	with	agricultural	firms	and	biofuel	

innovation	in	the	1990s:	the	opportunistic	transfer	of	technology	to	a	new	sector.	

Following	enactment	of	the	RFS	in	2005	and	modification	in	2007,	firms	originating	from	

the	biotechnology	sector	decided	to	experiment	with	biofuel	technologies	(Schubert,	2006).	

The	number	of	firms	filing	for	2nd	generation	biofuel	patents	increased	dramatically	after	

enactment	of	the	RFS.	Conversely,	the	number	of	firms	filing	for	1st	generation	patents	

showed	minimal	growth	(Figure	3.4).	

While	many	firms	filed	patents	for	2nd	generation	technology,	the	number	of	patents	

per	company	was	much	lower	for	2nd	generation	technologies	than	for	1st	generation	

technologies	from	2005	onward.	76%	of	2nd	generation	firms	received	only	one	patent	in	a	

given	year.	In	contrast,	only	3	to	5	firms	were	responsible	for	more	than	half	of	all	1st	

generation	patents	(almost	2,800	patents	from	2005	through	2011).	

3.3.3	Assessing	patent	quality	

As	discussed,	patent	filing	activity	varies	for	biofuels	overtime,	and	NLP-derived	

patent	trends	seem	to	correspond	to	the	biofuel	innovation	narrative	obtained	from	the	

literature.	However,	without	further	consideration	of	patent	quality,	it	is	uncertain	how	the	

overall	innovation	intensity	changes	overtime.	Traditionally,	patent	citation	counts	have	

been	used	to	measure	the	importance	of	any	given	patent	(Hall,	Jaffe,	&	Trajtenberg,	2005;	

Lanjouw	&	Schankerman,	2004;	Popp,	2001,	2005).	The	logic	in	using	patent	citations	to	

assess	patent	value	is	that	patents	that	are	cited	more	often	are	likely	to	be	patents	of	
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higher	value.	If,	in	a	given	year,	there	are	fewer	patents	filed	but	there	are	a	lot	of	citations	

in	future	years	to	those	patents,	then	that	may	represent	a	high	level	of	innovation	for	that	

technology.	In	turn,	if	many	patents	are	filed	but	there	are	fewer	citations,	this	may	indicate	

that	those	patents	are	less	innovative.		

To	assess	patent	quality,	I	have	collected	patent	citation	data	for	each	NLP-classified	

patent	in	the	database.	As	patents	that	have	been	around	for	a	longer	period	of	time	have	

the	possibility	to	gather	more	citations,	I	choose	to	look	only	at	the	number	of	citations	

linking	to	any	given	patent	in	a	2-year	period	from	the	year	that	the	patent	was	granted.	In	

other	words,	if	a	patent	was	filed	in	1980	but	wasn’t	granted	until	1983,	I	look	at	the	

number	of	citations	for	that	patent	from	patents	that	were	filed	in	1983,	1984,	and	1985.	

Using	this	approach,	I	determine	the	quality	of	biofuel	patents	through	2009	(capturing	

citations	from	2011	patents).	The	2-year	window	for	citation	evaluation	was	chosen	so	that	

my	patent	dataset	could	be	reliable	for	several	years	after	2007,	the	year	in	which	the	RFS	

was	modified.	

In	addition	to	biofuel	patent	quality,	I	have	also	gathered	patent	citation	data	for	the	

non-biofuel	patents	in	the	database	(those	categorized	as	“NA”).	I	use	this	citation	data	as	

an	approximation	for	the	overall	trend	in	patent	quality	for	all	USPTO	patents.	To	calculate	

average	patent	quality	in	each	year,	I	took	the	sum	of	patent	citations	for	each	technology	

class	associated	with	patents	from	a	given	filing	year,	then	divide	the	total	number	of	

citations	by	the	total	number	of	patents	applied	for	in	that	year.	Figure	3.5	shows	citation	

data	for	1st	and	2nd	generation	patents,	as	well	as	citation	data	for	“NA”	patents.	
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Figure	3.5.	Patent	citations	per	patent	for	1st	generation	biofuel	patents,	2nd	generation	

biofuel	patents,	and	non-biofuel	patents	in	the	NLP-classified	biofuel	patent	dataset.	

I	utilize	linear	regression	to	better	establish	whether	or	not	there	is	a	time	trend	

associated	with	patent	quality.	The	following	model	is	used:	

!" !! + 1 = !!!" !!" + !!! + ! + !!,!	

where	Qs	is	the	average	2-year	citations	count	per	patent	in	a	given	technology	

group	s	(1st	generation	or	2nd	generation),	QNA	is	the	average	2-year	citation	count	per	

patent	for	“NA”	patents	(average	patents),	and	t	is	a	linear	time	trend.	I	utilize	the	natural	

log	of	average	patent	citations	because	the	average	number	of	citations	is	greater	than	or	

equal	to	0.	1	is	added	to	Qs	to	make	zeroes	that	would	otherwise	occur	in	the	count	data	

non-zero.	Regression	results	indicate	that	the	time	trend	for	both	1st	and	2nd	generation	

patents	is	insignificant	(Table	3.3).	
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Table	3.3	

Regression	results	to	determine	if	there	is	a	time	trend	associated	with	1st	and	2nd	generation	

biofuel	patent	quality	

	 	
1st	Generation	

	
2nd	Generation	
	

	 	 	
(Intercept)	
	
	

0.99	***	 0.66	**	

log(QNA)	
	
	

-0.65	 0.74	*	

Time	 0.027	 -0.013	
	 	 	
Note.	*	=	p	≤	.05,	**	=	p	≤	.01,	***	=	p	≤	.001.	
	

Additionally,	I	conducted	a	two-tail	student’s	t-test	to	establish	if	patent	quality	is	

substantially	different	between	1st	generation	and	2nd	generation	patents.	I	find	that	the	

average	patent	quality	between	1st	and	2nd	generation	biofuel	technologies	is	not	

significantly	different.	These	results	indicate	that	overall	patent	counts	for	biofuel	

technologies	are	likely	a	good	indicator	of	general	innovation	activity	in	the	system,	and	

that	the	quality	of	patents	has	been	fairly	consistent	over	time.	

	 	

3.3.4	The	role	of	the	oil	and	gas	industry	

Given	how	closely	trends	in	NLP-classified	patents	align	with	the	biofuel	technology	

narrative,	I	explore	the	use	of	this	data	in	providing	more	insight	into	the	biofuel	

innovation	process.	Missing	from	the	biofuel	technology	narrative,	up	to	this	point,	is	the	

role	of	the	oil	and	gas	industry.	Since	1980,	biofuels	have	steadily	gained	market	share	as	a	
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transportation	fuel;	this	has	been	especially	true	since	enactment	of	the	RFS.	Biofuel	policy	

has	created	market	opportunity	for	both	agriculture	and	biotech	companies,	but	the	

response	from	the	oil	and	gas	industry	has	been	less	certain.		

The	oil	and	gas	industry	could	invest	in	advanced	biofuels	either	as	competitors	to	

agricultural	and	biotech	companies,	or	as	partners.	To	date,	oil	companies	have	announced	

a	myriad	of	investments	into	biofuels,	often	in	partnership	with	large	research	universities	

(Sims,	Mabee,	Saddler,	&	Taylor,	2010).	These	incumbent	fuel	firms	are	rooted	in	

petroleum	production,	distribution,	and	marketing.	How	does	patent	data	portray	the	oil	

and	gas	industry?	NLP-classified	patent	data	show	that	the	oil	industry	has	not	been	a	key	

contributor	to	knowledge	development	and	diffusion	for	biofuels	in	either	wave	of	biofuel	

innovation.	

The	number	of	biofuel	patents	filed	by	the	oil	and	gas	industry,	normalized	by	the	

total	number	of	U.S.	patents	filed	in	each	year,	is	presented	in	Figure	3.6.	Data	are	derived	

from	the	five	largest	oil	and	gas	companies	traded	on	the	New	York	Stock	Exchange	in	2014	

(BP,	Chevron,	Conoco,	ExxonMobil,	and	Shell).	On	average,	these	five	companies	file	for	

roughly	250	new	patents	each	year.	They	filed	for	an	average	of	less	than	one	biofuel	patent	

per	year	until	2006.	But	even	from	2006-2010,	oil	companies	filed	fewer	than	5	biofuel-

related	patents	per	year,	representing	less	than	2%	of	their	total	company	patents.		

It	might	be	that	other	oil	and	gas	companies	are	more	innovative	in	the	biofuel	

space.	To	better	assess	this,	I	looked	at	the	patent	profile	of	Valero,	a	large	oil	refining	

company	that	has	invested	in	and	procured	numerous	1st	generation	biofuel	facilities.	

Valero	has	not	currently	been	assigned	any	biofuel-related	patents.	The	U.S.	Energy	
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Information	Administration	(2014)	indicates	that	Valero	is	currently	the	largest	U.S.	oil	

refiner.	

	

	

Figure	3.6.	Biofuel	patents	and	non-biofuel	patents	filed	by	the	oil	and	gas	industry	as	a	

percentage	of	all	U.S.	patents	filed	each	year	

	

Of	the	few	biofuel	patents	filed	by	the	five	major	oil	and	gas	companies	(N=42),	all	

but	one	of	these	patents	was	for	2nd	generation	biofuels.	These	2nd	generation	patents	were	

mostly	filed	after	adoption	of	the	RFS.	This	pattern	aligns	with	the	existing	2nd	generation	

biofuel	narrative,	in	which	companies	pursued	2nd	generation	fuels	after	enactment	of	the	

RFS.	The	decrease	in	patenting	activity	by	oil	companies	since	2009	may	represent	

disinterest	from	the	industry	in	biofuel	advancement,	an	industry-wide	preference	for	

trade	secrets	rather	than	patents	as	a	means	to	protect	intellectual	property	associated	

with	biofuels,	and/or	a	preference	for	partnering	with	and	investing	in	other	smaller	firms	

with	the	expectation	of	seeking	licensing	agreements	with	those	small	firms.		
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Patent	activity	has	traditionally	been	viewed	as	an	outcome	of	R&D	expenditures,	or	

as	a	means	of	approximating	R&D	expenditures	(Griliches,	1998;	Griliches,	Pakes,	&	Hall,	

1988;	Kim	&	Marschke,	2004).	The	lack	of	a	trend	for	biofuel	patenting	activity	from	the	oil	

industry	compared	to	other	research	endeavors	by	those	same	oil	firms	may	be	indicative	

of	a	lack	of	interest	and	commitment	from	the	oil	and	gas	industry	toward	biofuel	

technology.	Given	the	limited	biofuel	patent	activity	from	this	sector,	it	is	unlikely	that	

biofuels	will	be	strongly	supported	politically	or	financially	by	the	oil	and	gas	industry	

without	substantially	different	policy	approaches	in	the	future.		

	

3.3	Patents	and	Innovation	

The	patent	analysis	I	conducted	suggests	that	patent	classification	schemes	and	

methods	have	a	large	impact	on	the	interpretability	of	related	technology	innovation	

trends.	Some	patent	classifications	may	act	as	a	good	indicator	of	technological	shifts	and	

overall	innovation	activity	for	technologies.	Of	the	three	patent	classifications	examined	for	

biofuels,	the	NLP-classification	methodology	I	utilized	for	classification	seems	to	provide	

the	most	consistent	empirical	support	for	the	biofuel	innovation	narrative	obtained	from	

literature.		

While	patent	analysis	is	not	without	weaknesses,	it	appears	that	patent	activity	and	

trend,	can	in	fact	map	on	to	the	existing	innovation	narrative.	This	result	tends	to	support	

the	idea	that	patents	can	be	used	as	a	useful,	readily	available	dataset	for	capturing	some	

aspects	of	the	technology	innovation	system.	Despite	these	promising	results,	however,	it	is	

worth	noting	that	the	patent	counts	that	I	captured	using	typical	patent	classification	

methodologies	did	not	always	align	with	the	biofuel	innovation	narrative.	In	some	
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instances,	trends	were	in	direct	contrast	and	provided	contradictory	results	(a	decline	in	

patent	activity	with	a	growing	ethanol	industry).	Due	to	this	problem,	I	suggest	that	patent	

trends,	derived	from	typical	patent	classifications,	should	be	used	with	extreme	caution.	

When	using	patents	to	construct	an	innovation	narrative,	these	trends	should	not	be	used	

as	the	only	source	of	information	for	evaluating	the	innovation	narrative.	If	patents	are	

used	to	assess	technology	innovation	activity,	additional	effort	should	be	made	to	

adequately	refine	the	results	of	patent	searches	to	improve	the	overall	dataset.	

Even	when	using	the	NLP	patent	classification	approach,	the	long	lag-time	

associated	with	patent	filing	and	the	point	at	which	a	patent	is	granted	is	still	a	major	

drawback	to	using	patent	data.	This	makes	it	difficult	for	policy	makers	and	modelers	to	

understand	what	is	occurring	in	the	short-term,	which	makes	it	difficult	to	evaluate	what	

can	or	should	be	done	to	improve	innovation	outcomes.	To	overcome	this	issue,	I	turn	to	a	

different	data	source:	newspaper	articles	and	trade	journals.	
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Chapter	4: 	Text	Classification	and	Biofuel	Innovation	

In	this	chapter	I	explore	the	use	of	textual	media,	specifically	newspapers	and	trade	

journals,	as	a	proxy	for	biofuel	innovation.	I	employ	natural	language	processing	and	

machine-learning	algorithms	to	classify	newspaper	articles.	I	have	classified	newspaper	

articles	so	that	they	directly	map	on	to	the	Technology	Innovation	System	(TIS)	framework	

discussed	in	Chapter	1.	Each	article	collected	in	the	textual	database	represents	

information	flow.	Machine	learning	algorithms	were	employed	to	better	determine	the	type	

of	information	flow	associated	with	each	article.	Information	was	classified	into	the	7	TIS	

Innovation	Functions	(Table	1.2).	

I	find	that	trends	associated	with	article	counts	closely	correspond	to	the	

sociotechnical	shifts	described	in	the	biofuel	innovation	narrative	of	Chapter	3.	

Additionally,	I	find	that	articles	are	a	significant	predictor	of	biofuel	patenting	activity	for	

1st	generation,	2nd	generation,	ethanol,	and	biodiesel	technologies.		

Using	a	TIS-based	approach	to	innovation	assessment	allows	for	increased	

disaggregation	of	innovation	trends.	To	further	assess	the	value	of	this	approach,	I	examine	

the	biofuel	innovation	case	of	California.		

The	TIS	mappings	and	data	indicate	that	the	structure	and	support	for	innovation	

differs	significantly	in	California	compared	to	national	trends.	California’s	biofuel	policies	

may	explain	many	of	these	differences.	

Qualitative	assessment	of	the	ethanol	policy	environment	in	California	supports	the	

idea	that	there	is	reasonable	alignment	between	policy	shifts	and	the	innovation	system	

trends	as	measured	through	textual	media.	I	further	employ	statistical	models	to	provide	

some	support	for	the	relationship	between	regional	biofuel	policy	and	shifts	in	the	regional	
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TIS.	The	chapter	finishes	by	looking	at	how	support	for	different	TIS	functions	across	states	

might	influence	regional	ethanol	deployment	and	adoption.	

	

4.1	Can	Article	Counts	be	used	as	a	Proxy	for	Innovation?	

As	discussed	previously,	each	TIS	function	represents	a	set	of	actions	that	can	be	

taken	to	support	innovation.	Policy	effects	or	actors	and	institutions	operating	in	a	

technology	innovation	system	can	also	directly	support	or	block	these	functions.	When	

sufficient	support	for	TIS	functions	exists,	structural	components	of	the	innovation	system	

can	fall	into	place.		

For	instance,	loan	guarantees	or	directed	government	grants	could	be	provided	to	

companies	that	decide	to	produce	biofuel.	These	government	interventions	would	

encourage	more	entrepreneurial	experimentation	with	biofuels,	and	would	promote	the	

additional	entry	of	firms	into	the	market.	Ultimately,	these	structural	changes	could	result	

in	more	knowledge	creation	and	knowledge	sharing	about	commercialization	of	the	

technology,	which	could	lead	to	successful	innovation.	When	adequate	support	for	a	

function	does	not	exist,	the	overall	innovation	system	is	weakened,	which	can	have	

negative	consequences	for	innovation.	Determining	what	constitutes	“sufficient”	support,	

or	what	constitutes	“weakness,”	in	the	system	has	largely	been	subjective,	and	can	typically	

be	evaluated	only	after	innovation	success	or	failure	has	been	achieved.	

	The	methodologies	applied	below	may	help	to	better	identify	weaknesses	or	

strengths	in	a	given	innovation	system	as	it	is	developing,	which	in	turn	can	be	used	to	aid	

policy	makers	that	are	trying	to	figure	out	how	to	better	support	or	promote	a	specific	

technology	or	technology	outcome.	
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To	better	understand	biofuel	innovation,	hundreds	of	thousands	of	primary	sources	

were	captured	and	classified	using	the	Stanford	NLP	Classifier	to	better	map	out	and	assess	

the	technology	innovation	system	for	biofuels	(this	methodology	is	detailed	in	Chapter	2).	

A	small	subset	of	all	texts	was	read	in	full,	and	each	text	was	manually	assigned	to	one	or	

more	of	the	7	TIS	functions.	Each	TIS	function	mapped	on	to	an	article	was	also	classified	as	

“supporting”	the	technology,	or	“blocking”	the	technology.	

The	Stanford	NLP	Classifier	uses	computational	and	statistical	approaches	to	

determine	a	set	of	article	features	(e.g.	words,	word	pairs,	article	length,	word	prefixes	and	

suffixes,	etc.)	that	are	statistically	likely	to	be	found	in	texts	associated	with	specific	

classification.	This	allows	for	the	classification	of	all	articles	into	a	set	of	supporting	or	

blocking	innovation	functions.	When	aggregated	together	like	this,	it	is	possible	to	gain	

insight	into	what	is	or	is	not	happening	in	a	given	TIS.	The	classified	data	used	for	analysis	

has	further	been	constrained	to	only	the	United	States	due	to	the	bias	for	English-language	

news	sources	for	both	collection	and	coding.	

To	establish	regional	news	collections	and	specific	geographies,	I	made	use	of	the	

LexisNexis	metadata	that	is	available	for	each	article	that	was	downloaded	from	the	

LexisNexis	article	database.	LexisNexis	utilizes	their	own,	proprietary	algorithms	for	

classifying	articles.	The	metadata	contained	with	each	text	document	includes	geographical	

information,	as	well	as	information	associated	with	companies	and	other	agents	that	are	

relevant	to	that	article.	The	LexisNexis	classification	approaches	are	based	on	keyword	

filters	and	other	article	indexing	techniques	(LexisNexis,	2015).	This	metadata	has	allowed	

me	to	create	an	article	subset	corresponding	to	each	U.S.	State	and	Washington,	DC.		
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I	have	chosen	to	characterize	the	entirety	of	the	U.S.	biofuel	technology	innovation	

system	by	aggregating	each	article	subset	associated	with	each	state.	Figure	4.1	shows	a	

graphical	representation	of	the	trends	and	dynamics	for	the	U.S.	Biofuel	TIS	as	exhibited	by	

article	counts.	

	

Figure	4.1.	Overall	biofuel	technology	innovation	system	trends	for	the	United	States	

	

In	Figure	4.1,	there	is	a	surge	in	the	U.S.	biofuel	TIS	from	2005	through	2008.	This	is	

a	period	characterized	by	the	adoption	and	modification	of	the	U.S.	Renewable	Fuel	

Standard.	This	sudden	growth	in	the	biofuel	TIS	is	similar	to	what	shows	up	in	both	the	

qualitative	biofuel	narrative	obtained	from	the	literature,	a	well	as	the	patent	data	

discussed	in	the	previous	chapter.	The	innovation	system	trends	have	an	average	

coefficient	of	correlation	of	0.82	with	patent	count	data	for	ethanol,	Biodiesel,	1G	biofuels,	

and	2G	biofuels.	Additionally,	Figure	4.1	shows	an	increase	in	articles	starting	in	1999	–	

this	aligns	with	the	narrative	that	the	MTBE	bans	from	1999	onward	may	have	provided	
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some	support	for	ethanol.	Starting	in	2008,	and	coinciding	with	the	2008	recession,	the	

biofuel	TIS	decreases	substantially.	There	is	only	partial	resurgence	of	the	TIS	in	2011	

before	a	greater	decline	in	2012	and	2013.		

Compared	to	the	patent	trends	discussed	in	Chapter	3,	the	economic	recession	is	

more	pronounced	in	the	article	dataset.	Although	the	number	of	patent	applications	

exhibits	a	decrease	starting	in	2010	and	2011	for	the	NLP	patent	dataset,	the	number	of	

firms	patenting	technologies	shows	a	steep	decline	after	2008	(Figure	3.4)	–	this	is	similar	

to	the	trend	exhibited	by	biofuel	articles	in	Figure	4.1.	The	decrease	in	measured	

innovation	activity	in	the	article	dataset	due	to	the	economic	recession	is	expected,	and	

directly	aligns	with	the	decrease	in	the	number	of	firms	filing	for	patents	in	the	patent	

dataset.	

To	better	assess	the	validity	of	article	counts	as	a	proxy	for	technology	innovation	

trends,	I	compare	TIS	counts	to	the	biofuel	patent	classification	data	of	Chapter	3.	I	use	

general	linear	models	for	negative	binomial	as	well	as	quasipoisson	distributions	to	assess	

this:	

ln !! = !!!!"",! + !!!!",! + !!!!"#$!,! + !!!!"#$,!!! + !!!!"#,!!! + !! !" ! +

!! !"# ! + !!!! + ! + !!	 	 	 	 	 	 	 (M4.1	to	M4.4)	

where	Pt	is	the	count	of	patents	for	years	(t)	1995	to	2012,	CAll	is	the	count	of	all	

patents	filed,	CAg	is	the	count	of	all	agricultural	patents	filed,	CBTech	is	the	count	of	all	

biotechnology	patents	filed,	Pcorn	is	the	price	of	corn	in	dollars	per	bushel,	Poil	is	the	price	of	

brent	crude	in	dollars	per	barrel,	At	is	the	article	count	for	all	TIS	functions,	GE	is	a	dummy	

variable	of	0	or	1	for	the	commercial	deployment	of	GE	crops,	RFS	is	a	dummy	variable	of	0	
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or	1	for	whether	or	not	the	national	renewable	fuel	standard	is	in	place,	a	is	the	intercept	

and	ε	is	the	residual.		

The	model	was	assessed	for	each	of	the	4	technologies	I	have	patent	data	and	

newspaper	classifications	for:	(M4.1)	1st	generation	technology,	(M4.2)	2nd	generation	

technology,	(M4.3)	ethanol,	and	(M4.4)	biodiesel.	Patent	count	data	was	taken	from	the	

NLP	patent	classification	dataset	used	in	Chapter	3.		

The	GLM	model	results	indicate	that	article	counts	for	TIS	functions	are	a	significant,	

positive	predictor	of	patenting	activity	across	all	biofuel	technology	patent	subsets.	

Of	interest,	when	incorporating	overall	article	counts	to	assess	patent	counts,	the	

dummy	variable	associated	with	the	implementation	of	the	renewable	fuel	standard	is	no	

longer	a	significant	predictor	of	biofuel	patenting	activity.	This	suggests	that	TIS	article	

counts,	as	established	through	this	methodology,	may	adequately	capture	policy	

implementation	and	other	important	sociotechnical	shifts	beyond	what	the	dummy	

variables	for	the	RFS	is	able	to	capture.	For	instance,	different	fuel	volumes	are	required	

under	the	RFS	each	year,	and	various	litigation	activity	alongside	other	market	forces	has	

likely	had	an	effect	on	how	well	the	RFS	has	been	able	to	encourage	technology	innovation.	

This	indicates	that	it	is	not	simply	a	fuel	mandate	that	encourages	innovation,	but	that	the	

specifics	of	the	fuel	mandate	can	have	a	large	effect	on	innovation.	



	

	
Table	4.1	

	
Marginal	Effects	table	for	biofuel	article	classification	models	(M4.1	to	M4.4)	–	marginal	change	in	the	number	of	patents	per	
marginal	increase	of	an	independent	variable		
	
	 1G	Tech	 	 2G	Tech	 	 Ethanol	 	 Biodiesel	
	 QP	 NB	 	 QP	 NB	 	 QP	 NB	 	 QP	 NB	
	 	 	 	 	 	 	 	 	 	 	 	
Other.Sector.Patents	
	

-1.1e-3	***	-1.6e-3	.	 	 2.30E-04	 2.3e-4	.	 	 -1.2e-3	 -1.8e-3	**		 -4.9E-04	 -4.2E-04	

AgPatents	
	

0.23	**	 0.23	***	 	 -0.01	 -0.01	.	 	 0.15	**	 .15	***	 	 0.11	*	 0.11	***	

Biotech	
	

-0.01	 -.01	.	 	 3.3e-3	*	 3.3e-3	**	 	 -2.4E-05	 -4.6E-03	 	 -3.8E-03	 -3.5E-03	

Corn_1	
	

62	.	 46	*	 	 0.83	 0.83	 	 48	.	 27	.	 	 19	 23	

Oil_1	
	

-0.21	 6.00E-02	 	 0.31	 0.31	.	 	 0.4	 1	 	 -2.8E-01	 -0.41	

GE_Rev	
	

143	 153	***	 	 -2	 -2.0E+00	 	 64	 79	**	 	 95	 94	***	

RFS1	
	

108	 7.60E+01	 	 2.3	 2.3	 	 82	 56	 	 27	 22	

Article	Counts	 2.4e-4	*	 2.7e-4	***	 	 6.1e-4	***	 6.1e-4	***	 	 2.4e-4	.	 2.5e-4	**	 	 4.4E-04	 4.9e-4	*	
	 	 	 	 	 	 	 	 	 	 	 	
Note.	.=	p	≤	0.1,	*	=	p	≤	.05,	**	=	p	≤	.01,	***	=	p	≤	.001.	
	

-1
19
-	
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Given	the	relatively	small	time-series	for	the	article	dataset	(1995	to	2013),	I	have	

conducted	additional	analysis	using	a	pooled	model,	where	I	fit	the	model	across	all	4	

biofuel	technology	cases	(1G,	2G,	Ethanol,	and	Biodiesel)	to	assess	if	article	counts	are	a	

good	predictor	of	patenting	activity.	I	use	a	general	linear	model	of	the	following	reduced	

form	for	both	quasipoisson	and	negative	binomial	families	to	assess	this	correlation:	

ln !!" = !!+!!!!" + ! + !!"	 	 	 (M4.5)	

where	P	is	the	number	of	patents	associated	with	technology	i	for	year	t,	λ	is	a	fixed-

effect	for	the	year,	A	is	the	number	of	articles	associated	with	technology	i	in	year	t,	α	is	the	

intercept	and	ε	is	the	residual.	Akaike	Information	Criterion	were	also	utilized	to	determine	

if	there	was	a	lag	relationship	between	article	counts	and	patents.	I	tested	no	lag,	a	1-year	

lag,	and	a	2-year	lag	relationship.	The	no-lag	relationship	for	article	counts	yielded	the	best	

model	fit.	

Regression	results	from	the	pooled	model	(not	shown)	indicated	that	article	counts	

were	once	again	highly	significant	for	predicting	biofuel	technology	patent	trends.	The	

fixed-effect	for	time	(λ)	was	only	significant	in	1999,	2009,	and	2010.	Akaike	Information	

Criterion	suggests	that	further	removing	the	fixed	effect	for	time	creates	a	better	model	

specification.	

Overall,	regression	results	from	the	5	different	models	employed	suggest	that	article	

counts	can,	at	the	very	least,	be	used	as	a	proxy	for	biofuel	patents.	Because	patents	are	

often	used	as	a	proxy	for	innovation,	article	counts	can	also	likely	be	used	to	assess	

technology	innovation.	

The	overall	number	of	articles	related	to	biofuels,	as	shown	in	Figure	4.1,	has	

diminished	since	the	recession.	This	decrease	in	articles	implies	that	support	for	biofuel	
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innovation	has	faltered	since	peak	levels	in	2007	and	2008.	Furthermore,	there	is	

substantial	decline	across	all	innovation	system	functions	(classifications	of	article	

information)	since	the	peak	(Table	4.2).	Additionally,	there	is	no	indication	of	an	upward	

trend.	

The	greatest	percent	decline	in	innovation	system	functions	for	the	national	biofuel	

TIS	occurs	for	the	“Influence	the	Direction	of	Search”	function.	Statements	of	political	

support,	creation	of	tax	incentives,	and	reports	of	positive	entrepreneurial	outcomes	

characterize	the	“Influence	the	Direction	of	Search”	function.	All	of	these	actions	could	

motivate	increased	interest	in	biofuel	technology.	The	substantial	decline	in	the	“Influence	

the	Direction	of	Search”	function	may	reflect	overall	uncertainty	in	pursuing	biofuel	

innovation.		

In	the	last	few	years,	intensity	has	increased	around	the	food-vs-fuel	debate,	and	

additional	uncertainty	has	risen	regarding	the	environmental	benefits	of	both	1st	and	2nd	

generation	biofuels	(G	Cassman	&	Liska,	2007;	Kendall	&	Yuan,	2013;	Murphy	&	Kendall,	

2015;	Searchinger	et	al.,	2008;	Zilberman,	Hochman,	Rajagopal,	Sexton,	&	Timilsina,	2012).	

Given	these	concerns,	I	would	expect	a	decrease	in	the	“Influence	Direction	of	Search”	

innovation	function	since	the	peak	of	the	biofuel	technology	innovation	system. 	
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Table	4.2	

The	year	that	articles	associated	with	each	innovation	function	peaked,	and	percent	change	in	

the	number	of	articles	from	peak	by	2013	

	

Innovation	Function	

	

Peak	Year	

	

Change	from	Peak	(2013)	

	

	 	 	

Influence	the	Direction	of	

Search	

	

	

2007	 -82%	

Market	Formation	

	

	

2007	 -61%	

Entrepreneurial	

Experimentation	

	

	

2008	 -57%	

Resource	Mobilization	

	

	

2008	 -55%	

Development	of	Positive	

External	Economies	

	

	

2007	 -53%	

Legitimation	

	

	

2008	 -51%	

Knowledge	development	

and	diffusion	

2008	 -47%	

	 	 	

 

To	better	assess	what	is	occurring	with	2nd	generation	biofuel	technology	

innovation,	I	have	aggregated	the	data	to	show	innovation	function	counts	for	2nd	

generation	biofuel	technologies.	As	seen	in	Figure	4.2,	there	is	a	large	innovation	system	

decline	in	2012	and	2013	compared	to	the	“biofuel	peak.”	Unlike	1st	generation	
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technologies,	however,	2nd	generation	technologies	have	experienced	two	peaks:	one	in	

2007,	and	one	in	2011,	showing	significant	recovery	after	the	economic	recession	in	2008.	

 

Figure	4.2.	Overall	2nd	generation	biofuel	technology	innovation	system	trends	for	the	

United	States	

To	better	assess	the	“health”	of	the	innovation	system	for	2nd	generation	biofuels	

compared	to	1st	generation	technologies,	I	compare	trends	between	the	two	technology	

innovation	systems	shown	above.	It	appears	that	the	percent	decline	has	been	greater	for	

2nd	generation	technologies	since	the	peak	of	innovative	activity	than	for	1st	generation	

technologies.	Entrepreneurial	experimentation,	resource	mobilization,	and	knowledge	

development	and	diffusion	for	2nd	generation	biofuel	technologies	have	all	declined	

considerably	from	their	peak,	and	the	magnitude	of	that	decline	is	greater	than	for	1st	

generation	technologies	(Table	4.3).	Given	these	large	declines,	improved	innovation	
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outcomes	for	2nd	generation	biofuel	technologies	in	the	United	States	may	be	unlikely	in	the	

short-term.	

Table	4.3	

Innovation	function	peak	year	and	percent	change	from	peak	by	2013	

	 	

1st	Generation	

	 	

2nd	Generation	

	 	

Function	 Peak	

Year	

Change	from	

Peak	

	 Peak	

Year	

Change	from	

Peak	

	

	 Difference	

	 	 	 	 	 	 	 	

Influence	the	

Direction	of	Search	

	

	

2007	 -79%	 	 2007	 -75%	 	 -4%	

Entrepreneurial	

Experimentation	

	

	

2008	 -42%	 	 2008	 -67%	 	 25%	

Resource	

Mobilization	

	

	

2011	 -39%	 	 2011	 -65%	 	 26%	

Market	Formation	

	

	

2007	 -60%	 	 2007	 -63%	 	 3%	

Knowledge	

development	and	

diffusion	

	

	

2007	 -31%	 	 2011	 -55%	 	 25%	

Development	of	

Positive	External	

Economies	

	

	

2007	 -46%	 	 2011	 -52%	 	 6%	

Legitimation	 2008	 -40%	 	 2011	 -47%	 	 6%	
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Although	the	results	in	table	4.3	indicate	that	the	biofuel	TIS	at	the	national	level	has	

been	in	decline,	it	is	not	clear	what	is	occurring	at	the	state	level,	or	what	states	have	been	

doing	to	promote	biofuel	innovation	independently.	To	better	assess	state-level	innovation,	

I	examine	the	case	of	ethanol	in	California.	

	

4.2	The	Case	of	Ethanol	in	California	

California	has	a	long	history	of	environmental	action;	since	the	1990s	a	number	of	

new	energy	and	environmental	policies	have	been	implemented	in	California,	and	

legislative	action	has	been	taken	to	reduce	GHG	emissions	(Franco,	Cayan,	Luers,	

Hanemann,	&	Croes,	2007;	Schmidt,	2007).	While	California	has	done	a	lot	to	support	

environmental	action,	it	was	only	in	1999	that	biofuel,	specifically	ethanol,	gained	traction	

in	the	state	with	action	to	ban	MTBE	(Brekke,	2010).	Over	the	next	decade,	ethanol	

utilization	and	production	in	California	grew	(U.S.	Energy	Information	Administration,	

2015c).	

Starting	in	2006,	California	implemented	strategies	to	address	climate	change.	The	

groundbreaking	law	AB	32,	signed	by	Governor	Arnold	Schwarzenegger,	called	for	a	

reduction	of	all	GHG	emissions	by	25%,	and	California’s	Low	Carbon	Fuel	Standard	(LCFS)	

was	initiated	by	Executive	Order	S-1-07	in	early	2007	and	adopted	by	the	California	Air	

Resources	Board	(CARB)	as	an	AB	32	early	action	regulation	in	April	2009	(California	Air	

Resources	Board,	2011;	Hanemann,	2007).		

California’s	LCFS	aims	to	reduce	greenhouse	gas	emissions	in	the	transportation	

sector	by	reducing	the	average	fuel	carbon	intensity	of	transportation	fuels	sold	in	the	

state.	Fuel	carbon	intensity	is	defined	as	the	amount	of	GHG	released	through	a	fuel’s	
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lifecycle	including	extraction,	conversion,	transport	and	delivery,	and	consumption	per	unit	

of	energy	delivered.	The	standard	is	tightened	over	time	to	encourage	and	allow	for	cleaner	

fuel	technologies	to	become	more	cost	effective	through	innovation,	economies	of	scale,	

and	experience	(Witcover,	Kessler,	Eggert,	&	Yeh,	2015;	Yeh	&	Sperling,	2010).	Policy	like	

the	LCFS	is	likely	to	impact	a	number	of	TIS	functions.	LCFS	policy	creates	a	protected	

market	for	low-carbon	fuels	(Market	Formation).	Additionally,	credit	trading	mechanisms	

for	the	LCFS	can	be	used	to	Mobilize	Resources	to	support	low-carbon	technologies.	Given	

that	the	LCFS	is	a	long-term	policy,	with	a	transparent	schedule	for	emission	reductions,	

this	increases	the	perceived	legitimacy	of	the	technology,	and	also	aids	in	influencing	the	

direction	of	search	toward	low-carbon	fuel	options.	

Status	reviews	of	the	California	LCFS	show	that	compliance	has	relied	on	significant	

use	of	biofuel,	specifically	ethanol	throughout	the	early	phases	of	the	program,	and	that	a	

gradual	shift	away	from	ethanol	to	more	advanced,	lower-carbon	biofuels	and	other	low-

carbon	fuel	pathways	is	occurring	(Yeh	&	Witcover,	2014a,	2014b;	Yeh,	Witcover,	&	

Bushnell,	2015;	Yeh,	Witcover,	&	Kessler,	2013).	To	date,	California	is	the	only	state	that	

has	actively	implemented	an	LCFS	and	has	begun	regulation.	Oregon	has	implemented	their	

own	clean	fuel	standard,	similar	to	the	LCFS,	but	has	not	yet	begun	regulation,	and	the	state	

of	Washington	was	developing	their	own	policy	similar	to	California’s	LCFS	before	

legislative	action	derailed	implementation	(64th	Washington	Legislature,	2015).	

Due	to	the	ability	to	differentiate	newspaper	event	analysis	by	region	in	the	TIS	data	

set	I	have	collected,	I	can	directly	compare	technology	innovation	systems	between	regions.	

This,	in	turn,	allows	for	interpretation	of	how	implemented	policy,	at	the	regional	level,	

may	contribute	to	overall	technology	innovation	outcomes.	Given	California’s	interest	in	
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driving	reductions	in	GHG	emissions,	especially	though	utilization	of	market-based	

programs	like	the	Low	Carbon	Fuel	Standard,	I	would	expect	to	see	support	for	low-carbon	

technologies,	such	as	biofuels,	at	a	level	that	is	significantly	different	from	the	national	

level.	To	test	the	significance	of	the	innovation	system	trends	seen	above,	counts	for	each	

article	associated	with	a	given	TIS	innovation	function	are	utilized	in	a	general	linear	model	

of	the	quasipoisson	type.	This	accounts	for	overdispersion	of	newspaper	articles,	and	

random	zero	counts	that	occur.	The	following	model	is	used:	

ln Ait( ) = λt + Ri + λR( )it +α + ε it 	 (M4.6)	

where	Ait	is	the	article	count	for	a	given	region	in	a	specific	year,	λ	is	a	fixed-effect	

for	time, !	is	an	intercept,	and	R	is	a	fixed-effect	for	region.	The	logarithm	is	a	link	function,	

which	is	used	primarily	to	keep	the	estimates	of	the	response	“in	range”,	given	that	all	

counts	must	necessarily	be	non-negative.	Interaction	effects	across	regions	over	time	are	

considered.	Figure	4.3	shows	the	biofuel	TIS	in	California,	and	the	smaller,	embedded	

column	chart	shows	which	TIS	functions	are	significant	for	California	compared	to	the	

national	trend	for	that	function	in	a	given	year.		
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Figure	4.3.	California	technology	innovation	system	trends	for	Biofuel	compared	to	US	

trends	

California	has	implemented	a	number	of	important,	biofuel-related	policies	that	can	

likely	explain	some	of	the	significant	shifts	in	the	California	TIS	compared	to	what	has	

occurred	nationally.	The	first	significant	developments	in	California’s	biofuel	TIS	occur	in	

the	early	2000s,	with	additional	support	starting	in	2006,	a	period	when	new	GHG	policy	

was	being	implemented.	Results	indicate	that	the	system	has	undergone	some	decline	in	

2013.	To	better	assess	the	role	of	policy	in	promoting	the	biofuel	TIS	in	California,	I	look	at	

one	specific	biofuel	technology	in	California:	ethanol.	

Utilizing	the	above	general	linear	model,	I	removed	all	technologies	other	than	

ethanol	from	the	dataset,	and	again	tested	for	significant	deviations	in	California’s	TIS	

compared	to	other	states.	To	assess	the	role	of	policy,	I	utilize	the	Department	of	Energy’s	

Alternative	Fuel	Data	Center	(AFDC)	policy	database	(U.S.	Department	of	Energy,	2012).	
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This	database	provides	information	about	the	kinds	of	fuel	policies	that	have	been	

implemented	over	time,	and	what	technologies	each	policy	relates	to	(e.g.	ethanol,	

biodiesel,	etc.).	In	addition,	the	AFDC	also	provides	classification	terms	for	what	kind	of	

policy	has	been	implemented	(mandate,	tax	credit,	etc.),	and	what	user	group	is	primarily	

affected	by	the	policy	(vehicle	owners,	station	owners,	etc.).		

As	seen	in	Figure	4.4,	almost	all	significant	shifts	in	the	California	ethanol	TIS	

correspond	to	the	implementation	of	new	policy	at	the	state	level.	The	major	exceptions	are	

in	2010	and	2012.	In	2010,	no	new	policies	were	implemented.	We	see	that	the	TIS	does	

not	change	significantly	since	2009	policy	implementation,	but	still	remains	significant	

compared	to	the	rest	of	the	nation.	Again,	in	2012,	there	are	few	significant	effects,	whereas	

there	was	policy	that	was	enacted.	The	enacted	policy	required	that	the	California	

Department	of	Transportation	develop	and	implement	an	alternative	fuel	vehicle	parking	

incentive	program.	Effects	from	this	program	could	be	delayed,	or	AFV	parking	incentives	

did	not	significantly	impact	flex-fuel	vehicle	use	or	the	ethanol	TIS	overall.	
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Figure	4.4.	Significant	shifts	in	California’s	ethanol	TIS	compared	to	the	national	ethanol	

TIS.	The	number	of	ethanol-related	policies	enacted	in	each	year	is	also	shown.	

The	results	shown	in	Figure	4.4	allow	for	better	comparison	between	my	data-

intensive	approach	to	technology	innovation	analysis	and	policy	expectations.	This	

comparison	fosters	improved	understanding	of	the	policy	environment,	and	facilitates	

assessment	of	the	ongoing	efficacy	of	certain	policy	implementations	in	terms	of	achieving	

specific	goals.	

Starting	in	1998,	California	implemented	an	Alternative	Fuel	Tax,	decreasing	taxes	

associated	with	alternative	fuels,	including	ethanol.	Despite	this	tax	credit	being	in	place,	no	

noticeable	shifts	in	the	California	ethanol	TIS	occurred	at	this	time	compared	to	what	was	

happening	nationally.	This	tax	was	enacted	during	a	time	of	on-going	national	discussion	

regarding	the	use	of	MTBE.	With	national	shifts	taking	place	at	this	time,	a	significant	

deviation	from	California’s	innovation	system	due	to	this	policy	would	be	surprising.	
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Given	the	ongoing	national	discourse	associated	with	the	use	of	MTBE,	and	that	

California	implemented	no	additional	policies	that	may	have	fostered	the	disuse	of	MTBE,	

the	lack	of	significant	innovation	shifts	is	consistent	with	the	California	ethanol	narrative.		

The	hiatus	in	both	ethanol-supporting	policy,	as	well	as	significant	ethanol	TIS	

developments	in	California	compared	to	the	rest	of	the	nation	continued	until	2006,	at	

which	point	California	began	enacting	a	number	of	GHG	related	policies,	including	AB	32	–	

with	provisions	for	a	clean	fuel	standard.		

In	2006	and	2007,	the	California	Energy	Commission	(CEC)	developed	an	alternative	

fuel	incentive	program,	allocating	$25	million	in	incentives	to	promote	the	use	of	

alternative	fuels.	In	2007	the	CEC	was	further	directed	to	adopt	an	annual	investment	plan.	

At	the	same	time,	provisions	for	a	Low	Carbon	Fuel	Standard	began.	In	2006	and	2007,	

considerable	fuel	policy	was	enacted	in	California,	and	we	see	a	corresponding	rise	in	

significant	innovation	function	support	in	Figure	4.4.	Resource	mobilization	and	

entrepreneurial	experimentation	were	supported	by	these	California	policies.	Additional	

support	came	in	the	form	of	a	protected	market	due	to	AB	32	provisions	for	a	clean	fuels	

program.	Figure	4.4	results	appear	consistent	with	what	was	occuring	in	California	in	2006	

and	2007.	

In	2008,	California	implemented	policy	associated	with	regulating	vehicle	retrofits,	

in	addition	to	policy	that	encouraged	state	agencies	to	develop	a	plan	for	acquiring	

alternative	fuel	vehicles	to	reduce	petroleum	consumption;	the	intent	was	to	reduce	

parking	fees	for	alternative	fuel	vehicles,	and	to	promote	the	use	of	alternative	fuels	when	

applicable	to	government	fleets.	The	Low	Emission	Vehicle	Standard	implemented	in	the	

same	year	may	have	further	influenced	the	direction	of	search	toward	ethanol,	given	the	
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possibility	for	ethanol	to	reduce	criteria	pollutants.	The	shift	in	the	TIS	may	be	indicative	of	

shifts	in	the	national	landscape	to	more	directly	promote	ethanol.	With	adoption	of	the	RFS,	

it	is	not	surprising	to	see	that	California’s	market	formation	development	for	ethanol	is	

insignificant	compared	to	national	trends.	

With	the	recession	impacting	the	biofuel	innovation	system	across	the	U.S.,	

California’s	innovation	system	appears	to	similarly	falter	after	2008.	Ethanol	production	in	

California	declined	from	2.3	million	barrels	per	year	to	1.2	million	barrels	in	2009.	Despite	

the	recession,	the	California	Department	of	Transportation	was	further	tasked	to	develop	a	

plan	for	achieving	maximum	feasible	emission	reductions.	This	requirement	was	imposed	

in	2009,	and	the	final	plan	for	implementation	was	slated	for	2015.	Even	though	plan	

development	would	take	an	extended	period	of	time,	long-term	policies	can	provide	some	

market	certainty,	and	may	further	influence	the	direction	of	search	toward	fuels	that	can	

help	to	reduce	vehicle	emissions.		

With	economic	recovery	starting	in	2010	and	2011,	Propel	Fuels,	a	private	

company,	adopted	their	own	station-wide	policy	aimed	to	encourage	the	use	of	ethanol	in	

fleet	vehicles	(implemented	in	2011).	This	policy	provided	small	rebates	to	fleet	vehicles	

fueling	up	with	biofuel	at	their	stations.	This	sort	of	privately	funded	policy	aimed	at	

increasing	ethanol	use	is	strongly	indicative	of	entrepreneurial	experimentation.	During	

this	time	Ethanol	production	in	California	also	surged,	growing	to	4.3	million	barrels	per	

year.	Additional	policy	was	also	implemented	by	California	at	the	same	time	to	establish	

career	training	for	students	to	prevent	dropout	rates,	and	to	better	promote	interest	in	a	

clean	economy	–	the	development	of	a	positive	external	economy.	
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2012	saw	mandates	to	foster	the	development	of	parking	infrastructure	for	

alternative	fuel	vehicles	for	public	parking	areas	operated	by	the	California	Department	of	

General	Services.	Despite	implementation	of	this	policy,	there	were	lawsuits	associated	

with	the	LCFS	and	concern	about	indirect	land-use	change	associated	with	ethanol.	

Compliance	concerns	with	the	Renewable	Fuel	Standard	also	emerged.	The	ethanol	TIS	in	

California	does	not	appear	to	be	better	supported	compared	to	the	rest	of	the	nation	in	

2012.	

In	2013	California	came	forward	in	support	of	the	National	Renewable	Fuel	

Standard,	which	was	under	jeopardy	due	to	continued	compliance	issues.	The	California	

Legislature	urged	the	U.S.	Congress	and	the	U.S.	Environmental	Protection	Agency	to	take	

action	to	amend	the	Renewable	Fuel	Standard.	This	sort	of	action	could	have	very	well	re-

established	support	for	ethanol	and	other	biofuels	in	the	state,	promoting	some	renewed	

interest	in	California	(influencing	the	direction	of	search).	

While	the	above	innovation	narrative	is	not	perfect,	qualitative	results	indicate	that	

there	is	alignment	between	the	development	and	implementation	of	policy,	and	detectable	

shifts	within	the	technology	innovation	system	at	the	regional	level.	While	more	thorough	

analysis	across	a	myriad	of	technology	options	and	longer	periods	of	time	will	be	necessary	

to	further	validate	this	methodology,	the	initial	analysis	is	encouraging,	and	provides	a	new	

means	to	assess	policy	efficacy	for	promoting	innovation.	Building	on	these	results,	I	again	

turn	to	the	regional	level	to	establish	which	biofuel-related	policies	appear	to	have	had	an	

effect	at	encouraging	innovation.		
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4.3	Assessing	Biofuel	Policy	Efficacy	

The	Alternative	Fuel	Data	Center	(AFDC)	tracks	implemented	state	and	national	

policies	that	affect	alternative	fuels	and	alternative	fuel	vehicles	(AFVs).	This	database	is	

maintained	by	the	Department	of	Energy,	and	classifies	policies	into	several	different	

categories.	The	database	includes	information	concerning	when	the	policy	was	enacted,	

repealed,	or	amended,	in	addition	to	the	primary	stakeholders	that	the	policy	targets	and	

brief	policy	descriptions.	Although	there	are	gaps	in	the	dataset,	it	still	provides	an	

authoritative	source	for	policies	that	were	implemented	at	the	state	level.	I	make	use	of	this	

policy	database	to	assess	which	policy	types	correspond	to	significant	shifts	within	a	state’s	

technology	innovation	system.	Once	again,	I	turn	to	the	case	of	ethanol.	

I	look	at	the	article	counts	associated	with	each	innovation	function	separately.	To	

assess	the	significance	of	policy	implementations,	I	look	at	both	the	year	that	a	policy	was	

enacted,	as	well	as	the	longevity	effect	of	having	the	policy	in	place.	I	look	at	the	interaction	

effect	between	the	policy	enactment	date,	the	policy	status,	and	the	region	over	time.	I	use	a	

mixed	effect	model	of	the	poisson	type	to	assess	policy	efficacy,	allowing	model	error	to	be	

random.	The	following	general	linear	mixed	model	is	used:	

ln (!!") = !!!!" ∗ !!!!" ∗ !!!! + !! + 1|!!"		 (M4.7)	

where	A	is	the	article	count	for	articles	of	a	given	TIS	function,	D	is	the	dummy	

variable	for	whether	or	not	a	specific	policy	is	in	place	for	state	i		at	time	t,	B	is	a	dummy	

variable	of	0	or	1	for	whether	the	specific	policy	was	enacted	in	year	t	for	state	i,	R	is	a	

dummy	variable	for	the	region,	and	λ	is	a	fixed-effect	for	time.	The	error	term,	ε,	is	a	

random	effect.	I	only	consider	second	order	interaction	effects	between	the	policy	dummies	
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and	the	state.	To	assess	policy	implementation,	I	look	at	only	one	policy	classification	at	a	

time.	Table	4.4	shows	which	policies	were	significant	when	using	this	modeling	approach.		

Results	from	this	model	indicate	that	state-specific	ethanol	policies	significantly	

predict	technology	innovation	system	trends.	The	policies	that	appear	to	have	the	greatest	

effect	on	the	ethanol	innovation	system	are	Climate	Change/Energy	Initiatives	(e.g.	the	

LCFS	in	California)	and	Air	Quality/Emission	Regulation	policy.	State-level	renewable	fuel	

mandates	also	seem	to	encourage	shifts	in	the	overall	innovation	system.	

Table	4.4	

	

Policies	that	significantly	affect	innovation	system	article	counts	

	

Policies/Functions	

	

F1	

	

	

F2	

	

F3	

	

F4	

	

F5	

	

F6	

	

F7	

	 	 	 	 	 	 	 	

AFV	Manufacturer	Incentives	

	

	 	 *	 	 	 	 *	

Fuel	Use	Incentives	

	

	 	 	 	 	 	 	

Aftermarket	Conversion	

	

	 	 	 	 	 	 	

Air	Quality/Emission	Regulation	

	

**	 	 	 	 **	 **	 	

Alternative	Fuel	Dealer	Incentives	

	

*	 	 	 	 	 	 	

Alternative	Fuel	Producer	Incentives	

	

	 	 	 	 	 	 	

Alternative	Fuel	Purchaser	Incentives	

	

	 	 **	 	 	 **	 	

Climate	Change/Energy	Initiatives	

	

**	 	 	 	 **	 **	 	

Idling	Regulation	

	

	 	 	 	 	 	 **	

Exemption	from	Restrictions	

	

	 	 	 	 	 	 	

Fleet	Purchaser/Manger	Incentives	 	 	 	 	 	 	 	
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Fuel	Economy	Requirements	

	

	 	 	 	 	 	 	

Fuel	Production/Quality	Regulation	

	

	 *	 	 	 	 	 	

Alternative	Fuel	Tax	Rates	

	

	 	 	 	 	 	 	

Alternative	Fuel	Station	Incentives	

	

	 	 	 	 	 	 	

Grants	

	

	 	 	 	 	 	 	

Loans	and	Leases	

	

	 	 	 	 	 	 	

Rebates	

	

	 **	 	 	 **	 	 	

Registration	or	Licensing	Regulation	

	

*	 *	 	 	 *	 **	 	

Renewable	Fuel	Standard/Mandates	

	

**	 	 	 	 **	 **	 	

Tax	Incentives	

	

	 	 	 	 	 	 	

Vehicle	Owner/Driver	Incentive	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

Note.	F1:	Resource	Mobilization,	F2:	Market	Formation,	F3:	Legitimation,	F4:	Knowledge	

Development	and	Diffusion,	F5:	Influence	on	the	Direction	of	Search,	F6:	Entrepreneurial	

Experimentation,	F7:	Development	of	Positive	External	Economies	

*	Policy	effects	only	occur	after	initial	implementation	

**	Policy	effects	last	during	duration	of	implementation	

	

	

To	further	assess	policy’s	effect	on	the	ethanol	TIS,	I	use	an	additional	modeling	

approach.	Specifically,	I	use	a	negative	binomial	GLM	model,	taking	into	account	the	set	of	

all	(n)	policy	types	as	a	predictor	of	article	counts:	

!!" = !!!
!!! !"#$%&! !" + !! + !!!!!!	 (M4.8)	

I	include	state	(R)	and	year	(λ)	fixed	effects	for	each	TIS	classification	(i)	and	month	(t).	

Using	the	Akaike	Information	Criterion	(through	the	StepAIC	algorithm	implemented	in	R),	

I	assessed	all	possible	policy	inclusions	in	the	model	to	determine	which	policy	dummy	
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variables	are	most	relevant	for	each	innovation	function.	The	marginal	effects	of	policies	

that	were	significant	for	each	innovation	function	are	shown	in	Table	4.5	

.	These	effects	show	the	marginal	increase	in	the	number	of	articles	associated	with	

a	specific	innovation	function	that	can	be	expected	due	to	the	implementation	of	policy.	The	

percent	magnitude	of	this	effect	is	shown	in	parentheses.	For	example,	if	a	region	were	to	

enact	an	AFV	Manufacturing	Incentive,	the	policy	would	effectively	improve	the	Resource	

Mobilization	function	by	7%,	but	would	have	a	larger	effect	on	technology	legitimacy	(10%	

improvement).		

Not	all	policies	that	were	significant	in	Table	4.4	have	corresponding	values	in	Table	

4.5,	and	vice	versa.	This	is	because	M4.7	models	what	the	effect	of	policy	might	be	in	

isolation,	while	M4.8	takes	into	account	the	effects	of	several	policies	simultaneously,	

effectively	estimating	how	policies,	when	they	exist	together,	might	influence	the	

innovation	system.	For	instance,	from	M4.7	climate	change	policy	is	significant	in	terms	of	

Resource	Mobilization,	Influence	in	the	Direction	of	Search,	and	Entrepreneurial	

Experimentation.	However,	in	M4.8	results	indicate	that	climate	change	policy	only	affects	

Entrepreneurial	Experimentation.	This	is	because	climate	change	policy	is	likely	to	exist	

only	alongside	other	policies	that	may	also	impact	ethanol	innovation.	When	considered	

with	other	policies,	these	other	policies	did	not	decrease	model	accuracy	as	much	as	

climate	change	policy	for	predicting	TIS	outcomes.	Other	policy	effects	were	more	likely	to	

exist	across	regions	and	therefore,	when	considered	together,	these	policies	better	explain	

article	counts	than	climate	change	policy	alone.		
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Because	it	is	very	rare	to	find	any	single	policy	operating	in	isolation,	there	are	

interaction	effects	associated	with	every	policy	classification,	and	it	is	therefore	difficult	to	

parse	out	what	effects	can	truly	be	attributed	to	only	one	type	of	policy.	

Nonetheless,	from	this	analysis,	it	becomes	apparent	that	state-level	policies	have	

had	some	effect	on	the	TIS	as	measured	through	article	count	data,	and	possess	some	

explanatory	power.	Once	again,	there	is	indication	that	Renewable	Fuel	

Standards/Mandates	at	the	state	level	play	an	important	role	in	the	development	of	the	

ethanol	TIS.	The	majority	of	policies	appear	to	effect	entrepreneurial	experimentation,	

resource	mobilization,	or	the	pursuit	of	the	specific	technology	(Influence	in	the	Direction	

of	Search).	Both	modeling	approaches	indicate	that	few	policies	directly	legitimize	

technology	or	encourage	basic	R&D.	This	represents	a	fundamental	gap	in	how	states	have	

formulated	policies	to	promote	technology	innovation	and	adoption,	and	may	indicate	

some	weakness	in	the	approaches	that	have	been	used	at	the	state	level	to	promote	biofuel.	

	

	

Table	4.5	

	

Marginal	Effect	of	Policy	on	Article	Counts	for	Significant	Variables	
	

Policies/Functions	

	

	

F1	

	

F2	

	

F3	

	

F4	

	

F5	

	

F6	

	

F7	

	

	

	

	 	 	 	 	 	 	

AFV	Manufacturer	Incentives	

	

2.5	

(7%)	

	 30.5	

(10%)	

1.1	

(7%)	

3.7	

(6%)	

5.0	

(8%)	

	

	

	

Fuel	Use	Incentives	

	

2.2	

(6%)	

	 	 0.7	

(4%)	

	

	 	 	

Aftermarket	Conversion	 	 	 	 	 	 -1.9	 3.3	
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	 (-3%)	 (9%)	

	

Air	Quality/Emission	Regulation	

	

-1.8	

(-5%)	

	 	 	 	 	 -2.7	

(-7%)	

	

Alternative	Fuel	Dealer	Incentives	

	

	 -3.2	

(-6%)	

	 	 -2.3	

(-4%)	

	

	 	

Alternative	Fuel	Producer	Incentives	

	

1.3	

(3%)	

	 	 	 	 1.9	

(3%)	

	

	

Alternative	Fuel	Purchaser	Incentives	

	

	 3.0	

(6%)	

	 0.7	

(4%)	

	

	 	 	

Climate	Change/Energy	Initiatives	

	

	 	 	 	 	 -2.8	

(-4%)	

	

	

Idling	Regulation	

	

	

	 -3.2	

(-6%)	

-13.1	

(-4%)	

-0.8	

(-5%)	

	 -2.3	

(-4%)	

-2.6	

(-7%)	

	

Exemption	from	Restrictions	

	

	 	 	 	 -2.8	

(-5%)	

	

	 	

Fleet	Purchaser/Manger	Incentives	

	

-1.7	

(-4%)	

-2.3	

(-5%)	

	 -0.9	

(-6%)	

	 -2.1	

(-3%)	

-2.2	

(-6%)	

	

Fuel	Economy	Requirements	

	

	 	 	 	 	 5.1	

(8%)	

3.1	

(8%)	

	

Fuel	Production/Quality	Regulation	

	

	 	 	 -0.6	

(-4%)	

	 -2.6	

(-4%)	

	

	

Alternative	Fuel	Tax	Rates	

	

	 	 	 	 	 	 	

Alternative	Fuel	Station	Incentives	

	

-1.3	

(-3%)	

	

	 	 	 	 	 	

Grants	

	

	 5.3	

(11%)	

-14.6	

(-5%)	

	 	 	 2.6	

(7%)	

	

Loans	and	Leases	

	

	 	 -13.3	

(-5%)	

	 	 	 -2.8	

(-7%)	

	

Rebates	
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Registration	or	Licensing	Regulation	

	

	 	 -11.2	

(-4%)	

	 	 	 	

Renewable	Fuel	Standard/Mandates	

	

	 8.6	

(17%)	

	 	 	 	 3.4	

(9%)	

	

Tax	Incentives	

	

	 	 	 	 3.4	

(6%)	

3.3	

(5%)	

	

	

	

Vehicle	Owner/Driver	Incentive	 	 	 	 -0.8	

(-5%)	

	

	 	 	

	 	 	 	 	 	 	 	

Note.	F1:	Resource	Mobilization,	F2:	Market	Formation,	F3:	Legitimation,	F4:	Knowledge	

Development	and	Diffusion,	F5:	Influence	on	the	Direction	of	Search,	F6:	Entrepreneurial	

Experimentation,	F7:	Development	of	Positive	External	Economies	

	

4.4	Article	Counts	and	National	Ethanol	Deployment	

To	close	the	loop	and	come	full	circle	in	terms	of	what	article	count	data	may	be	able	

to	tell	us,	I	look	at	the	explanatory	power	of	article	counts	on	various	deployment	measures	

at	the	national	level.	Specifically,	I	look	at	ethanol	production,	ethanol	consumption,	flex-

fuel	vehicle	(FFV)	registrations,	and	E85	station	counts	to	determine	if	article	counts	are	a	

significant	predictor	of	these	factors.		

I	use	several	different	modeling	approaches	to	better	assess	deployment	

relationships.	This	is	necessary	due	to	the	small	size	of	the	dataset.	For	many	deployment	

terms,	I	only	have	annual	time	series	data	for	each	state	from	1995	through	2010	(n=765).	

Specifically,	there	is	concern	with	incorporating	autoregressive	factors,	which	are	often	

exhibited	for	deployment	(Cameron	&	Trivedi,	1986;	Hurvich	&	Tsai,	1989).	I	try	to	reduce	

spurious	results	by	aggregating	individual	TIS	functions	into	an	overall	TIS	system	trend.	In	

addition	to	using	quasipoisson	and	negative	binomial	models,	I	also	employ	panel-based	

dynamic	ordinary	least	squares	(DOLS)	to	better	capture	the	autoregressive	nature	of	
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deployment.	Judson	and	Owen	(1999)	show	that	dynamic	panel	models	are	likely	to	be	

effective	when	T	>	30.	Given	my	small	dataset,	I	attempt	to	better	compensate	for	

consistency	issues	by	employing	robust	standard	errors	in	estimation.	From	this,	I	look	at	

how	innovation	system	trends	affect	deployment	for	4	different	deployment	variables.	The	

following	reduced	form	model	is	used	for	DOLS:	

ln !!" =

β!ln !!,!!! + β!ln !"# !"#$%&ℎ!"!" + β!ln !"#$% !"#$%&ℎ!"!" +

β!ln !""#$%&'#"!,!!! + β!ln !"#!" + β!ln !"#$%&'(")!" + !! + ! + !!"		 	

	 (M4.9)	

where	D	is	the	deployment	variable	(flex-fuel	vehicles,	ethanol	production,	ethanol	

consumption,	or	E85	stations	built)	in	region	i	for	year	t,	Car	Ownership	is	the	number	of	

new	cars	sold	in	that	region	that	year,	Truck	Ownership	is	the	number	of	light-duty	

passenger	trucks	sold	in	that	region,	Innovation	is	the	aggregate	article	counts,	GDP	is	the	

per	capita	GDP	for	a	region	in	year	t,	Population	is	the	population	in	that	region,	λ	is	a	time	

fixed	effect,	α	is	the	intercept	and	ε	is	the	error	term.	The	natural	log	of	all	terms	was	taken	

given	that	all	values	are	greater	than	zero.,	1	was	added	to	the	count	of	all	logged	variables	

to	account	for	random	0s	that	occurred	in	the	count	data.	Regression	coefficients	and	

significance	from	the	four	deployment	models	are	given	below	in	Table	4.6	
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Table	4.6	

	

Regression	results	for	ethanol	deployment	effects	(Balanced	Panel:	n=51,	T=14,	N=714)	
	 	

 
 Dependent	variable: 

    
 

FFV	

Deployment 
Ethanol	

Production 
Ethanol	

Consumption E85	Stations 

 log(FFV.Lag	+	1) 0.423***    
 (0.028)    
     log(EthProd.Lag	+	1)  0.900***   
  (0.025)   
     log(EthCons.Lag	+	1)   0.866***  
   (0.045)  
     log(Station.Lag	+	1)    0.534*** 

    (0.049) 
     log(Car.Ownership	+	1) 0.581** -0.615** 0.325 0.079 

 (0.231) (0.296) (0.593) (0.227) 
     log(Truck.Ownership	+	

1) 0.036 0.744* -0.078 -0.185 

 (0.116) (0.387) (0.669) (0.202) 
     lag(log(Innovation	+	1),	

1) 0.042 0.141*** 0.057 0.064** 

 (0.041) (0.053) (0.112) (0.032) 
     log(Economy) 0.615** -0.665 0.671 -1.334*** 

 (0.267) (0.634) (1.633) (0.500) 
     log(Population) -0.717 1.344 -1.141 1.095 

 (0.473) (1.727) (3.088) (0.830) 
     year1998 3.135*** -0.186*** 0.415 0.036 

 (0.152) (0.056) (0.336) (0.069) 
     year1999 2.975*** -0.256** -0.008 0.047 

 (0.157) (0.113) (0.257) (0.079) 
     year2000 2.786*** -0.152 -0.017 0.166 

 (0.179) (0.189) (0.351) (0.110) 
     year2001 2.120*** -0.390* 0.046 0.174 
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 (0.210) (0.201) (0.477) (0.134) 
     year2002 3.099*** -0.305 0.426 0.244* 

 (0.194) (0.229) (0.506) (0.147) 
     year2003 2.908*** -0.196 0.040 0.287 

 (0.218) (0.292) (0.553) (0.181) 
     year2004 2.382*** -0.509 0.252 0.542** 

 (0.245) (0.393) (0.685) (0.210) 
     year2005 2.337*** -0.438 2.152** 0.924*** 

 (0.237) (0.411) (0.836) (0.256) 
     year2006 2.503*** -0.453 0.830 0.979*** 

 (0.244) (0.424) (0.867) (0.296) 
     year2007 2.977*** -0.033 0.843 0.908*** 

 (0.280) (0.400) (0.970) (0.321) 
     year2008 2.643*** 0.145 1.122 1.058*** 

 (0.307) (0.462) (1.047) (0.333) 
     year2009 2.797*** -0.173 0.865 0.701** 

 (0.300) (0.393) (0.996) (0.333) 
     year2010 3.213*** 0.010 0.973 0.923** 

 
(0.338) (0.455) (0.988) (0.360) 

     Note: *p<0.1;	**p<0.05;	***p<0.01 
	
	
	

	

From	the	DOLS	regression	results,	we	see	that	the	state-level	innovation	system	is	a	

significant,	positive	predictor	of	E85	station	rollout	and	ethanol	production.	Ethanol	

consumption	does	not	show	the	innovation	system	as	being	significant.	The	lack	of	

significance	for	the	innovation	system	in	this	instance	can	likely	be	explained	by	the	

presence	of	national	policies	that	dominate	the	effect	of	state	incentives.	The	lack	of	

significance	of	the	innovation	system	in	FFV	deployment	is	unsurprising,	given	the	positive	

significant	effect	of	car	sales.	It	seems	likely	that	general	car	ownership	and	purchasing	
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trends	ultimately	determined	FFV	deployment,	a	result	inline	with	FFV	purchasing	

behaviors,	where	there	have	been	few	compelling	reasons	for	active	adoption	of	FFVs	

(Collantes,	2010;	Keefe,	Griffin,	&	Graham,	2008).	

I	also	used	quasipoisson	and	negative	binomial	models	to	assess	innovation	system	

effects	on	deployment	variables.	These	models	take	a	similar	form	to	M4.9,	with	the	

exception	that	state-based	fixed	effects	(R)	are	included:	

!" !!" = !!!!,!!! + !! !"# !"#$%&ℎ!"!" + !! !"#$% !"#$%&ℎ!"!"

+ !! !""#$%&'#"!,!!! + !!!"#!" + !! !"#$%&'(")!" + ! + !!+!! 	

For	these	models,	the	algorithm	used	to	solve	for	the	negative	binomial	coefficients	

was	unable	to	converge	for	ethanol	production	or	ethanol	consumption.	Testing	for	

overdispersion	across	all	models	revealed	that	overdispersion	was	likely,	indicating	that	a	

simple	Poisson	model	would	not	be	adequate.	The	marginal	effects	for	the	quasipoisson	

and	negative	binomial	GLMs	(where	applicable)	are	given	in	Table	4.7	(not	the	beta	

coefficients).	

Looking	at	Table	4.7,	there	is	strong	indication	that	car	ownership	was	a	significant	

predictor	of	FFV	deployment,	ethanol	production,	and	ethanol	consumption.	The	

innovation	system	trends	are	shown	to	be	significant	and	negative	in	the	negative	binomial	

model	for	FFV	deployment,	but	not	the	quasipoisson	model.	For	ethanol	production	and	

consumption,	the	quasipoisson	model	indicates	that	the	innovation	system	is	a	significant,	

negative	predictor	of	deployment.	These	results	are	largely	contradictory	to	the	results	

from	M4.9.	

Due	to	the	large	dispersion	parameter	for	the	data,	the	marginal	effects	for	these	

models	may	be	inaccurate.	Additionally,	the	innovation	system	trends	have	a	negative	
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relationship	with	ethanol	production,	which	is	difficult	to	interpret.	Given	the	contradictory	

results	between	the	DOLS	model	and	the	QP/NB	models,	these	regressions	results	should	

be	treated	with	caution.	Nonetheless,	results	across	all	models	show	that	the	innovation	

system	has	likely	been	significant	in	promoting	E85	station	rollout.	

From	this	analysis,	it	is	not	clear	if	innovation	system	trends	have	significant	

predictive	power	for	deployment	outcomes.	Additional	lag	effects	may	need	to	be	

considered,	and	alternative	model	formulations	should	be	explored.	For	some	deployment	

data,	it	may	be	possible	to	provide	more	resilient	statistical	analysis	by	taking	into	account	

monthly	values.	Ultimately,	more	data	is	necessary	to	establish	the	validity	in	the	use	of	

innovation	system	trends	for	predicting	biofuel	deployment	outcomes.	Data	limitations	

aside,	initial	results	suggest	that	there	may	be	some	relationship	between	article	counts	

and	deployment	(such	as	for	E85	Stations).	To	further	investigate	the	use	of	these	

methodologies	for	predicting	deployment	outcomes,	and	for	assessing	policy,	I	turn	to	the	

case	of	an	emerging	technology:	electric	vehicles.	



	

	

Table	4.7	

Marginal	effects	and	significant	for	deployment	variables	using	quasipoisson	(QP)	and	negative	binomial	(NB)	general	linear	
models	(N=764)	
	
	 FFV	Deployment	 	 Ethanol	

Production	
	 Ethanol	

Consumption	
	 E85	Stations	

	 QP	 NB	 	 QP	 	 QP	 	 QP	 NB	
	 	 	 	 	 	 	 	 	 	
Autoregressive	
	
	

0.03	***	 0.036	***	 	 -1.7E-07	 	 2.0E-01	***	 	 3.5E-02	***	 5.4E-02	
***	

Car	Ownership	
	
	

0.015	***	 0.016	***	 	 4.3E-07	***	 	 6.7E-03	**	 	 -3.4E-06	 -5.3E-06	.	

Truck	Ownership	
	
	

-0.006	***	 -0.007	***	 	 -1.3E-07	 	 1.9E-03	 	 8.3E-07	 2.3E-06	

Innovation_t-1	
	
	

-0.005	 -0.196	**	 	 -5.0E-06	*	 	 -2.5E-01	***	 	 1.7E-04	**	 2.0E-04	**	

GDP	
	
	

-0.003	***	 -0.001	 	 -3.9E-07	***	 	 -6.9E-03	***	 	 1.5E-06	 1.1E-06	

Population	 -3.7E-06	 -2.1E-04	 	 1.1E-07	***	 	 1.5E-03	***	 	 1.0E-07	 2.3E-07	

Note.	.=	p	≤	0.1,	*	=	p	≤	.05,	**	=	p	≤	.01,	***	=	p	≤	.001.

-1
4
6
-	
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Chapter	5: Emerging	Technologies	–	The	Case	of	EV	Innovation	
	

To	better	understand	the	innovation	system	for	emerging	technologies,	I	turn	to	

electric	vehicles.	Given	the	still-developing	nature	of	this	technology,	overall	market	

dynamics	remain	uncertain,	and	a	cohesive	narrative	for	EV	deployment	and	innovation	

remains	lacking.	To	aid	in	developing	the	narrative	for	EV	innovation,	I	analyze	the	EV	

market	in	three	states:	Washington,	Colorado,	and	Georgia.	

Meetings	were	orchestrated	with	31	different	individuals	across	these	3	different	

states.	These	individuals	were	from	a	variety	of	organizations	and	groups	and	were	chosen	

based	on	their	high	profile	status	in	the	electric	vehicle	space	within	each	respective	state.	

Initial	contact	points	were	established	through	already-existing	UC	Davis	state	contacts	

that	have	participated	in	UC	Davis’s	Zero	Emission	Market	Acceleration	Program	(ZE	MAP).	

The	ZE	MAP	participants	are	believed	to	have	good	understanding	of	the	network	of	actors	

and	agents	working	on	EVs	in	their	state.	Suggested	individuals	provided	by	these	initial	ZE	

MAP	contacts	were	emailed	to	setup	a	45-minute	in-person	meeting.	Meeting	participants,	

in	turn,	were	also	asked	to	provide	a	set	of	additional	contacts	that	they	found	to	be	

important	in	the	EV	space	within	the	state.	Most	additional	contacts	had	already	been	given	

by	the	ZE	MAP	point	people,	and	were	therefore	already	participants	in	the	meetings.	

Meetings	were	used	to	better	gain	insight	into	the	EV	technology	innovation	

process.	The	information	collected	from	these	meetings	has	been	used	to	assess	

commonalities	and	differences	across	these	3	different	states.	These	discussions	helped	

provide	detail	for	the	innovation	narrative	to	better	determine	what	factors	promote	or	

detract	from	EV	adoption.	EV	Sales	for	each	of	the	three	states	are	shown	in	Figure	5.1.	
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There	has	been	considerable,	positive	growth	in	the	EV	market	for	each	of	these	states.	

While	uptake	trends	are	positive,	the	uptake	path	for	each	state	is	different.	

	

	

Figure	5.1.	Electric	Vehicle	Sales	in	Washington,	Colorado,	and	Georgia.	

	
	
5.1	The	Case	of	Washington	

Washington	is	often	included	alongside	California	and	Oregon	during	discussions	of	

environmental	policy	and	regulatory	action.	Washington	has	made	many	attempts	to	adopt	

policies	and	approaches	similar	to	those	in	California	to	deal	with	greenhouse	gas	

emissions.	For	instance,	Washington	recently	had	plans	to	adopt	and	implement	a	Clean	

Fuel	Standard	similar	to	the	Low	Carbon	Fuel	Standard	in	California	(R.	Brown	et	al.,	2015).	

These	implementation	attempts,	however,	have	been	derailed	(64th	Washington	

Legislature,	2015).	Furthermore,	implementation	of	a	Zero	Emission	Vehicle	Mandate	(ZEV	

Mandate)	has	also	been	discussed	for	Washington.	The	ZEV	Mandate	is	a	policy	approach	

pioneered	by	California,	and	also	adopted	in	the	Northeastern	States	and	Oregon,	that	
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works	to	promote	the	adoption	of	electric	and	fuel	cell	vehicles	(Collantes	&	Sperling,	

2008).	Washington,	unlike	California	and	Oregon,	however,	has	not	adopted	a	ZEV	

mandate.	This	makes	EV	deployment	in	Washington	uniquely	different	compared	to	either	

Oregon	or	California.	

I	utilized	a	statistical	model	(a	negative	binomial	general	linear	model	with	a	log	

linking	function),	in	conjunction	with	monthly	EV	sales	data	for	24	different	states	from	

January	2010	through	November	2014	to	test	for	the	significance	of	state-based	fixed	

effects.	The	model	was	formulated	as:	

!" !"ℎ!"#$% !"#$ !"

= !! !"ℎ!"#$% !"#$ !,!!! + !! !"#$%&'$'%( !"#$%& !" + !! !"#$% !"# !"

+ !! !"# !"#$% !" + !! !"#$!"#$%"! !" + !! !"#$ ! + !! !"#"$ !

+ !!" !"#"$:!"#$ !" + !!" + α	

(M5.1)	

where	ε	is	the	error	term	and	α	is	the	intercept	for	each	region	(i)	and	each	year	(t).	

I	included	retail	electricity	prices,	the	per	capita	number	of	miles	traveled	on	rural	roads,	

and	the	average	monthly	temperature	in	each	state	as	possible	explanatory	variables	for	EV	

sales	(urban	VMT	was	shown	to	be	insignificant	during	model	selection).		

From	modeling	results,	I	find	that	the	state-year	fixed	effect	for	Washington	was	not	

significant	in	determining	the	number	of	vehicles	sold	each	month.	The	Washington	fixed	

effect	is	slightly	significant	at	only	a	90%	confidence	level.	That	is	to	say:	Washington	has	

not	significantly	improved	EV	uptake	since	2010,	but	Washington	has	potentially	

supported	EVs	better	than	other	states	for	which	I	have	deployment	data.	
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Through	numerous	in-person	discussions,	I	explored	the	critical	factors	driving	this	

uptake.	For	Washington,	participants	stated	that	the	key	contributors	for	or	detractors	

from	EV	uptake	were:	price,	limited	range,	and	limited	information.	Important	to	note	is	

that	during	meetings	in	Washington,	EV	buyers	were	still	described	by	meeting	

participants	as		“early	adopters,”	that	is,	people	of	higher	affluence	that	are	more	interested	

in	experimenting	with	new	technologies.	This	description	is	in	stark	contrast	to	how	EV	

adopters	were	described	in	Georgia.	Georgia	stakeholders	stated	that	EV	adoption	was	not	

restricted	to	early	adopters,	but	was	instead	motivated	by	“commuters.”		

In	Washington,	meeting	participants	often	described	EV	sales	as	being	driven	by	

“word	of	mouth”	and	familiarity	with	seeing	electric	vehicles	around	Seattle,	in	addition	to	

the	compelling	sales	tax	exemption	that	extended	to	leased	electric	vehicles.	The	early	EV	

adopters	were	described	as	being	technophiles,	and	individuals	that	wanted	to	play	with	a	

“new	gadget,”	and	therefore	viewed	a	two-year	or	three-year	leasing	arrangement	as	an	

advantage.		

Unlike	most	other	states	in	the	United	States,	Washington	does	not	collect	income	

tax	–	instead,	public	revenue	is	collected	through	use	of	a	sales	tax	at	the	point	of	purchase.	

Given	the	lack	of	individual	tax	liability,	Washington	has	decided	to	reduce	the	cost	for	

purchasing	electric	vehicles	by	exempting	EVs	from	the	required	vehicle	sales	tax.	The	sales	

tax	exemption	can	amount	to	almost	10%	of	the	price	of	the	vehicle	(Washington	

Department	of	Revenue,	2015).	The	sales	tax	exemption	has	recently	been	modified	such	

that	it	only	applies	to	EVs	that	cost	$35,000	or	less	–	thus	directly	excluding	Tesla	and	BMW	

EV	models	from	the	scope	of	this	incentive.		
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The	sales	tax	exemption	also	applies	to	lease	rates,	albeit	the	“value”	is	lower	than	

would	otherwise	be	obtained	through	the	outright	purchase	of	the	vehicle.	Some	meeting	

participants	stated	that	consumers	were	unwilling	to	commit	to	fully	purchasing	the	

vehicle,	and	preferred	the	opportunity	for	a	three-year	lease.	Leases	allow	consumers	to	

obtain	newer,	better	electric	vehicle	at	the	end	of	the	lease.	This	may	be	important	for	EV	

deployment	given	the	newness	of	the	technology,	and	that	improvements	with	the	

technology	are	happening	quickly.	For	instance,	the	Nissan	Leaf	2011	model	had	an	

estimated	range	of	only	73	miles	compared	to	the	75	mile	range	of	the	2013	model,	and	84	

mile	range	of	the	2016	model	(Environmental	Protection	Agency,	2015).	

In	addition	to	the	sales	tax	exemption,	Washington	has	also	been	a	leader	in	

deploying	EV	Supply	Equipment	(EVSE),	particularly	charging	infrastructure	under	the	

American	Recovery	and	Reinvestment	Act	of	2009	(Powers,	2014).	Additionally,	the	

Washington	Department	of	Transportation	has	put	forward	some	funding	toward	EVSE.		

Although	there	are	numerous	incentives	for	EVs	in	Washington,	recent	legislation	

has	been	enacted	to	tax	electric	vehicles	for	a	road-use	fee.	This	compensates	for	the	

exemption	that	EVs	otherwise	would	receive	from	gasoline	tax.	The	fee	is	$150	in	the	first	

year,	and	$100	each	year	afterwards.	$50	from	the	first	year	goes	toward	supporting	

additional	rollout	of	EVSE.	

Most	participants	that	commented	on	the	road-use	fees	indicated	that	users	did	not	

like	paying	them,	but	thought	that	it	was	a	decent	plan	for	raising	additional	funds	to	

support	EVSE.	Unlike	in	other	states,	meeting	participants	in	Washington	expressed	

concern	about	providing	EVSE	for	multi-family	homes	and	apartment	complexes	within	the	
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greater	Seattle	area.	Other	states	had	mostly	discussed	the	rollout	of	EVSE	to	workplaces,	

and	did	not	seem	focused	on	multi-family	homes	at	this	phase	of	deployment.	

As	EVs	have	become	more	prevalent	in	Washington,	Investor-Owned	utilities	in	the	

region	have	started	to	consider	rollout	of	their	own	charging	infrastructure	and	network.	

Some	meeting	participants	expressed	concern	over	the	ability	for	utilities	to	rate	base	

infrastructure	costs,	and	this	uncertainty	was	attributed	to	the	limited	deployment	of	EVSE	

from	utilities.	

While	the	Washington	sales	tax	exemption	has	applied	to	a	myriad	of	EVs,	sales	of	

the	Nissan	Leaf	have	accounted	for	more	than	72%	of	pure	EVs	sold	in	the	Seattle	area	over	

the	timeframe	for	which	I	have	data.	From	meeting	with	individuals	in	the	Seattle	area,	it	

became	apparent	that	Nissan	Leaf	deployment	in	and	around	Seattle	has	been	extensively	

supported	by	a	“champion”	dealer	in	the	area.	One	dealership	(more	specifically,	one	

specific	salesperson	at	the	dealership)	has	fostered	and	supported	adoption	of	the	Nissan	

Leaf	far	better	than	other	dealerships.	These	“champion”	dealers	are	well-versed	in	electric	

vehicles,	being	users	of	the	technology	themselves,	that	are	readily	able	to	answer	

questions	and	abate	concerns	that	potential	new-car	buyers	have	when	it	comes	to	owning	

an	electric	vehicle.	During	meetings,	one	specific	dealer	in	the	Seattle	area	was	regularly	

referenced	as	a	major	EV	champion	in	Washington,	being	responsible	for	a	majority	of	Leaf	

sales	in	the	area.	

	
5.2	The	Case	of	Colorado	

From	meeting	with	a	variety	of	important	EV-actors	in	Colorado,	a	narrative	took	

shape	that	revealed	the	perceived	innovation	system	and	network	of	important	actors	

within	the	state.		
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Colorado	has	taken	an	aggressive	approach	to	provide	monetary	incentives	for	

electric	vehicle	adoption	that	far	exceeds	what	many	other	states	are	doing.	There	is	a	fully	

refundable	income	tax	credit	in	place	that	can	provide	as	much	as	$6,000	in	credit	for	the	

purchases	of	an	electric	vehicle.	This	amount	is	determined	by	the	size	of	the	battery	in	the	

EV,	and	requires	a	formula	to	calculate	the	true	value	of	the	incentive	depending	on	the	EV	

being	bought.	In	addition	to	this	strong	consumer	purchase	incentive,	EV	outreach	and	

education	efforts	were	brought	up	in	meetings	far	more	often	in	Colorado	than	the	other	

states	I	looked	at	(Washington	and	Georgia).	

Meeting	participants	indicated	that	many	EV	stakeholders,	ranging	from	owners	and	

enthusiasts	to	dealers	and	government	officials,	regularly	participated	in	ride-and-drive	

events.	Ride-and-drives	are	events	where	the	public	can	drive	and	ride	in	electric	vehicles,	

gaining	first-hand	experience	with	the	technology.	In	meetings,	it	was	stated	that	these	

ride-and-drives	have	especially	been	targeted	at	workplace	environments.	Additional	

educational	outreach	was	supported	by	Drive	Electric	Northern	Colorado	(Fort	Collins	and	

Loveland),	and	the	Colorado	Energy	Office	has	supported	events	throughout	the	State.	

In	meetings,	it	was	brought	to	my	attention	that	a	variety	of	new	initiatives	have	

started	with	intent	to	expand	access	to	workplace	charging	infrastructure.	Aggressive	

support	has	come	from	the	Boulder	Nissan	Leaf	dealership	for	charging	infrastructure,	

where	for	every	two	new	Leafs	purchased	by	employees	of	a	given	company,	a	new	

charging	station	is	installed.	More	targeted	efforts	by	state	and	local	governments	to	

expand	funding	and	grants	for	workplace	charging	infrastructure	and	fleets	are	also	in	

place	or	planned.	
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Despite	Colorado’s	refundable	tax	credit	and	electric	vehicle	supply	equipment	

(EVSE)	deployment	efforts,	EV	sales	have	not	been	statistically	significant	in	Colorado	

compared	to	elsewhere	in	the	United	States	over	the	period	of	time	for	which	I	have	data.	

Modeling	results	from	M5.1,	show	that	neither	the	state	fixed	effect	for	Colorado,	nor	the	

state-year	fixed	effect	for	Colorado	was	significant	in	determining	the	number	of	vehicles	

sold	each	month.	That	is	to	say,	Colorado’s	EV	sales	have	not	been	significantly	different	

from	what	would	be	expected	elsewhere	in	the	country,	and	there	have	been	no	sudden	

annual	changes	from	this	expectation	in	the	timeframe	for	which	I	have	monthly	data	

(2010	through	2014).	Average	monthly	temperature	was	also	found	to	be	insignificant	for	

determining	EV	uptake.	

Participants	indicated	that	they	thought	HOV	benefits	could	further	help	promote	

EV	adoption,	and	in	meetings,	participants	expressed	dismay	that	no	high-occupancy	

vehicle	(HOV)	incentives	existed	for	EVs	in	Colorado.	Another	factor	often	brought	up	in	

meetings	that	could	possibly	be	inhibiting	EV	sales	was	“Colorado	culture”,	where	

consumers	demanded	four-wheel	drive	(4WD)	vehicles.	Although,	the	4WD	or	all-wheel-

drive	(AWD)	demand	for	EV	models	may	be	a	unique	cultural	phenomenon	to	the	Colorado	

consumer	market,	the	lack	of	model	availability	is	likely	not	a	“true”	barrier,	and	instead	

only	acts	as	a	superficial	deterrent	that	could	be	overcome	with	active	dealer	and	consumer	

education.	For	instance,	AWD	and	4WD	vehicles	do	not	offer	improved	safety	compared	to	

front-wheel	drive	vehicles	(Gårder,	2014).	In	one	meeting,	a	stakeholder	specifically	

mentioned	that	the	4WD	or	AWD	barrier	was	not	a	true	detractor	from	EV	sales,	indicating	

that	modern	traction	control	systems,	anti-lock	breaking,	and	tire	technologies	(snow	tires)	
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are	capable	of	providing	performance	and	safety	conditions	on	par	with	or	in	excess	of	

4WD	and	AWD	vehicles	during	winter	months.	

Instead,	what	I	find	from	communicating	with	representatives	in	Colorado	is	that,	

despite	educational	outreach	efforts,	information	is	not	properly	being	disseminated	to	the	

correct	sources,	and	dealers	have	not	received	proper	training	or	knowledge	about	EV	

incentives	or	about	EV	technology.	Some	meeting	participants,	including	dealers,	indicated	

that	dealers	are	cautious	when	it	comes	to	promoting	EVs	–	possibly	overly	so.	In	meetings,	

participants	suggested	that	the	individuals	buying	EVs	came	into	dealerships	often	

knowing	more	than	the	sales	representatives	at	the	dealership	about	EV	technology,	tax	

incentives,	and	charging	infrastructure.		

Some	dealers	that	I	met	with	expressed	frustration	with	the	complexity	of	the	

Colorado	income	tax	credit,	and	were	not	always	aware	of	informational	resources	that	had	

been	created	by	government	organizations	to	show	the	eligible	tax	credit	amount	for	

different	vehicle	models	in	an	easy-to-access	format.	Many	meeting	participants	were	

themselves	unaware,	or	indicated	that	the	general	public	was	unaware,	that	the	tax	credit	

being	offered	for	EVs	in	Colorado	was	fully	refundable.	A	fully	refundable	tax	credit	allows	

for	EV	purchasers	to	be	fully	reimbursed	for	the	value	of	the	tax	credit	regardless	of	their	

income	tax.	This	mechanism	eliminates	the	need	for	extensive	tax	liability	to	receive	the	tax	

credit	benefits.	

During	meetings	in	Colorado,	participants	primarily	listed	the	following	factors	as	

critical	to	EV	adoption:	price,	limited	range,	model	availability,	and	limited	

information.	From	discussions,	I	find	it	likely	that	dealers	are	not	adequately	informing	

potential	EV	adopters	in	Colorado	about	EVs	and	EV	incentives.	Potential	buyers	are	
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further	turned	off	of	adoption	because	many	dealers	do	not	own	EVs	themselves,	and	have	

limited	knowledge	or	experience	with	EVs	and	EV	incentives.	Several	meeting	participants	

stated	that	dealers	would	refer	interested	customers	to	tax	accountants,	rather	than	try	to	

answer	questions	related	to	the	EV	income	tax	credit.	Dealers	indicated	that	these	referrals	

were	necessary	because	the	incentive	situation	is	unique	to	each	individual,	the	tax	credit	

eligibility	differs,	and	that	dealers	themselves	are	not	tax	accountants	and	are	not	well	

versed	in	the	tax	code.	

While	support	from	the	governor’s	office	for	EVs	has	been	considerable,	discussions	

in	stakeholder	meetings	indicated	that	technology	legitimation	for	potential	adopters	is	

still	lacking	in	Colorado,	and	that	widespread	adoption	of	EVs	in	the	greater	Denver	area	

has	been	limited	given	the	strong	income	tax	incentive.	The	deployment	data	through	2014	

indicates	that	Chevy	Volts	have	sold	better	than	Leafs	in	most	Colorado	markets	except	for	

in	Boulder,	where	Leaf	adoption	has	been	strong.	Also	interesting	to	note	is	that	when	

questions	were	asked	about	EV	leasing	compared	to	outright	purchases	in	Colorado,	

participants	indicated	that	there	was	minimal	adoption	of	EVs	through	leasing	agreements.	

This	is	in	stark	contrast	to	other	states,	like	Georgia,	where	participants	stated	that	leasing	

arrangements	have	accounted	for	the	majority	of	EV	deployment	in	the	state.	Meeting	

participants	also	brought	to	my	attention	a	new	program	in	Boulder	specific	to	the	Boulder	

Nissan	dealership	–	Solar	Benefits	Colorado.		

Solar	Benefits	Colorado	is	a	partnership	between	Sunrun,	Nissan	Boulder,	and	local	

communities	to	further	accelerate	deployment	of	solar	panels	in	combination	with	Leafs	by	

providing	discounts	based	on	“group”	purchasing.	Vote	Solar	orchestrated	the	

arrangements	for	this	discount	program.	For	electric	vehicles,	the	program	brings	the	
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MSRP	for	a	new	Leaf	down	to	$23,461	from	$31,810	prior	to	the	federal	and	state	tax	

credit,	and	further	offers	24	months	of	complimentary	charging.	While	marketing	for	this	

partnership	has	only	just	begun,	stakeholders	stated	that	widespread	media	attention	has	

promoted	considerable	interest	in	Leafs	in	the	Boulder	area.	Specifically,	it	was	stated	that	

once	press	about	the	program	went	out,	interest	in	Leafs	at	the	Boulder	Nissan	dealership	

sharply	increased.	In	addition	to	the	Sunrun-Nissan	partnership,	Nissan	also	offers	very	

competitive	0%	APR	financing	for	up	to	three-years	on	newly	purchased	Leafs.		

	

5.3	The	Case	of	Georgia	

During	stakeholder	meetings	in	Georgia,	participants	stated	that	EV	penetration	was	

primarily	driven	by	two	factors:	price	and	information.	Georgia,	similar	to	Colorado,	has	

offered	an	aggressive	purchase	incentive	for	electric	vehicles.	Unlike	in	Colorado,	however,	

this	tax	incentive	manifested	in	1998	out	of	support	for	alternative	fuel	vehicles,	such	as	

natural	gas	vehicles,	prior	to	the	existence	of	modern	EVs	in	the	market.	As	newer	model	

electric	vehicles	entered	the	market,	they	became	eligible	for	a	$5,000	state	tax	credit	that	

worked	to	directly	reduce	income	tax	liability	associated	with	EV	purchases	and	leases	for	

up	to	a	5-year	period.		

The	Georgia	income	tax	credit	only	applied	to	fully	electric	vehicles,	excluding	plug-

in	hybrid	vehicles	such	as	the	Chevy	Volt.	Prior	to	the	repeal	of	this	incentive	in	July,	2015,	

the	$5,000	income	tax	credit	could	be	fully	applied	to	the	lease	or	purchase	of	a	new	

electric	vehicle.	EV	sales	in	Georgia	have	been	significantly	different	from	elsewhere	in	the	

country.	



	

-158-	
	

From	model	M5.1,	I	find	that	the	state-year	fixed	effects	for	Georgia	were	highly	

significant	in	2013	and	2014	at	95%	and	99%	confidence	levels	respectively.	This	indicates	

that	EV	sales	in	Georgia	were	significantly	higher	in	2013	and	2014	than	could	be	explained	

by	other	variables,	including	the	general	environment	that	existed	in	Georgia	in	previous	

years.	Meetings	and	newspaper	article	data	were	unable	to	say	for	certain	why	interest	in	

EVs	grew	dramatically	in	2013	and	2014	compared	to	prior	years.	Word-frequency	

analysis	of	newspaper	articles,	however,	indicates	that	starting	in	2013,	articles	started	

discussing	EVs	as	a	present	technology,	as	opposed	to	a	“future”	technology.	The	most-

frequently	used	word	to	describe	EVs	from	2008	through	2012	was	“will.”	As	in,	“EVs	will	

enter	the	market,”	or	“Vehicles	will	be	able	to	travel	100	miles	on	a	single	charge.”		Starting	

in	2013,	however,	articles	started	talking	more	about	the	technology	in	the	present	tense,	

with	the	top	three	most	frequently	used	words	for	both	years	being	“electric,	car,	and	

vehicle.”		Also	important	to	note	is	that	articles	made	frequent	mention	of	Atlanta,	while	

other	metropolitan	regions	in	Georgia	were	not	frequently	mentioned.	
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Figure	5.2.	Word	cloud	map	depicting	the	frequency	of	the	most	commonly	used	words	in	

articles	associated	with	the	innovation	system	in	Georgia.	

	

In	the	United	States,	Nissan	has	been	able	to	creatively	work	the	$7,500	federal	tax	

credit	into	their	leasing	plan,	which	enables	a	competitively	priced	lease	rate	of	$199	per	

month	for	Nissan	Leafs.	Unique	to	the	case	of	Georgia	is	that	the	$5,000	tax	credit	could	be	

applied,	in	full,	over	a	3-year	period	of	the	lease	agreement.	This	incentive	is	likely	

responsible	for	the	sudden	and	aggressive	deployment	of	Nissan	Leafs	in	Georgia.	As	word	

got	out	about	the	ability	to	procure	a	three-year	lease	for	a	Nissan	Leaf	for	approximately	

$2,000	total,	EV	uptake	increased.	Uptake	was	further	aided	by	marketing,	which	portrayed	

driving	EVs	as	“practically	free.”			Stakeholders	state	that	additional	support	for	EV	

deployment	has	come	from	HOV	lane	access	permissions,	although	not	all	stakeholders	

were	aware	of	the	costs	or	details	of	obtaining	the	decals	to	permit	access	to	the	HOV	and	

high-occupancy	toll	lanes.	Interview	participants	stated	various	costs	associated	with	decal	
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prices,	and	were	not	always	certain	how	registration	of	decals	occurred.	Most	meeting	

participants	in	Georgia	owned	electric	vehicles.		

Despite	all	the	success	that	has	occurred	with	EV	deployment	in	Georgia,	it	appears	

that	EV	uptake	has	been	limited	compared	to	the	level	that	we	might	expect.	Given	the	very	

compelling	economic	incentive	for	EV	uptake,	we	should	see	far	greater	adoption	and	

utilization	of	EVs	in	the	State.	Instead,	meeting	participants	indicated	that	EV	adoption	was	

mostly	restricted	to	more	affluent	individuals	in	specific	areas.	When	looking	at	the	

regional	distribution	of	EVs,	it	becomes	apparent	that	most	EV	deployment	has	occurred	in	

Atlanta,	as	opposed	to	surrounding	areas,	such	as	Savannah	(Figure	5.3).	

	

	

Figure	5.3.	EV	Deployment	in	Georgia	per	100,000	people.	Most	EVs	have	been	deployed	in	

the	Atlanta-metro	area.	
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In	meetings,	participants	mentioned	the	presence	of	a	“champion”	Nissan	dealer	in	

the	Atlanta	area.	“Champion”	dealers	were	not	present	elsewhere	in	the	state.	Despite	the	

compelling	economic	incentives	for	EV	adoption,	limited	diffusion	in	areas	outside	of	

Atlanta	is	indicative	of	limited	knowledge	diffusion	between	communities.		

Also	unique	to	Georgia	is	that	the	primary	electric	utility	is	actively	engaging	in	

EVSE	deployment.	Georgia	Power	and	Nissan	offer	very	compelling	incentives	for	the	

installation	of	workplace	charging.	These	incentives	amount	to	$500	committed	by	Georgia	

Power	with	an	additional	$500	being	matched	by	Nissan	toward	workplace	EVSE.	Other	

modest	grant	programs	supported	by	state	and	local	governments	have	aided	the	

deployment	of	additional	EVSE.	

Meeting	participants	stated	that	since	the	income	tax	credit	for	EVs	has	been	

repealed,	EV	purchases	have	substantially	declined.	Recent	R.L.	Polk	Data	also	shows	a	

decline	in	EV	sales	since	the	tax	credit	has	been	repealed	(Gordon-Bloomfield,	2015).	In	

addition	to	the	recent	removal	of	this	purchase	incentive,	the	Georgia	legislature	has	also	

adopted	a	road-use	fee	of	$200	per	year	for	registered	electric	vehicles.	This	is	the	largest	

EV	road-use	fee	in	the	United	States,	and	does	not	go	toward	supporting	EVSE	(the	one	in	

Washington	does).	

	
5.4	TIS	Analysis	
	

To	provide	better	assessment	of	the	EV	innovation	narrative	in	Washington,	

Colorado,	and	Georgia,	I	turn	to	the	quantitative	methods	for	Technology	Innovation	

System	analysis	previously	discussed	in	Chapters	2	and	4.	This	analysis	relies	on	large	

bodies	of	textual	information	retrieved	from	newspapers,	trade	journals,	magazines,	and	

major	blogs.	Similar	to	how	discussion	questions	were	developed	for	in-person	meetings	to	
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assess	EV	innovation,	the	data	collected	from	these	textual	sources	were	classified	and	

categorized	into	the	7	innovation	functions.		

Textual	media	relevant	to	electric	vehicles	has	been	captured	for	all	50	states	(and	

D.C.)	from	1994	through	2014.	The	content	from	each	document	has	been	classified	as	

corresponding	to	one	or	more	of	the	technology	innovation	system	functions.	The	

innovation	system	is	then	tracked	over	time.	Support	for	each	function,	and	how	this	

support	changes,	can	be	displayed	visually.	Figure	5.4,	Figure	5.6,	and	Figure	5.7	show	the	

TIS	mapping	for	Washington,	Colorado,	and	Georgia	in	comparison	to	the	overall	TIS	trend	

at	the	national	level.	

To	derive	meaning	from	this	analysis,	I	employ	statistical	modeling	techniques	to	

assess	if	any	innovation	system	trends	are	significantly	different	for	Washington,	Colorado,	

or	Georgia	compared	to	the	nation	as	a	whole.	The	following	statistical	model	is	used	to	

assess	each	innovation	system	function	(a	negative	binomial	general	linear	model	with	a	

log	linking	function):	

!" !"#$$%&%'#(%)* !"#$%& !" = !! !"#$ ! + !! !"#"$ ! + !!" !"#"$:!"#$ !" + !!" + α	

This	model	assumes	that	state	and	time	fixed	effects	account	for	a	majority	of	the	difference	

associated	with	media	portrayal	of	electric	vehicle	innovation	each	month	(t).	The	

State:Year	fixed	effect	accounts	for	differences	that	occur	in	a	state	in	a	given	year.	If	this	

effect	is	significant,	it	indicates	that	something	unique	happened	in	that	state	in	that	year	

compared	to	the	expected	trend	
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. 	

Figure	5.4.	A	visual	mapping	for	Washington	of	the	different	attributes	of	the	innovation	

system.	The	overall	National	trend	is	shown	for	comparison.	

	

Modeling	results	indicate	that	Entrepreneurial	Experimentation	has	been	

significantly	better	supported	in	Washington	than	elsewhere	in	the	nation.	This	means	that	

there	is	considerable	interest	in	EVs	from	the	private	sector	and	private	industry;	this	

includes	discussion	of	joint	ventures,	commercialization	activity,	business	mergers	and	

acquisitions,	and	launching	of	new	products	associated	with	electric	vehicles.		To	better	

understand	why	the	TIS	declined	in	2012,	I	examine	word	clouds	for	each	year.		Starting	in	

2012,	a	number	of	new	EVs	emerged	(like	the	Tesla	Model	S),	and	so	discussion	of	EVs	

suddenly	shifted	from	dealing	with	a	future	technology	(“EVs	will	be	entering	the	market”),	

to	a	current	technology	(“The	Tesla	Model	S	is	available”).		It	is	therefore	the	large	increase	
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in	EV	models	from	2012	to	2013,	and	the	shift	in	media	reporting	from	a	future	event	to	a	

current	occurrence	that	causes	the	stark	contrast	between	the	2012	and	2013	TIS	in	

Washington.	

	

	

	
Figure	5.5.	Word	clouds	for	electric	vehicles	articles	in	Washington	in	2012	(top),	and	in	

2013	(bottom).	Word	usage	indicates	the	technology	began	to	transition	from	a	“future”	

technology	to	a	technology	actively	being	used	and	deployed.	
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Comparatively,	the	Colorado-specific	fixed	effects	are	not	significant	when	it	comes	

to	describing	EV	innovation.	This	indicates	that	electrical	vehicle	innovation	in	Colorado	is	

not	significantly	different	from	what	is	seen	in	other	states.	This	result	aligns	with	the	

previous	finding	that	EV	deployment	in	Colorado	has	not	been	significantly	different	

compared	to	elsewhere.	

	

Figure	5.6.	A	visual	mapping	for	Colorado	of	the	different	attributes	of	the	innovation	

system.	The	overall	National	trend	is	shown	for	comparison.	

	

When	looking	at	the	innovation	system	in	Georgia,	model	results	indicate	that	there	

are	no	positive	shifts	in	the	overall	innovation	system	compared	to	elsewhere.	However,	

model	results	also	show	continuous	and	significant	negative	support	in	Georgia	for	the	

“Influence	the	Direction	of	Search”	innovation	function	since	2010.	This	negative	relationship	

implies	that	statements	of	support	or	political	action	in	Georgia	have	not	directly	signaled	
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out	or	promoted	the	adoption	of	EVs	relative	to	elsewhere.	This	signal	aligns	with	the	recent	

repeal	of	the	income	tax	credit	that	created	economic	incentives	for	EV	adoption.	

One	important	thing	to	note	from	this	analysis	is	that	the	“Resource	Mobilization”	

function	does	not	appear	to	be	significant	in	Colorado	or	Georgia	compared	to	elsewhere.	

This	result	is	seemingly	contradictory	given	that	the	income	tax	credits	provided	in	

Colorado	and	Georgia	were	much	higher	than	the	tax	incentives	and	monetary	supported	

offered	elsewhere	in	the	United	States	for	EV	adoption.	However,	if	the	price	of	EVs	is	not	

the	fundamental	driver	of	adoption	in	the	state,	or	if	the	income	tax	credit	has	not	been	

adequately	taken	advantage	of	at	the	state	level,	then	I	would	not	expect	to	see	significant	

“Resource	Mobilization”	efforts	compared	to	elsewhere.		Although	the	resources	may	

theoretically	be	there,	they	are	not	being	properly	mobilized	or	taken	advantage	of.		In	the	

case	of	Georgia,	once	EV	sales	became	significant,	resources	that	may	have	continued	to	

support	deployment	were	removed.	

One	weakness	to	this	TIS	approach	is	that	it	tracks	only	statewide	trends,	and	is	

inadequate	for	assessing	county-specific	of	city-specific	outcomes.	As	was	discussed	

previously,	most	of	the	innovation	activities	and	resource	mobilization	efforts	in	Georgia	

have	predominately	manifested	in	Atlanta,	where	knowledge	was	disseminated	throughout	

local	communities.	This	means	that	the	rest	of	the	state	likely	has	not	been	supportive	of	

EVs,	which	may	further	explain	recent	antagonism	toward	EV	deployment	in	the	

legislature.		
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Figure	5.7.	A	visual	mapping	for	Georgia	of	the	different	attributes	of	the	innovation	system.	

The	overall	National	trend	is	shown	for	comparison.	

	

Quantitative	analysis	of	TIS	trends	can	also	be	used	to	facilitate	discussion	and	

understanding	about	what	might	be	done	to	improve	electric	vehicle	uptake	in	the	future.	To	

arrive	at	a	set	of	suggestions,	I	look	at	the	qualitative	data	gathered	from	in-person	meetings	in	

addition	to	textual	data	analysis	and	statistical	modeling.	Combined,	these	approaches	can	

facilitate	and	ground	the	discussion	on	steps	forward	for	accelerating	EV	deployment.		

To	better	explore	EV	adoption	trends,	I	use	the	textual	data	I	collected	and	classified	as	

the	only	explanatory	variable	for	EV	deployment	in	a	general	linear	model.	I	utilize	a	statistical	

model	(a	negative	binomial	general	linear	model	with	a	log	linking	function)	to	predict	electric	

vehicle	deployment	based	on	the	7	different	innovation	functions	without	additional	

explanatory	variables.	The	following	model	formulation	is	used	for	each	innovation	function:	
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!" !"ℎ!"#$% !"#$ !" = !! !"#"$ ! + !!…! !!" !" + !!" + α	

where	CIF	is	the	count	of	textual	documents	in	the	database	that	were	classified	to	correspond	

to	a	given	innovation	functions	(IF)	for	region	i	and	month	t,	ε	is	the	error	term,	and		α	is	the	

intercept.	Regression	results	from	this	model	are	shown	in	Table	5.1.	I	compare	the	TIS	model	

to	a	Naïve	forecast	of	EV	uptake.	The	Naïve	forecast	is	a	simplistic	extrapolation	of	past	trends	

to	provide	a	comparable	case	for	what	EV	deployment	might	be.		For	the	Naïve	forecast,	I	only	

consider	a	linear	time	trend	and	state-based	fixed	effect,	serving	to	change	the	intercept	of	the	

linear	time	trend:	

!" !"ℎ!"#$% !"#$ !! = !! !"#"$ ! + !! !"#$ ! + !!" + α	

The	model	fit	for	the	Naïve	forecast	compared	to	the	TIS	article	count	model	for	

each	of	the	three	states	considered	is	shown	below	in	Figure	5.8,	Figure	5.9,	and	Figure	

5.10.		

The	TIS	model	for	Washington	has	an	R2	value	of	0.27,	indicating	that	the	TIS	system	

functions	can	explain	27%	of	EV	deployment	in	the	state	over	time.	The	Naïve	model	trends	

exponential,	despite	the	linear	time	trend,	because	of	the	negative	binomial	model	

specification.	For	negative	binomial	models,	a	logarithmic	link	function	is	used.	The	

logarithmic	link	function	is	necessary	for	this	data	because	EV	sales	have	to	be	greater	than	

or	equal	to	0	for	any	given	monthly	period.	Negative	binomial	models	are	often	used	to	

assess	count	data,	and	to	account	for	any	0	counts	that	may	occur	for	the	observed	sales	

trend,	and	to	account	for	overdispersion	or	differences	compared	to	a	typical	Poisson	

distribution.	
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Figure	5.8.	Predicted	EV	sales	compared	to	actual	EV	sales	in	Washington.	TIS	Prediction	

has	an	R2	value	of	0.27	

	
As	seen	in	Figure	5.8,	TIS	model	prediction	is	more	inline	with	EV	sales	in	

Washington	than	the	Naïve	forecast	model.	For	Colorado,	a	similar	result	is	shown.	The	TIS	

model	for	Colorado	has	an	R2	value	of	0.20	–	that	is	to	say,	the	TIS	model	explains	20%	

more	of	the	trend	for	EV	sales	than	a	trend	line	of	average	monthly	sales.	The	TIS	

prediction	model	once	again	appears	to	provide	more	explanation	of	EV	deployment	in	

Colorado	than	the	Naïve	forecast	model.	
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Figure	5.9.	Predicted	EV	sales	compared	to	actual	EV	sales	in	Colorado.	TIS	Prediction	has	

an	R2	value	of	0.20	

	

For	Georgia,	the	TIS	prediction	model	no	longer	fits	the	data	better	than	the	Naïve	

forecast.	The	TIS	model	has	an	R2	value	of	only	0.06	–	implying	weak	explanatory	power	of	

the	trends	occurring	in	Georgia.	Because	the	Naïve	forecast	appears	to	fit	the	data,	it	is	

possible	that	vehicle	uptake	in	Georgia	was	limited	by	information	diffusion,	as	opposed	to	

other	barriers	or	factors.	Information	and	technology	diffusion	is	often	represented	by	the	

Bass	diffusion	model	which	predicts	deployment	as	an	exponential	or	logistic	function	over	

time	(Dodson	&	Muller,	1978;	Geroski,	2000).	A	typical,	knowledge-based	diffusion	model	

would	appear	similar	to	the	diffusion	trend	shown	for	EV	sales	in	Georgia.	
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Figure	5.10.	Predicted	EV	sales	compared	to	actual	EV	sales	in	Georgia.	TIS	Prediction	has	

an	R2	value	of	0.06	

	

Although	the	TIS	model	can	only	explain	around	20%	of	the	observed	vehicle	sales	

trends	for	Colorado	and	Washington,	it	can	nevertheless	be	used	to	explore	the	innovation	

topics	most	relevant	for	predicting	EV	deployment.	The	modeling	results	shown	in	Table	

5.1	indicate	that	technology	“legitimation”	and	“knowledge	development	and	diffusion”	are	

highly	significant,	positive	predictors	of	EV	deployment.	The	results	from	this	analysis	

support	the	results	and	information	collected	through	meetings	and	discussions	with	key	

stakeholders,	mainly	that	information	and	knowledge	dissemination	for	EVs	has	been	

limited	in	each	state,	and	that	information	is	a	critical	factor	in	driving	EV	deployment.	

From	these	independent	methods	of	analysis,	it	becomes	evident	that	informational	

outreach	and	education	can	play	a	significant	role	in	promoting	EV	uptake,	and	that	more	

effort	on	these	fronts	is	likely	necessary	to	promote	EV	adoption	in	the	future.	Meetings	
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and	discussions	revealed	that	there	is	a	fundamental	knowledge	gap	for	dealers	and	for	

consumers	when	it	comes	to	EV	incentives	and	familiarity	with	the	technology.	Similarly,	in	

Colorado	the	perception	that	4WD	vehicles	provide	increased	safety	or	improved	handling	

in	icy	or	snowy	conditions	is	another	barrier	to	EV	adoption	that	could	be	better	addressed	

through	education	and	knowledge	diffusion	efforts.	

Dealerships	play	an	essential	role	in	disseminating	information	and	knowledge	to	

potential	customers	and	in	legitimizing	the	technology	through	test	drives	and	familiarity	

(Cahill,	Davies-Shawhyde,	&	Turrtentine,	2014).	Without	properly	educated	dealers,	

customers	that	may	be	a	good	fit	for	EV	ownership	are	neither	being	steered	toward	

potential	EV	choices,	nor	are	their	concerns	or	existing	questions	about	EV	technology	

being	answered	at	this	point	of	interaction.		

From	meetings	with	key	representatives,	a	narrative	emerged	in	which	EV	uptake	

was	furthered	when	customers	were	incentivized	to	lease	EVs	compared	to	making	

outright	purchases.	Both	Washington	and	Georgia	show	increased	diffusion	of	EVs	

compared	to	Colorado	where	leasing	is	not	as	prevalent.	Leases	may	further	help	legitimize	

the	technology	by	facilitating	longer	trial	periods	for	consumers	to	become	familiar	with	

the	technology,	and	lowers	the	barrier	to	adoption.	This	not	only	improves	the	technology	

legitimacy,	but	may	also	serve	to	increase	diffusion	of	knowledge	and	information	about	

EVs.	There	is	some	evidence	for	this	in	the	EV	analysis	conducted	for	Georgia	and	

Washington.	
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Table	5.1	

Regression	results	for	article	counts	as	a	predictor	of	monthly	EV	sales	

 
 Dependent	variable: 

  
 Vehicles_Sold 

 Legitimation 0.024*** 

 (0.006) 
  InfD -0.046*** 

 (0.009) 
  MarketFormation -0.019 

 (0.024) 
  EntExp 0.010 

 (0.010) 
  KnowD 0.049*** 

 (0.009) 
  PosEx -0.034** 

 (0.013) 
  ResMob -0.023 

 (0.014) 
  StateCALIFORNIA 1.705*** 

 (0.496) 
  StateCOLORADO -0.119 

 (0.242) 
  StateCONNECTICUT -0.571** 

 (0.242) 
  StateFLORIDA 0.854*** 

 (0.243) 
  StateGEORGIA 1.319*** 

 (0.241) 
  StateILLINOIS 0.380 

 (0.242) 
  StateINDIANA -0.848*** 

 (0.243) 
  StateMAINE -1.787*** 
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 (0.245) 
  StateMARYLAND 0.207 

 (0.241) 
  StateMASSACHUSETTS -0.064 

 (0.244) 
  StateMICHIGAN 0.517* 

 (0.265) 
  StateMINNESOTA -0.560** 

 (0.242) 
  StateNEW	JERSEY 0.293 

 (0.241) 
  StateNEW	MEXICO -1.883*** 

 (0.245) 
  StateNEW	YORK 0.012 

 (0.282) 
  StateNORTH	CAROLINA -0.251 

 (0.242) 
  StateOREGON 0.309 

 (0.241) 
  StateRHODE	ISLAND -2.351*** 

 (0.247) 
  StateTENNESSEE -0.434* 

 (0.242) 
  StateTEXAS 0.685*** 

 (0.244) 
  StateVERMONT -1.604*** 

 (0.244) 
  StateVIRGINIA -0.155 

 (0.242) 
  StateWASHINGTON 0.985*** 

 (0.243) 
  Constant 4.148*** 

 (0.172) 
   Observations 1,368 
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Log	Likelihood -6,986.192 
theta 0.608***	(0.023) 
Akaike	Inf.	Crit. 14,034.380 

 Note: *p<0.1;	**p<0.05;	***p<0.01 
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Chapter	6: Conclusions	

This	dissertation	examines	technology	innovation,	and	investigates	methodologies	

for	assessing	past	technology	innovation	trends	for	biofuels	and	electric	vehicles.	These	

trends	help	reveal	what	has	or	hasn’t	happened	for	diffusing	and	innovating	on	these	

technologies.	The	insights,	in-turn,	can	lead	to	meaningful	discussion	and	plans	of	action	for	

stakeholders	and	policy	makers	moving	forward.	

In	Chapter	3,	I	examined	the	use	of	patents	for	assessing	technology	innovation.	

Patents	have	traditionally	been	used	as	a	proxy	for	innovation,	which	makes	patent	data	an	

important	starting	point	for	comparisons.	My	analysis	shows	that	the	innovation	narratives	

supported	by	patent	trends	is	substantially	different	depending	on	the	classification	

scheme	used.	Through	literature	review	and	discussion	with	biofuel	experts,	a	default	

biofuel	innovation	narrative	was	established.		

Two	traditional	patent	classification	schemes	were	used	to	compare	this	literature-

based	narrative	to	the	patent	data.	Both	the	International	Patent	Classification	system	and	

the	newer	Cooperative	Patent	Classification	system	were	used.	These	two	classification	

systems	provided	contradictory	narrative	results,	in	addition	to	having	different	statistical	

relationships	with	explanatory	variables.	The	Natural	Language	Processing	approach	that	I	

pioneered	for	this	dissertation	better	aligned	with	the	literature-based	narrative,	and	

yielded	intuitive	statistical	relationships.	

Between	the	literature	narrative	and	the	NLP	classification	results,	several	insights	

about	the	biofuel	innovation	process	have	been	gained.	For	instance,	data	support	that	1st	

generation	biofuel	innovation	in	the	U.S.	has	likely	benefited	from	spillover	effects	from	

genetically	engineered	food	crops.	Data	also	support	the	idea	that	the	shift	in	agriculture	to	
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GE	crops	laid	the	groundwork	for	the	rapid	expansion	of	the	1st	generation	biofuel	industry	

starting	in	the	‘90s.		

All	narratives	and	methods	employed	to	assess	biofuel	innovation	show	that	after	

the	Renewable	Fuel	Standard	was	adopted	in	2005,	a	new	period	of	innovation	began.	This	

innovation	period	may	have	encouraged	new	firms	to	experiment	with	2nd	generation	

biofuels.	Most	new	firms	filing	for	patents	after	the	enactment	of	the	RFS	were	primarily	

firms	associated	with	biotechnology,	rather	than	agricultural,	but	the	number	of	2nd	

generation	biofuel	patents	by	both	types	of	companies	was	small.	Patent	analysis	indicated	

that	this	shortfall	in	2nd	generation	biofuel	innovation	was	not	been	filled	by	the	oil	and	gas	

industry.		

For	the	timespan	that	my	data	cover,	there	is	indication	that	commercial	investment	

in	2nd	generation	facilities	has	been	limited.	This	suggests	the	need	for	new	R&D	(and	

investment)	policy	approaches	if	major	expansion	of	2nd	generation	biofuel	is	desired.		

In	addition	to	using	patent	data	and	the	biofuel	literature	narrative,	I	employed	a	

novel	dataset	to	better	provide	insight	into	the	innovation	process.	In	Chapter	4,	I	employ	

the	use	of	an	informational	dataset	that	I	created	which	is	grounded	in	Technology	

Innovation	System	(TIS)	theory.		

The	TIS-approach	to	innovation	recognizes	that	flows	of	information	are	

quintessential	for	promoting	successful	innovation	outcomes.	The	TIS	uniquely	classifies	

these	information	flows	into	7	important	functions,	or	types	of	information	associated	with	

specific	actions	that	can	be	taken	to	promote	innovation.	I	utilized	computational	

techniques	(natural	language	processing)	in	conjunction	with	the	large	textual	database	of	

newspapers,	trade	journals,	and	other	text-based	news	sources	to	establish	temporal	
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trends	for	the	different	types	of	information	flow	for	biofuels.	In	Chapter	5	I	further	applied	

this	methodology	to	assess	electric	vehicle	innovation	trends.	I	show	that	when	using	an	

information-based	approach	to	innovation	(using	text-media),	it	is	possible	to	not	only	

predict	patent	trends,	but	that	article	counts	also	correspond	to	policy	implementation,	and	

that	article	data	may	further	align	with	technology	deployment	trends.	

Similar	to	patent	data,	the	Biofuel	TIS	data	show	the	fundamental	shift	in	innovation	

that	occurred	following	enactment	of	the	Renewable	Fuel	Standard.	Importantly,	however,	

these	data	also	show	that	simply	enacting	the	RFS	is	not	the	whole	story,	and	that	there	is	

nuance	associated	with	how	the	policy	has	morphed	over	time,	and	how	flows	of	

information	have	changed.		

Also,	the	TIS	data	can	be	used	to	assess	state-level	policy,	something	difficult	to	do	

with	patents.	Working	from	the	Alternative	Fuel	Data	Center’s	policy	database,	I	was	able	

to	use	TIS	data	in	conjunction	with	policy	enactment	dates	to	flush	out	an	innovation	

narrative	for	California,	and	to	better	evaluate	the	effect	that	the	California	policy	

landscape	has	had	on	fostering	biofuel	innovation	in	the	State.	Overall,	this	approach	can	be	

used	to	facilitate	direct	discussion	with	policy	makers	to	better	understand	the	actions	that	

have	been	taken,	or	that	could	be	taken	in	the	future,	to	direct	or	promote	innovation	or	

deployment	goals.	

In	Chapter	5,	I	extensively	relied	on	the	TIS-framework	to	ground	and	direct	

discussions	with	stakeholders	across	three	different	states.	From	both	stakeholder	

discussions	and	through	the	NLP-based	informational	dataset,	it	became	apparent	that	a	

major	deterrent	for	EV	adoption	was	a	gap	in	knowledge	and	information	for	EVs.	
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A	follow-up	discussion	with	EV	stakeholders	in	Colorado	similarly	supported	this	

conclusion.	Drive	Electric	Northern	Colorado,	for	instance,	indicated	that	they	have	started	

to	take	a	more	active	approach	in	educational	outreach	for	2015.	Although	anecdotal,	Drive	

Electric	indicates	that	since	outreach	began,	they	have	seen	a	tremendous	uptick	in	sales	in	

the	Northern	Colorado	compared	to	what	had	been	expected.	

These	knowledge	gaps	for	EVs	aren’t	fundamental	technology	gaps	or	deficiencies,	

but	are	instead	gaps	pertaining	to	institutional	factors	such	as	purchase	incentives,	and	

supporting	infrastructure.	These	are	key	elements	of	the	TIS	framework	that	are	not	

captured	by	traditional	innovation	models.	While	the	Colorado	case	of	the	AWD	culture	

may	exemplify	a	technological	deterrent	from	EV	adoption,	the	fact	that	this	stigma	has	

been	broken	in	Boulder	County,	but	not	in	Denver,	more	clearly	epitomizes	the	lack	of	

knowledge	diffusion	to	potential	car	buyers.	This	knowledge	gap	is	also	apparent	in	

Georgia,	where	EV	sales	are	once	again	higher	in	areas	near	“champion”	dealers,	despite	

the	compelling	economic	case	for	EV	ownership	that	existed	for	almost	all	commuters.		

Using	the	TIS	analysis	approaches	extensively	detailed	in	this	dissertation,	these	

knowledge	gaps	and	trends	become	clear,	while	they	would	have	remained	obfuscated	

using	more	traditional	approaches	for	measuring,	assessing,	and	predicting	innovation.	The	

information	gleaned	from	the	innovation	analysis	approaches	used	in	this	dissertation	can	

further	be	used	to	ground	discussion	and	to	foster	strategies	moving	forward	that	may	best	

work	to	encourage	technology	adoption	and	innovation.	
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6.1	Future	Work	

While	this	dissertation	establishes	a	set	of	new	methods	to	aid	policy	makers	in	

better	understanding	technology	innovation,	additional	research	is	still	necessary.	

Specifically,	there	were	fundamental	gaps	in	the	data	used	for	this	dissertation	–	especially	

for	the	vehicles	sales	data	and	other	technology	deployment	data,	which	were	difficult	to	

obtain,	especially	in	more	disaggregate	forms.	

To	better	establish	and	assess	the	methodologies	pioneered	in	this	dissertation,	I	

suggest	that	further	work	be	done	to	examine	historic	innovation	cases,	especially	for	

energy	transitions.	Given	the	relative	newness	of	the	technologies	examined	here,	the	time	

series	were	too	small	to	facilitate	many	traditional	and	more	rigorous	statistical	

assessments.	Historical	newspaper	archives	alongside	historical	innovation	cases	can	be	

used	to	better	assess	the	legitimacy	of	the	methods	I	employed.	

Furthermore,	there	is	need	to	create	a	larger,	more	robust	machine	learning	dataset	

to	be	used	for	classifying	articles	for	other	technologies,	not	just	biofuels	and	electric	

vehicles.	As	more	technologies	are	added,	and	additional	manual	classification	occurs,	it	

may	be	possible	to	better	parse	out	the	defining	characteristics	of	the	7	innovation	

functions.	Such	an	endeavor	could	better	facilitate	the	parameterization	of	the	TIS	

framework,	which	could	aid	in	predicting	technology	outcomes.	Parameterization	would	

allow	the	TIS-approach	to	innovation	to	be	incorporated	into	traditional	modeling	

techniques	as	well	as	integrated	assessment	models.	This	would	make	it	possible	to	better	

inform	economic	models	and	engineering	models	on	likely	outcomes	of	policy	

implementation.	
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Still	missing	in	this	work	is	the	theoretical	basis	for	how	specific	innovation	

functions	ultimately	impact	one	another,	leading	to	positive	feedback	loops	and	cascade	

mechanisms.	It	may	be	possible	to	better	integrate	some	of	the	data	collected	here	into	

system	dynamic	models	to	further	explore	the	relationships	between	different	innovation	

functions	and	innovation	outcomes.	Using	similar	data-heavy	approaches	it	may	ultimately	

be	possible	to	break	into	the	innovation	black	box,	providing	a	more	detailed,	nuanced	

model	that	can	more	accurately	predict	and	show	how	scarce	resources	should	be	allocated	

to	promote	future	innovations.	
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Appendices	
	

A.	Supplemental	Patent	Information	
	
	
Table	A.1	

	

Biopat	Keyword	List	

	
Technology	Keyword	 Generation	Pathway	

	
Biodiesel	 Fame	 1	 oil	

Biodiesel	 fatty	acid	methyl	esters	 1	 oil	

Biodiesel	 fatty	acid	ethyl	esters	 1	 oil	

Biodiesel	 free	fatty	acid	 1	 oil	

Biodiesel	 lipids	as	feedstock	 1	 oil	

Biodiesel	 lipids	microbial	organisms	 2	 algae	

Biodiesel	 fatty	acyl-acp	thioesterase	 2	 algae	

Biodiesel	 fatty	acyl-coa/aldehyde	reductase	 2	 algae	

Biodiesel	 fatty	aldehyde	decarbonylase	 2	 cyanobacteria	

Biodiesel	 acyl	carrier	protein	 2	 algae	

Biodiesel	 volatile	fatty	acids	 2	 waste	digestion	

Biodiesel	 microbial	lipids	 2	 algae	

Biodiesel	 microbial	hosts	 2	 algae	

Biodiesel	 trichosporon	 2	 Fungi	

Ethanol	 agricultural	feedstocks	 1	 fermentation	
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Ethanol	 starch	 1	 fermentation	

Ethanol	 corn	cobs	 2	 cellulosic	

Ethanol	 corn	stover	 2	 cellulosic	

Ethanol	 cereal	straw	 2	 cellulosic	

Ethanol	 forest	harvest	residues	 2	 cellulosic	

Ethanol	 husks	 2	 cellulosic	

Biodiesel	 chlorella	vulgaris	 2	 algae	

Biodiesel	 spirulina	maxima	 2	 algae	

Biodiesel	 nannochloropsis	sp.	 2	 algae	

Biodiesel	 scenedesmus	obliquus	 2	 algae	

Biodiesel	 dunaliella	tertiolecta	 2	 algae	

Biodiesel	 scenedesmus	dimorphus	 2	 algae	

Biodiesel	 eicosapentaenoic	acid	scenedesmus	 2	 algae	

Ethanol	 corn	 1	 fermentation	

Ethanol	 maize	 1	 fermentation	

Ethanol	 cassava	 1	 fermentation	

Ethanol	 grain	 1	 fermentation	

Biodiesel	 soybean	 1	 oil	

Biodiesel	 genetically	engineered	microbes	 2	 algae	

Ethanol	 genetically	modified	crops	 1	 fermentation	

Ethanol	 ligno-cellulosic	 2	 cellulosic	

Ethanol	 perennial	grasses	 2	 cellulosic	



	

-205-	
	

Ethanol	 forest	 2	 cellulosic	

Ethanol	 panicum	virgatum	1	 2	 cellulosic	

Ethanol	 perennial	plant	 2	 cellulosic	

Ethanol	 phalaris	 2	 cellulosic	

Ethanol	 alfalfa	 2	 cellulosic	

Ethanol	 reed	canarygrass	 2	 cellulosic	

Ethanol	 fibrous	plant	materials	 2	 cellulosic	

Ethanol	 switchgrass	 2	 cellulosic	

Ethanol	 bark	 2	 cellulosic	

Ethanol	 wood	shavings	 2	 cellulosic	

Ethanol	 chip	boards	 2	 cellulosic	

Ethanol	 garden	mulch	 2	 cellulosic	

Ethanol	 vegetative	grasses	 2	 cellulosic	

Ethanol	 miscanthus	 2	 cellulosic	

Ethanol	 prairie	grass	 2	 cellulosic	

Ethanol	 short	rotation	forest	species	 2	 cellulosic	

Ethanol	 eucalyptus	 2	 cellulosic	

Biodiesel	 peanut	 1	 oil	

Biodiesel	 oil-bearing	organisms	 1	 oil	

Biodiesel	 jatropha	curcas	 1	 oil	

Biodiesel	 jatropha	 1	 oil	

Biodiesel	 babassu	coconut	 1	 oil	
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Ethanol	 helianthus	tuberosus	 1	 fermentation	

Biodiesel	 oleaginous	microorganisms	 2	 algae	

Biodiesel	 rhodotorula	glutinis	 2	 yeast	

Ethanol	 medicago	sativa	l.	 1	 cellulosic	

Ethanol	 nut	shells	 1	 cellulosic	

Ethanol	 sugarcane	 1	 fermentation	

Ethanol	 beet	 1	 fermentation	

Ethanol	 sorghum	 1	 fermentation	

Ethanol	 sugar	esters	 1	 fermentation	

Ethanol	 bagasse	 2	 cellulosic	

Ethanol	 fermentable	sugars	 1	 fermentation	

Biodiesel	 cooking	oil	 1	 oil	

Biodiesel	 wet	organic	wastes	 2	 thermal	chemical	

Biodiesel	 monosodium	glutamate	wastewater	 2	 algae	

Ethanol	 urban	wood	residues	 2	 cellulosic	

Ethanol	 ammonium	 2	 cellulosic	

Biodiesel	 animal	waste	 1	 oil	

Biodiesel	 anlage	 2	 sludge	

Biodiesel	 excreta	 2	 sludge	

Ethanol	 feed	mixture	 1	 fermentation	

Ethanol	 fibrobacter	succinogenes	 2	 cellulosic	

Biodiesel	 kalium	 1	 oil	
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Biodiesel	 chlorella	emersonii	 2	 algae	

Biodiesel	 chlorella	protothecoides	 2	 algae	

Biodiesel	 chlorella	minutissima	 2	 algae	

Biodiesel	 dunaliella	bioculata	 2	 algae	

Biodiesel	 dunaliella	salina	 2	 algae	

Biodiesel	 microalgae	oil	 2	 algae	

Biodiesel	 phaeodactylum	tricornutum	 2	 algae	

Biodiesel	 vegetable	oil	 1	 oil	

Biodiesel	 soya	oil	 1	 oil	

Biodiesel	 untreated	raw	oils	 1	 oil	

Biodiesel	 oilseed	rape	 1	 oil	

Biodiesel	 coconut	oil	 1	 oil	

Biodiesel	 jojoba	 1	 oil	

Biodiesel	 canola	oil	 1	 oil	

Biodiesel	 methanogenic	bacteria	 2	 algae	

Ethanol	 poplars	 2	 cellulosic	

Ethanol	 lignin	 2	 cellulosic	

Ethanol	 cellulose	 2	 cellulosic	

Ethanol	 hemicellulose	 2	 cellulosic	

Ethanol	 wood	process	residues	 2	 cellulosic	

Ethanol	 wheat	chaff	 2	 cellulosic	

Biodiesel	 animal	fat	 1	 oil	
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Biodiesel	 edible	tallow	 1	 oil	

Biodiesel	 animal	manure	 1	 oil	

Biodiesel	 granular	sludge	 2	 sludge	

Biodiesel	 porcine	pancreatic	lipase	 1	 oil	

Biodiesel	 rapeseed	 1	 oil	

Biodiesel	 palm	oil	 1	 oil	

Ethanol	 organic	material	 1	 fermentation	

Bodiesel	 animal	slurries	 2	 sludge	

Ethanol	 lignocellulose	 2	 cellulosic	

Ethanol	 liquid	manure	 2	 fermentation	

Biodiesel	 microorganisms	 2	 algae	

Ethanol	 ruminococcus	albus	 2	 cellulosic	

Biodiesel	 sewage	 2	 sludge	

Biodiesel	 siloxane	 1	 oil	

Biodiesel	 sulphide	 1	 oil	

Biodiesel	 digested	sludge	 2	 sludge	

Ethanol	 fibrous	material	 2	 cellulosic	

Ethanol	 hydrolysate	 2	 cellulosic	

Ethanol	 mesophilic	bacteria	 2	 cellulosic	

Biodiesel	 microbial	consortia	 2	 algae	

Biodiesel	 sludge	 2	 sludge	

Biodiesel	 treated	wastewater	 2	 algae	

 



	

-209-	
	

 
Table	A.2		

Supplemental Table containing the top 20 most common CPC classifiers that correspond to Kessler and 

Sperling (2015) biofuel classification approach using NLP. 

1G Classes 
 

2G Classes 
 

Ethanol 
 

 
Biodiesel 
 

    
A01H5/10 Y02E50/16 A01H5/10 A01H5/10 

Y10S47/01 Y02E50/17 Y02E50/17 C11B1/00 

A01H5/00 C12N9/2437 Y02E50/16 A23D9/00 

A01H1/00 C12Y302/01004 C11B1/00 A01H5/00 

C11B1/00 C12P7/10 C12N9/2437 A23L1/2003 

A23D9/00 C12P19/14 Y10S47/01 A01H1/00 

Y02E50/17 C11D3/38645 C12P19/14 Y10S47/01 

C12N15/82 C12Y302/01021 C12P7/06 C12N15/82 

C12N9/2417 C12Y302/01091 A23D9/00 A01H5/12 

A01H1/02 C13K1/02 C12P7/10 C11B1/10 

C12P7/06 C12N9/2445 A01H5/00 A23K1/14 

C07K14/415 C12P7/06 C12Y302/01004 A01H4/00 

C12P19/14 C12N15/8246 A01H1/00 A23K1/146 

A01H4/00 C12P19/02 C12N9/2417 C12N5/04 

A01H5/08 C12Y302/01008 C07K14/415 A01H1/02 

A01H5/12 D21C5/005 C12Y302/01021 A01H5/04 

A23L1/2003 Y02E50/343 C12N15/8245 C12N15/8247 

C12N5/04 D06M16/003 A01H1/02 C11B1/04 

C12N15/8245 A23K1/1653 C13K1/02 C12N15/8274 

C12N9/2428 C10G2300/1014 C11D3/38645 Y02E50/13 
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Table	A.3.	
	
Regression	results	for	1st	generation	biofuel	patents	

 
 Dependent	variable: 

  
 X1G.Patents CPC_1G GI_Eth 

 

glm:	
quasipoiss

on 
negative 

glm:	
quasipoiss

on 
negative 

glm:	
quasipoiss

on 
negative 

 link	=	log binomial link	=	log binomial link	=	log binomial 

 (1) (2) (3) (4) (5) (6) 
 Other.Sector.Pat

ents -0.00000 0.00001 0.00001 0.00000 -0.00000 0.00000 

 (0.00000) (0.00001) (0.00000) (0.00001) (0.00000) (0.00000) 
       AgPatents 0.001*** 0.001** 0.0005* 0.001** 0.001** 0.0004* 

 (0.0002) (0.0003) (0.0002) (0.0003) (0.0002) (0.0002) 
       Biotech 0.00000 0.00003 -0.0001*** -0.0001*** 0.0001** 0.0001*** 

 (0.00003) (0.00003) (0.00004) (0.00003) (0.00002) (0.00002) 
       Corn_1 0.245** 0.307*** -0.105 -0.178 0.231*** 0.191** 

 (0.093) (0.118) (0.107) (0.114) (0.083) (0.087) 
       Oil_1 0.001 -0.005 0.011** 0.014*** 0.003 0.002 

 (0.004) (0.005) (0.004) (0.004) (0.003) (0.003) 
       GE_Rev 1.188*** 0.709** 0.435 0.744** -0.325 -0.255 

 (0.394) (0.338) (0.500) (0.379) (0.248) (0.258) 
       RFS 1.052*** 1.291*** 0.793*** 0.820*** 0.749*** 0.765*** 

 (0.224) (0.277) (0.266) (0.267) (0.208) (0.219) 
       Constant -0.755 -1.128 1.076 1.387 1.710** 2.165*** 

 (0.767) (0.904) (0.795) (0.864) (0.664) (0.687) 
        Observations 34 34 34 34 34 34 
Log	Likelihood  -151.384  -127.168  -167.731 

theta  
11.579***	(3.8

30)  
14.983**	(6.3

31)  
18.174***	(5.3

05) 
Akaike	Inf.	Crit.  318.769  270.336  351.461 

 Note: *p<0.1;	**p<0.05;	***p<0.01 
 
Table	A.3	
	
Regression	results	for	2nd	generation	biofuel	patents	
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 Dependent	variable: 
  

 X2G.Patents CPC_2G 

 
glm:	

quasipoisson negative glm:	
quasipoisson negative 

 link	=	log binomial link	=	log binomial 

 (1) (2) (3) (4) 
 Other.Sector.Patents 0.00000 0.00000 0.00000 0.00000 

 (0.00000) (0.00000) (0.00000) (0.00000) 
     AgPatents 0.0001 0.0001 0.001*** 0.001*** 

 (0.0002) (0.0002) (0.0002) (0.0002) 
     Biotech 0.0001** 0.0001*** -0.0001*** -0.0001*** 

 (0.00003) (0.00003) (0.00003) (0.00003) 
     Corn_1 0.081 0.050 0.083 0.050 

 (0.103) (0.097) (0.091) (0.095) 
     Oil_1 0.011** 0.010*** 0.017*** 0.018*** 

 (0.004) (0.004) (0.003) (0.003) 
     GE_Rev 0.070 0.158 -0.181 -0.176 

 (0.352) (0.297) (0.393) (0.313) 
     RFS 0.816*** 0.864*** 0.641*** 0.650*** 

 (0.256) (0.233) (0.230) (0.225) 
     Constant 0.579 0.916 -0.784 -0.536 

 (0.782) (0.748) (0.687) (0.744) 
      Observations 34 34 34 34 
Log	Likelihood  -113.291  -127.693 
theta  25.684**	(11.692)  22.685**	(9.827) 
Akaike	Inf.	Crit.  242.583  271.386 

 Note: *p<0.1;	**p<0.05;	***p<0.01 
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B. Regression	Result	Summary	for	Biofuel	TIS	data 
	
Table	B.1	
	
Policy	Regression	Results	for	Ethanol-related	TIS	data	
 

 
 Dependent	variable: 

  

 

Legit
imati
on 

Entreprene
urial.Experi
mentation 

Resour
ce.Mobi
lization 

Knowledge.d
evelopment.a
nd.diffusion 

Development.of
.Positive.Extern
al.Economies 

Marke
t.For
matio
n 

Influence.t
he.Directio
n.of.Search 

 (1) (2) (3) (4) (5) (6) (7) 
 AFV.Manufa

cturer.Retro
fitter 

0.30
0*** 0.310*** 0.243** 0.323**  0.047 0.279** 

 
(0.08
4) (0.099) (0.106) (0.146)  

(0.139
) (0.130) 

        
Grants 

-
0.17
3**    0.244** 0.195 -0.051 

 
(0.07
3)    (0.100) (0.122

) (0.112) 

        Aftermarket.
Conversions  -0.142*   0.308*** 0.268*

* 0.083 

  (0.081)   (0.108) (0.131
) (0.119) 

        Alternative.
Fuel.Produc
er  0.125* 0.136*   -0.035 0.089 

  (0.068) (0.077)   
(0.100
) (0.092) 

        Climate.Cha
nge...Energy.
Initiatives  -0.216*    -0.304 -0.284 

  (0.119)    
(0.207
) (0.192) 

        Exemptions      -0.086 -0.162 

      
(0.125
) (0.115) 

        Fleet.Purcha  -0.153** -0.198** -0.329*** -0.246*** -0.077 0.032 



	

-213-	
	

ser.Manager 

  (0.064) (0.090) (0.108) (0.082) (0.116
) (0.108) 

        Fuel.Econo
my...Efficien
cy  0.317***   0.289*** 0.119 0.058 

  (0.078)   (0.103) (0.118
) (0.110) 

        Fuel.Product
ion...Quality  -0.199***  -0.242**  0.062 0.077 

  (0.072)  (0.100)  
(0.108
) (0.100) 

        Fuel.Taxes      0.148 0.104 

      
(0.110
) (0.102) 

        
Idle.Reducti
on 

-
0.15
6* 

-0.172  -0.330** -0.305** 
-

0.383*
* 

-0.181 

 
(0.08
7) (0.105)  (0.146) (0.134) (0.152

) (0.141) 

        
Loans.and.L
eases 

-
0.16
0    -0.339** -0.289 -0.235 

 
(0.10
6)    (0.153) (0.178

) (0.162) 

        Rebates      0.293 0.070 

      
(0.235
) (0.211) 

        
Registration.
..Licensing 

-
0.13
0**     -0.124 -0.146 

 
(0.06
1)     

(0.113
) (0.104) 

        Tax.Incentiv
es  0.214***    0.163 0.131 

  (0.067)    
(0.101
) (0.094) 

        Fueling...TSE
.Infrastructu
re.Owner   -0.146*   0.215* -0.074 
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   (0.080)   
(0.119
) (0.109) 

        Vehicle.Own
er.Driver    -0.299***  -0.168 0.023 

    (0.098)  
(0.109
) (0.103) 

        Renewable.F
uel.Standard
...Mandate     0.307*** 0.458*

** 0.175 

     (0.119) (0.134
) (0.123) 

        
stateAlaska 1.95

0*** 0.860*** 1.480*** 0.358 1.123*** 1.986*
** 2.565*** 

 
(0.15
3) (0.196) (0.205) (0.287) (0.239) (0.267

) (0.243) 

        
stateArizona 1.291*** 0.812*** 0.516** 0.764*** 1.297*** 1.278*

** 0.931*** 

 
(0.15
2) (0.183) (0.206) (0.276) (0.221) (0.239

) (0.226) 

        stateArkans
as 

0.55
7*** 0.128 0.234 0.155 0.125 0.431 0.702*** 

 
(0.16
5) (0.206) (0.224) (0.333) (0.246) (0.277

) (0.253) 

        stateCaliforn
ia 

3.64
1*** 3.239*** 2.815*** 3.791*** 3.279*** 3.530*

** 3.551*** 

 
(0.15
1) (0.169) (0.189) (0.254) (0.215) (0.257

) (0.238) 

        stateColorad
o 

1.51
1*** 1.600*** 0.957*** 2.277*** 1.182*** 1.387*

** 1.273*** 

 
(0.15
5) (0.192) (0.202) (0.296) (0.225) (0.277

) (0.259) 

        stateConnec
ticut 

1.14
6*** 0.362* -0.190 0.598** -0.073 1.161*

** 0.828*** 

 
(0.15
6) (0.192) (0.219) (0.286) (0.252) (0.257

) (0.245) 

        stateDelawa
re 

0.16
5 -0.127 -0.104 0.071 0.250 0.289 0.370 

 
(0.15
8) (0.196) (0.218) (0.282) (0.237) (0.278

) (0.259) 
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stateDistrict	
of	Columbia 

2.63
6*** 1.389*** 2.292*** 2.649*** 2.146*** 2.207*

** 2.629*** 

 
(0.15
8) (0.180) (0.198) (0.263) (0.224) (0.268

) (0.246) 

        
stateFlorida 1.720*** 1.389*** 1.388*** 1.699*** 1.427*** 1.062*

** 1.681*** 

 
(0.15
2) (0.179) (0.198) (0.267) (0.221) (0.246

) (0.223) 

        
stateGeorgia 0.879*** 0.810*** 0.349* 1.291*** 0.437* 0.151 0.495* 

 
(0.15
4) (0.195) (0.209) (0.276) (0.249) (0.300

) (0.277) 

        
stateHawaii 0.15

9 0.130 0.161 0.204 -0.369 0.294 0.388 

 
(0.17
0) (0.213) (0.233) (0.325) (0.266) (0.309

) (0.290) 

        
stateIdaho 0.59

9*** 0.593*** 0.103 0.635** -0.362 0.226 0.610*** 

 
(0.15
5) (0.188) (0.214) (0.282) (0.252) (0.258

) (0.233) 

        
stateIllinois 2.66

8*** 2.523*** 2.326*** 2.447*** 1.933*** 2.650*
** 2.774*** 

 
(0.14
9) (0.173) (0.194) (0.256) (0.222) (0.239

) (0.221) 

        
stateIndiana 1.522*** 1.261*** 1.024*** 1.233*** 1.062*** 1.450*

** 1.315*** 

 
(0.15
5) (0.188) (0.204) (0.293) (0.230) (0.249

) (0.234) 

        
stateIowa 2.96

7*** 2.500*** 2.501*** 2.198*** 2.362*** 2.943*
** 3.155*** 

 
(0.14
9) (0.168) (0.187) (0.258) (0.212) (0.234

) (0.216) 

        
stateKansas 1.94

0*** 2.050*** 1.353*** 1.563*** 1.308*** 1.343*
** 1.875*** 

 
(0.15
2) (0.183) (0.196) (0.278) (0.235) (0.324

) (0.290) 

        stateKentuc
ky 

0.60
8*** -0.261 0.457** 0.005 0.888*** 0.920*

** 0.848*** 

 (0.16 (0.214) (0.232) (0.316) (0.230) (0.274 (0.259) 
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8) ) 
        stateLouisia
na 

1.21
4*** 1.090*** 0.754*** 1.134*** 0.962*** 1.232*

** 0.976*** 

 
(0.15
3) (0.179) (0.204) (0.278) (0.238) (0.254

) (0.240) 

        
stateMaine 0.52

7*** -0.755*** -
0.595*** -0.141 0.233 0.499* -0.162 

 
(0.15
5) (0.209) (0.230) (0.316) (0.237) (0.268

) (0.263) 

        stateMaryla
nd 

1.08
2*** 0.535*** 0.245 0.866*** 0.888*** 1.046*

** 0.958*** 

 
(0.15
5) (0.186) (0.211) (0.282) (0.232) (0.249

) (0.233) 

        stateMassac
husetts 

1.74
4*** 1.086*** 1.113*** 2.067*** 1.414*** 1.391*

** 1.772*** 

 
(0.15
0) (0.177) (0.198) (0.251) (0.220) (0.239

) (0.219) 

        stateMichiga
n 

1.66
2*** 1.424*** 1.033*** 1.409*** 1.788*** 1.284*

** 1.239*** 

 
(0.15
2) (0.176) (0.200) (0.257) (0.216) (0.245

) (0.229) 

        stateMinnes
ota 

2.51
1*** 2.509*** 2.062*** 2.493*** 2.163*** 2.205*

** 2.398*** 

 
(0.15
1) (0.173) (0.193) (0.271) (0.223) (0.272

) (0.250) 

        stateMississi
ppi 

0.65
5*** 1.039*** 0.460** 0.931*** 0.062 0.288 0.630*** 

 
(0.15
5) (0.181) (0.208) (0.275) (0.245) (0.259

) (0.236) 

        stateMissou
ri 

1.88
6*** 1.626*** 1.687*** 1.792*** 1.581*** 1.920*

** 2.127*** 

 
(0.15
7) (0.177) (0.200) (0.271) (0.229) (0.262

) (0.242) 

        stateMontan
a 

0.74
5*** 0.352* 0.304 0.583** -0.270 0.040 1.188*** 

 
(0.15
4) (0.205) (0.209) (0.282) (0.274) (0.288

) (0.252) 

        stateNebras
ka 

2.26
0*** 2.530*** 1.980*** 0.883*** 1.346*** 2.068*

** 2.569*** 
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(0.15
2) (0.171) (0.195) (0.274) (0.229) (0.246

) (0.226) 

        
stateNevada 0.579*** 0.455** 0.174 0.354 1.522*** 1.586*

** 0.253 

 
(0.15
5) (0.186) (0.211) (0.307) (0.218) (0.250

) (0.250) 

        stateNew	
Hampshire 

1.14
5*** -0.174 -0.579** 0.097 -0.049 0.912*

** 1.130*** 

 
(0.15
4) (0.201) (0.234) (0.316) (0.251) (0.253

) (0.231) 

        stateNew	
Jersey 

1.11
1*** 0.720*** 0.284 0.692** 0.549** 0.903*

** 0.658*** 

 
(0.15
2) (0.182) (0.209) (0.280) (0.231) (0.244

) (0.230) 

        stateNew	
Mexico 

1.44
9*** 1.151*** 0.725*** 1.895*** 0.814*** 1.124*

** 1.327*** 

 
(0.16
5) (0.205) (0.204) (0.289) (0.261) (0.323

) (0.298) 

        stateNew	
York 

2.91
5*** 2.611*** 1.860*** 2.820*** 2.424*** 2.902*

** 2.570*** 

 
(0.16
0) (0.189) (0.211) (0.278) (0.234) (0.265

) (0.248) 

        stateNorth	
Carolina 

1.00
1*** 1.184*** 0.805*** 1.371*** 0.596** 0.151 0.827*** 

 
(0.15
5) (0.192) (0.211) (0.281) (0.245) (0.295

) (0.265) 

        stateNorth	
Dakota 

1.58
3*** 1.749*** 1.321*** 1.143*** 0.816*** 1.040*

** 1.783*** 

 
(0.15
2) (0.174) (0.196) (0.271) (0.228) (0.247

) (0.223) 

        
stateOhio 1.33

5*** 1.478*** 1.187*** 1.651*** 1.265*** 0.851*
* 1.063*** 

 
(0.15
4) (0.197) (0.242) (0.274) (0.288) (0.355

) (0.329) 

        stateOklaho
ma 

0.78
0*** 1.001*** 0.500** 0.888*** 0.679*** 0.514* 0.779*** 

 
(0.17
4) (0.209) (0.227) (0.309) (0.247) (0.297

) (0.275) 

        stateOregon 0.52 0.389** 0.272 0.667** 0.453* 0.290 0.352 
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9*** 

 
(0.16
0) (0.194) (0.231) (0.296) (0.256) (0.281

) (0.261) 

        statePennsyl
vania 

1.45
9*** 1.183*** 1.147*** 1.464*** 0.977*** 1.071*

** 1.243*** 

 
(0.15
7) (0.177) (0.198) (0.275) (0.228) (0.285

) (0.264) 

        
stateRhode	
Island 

-
0.06
3 

-1.329*** -
1.038*** -1.327*** -1.267*** 0.006 0.051 

 
(0.16
1) (0.224) (0.248) (0.371) (0.288) (0.269

) (0.249) 

        stateSouth	
Carolina 

0.47
4*** 0.371** 0.613*** 0.880*** 0.065 -0.254 0.006 

 
(0.15
6) (0.188) (0.204) (0.276) (0.242) (0.268

) (0.243) 

        stateSouth	
Dakota 

1.72
5*** 1.930*** 1.414*** 0.863*** 0.860*** 1.538*

** 1.910*** 

 
(0.15
1) (0.177) (0.195) (0.276) (0.226) (0.249

) (0.229) 

        stateTennes
see 

0.94
1*** 0.756*** 0.623*** 1.626*** 0.785*** 0.908*

** 0.524** 

 
(0.15
4) (0.184) (0.208) (0.270) (0.231) (0.267

) (0.258) 

        
stateTexas 2.77

2*** 2.772*** 2.032*** 2.681*** 2.079*** 2.528*
** 2.760*** 

 
(0.14
9) (0.180) (0.192) (0.260) (0.230) (0.259

) (0.240) 

        
stateUtah 0.07

6 0.047 -0.406* -0.173 0.058 -0.213 -0.019 

 
(0.16
4) (0.202) (0.231) (0.319) (0.254) (0.286

) (0.258) 

        
stateVermon
t 

-
0.29
5* 

-1.543*** -
1.536*** -1.638*** -0.443 -0.203 -0.548* 

 
(0.17
2) (0.251) (0.277) (0.422) (0.272) (0.308

) (0.297) 

        
stateVirginia 1.496*** 1.108*** 0.551*** 1.483*** 0.730*** 1.045*

** 1.107*** 
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(0.17
8) (0.189) (0.205) (0.266) (0.249) (0.317

) (0.297) 

        stateWashin
gton 

3.74
2*** 2.555*** 3.416*** 3.299*** 3.095*** 3.724*

** 4.047*** 

 
(0.14
7) (0.172) (0.188) (0.248) (0.217) (0.237

) (0.219) 

        
stateWest	
Virginia 

-
0.35
8** 

-1.011*** -
0.770*** 0.604* -0.111 -0.510 -1.015*** 

 
(0.16
3) (0.240) (0.252) (0.347) (0.254) (0.324

) (0.308) 

        stateWiscon
sin 

1.66
2*** 1.392*** 1.203*** 1.612*** 1.082*** 1.413*

** 1.695*** 

 
(0.15
7) (0.176) (0.199) (0.257) (0.225) (0.256

) (0.236) 

        stateWyomi
ng 

0.38
9** 0.203 -0.013 -0.170 -0.146 0.035 0.506* 

 
(0.16
2) (0.188) (0.215) (0.306) (0.246) (0.288

) (0.258) 

        as.factor(yea
r)1997 

0.32
9*** -0.109 0.275 0.894*** 0.918*** 0.921*

** 0.610*** 

 
(0.09
4) (0.134) (0.173) (0.238) (0.170) (0.187

) (0.155) 

        as.factor(yea
r)1998 

0.35
2*** -0.275** 0.139 0.017 1.064*** 1.286*

** 0.243 

 
(0.09
4) (0.138) (0.176) (0.274) (0.168) (0.182

) (0.162) 

        as.factor(yea
r)1999 

1.11
8*** 0.241* 0.354** 0.893*** 1.453*** 1.773*

** 0.794*** 

 
(0.09
0) (0.127) (0.170) (0.238) (0.163) (0.176

) (0.153) 

        as.factor(yea
r)2000 

1.59
0*** 0.730*** 1.268*** 0.503** 1.811*** 2.353*

** 1.601*** 

 
(0.08
8) (0.120) (0.154) (0.251) (0.159) (0.172

) (0.145) 

        as.factor(yea
r)2001 

1.49
1*** 1.062*** 1.363*** 0.744*** 1.653*** 2.458*

** 1.400*** 

 
(0.08
9) (0.117) (0.153) (0.242) (0.161) (0.173

) (0.148) 
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as.factor(yea
r)2002 

1.57
8*** 0.883*** 1.517*** 1.034*** 0.691*** 1.963*

** 1.986*** 

 
(0.08
9) (0.119) (0.151) (0.234) (0.174) (0.177

) (0.144) 

        as.factor(yea
r)2003 

2.13
4*** 1.429*** 1.857*** 1.065*** 1.181*** 2.665*

** 2.616*** 

 
(0.08
8) (0.115) (0.149) (0.235) (0.167) (0.174

) (0.143) 

        as.factor(yea
r)2004 

2.26
4*** 1.559*** 2.121*** 2.195*** 1.697*** 2.531*

** 2.522*** 

 
(0.08
8) (0.114) (0.147) (0.216) (0.162) (0.175

) (0.143) 

        as.factor(yea
r)2005 

2.90
3*** 2.485*** 3.062*** 2.795*** 2.830*** 3.590*

** 3.175*** 

 
(0.08
8) (0.110) (0.143) (0.213) (0.155) (0.173

) (0.143) 

        as.factor(yea
r)2006 

3.77
5*** 3.766*** 3.787*** 3.982*** 3.895*** 4.175*

** 3.909*** 

 
(0.08
9) (0.109) (0.143) (0.210) (0.154) (0.174

) (0.145) 

        as.factor(yea
r)2007 

4.05
9*** 3.859*** 4.311*** 4.613*** 4.361*** 4.750*

** 4.277*** 

 
(0.09
1) (0.111) (0.144) (0.213) (0.155) (0.180

) (0.151) 

        as.factor(yea
r)2008 

4.08
0*** 3.955*** 4.227*** 4.650*** 4.312*** 4.495*

** 4.088*** 

 
(0.09
4) (0.115) (0.147) (0.217) (0.158) (0.188

) (0.158) 

        as.factor(yea
r)2009 

3.44
4*** 3.426*** 3.712*** 4.268*** 3.604*** 3.732*

** 3.366*** 

 
(0.09
7) (0.120) (0.153) (0.222) (0.162) (0.195

) (0.166) 

        as.factor(yea
r)2010 

3.48
2*** 3.418*** 3.711*** 4.217*** 3.396*** 3.295*

** 3.534*** 

 
(0.10
0) (0.124) (0.158) (0.226) (0.166) (0.205

) (0.174) 

        Acquisition...
Fuel.Use 

0.07
8  0.226*** 0.241**  -0.064 -0.088 

 (0.05  (0.085) (0.104)  (0.109 (0.101) 
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3) ) 
        Air.Quality...
Emissions   -0.213  -0.320** 0.131 0.029 

   (0.131)  (0.158) (0.214
) (0.196) 

        
Alternative.
Fuel.Dealer      

-
0.273*

* 
-0.145 

      
(0.107
) (0.098) 

        Alternative.
Fuel.Purchas
er    0.224**  0.192* -0.004 

    (0.095)  
(0.109
) (0.100) 

        
Constant 1.02

1*** -0.107 -
0.716*** -2.148*** -0.843*** 

-
1.226*

** 
-0.703*** 

 
(0.13
3) (0.166) (0.199) (0.292) (0.221) (0.242

) (0.212) 

         Observation
s 765 765 765 765 765 765 765 

Log	
Likelihood 

-
3,81
1.98
8 

-2,590.410 
-

2,364.4
94 

-1,729.101 -2,407.157 
-

2,670.
215 

-2,779.524 

theta 

7.58
9***(
0.47
1) 

9.136***	(0.
835) 

7.127***
	(0.677) 

7.149***	(0.86
5) 5.382***	(0.449) 

4.088*
**	(0.2
92) 

4.796***	(0.
364) 

Akaike	Inf.	
Crit. 

7,76
5.97
6 

5,328.820 4,870.987 3,602.202 4,960.313 5,514.
429 5,733.048 

 Note: *p<0.1;	**p<0.05;	***p<0.01 
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C.		Regression	Result	Summary	for	Electric	Vehicles	
	
	
Table	C.1		

	
Electric	Vehicle	Sales	Regression	Results	
	
	 Dependent	variable: 
	 	
	 Vehicles_Sold 

	 negative glm:	quasipoisson 

	 binomial link	=	log 

	 (1) (2) 
	Vehicles_1 0.0005*** 0.0002*** 

	 (0.0001) (0.00002) 
	 	 	Res_Elec 0.054* 0.039*** 

	 (0.028) (0.008) 
	 	 	VMT_Rural 0.0004*** 0.0002*** 

	 (0.0001) (0.00004) 
	 	 	StateCALIFORNIA 1.933*** 2.663** 

	 (0.447) (1.219) 
	 	 	StateCOLORADO -0.187 -0.205 

	 (0.433) (1.781) 
	 	 	StateCONNECTICUT -0.072 -0.129 

	 (0.500) (1.664) 
	 	 	StateFLORIDA 0.761** 0.999 

	 (0.378) (1.361) 
	 	 	StateGEORGIA -0.234 -0.061 

	 (0.426) (1.662) 
	 	 	StateILLINOIS 0.465 0.588 

	 (0.381) (1.461) 
	 	 	StateINDIANA -0.112 -0.070 

	 (0.424) (1.715) 
	 	 	StateMAINE -2.847*** -2.879 

	 (1.067) (4.918) 
	 	 	StateMARYLAND 0.820** 0.797 

	 (0.385) (1.417) 
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StateMASSACHUSETTS -0.115 -0.224 

	 (0.462) (1.782) 
	 	 	StateMICHIGAN 1.286*** 1.451 

	 (0.359) (1.305) 
	 	 	StateMINNESOTA -0.827* -0.750 

	 (0.487) (2.066) 
	 	 	StateNEW	JERSEY 0.670 0.613 

	 (0.424) (1.454) 
	 	 	StateNEW	MEXICO -1.063* -1.115 

	 (0.558) (2.444) 
	 	 	StateNEW	YORK 0.108 0.276 

	 (0.437) (1.478) 
	 	 	StateNORTH	CAROLINA 0.315 0.438 

	 (0.393) (1.505) 
	 	 	StateOREGON -0.058 -0.117 

	 (0.436) (1.781) 
	 	 	StateRHODE	ISLAND -1.991** -2.120 

	 (0.808) (3.579) 
	 	 	StateTENNESSEE 0.241 0.356 

	 (0.402) (1.540) 
	 	 	StateTEXAS 0.859* 1.526 

	 (0.493) (1.270) 
	 	 	StateVERMONT -2.739** -2.830 

	 (1.070) (4.918) 
	 	 	StateVIRGINIA 0.627* 0.754 

	 (0.380) (1.422) 
	 	 	StateWASHINGTON 0.831** 0.753 

	 (0.386) (1.477) 
	 	 	as.factor(Year)2011 3.390*** 3.415*** 

	 (0.336) (1.212) 
	 	 	as.factor(Year)2012 3.770*** 3.790*** 

	 (0.343) (1.208) 
	 	 	as.factor(Year)2013 4.344*** 4.396*** 

	 (0.335) (1.200) 
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as.factor(Year)2014 4.478*** 4.559*** 

	 (0.339) (1.199) 
	 	 	StateCALIFORNIA:as.factor(Year)2011 -0.782* -0.738 

	 (0.411) (1.236) 
	 	 	StateCOLORADO:as.factor(Year)2011 -0.517 -0.543 

	 (0.492) (1.822) 
	 	 	StateCONNECTICUT:as.factor(Year)2011 -1.572*** -1.608 

	 (0.481) (1.743) 
	 	 	StateFLORIDA:as.factor(Year)2011 -0.822* -0.847 

	 (0.427) (1.390) 
	 	 	StateGEORGIA:as.factor(Year)2011 -0.461 -0.485 

	 (0.473) (1.696) 
	 	 	StateILLINOIS:as.factor(Year)2011 -0.712 -0.732 

	 (0.442) (1.493) 
	 	 	StateINDIANA:as.factor(Year)2011 -0.865* -0.870 

	 (0.483) (1.762) 
	 	 	StateMAINE:as.factor(Year)2011 -0.317 -0.353 

	 (1.100) (5.031) 
	 	 	StateMARYLAND:as.factor(Year)2011 -1.318*** -1.330 

	 (0.437) (1.459) 
	 	 	StateMASSACHUSETTS:as.factor(Year)2011 -0.954* -0.967 

	 (0.496) (1.836) 
	 	 	StateMICHIGAN:as.factor(Year)2011 -1.474*** -1.489 

	 (0.420) (1.338) 
	 	 	StateMINNESOTA:as.factor(Year)2011 -0.042 -0.068 

	 (0.539) (2.101) 
	 	 	StateNEW	JERSEY:as.factor(Year)2011 -1.107** -1.127 

	 (0.442) (1.493) 
	 	 	StateNEW	MEXICO:as.factor(Year)2011 -0.961 -0.976 

	 (0.615) (2.533) 
	 	 	StateNEW	YORK:as.factor(Year)2011 -0.856* -0.884 

	 (0.445) (1.513) 
	 	 	StateNORTH	CAROLINA:as.factor(Year)2011 -0.708 -0.711 

	 (0.448) (1.539) 
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StateOREGON:as.factor(Year)2011 0.346 0.376 

	 (0.490) (1.805) 
	 	 	StateRHODE	ISLAND:as.factor(Year)2011 -1.508* -1.561 

	 (0.864) (3.840) 
	 	 	StateTENNESSEE:as.factor(Year)2011 -0.716 -0.706 

	 (0.454) (1.574) 
	 	 	StateTEXAS:as.factor(Year)2011 -1.184*** -1.196 

	 (0.414) (1.291) 
	 	 	StateVERMONT:as.factor(Year)2011 -0.214 -0.223 

	 (1.096) (5.014) 
	 	 	StateVIRGINIA:as.factor(Year)2011 -1.301*** -1.291 

	 (0.437) (1.463) 
	 	 	StateWASHINGTON:as.factor(Year)2011 0.263 0.319 

	 (0.442) (1.498) 
	 	 	StateCALIFORNIA:as.factor(Year)2012 -0.484 -0.186 

	 (0.447) (1.232) 
	 	 	StateCOLORADO:as.factor(Year)2012 0.340 0.358 

	 (0.499) (1.801) 
	 	 	StateCONNECTICUT:as.factor(Year)2012 -0.321 -0.350 

	 (0.487) (1.690) 
	 	 	StateFLORIDA:as.factor(Year)2012 -0.086 -0.082 

	 (0.437) (1.379) 
	 	 	StateGEORGIA:as.factor(Year)2012 0.122 0.145 

	 (0.481) (1.682) 
	 	 	StateILLINOIS:as.factor(Year)2012 0.098 0.109 

	 (0.452) (1.479) 
	 	 	StateINDIANA:as.factor(Year)2012 -0.732 -0.727 

	 (0.491) (1.749) 
	 	 	StateMAINE:as.factor(Year)2012 1.516 1.485 

	 (1.086) (4.936) 
	 	 	StateMARYLAND:as.factor(Year)2012 -0.279 -0.243 

	 (0.447) (1.437) 
	 	 	StateMASSACHUSETTS:as.factor(Year)2012 0.519 0.523 

	 (0.499) (1.800) 
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StateMICHIGAN:as.factor(Year)2012 -0.841* -0.754 

	 (0.431) (1.325) 
	 	 	StateMINNESOTA:as.factor(Year)2012 0.746 0.778 

	 (0.545) (2.083) 
	 	 	StateNEW	JERSEY:as.factor(Year)2012 -0.151 -0.143 

	 (0.451) (1.474) 
	 	 	StateNEW	MEXICO:as.factor(Year)2012 -0.490 -0.494 

	 (0.616) (2.492) 
	 	 	StateNEW	YORK:as.factor(Year)2012 0.442 0.488 

	 (0.455) (1.494) 
	 	 	StateNORTH	CAROLINA:as.factor(Year)2012 -0.339 -0.345 

	 (0.458) (1.528) 
	 	 	StateOREGON:as.factor(Year)2012 0.454 0.496 

	 (0.499) (1.800) 
	 	 	StateRHODE	ISLAND:as.factor(Year)2012 0.171 0.127 

	 (0.828) (3.623) 
	 	 	StateTENNESSEE:as.factor(Year)2012 -0.680 -0.678 

	 (0.464) (1.568) 
	 	 	StateTEXAS:as.factor(Year)2012 -1.063** -1.030 

	 (0.425) (1.285) 
	 	 	StateVERMONT:as.factor(Year)2012 1.145 1.150 

	 (1.086) (4.940) 
	 	 	StateVIRGINIA:as.factor(Year)2012 -0.855* -0.807 

	 (0.445) (1.447) 
	 	 	StateWASHINGTON:as.factor(Year)2012 0.192 0.250 

	 (0.453) (1.495) 
	 	 	StateCALIFORNIA:as.factor(Year)2013 -1.150** -0.340 

	 (0.560) (1.225) 
	 	 	StateCOLORADO:as.factor(Year)2013 0.289 0.297 

	 (0.487) (1.790) 
	 	 	StateCONNECTICUT:as.factor(Year)2013 -0.162 -0.203 

	 (0.474) (1.673) 
	 	 	StateFLORIDA:as.factor(Year)2013 -0.242 -0.231 

	 (0.425) (1.369) 
	 	 	



	

-227-	
	

StateGEORGIA:as.factor(Year)2013 1.089** 1.200 

	 (0.469) (1.668) 
	 	 	StateILLINOIS:as.factor(Year)2013 0.030 0.007 

	 (0.441) (1.470) 
	 	 	StateINDIANA:as.factor(Year)2013 -0.883* -0.892 

	 (0.479) (1.732) 
	 	 	StateMAINE:as.factor(Year)2013 1.322 1.255 

	 (1.081) (4.928) 
	 	 	StateMARYLAND:as.factor(Year)2013 -0.562 -0.561 

	 (0.434) (1.427) 
	 	 	StateMASSACHUSETTS:as.factor(Year)2013 0.404 0.413 

	 (0.488) (1.790) 
	 	 	StateMICHIGAN:as.factor(Year)2013 -0.891** -0.826 

	 (0.419) (1.314) 
	 	 	StateMINNESOTA:as.factor(Year)2013 0.220 0.209 

	 (0.535) (2.076) 
	 	 	StateNEW	JERSEY:as.factor(Year)2013 -0.034 -0.017 

	 (0.440) (1.462) 
	 	 	StateNEW	MEXICO:as.factor(Year)2013 -0.743 -0.781 

	 (0.604) (2.472) 
	 	 	StateNEW	YORK:as.factor(Year)2013 0.411 0.488 

	 (0.442) (1.484) 
	 	 	StateNORTH	CAROLINA:as.factor(Year)2013 -0.721 -0.737 

	 (0.445) (1.518) 
	 	 	StateOREGON:as.factor(Year)2013 0.609 0.645 

	 (0.487) (1.789) 
	 	 	StateRHODE	ISLAND:as.factor(Year)2013 0.089 0.022 

	 (0.817) (3.600) 
	 	 	StateTENNESSEE:as.factor(Year)2013 -0.744* -0.759 

	 (0.451) (1.553) 
	 	 	StateTEXAS:as.factor(Year)2013 -1.305*** -1.237 

	 (0.412) (1.275) 
	 	 	StateVERMONT:as.factor(Year)2013 1.512 1.507 

	 (1.079) (4.925) 
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StateVIRGINIA:as.factor(Year)2013 -0.923** -0.908 

	 (0.432) (1.434) 
	 	 	StateWASHINGTON:as.factor(Year)2013 0.476 0.574 

	 (0.441) (1.484) 
	 	 	StateCALIFORNIA:as.factor(Year)2014 -1.664** -0.427 

	 (0.701) (1.226) 
	 	 	StateCOLORADO:as.factor(Year)2014 0.064 0.056 

	 (0.492) (1.791) 
	 	 	StateCONNECTICUT:as.factor(Year)2014 -0.725 -0.764 

	 (0.475) (1.676) 
	 	 	StateFLORIDA:as.factor(Year)2014 -0.308 -0.293 

	 (0.430) (1.369) 
	 	 	StateGEORGIA:as.factor(Year)2014 1.364*** 1.607 

	 (0.480) (1.667) 
	 	 	StateILLINOIS:as.factor(Year)2014 -0.433 -0.461 

	 (0.445) (1.470) 
	 	 	StateINDIANA:as.factor(Year)2014 -0.817* -0.832 

	 (0.483) (1.730) 
	 	 	StateMAINE:as.factor(Year)2014 0.724 0.642 

	 (1.083) (4.933) 
	 	 	StateMARYLAND:as.factor(Year)2014 -0.883** -0.894 

	 (0.439) (1.428) 
	 	 	StateMASSACHUSETTS:as.factor(Year)2014 0.035 0.027 

	 (0.494) (1.791) 
	 	 	StateMICHIGAN:as.factor(Year)2014 -1.044** -0.979 

	 (0.423) (1.314) 
	 	 	StateMINNESOTA:as.factor(Year)2014 -0.318 -0.333 

	 (0.540) (2.080) 
	 	 	StateNEW	JERSEY:as.factor(Year)2014 -0.558 -0.598 

	 (0.445) (1.464) 
	 	 	StateNEW	MEXICO:as.factor(Year)2014 -0.748 -0.795 

	 (0.608) (2.469) 
	 	 	StateNEW	YORK:as.factor(Year)2014 0.212 0.309 

	 (0.446) (1.484) 
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StateNORTH	CAROLINA:as.factor(Year)2014 -0.986** -0.998 

	 (0.450) (1.518) 
	 	 	StateOREGON:as.factor(Year)2014 0.384 0.406 

	 (0.492) (1.789) 
	 	 	StateRHODE	ISLAND:as.factor(Year)2014 -0.329 -0.388 

	 (0.820) (3.605) 
	 	 	StateTENNESSEE:as.factor(Year)2014 -1.068** -1.111 

	 (0.456) (1.555) 
	 	 	StateTEXAS:as.factor(Year)2014 -1.458*** -1.348 

	 (0.418) (1.274) 
	 	 	StateVERMONT:as.factor(Year)2014 1.024 0.990 

	 (1.081) (4.928) 
	 	 	StateVIRGINIA:as.factor(Year)2014 -1.145*** -1.134 

	 (0.438) (1.434) 
	 	 	StateWASHINGTON:as.factor(Year)2014 0.290 0.367 

	 (0.446) (1.484) 
	 	 	Constant -0.683 -0.299 

	 (0.415) (1.196) 
	 	 		Observations 1,368 1,368 
Log	Likelihood -5,955.114 	
theta 3.419***	(0.177) 	
Akaike	Inf.	Crit. 12,156.230 	
	Note: *p**p***p<0.01 
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