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Abstract: This paper describes a practical method of adjusting existing Institute of Transportation Engineers 
(ITE) estimates to produce more accurate estimates of motor-vehicle trip-generation at developments in smart-
growth areas. Two linear regression equations, one for an A.M. peak-hour adjustment and one for a P.M. 
peak-hour adjustment, were developed using vehicle trip counts and easily measured site and surrounding area 
context variables from a sample of 50 smart-growth sites in California. Many of the contextual variables that 
were associated with lower vehicle trip generation at the smart-growth study sites were correlated. Therefore, 
variables representing characteristics such as residential population density, employment density, transit ser-
vice, metered on-street parking, and building setback distance from the sidewalk were combined into a single 
“smart-growth factor” that was used in the linear regression equations. The A.M. peak-hour and P.M. peak-hour 
adjustment equations are only appropriate for planning-level analysis at sites in smart-growth areas. In addition, 
the method is only appropriate for single land uses in several common categories, such as office, mid- to high-
density residential, restaurant, and coffee/donut shop. The method uses data from California, but the method-
ological approach could provide a framework for adjusting ITE trip-generation estimates in smart-growth areas 
throughout the United States.
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1	 Introduction

The California Environmental Quality Act (CEQA) and other state, federal, and local laws require the 
identification, analysis, and mitigation of transportation-related impacts of proposed land-use proj-
ects. The first step in preparing a transportation impact analysis is to estimate the number of trips by 
motorized vehicles and other modes of travel that may result from a proposed land-use project—a 
process commonly referred to as “trip generation.” Currently, most trip-generation analyses estimate 
motor-vehicle trips using rates published by the Institute of Transportation Engineers (ITE), a national 
professional organization. 

ITE’s trip-generation rates typically relate vehicle trip counts to a measure of building size (e.g., 
gross square footage, number of units) for a particular land-use classification. Most of the rates are based 
on vehicle counts obtained at suburban locations that may or may not have transit or bicycle and pedes-
trian facilities, and ITE guidelines state that these rates should not be used for land-use projects located 
in urban areas near transit and within easy walking distance of other land uses (ITE 2004). In other 
words, projects in “smart-growth” areas are not covered by the current industry practice. The absence of 
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an accepted trip-generation method is a problem for communities that need to assess the transportation 
impacts of smart-growth land-use projects.

One approach that has been used to address this problem is to apply the available, suburban-based 
ITE rates to smart-growth developments. This approach ignores ITE guidance, but it is the only option 
known to many communities. Not surprisingly, many recent studies of urban infill, mixed-use, transit-
oriented, and other smart-growth developments indicate that this approach overestimates the number 
of vehicle trips generated by more than 25 percent (Tindale Oliver and Associates 1993; Steiner 1998; 
Muldoon and Bloomberg 2008; Arrington and Cervero 2008; Kimley Horn Associates 2009; Bochner 
et al. 2011; Schneider et al. 2013a). This current practice leads communities to overprescribe motor 
vehicle infrastructure in smart-growth areas, resulting in wider roadways, more turning lanes, more 
parking spaces, and larger parking lots than necessary. This motor vehicle infrastructure may also impose 
higher costs on developers than would be assessed to provide a balanced set of automobile, pedestrian, 
public transit, and bicycle accommodations, creating a disincentive for smart-growth land-use projects.

A second approach to overcome the lack of an accepted trip-generation method for smart-growth 
areas is to make adjustments to the existing ITE rates or develop a completely different trip-generation 
technique. This paper describes the development of a new, practical method to adjust existing ITE rates 
and estimate motor-vehicle trip generation for smart-growth land-use development projects. While the 
method is based on a relatively small sample of data collected in California, the methodological ap-
proach may provide a framework for adjusting ITE vehicle trip-generation estimates in smart-growth 
areas throughout the United States.

2	 Literature review

Several trip-generation methods have been developed as alternatives to the standard ITE approach. 
These methods include:

•	 ITE Multi-Use Method (ITE 2004). This method is based on vehicle trip data collected at 
three multi-use sites in Florida during the 1990s and is presented in Chapter 7 of the ITE Trip 
Generation Handbook.

•	 NCHRP 8-51 Method (Bochner et al. 2011). This method is an enhancement of the current ITE 
handbook Multi-Use Method based on data collected at six sites and tested at three different sites.

•	 United States Environmental Protection Agency (EPA)/San Diego Association of Governments 
(SANDAG) Method (SANDAG 2010). This method was originally developed by the EPA 
using household travel survey data from large multi-use sites in six metropolitan areas in the 
United States. SANDAG adopted this method.

•	 URBEMIS (“Urban Emissions”) Method (Jones and Stokes Associates 2007). This method, 
developed by the California Air Quality Management Districts and California Department of 
Transportation, makes adjustments to ITE trip-generation estimates based on variables such as 
density, mixed-use, transit, street connectivity, bicycle and pedestrian facilities, and transporta-
tion demand.

•	 Metropolitan Transportation Commission (MTC) Survey Method (MTC 2006). This method 
is based on the MTC 2000 Travel Survey and makes adjustments to ITE rates using variables 
such as density and proximity to rail or ferry transit.

•	 San Francisco Method (City and County of San Francisco 2002). This meth-
od estimates person-trips by mode (e.g., auto, transit, walk, other). Person-
trip mode shares are based on data from the San Francisco Citywide Trav-
el Behavior Survey and traffic analyses from various environmental impact reports.  
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•	 New York City (Rizavi and Yeung 2010). New York’s City Environmental Quality Review 
method recommends that transportation impact assessments be based on original pedestrian, 
bicycle, transit, and automobile person-trip data collected at a nearby site or a study already 
conducted at a similar New York City land use with comparable travel characteristics before 
considering the ITE Trip Generation method.

All of these tools have the potential to perform better than the suburban-based ITE Trip Gen-
eration method for predicting vehicle trip generation in smart-growth areas. Shafizadeh, et al. (2012) 
evaluated the operational characteristics and accuracy of the first five methods listed above (the San 
Francisco and New York methods were not considered to have broad applicability outside of these 
cities). Operational characteristics were evaluated by a panel of experts, according to criteria in the fol-
lowing categories: 1) ease of use, 2) sensitivity to key smart-growth elements, 3) input requirements, 4) 
output features, and 5) usability of the approach in helping to define smart-growth projects based on 
their performance. While each of the methods has advanced the state-of-the-practice, this evaluation 
identified practical limitations to using each of the methods. Shafizadeh et al. (2012) also used motor 
vehicle count and intercept survey data from 22 California sites to evaluate the predictive accuracy of 
each of these alternative approaches. None of the alternative methods provided results that were consis-
tently more accurate than any of the other test methods, but all of these methods still performed better 
than the existing ITE method.

Other promising methods of adjusting ITE motor vehicle trip-generation estimates are being de-
veloped. For example, Clifton et al. (2012a) identified eight regional built-environment categories in the 
Seattle region and used a binary logit model to estimate the probability of choosing a personal vehicle 
versus using another mode for trips in each built-environment category. In general, built-environment 
categories with higher density and more mixed land uses had greater vehicle trip reductions than sub-
urban and exurban categories. In addition, Clifton et al. (2012b) combined trip-generation data from 
establishment surveys in the Portland, Ore., region with land-use classification and community context 
variables to develop models to adjust ITE P.M. peak-hour vehicle-trip rates at “high-turnover (sit-down) 
restaurants,” “24-hour convenience markets,” and “drinking establishments”—as defined by the existing 
ITE approach.

The United Kingdom and New Zealand have also developed multimodal trip generation methods 
based on large databases for urban areas and provide actual trip rates rather than adjustments to ITE 
rates (Trip Rate Information Computer System 2013; New Zealand Trips and Parking Database Bureau 
2013). However, since the trip-generation contexts are different in these countries (e.g., different trans-
portation facility design guidelines, transportation costs, and cultures), they are not likely to be appli-
cable in the United States. Additional details about alternative trip-generation methods are summarized 
by Shafizadeh et al. (2012) and Clifton et al. (2012a).

3	 Method development

Our method to adjust ITE vehicle trip-generation estimates is based on data from more than 50 smart-
growth study sites in California. It consists of two separate regression models, one that produces a morn-
ing (A.M.) peak-hour adjustment and one that produces an afternoon (P.M.) peak-hour adjustment. 
The sections below provide an overview of the study sites, smart-growth context variables, and modeling 
approach. Additional details about the specific locations of study sites, site development intensity (e.g., 
residential dwelling units, commercial gross square feet), differences between actual and ITE-estimated 
trips, individual explanatory variables, statistical modeling considerations, validation, and other aspects 
of method development are available in the project report (Schneider et al. 2013b). Note that the term 
“trips,” used in this study to represent the total number of inbound plus outbound trips generated by each 



72 JOURNAL OF TRANSPORT AND LAND USE 8.1

study site, is functionally equivalent to the term “trip-ends,” which is used by ITE (ITE 2004). In addi-
tion, the term “study site” refers to all 65 locations where data were collected for the study. Most of these 
data were from individual land uses. Some of these individual land uses were the only use on a property; 
others were part of a multi-use development but were isolated for data collection. Some data were also 
collected on the boundary of properties with more than one land use (i.e., multi-use developments).
3.1	 Study sites

Trip-generation data were gathered from sites in the Los Angeles, San Diego, San Francisco, Oakland, 
and Sacramento regions that met specific smart-growth criteria. These study regions ranged in size from 
fewer than 2.2 million people at an average density of fewer than 200 people per square km (Sacramento 
Metropolitan Statistical Area) to more than 12 million people at an average density of more than 1000 
people per square km (Los Angeles Metropolitan Statistical Area). Study sites in the less-populated 
regions tended to be concentrated closer to the central business district than study sites in the more-
populated regions because only the cores of less-populated regions met the minimum criteria to be 
classified as smart growth.

Since trip-generation data are relatively rare in smart-growth areas, the research team, with assis-
tance from a panel of practitioners, compiled recent data (2006 or later) from as many sites as possible. 
Site trip-generation counts came from several different sources, including field data collection by the 
research team in Spring 2012. The sources and data collection approaches used at these sites are sum-
marized in Table 1.

Table 1:  Sources of trip generation data at study location.

Source #of Study Sites
Data Collection 

Timeframe

Data Collection 

Approach

Source for 

More Detailed 

Information

EPA MXD Study 3 Fall 2007
Pneumatic tube 

counts
US EPA (2013)

TCRP Report 128 5 Spring 2007
Pneumatic tube 

counts
Arrington and 
Cervero (2008)

Caltrans Infill Study 22

Spring 2006
Spring 2007

Fall 2007
Spring 2008

Fall 2008

Door counts and 
intercept surveys

Kimley Horn and 
Associates (2009)

San Diego Association of Governments 
(SANDAG) MXD Study

6
Fall 2008

Spring 2009
Pneumatic tube 

counts
SANDAG (2010)

Fehr and Peers data collection at multi- 
or mixed-use sites

2 Fall 2010
Pneumatic tube 

counts

Data were 
provided 

directly from 
Fehr and Peers 
Transportation 

Consultants 
(2010)

Research team field data collection 30 Spring 2012
Door counts and 
intercept surveys

Schneider et al. 
(2013b)
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Sites used for model development
Overall, 46 of the study sites were used for A.M. model development, and 50 of the sites were used for 
P.M. model development. These sites represented common land-use categories, including mid- to high-
density residential, office, coffee/donut shop, and general retail, as defined by ITE (Table 2).

Sites used for model validation
Some of the study sites were located close to another study site, and a few of the individual land uses 
where data were collected were actually part of the same development. The land uses that were a part of 
the same development shared nearly all of the same site and surrounding area characteristics, and includ-
ing them together in the model would violate the statistical modeling assumption that each data record 

was independent. To avoid this problem, sites within one-quarter mile of other sites and the second or 
third targeted land use within the same development were set aside for validation. For study sites in close 
proximity to each other, a random process was used to choose which site was included in the analysis 
versus the validation dataset. This process produced 11 sites for A.M. model validation and 13 sites for 
P.M. model validation.

3.2	 Modeling approach

The adjustment models were designed to be easy to understand and apply. Therefore, they used variables 
that are commonly available or could be measured easily with tools available to most practitioners.

Dependent Variable
The dependent variable in both the A.M. and P.M. peak-hour adjustment models was based on the ratio 
of the actual number of vehicle trips observed at each study site to the number of vehicle trips estimated 
from standard ITE rates. A natural log transformation was applied to this ratio to create the dependent 
variable: ln(actual vehicle trips/ITE-estimated vehicle trips).

This variable is easy to interpret. Smart-growth sites that have fewer vehicle trips (i.e., a greater dif-
ference between actual and ITE-estimated trips) have a smaller ratio of actual to ITE-estimated trips. 
The difference between actual and ITE-estimated trips could have been used as the dependent variable, 
but the ratio was selected because it controls for the size of sample sites (i.e., large sites tend to have large 
differences in the number of trips). The natural-log transformation was applied to the ratio to improve 
model fit. Descriptive statistics for the dependent variables used in the A.M. and P.M. models are shown 
in Table 3.

On average, the ratio of actual vehicle trips to ITE-estimated trips was 0.65 for the 46 sites studied 
during the A.M. peak hour (i.e., the ITE method estimated 1.5 times too many automobile trips) and 
was 0.58 for the 50 sites studied during the P.M. peak hour (i.e., the ITE method estimated 1.7 times 

Table 2:  Land-use categories for study sites.

General Land-Use Category A.M. Model P.M. Model

Mid-to High-Density Residential 20 20

Office 11 12

Coffee/Donut 3 3

Multi-Use Development 11 11

Retail 0 3

Other (Restaurant) 1 1

Total Sites 46 50
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too many automobile trips). If the ITE method overestimated vehicle trip generation by 1.5 or 1.7 times 
at all smart-growth sites, it would be simple to apply an adjustment factor (just divide by 1.5 or 1.7) to 
obtain the correct vehicle trip estimate. Yet, the discrepancy between ITE estimates and actual vehicle 
trips depended on the land use at the study site (Schneider et al. 2013a). It was also possible that the 
discrepancy depended on other site and surrounding built-environment variables. Therefore, to adjust 
ITE estimates correctly, the smart-growth adjustment models needed to consider a variety of influences 
on travel behavior.

Explanatory Variables
While the literature has identified many variables that link the surrounding context to travel behav-
ior (Handy et al. 2008; Levinson and Krizek 2008; Rodríguez et al. 2008; Ewing and Cervero 2010; 
Clifton et al. 2012b), only a subset of these variables are practical for trip-generation applications. The 
modeling process focused on variables that are readily available or relatively easy to measure. Several 
categories of contextual variables were hypothesized to be associated with the ratio of actual to ITE-
estimated vehicle trips, including:

•	 Land-use classification (e.g., office, coffee/donut shop).
•	 Site characteristics (e.g., off-street surface parking, building setback distance).
•	 Adjacent street characteristics (e.g., number of lanes, pedestrian and bicycle facilities).
•	 Surrounding area characteristics (e.g., population and employment density, neighborhood so-

cioeconomic characteristics).
•	 Proximity characteristics (e.g., distance to transit and other activity locations such as restaurants, 

retail, and university campuses).

Descriptive statistics for these explanatory variables are provided in the project report (Schneider 
et al. 2013c). 

After the database of potential explanatory variables was assembled, the research team examined 
correlations between the explanatory variables and the ratio of actual to ITE-estimated trips, as well as 
correlations among the explanatory variables. This process helped to identify which explanatory vari-
ables were the most promising to include in models (i.e., those with relatively high correlations with the 
dependent variable) and helped to identify related sets of explanatory variables. 

Modeling Process
Initially, the research team developed several ordinary least squares models to identify statistical associa-
tions between the most promising individual explanatory variables and the dependent variable for the 
A.M. peak hour and the P.M. peak hour. However, this approach pitted many correlated smart-growth 
explanatory variables against one another (e.g., if one smart-growth characteristic is present, such as high 
employment density, others are also likely to be present, such as frequent transit service and metered on-
street parking). The research team used a two-step method to address this problem.

First, factor analysis was applied to data from the 50 P.M. study sites to create a formula for a 

Table 3:  Dependent variable descriptive statistics.

Variable N Minimum Maximum Mean Std. Dev.

Actual A.M. vehicle trips/ITE-estimated A.M. vehicle trips 46 0.112 3.289 0.650 0.513

ln(actual A.M. vehicle trips/ITE-estimated A.M. vehicle trips) 46 -2.187 1.190 -0.648 0.664

Actual P.M. vehicle trips/ITE-estimated P.M. vehicle trips 50 0.090 2.215 0.583 0.356

ln(actual P.M. vehicle trips/ITE-estimated P.M. vehicle trips) 50 -2.413 0.795 -0.705 0.603
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“smart-growth factor” (SGF). Factor analysis is a common technique used in the travel behavior litera-
ture to address the challenge of correlated contextual variables (Cervero and Kockelman 1997). The 
factor analysis extraction was done using principal axis factoring, since this method accommodates 
variables that are not normally distributed (Costello and Osborne 2005). A single factor explained 49.5 
percent of the variation in the data, while the second factor only explained 17.3 percent of the variation, 
so the single factor was selected as the SGF. All of the factor loadings were substantial (six of the eight 
variables had factor loadings with absolute values greater than 0.6, and the lowest absolute value of a 
factor loading was 0.47).

The SGF is a linear combination of eight variables, each standardized to a mean of zero and stan-
dard deviation of one and weighted according to its contribution to explaining the variation among the 
50 P.M. study sites (Table 4). Variables included in the SGF represent distinguishing characteristics of 
smart-growth developments. Positive coefficients indicate that increasing the value of the variable pro-
duces a higher SGF value, which indicates that the site is more representative of smart-growth; negative 
coefficients indicate that increasing the value of the variable produces a lower SGF value, which indi-
cates that the site is less representative of smart-growth. Several other variables were also considered as 
potential components of the SGF (e.g., number of four-way intersections near the site; number of lanes 
on roadways bounding the site; percentage of households with no vehicles within the census tract at the 
site). However, after testing alternatives, the eight-variable SGF had the greatest statistical association 

Table 4:  Smart-growth factor.

Variable Coefficient1

Residential population within an 804-m (0.5-mile) straight-line radius (000s)2 0.099

Jobs within an 804-m (0.5-mile) straight-line radius (000s)3 0.324

Straight-line distance to center of central business district (CBD) (miles)4 -0.138

Average building setback distance from sidewalk (feet)5 -0.167

Metered on-street parking within a 161-m (0.1-mile) straight-line radius (1=yes, 0=no)6 0.184

Individual P.M. peak-hour bus line stops passing within a 402-m (0.25-mile) straight-line radius7 0.227

Individual P.M. peak-hour train line stops passing within a 804-m (0.5-mile) straight-line radius8 0.053

Proportion of site area covered by surface parking lots (0.00 to 1.00)9 -0.080

Notes:
1	 This coefficient is applied to the standardized version of the variable. The value is standardized to a mean of zero and 

standard deviation of one based on the mean and standard deviation of variable values from the 50 P.M. analysis sites.
2	 The 804-m (0.5-mile) straight-line radius is measured from the center of the site. This measure was calculated in GIS 

for model development using US Census block group data (2010), but it is also possible to estimate the population 
within 804-m (0.5-miles) from online sources.

3	 The 804-m (0.5-mile) straight-line radius is measured from the center of the site. This measure was calculated in GIS 
for model development using US Census block group data (2010), but it is also possible to estimate the employment 
within 804-m (0.5-miles) from online sources.

4	 Straight-line distance from center of study site to center of the regional central business district (CBD) (in miles; 1 mile 
= 1.61 km). 

5	 Average building setback is the average straight-line distance to the sidewalk from all major building entrances (in feet; 
1 foot = 0.305 m). Major entrances include the main pedestrian entrance and automobile garage entrances.

6	 Metered parking only includes metered on-street parking. Metered off-street surface lots or parking structures are not 
included. The 161-m (0.1-mile) straight-line radius is measured from the center of the site.

7	 Number of individual bus stop locations on all bus lines that pass within any part of a 402-m (0.25-mile) radius 
around the study site during a typical weekday P.M. peak hour. 

8	 Number of individual train stop locations on all train lines that pass within any part of a 804-m (0.5-mile) radius 
around the study site during a typical weekday P.M. peak hour. 

9	 Proportion of site surface area covered by surface parking lots does not include surface area covered by parking struc-
tures. Therefore, sites that only have parking garages should be given a value of 0.00.
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with the dependent variable, so it was used in the final models.
Means and standard deviations of each SGF component variable were calculated for the 50 P.M. 

study sites (Table 5). These values are necessary to calculate standardized versions of the variable for es-
timating and applying the models. For example, if the residential population within 804 m (0.5 miles) 
of a site is 15,000, the value of 15 (in thousands) is standardized using the mean (9.718) and standard 
deviation (6.811) of this variable (from Table 5). The standardized value is (15 – 9.718)/6.811 = 0.776. 
Then, the contribution of residential population to the overall SGF is the SGF coefficient (from Table 4) 
multiplied by the standardized value of this variable, or 0.099*0.776 = 0.0768. The final SGF for a site 
is the sum of the coefficient multiplied by the standardized value for all eight variables.

Second, the site SGF was considered as a potential explanatory variable in a series of ordinary least 
squares regression models. Other potential explanatory variables represented the land-use classification 
of the site, proximity to a major university campus, and socioeconomic characteristics of surround-
ing neighborhood residents. To determine the best possible models, the research team searched for an 
optimal balance between the overall explanatory power of each model, the statistical significance of the 
coefficients for individual variables, and the theoretical importance of the variables as predictors of travel 
behavior

The final A.M. and P.M. peak-hour models are shown in Table 6. Both models include the SGF 
and indicator variables for whether or not the study site is an office land use, is a coffee/donut shop land 
use, is a multi-use development, or is located within one mile of a major university campus.

Modeling Considerations
The overall fit for each model was in the range of other multivariate models relating travel behavior to 
the built environment (the adjusted R2-value was 0.294 for the A.M. model and 0.290 for the P.M. 
model). These adjusted R2-values are lower than many R2-values in the ITE Trip Generation Manual 
(2012). However, the Trip Generation Manual models express relationships between the number of 
trips and the size of projects, which, of course, are closely related. In contrast, the models presented here 

Table 5:  Smart-growth factor variable descriptive statistics based on 50 P.M. peak hour study sites.

Variable N Minimum Maximum Mean Std. Dev.

Residential population within an 804-m (0.5-mile) 
straight-line radius (000s)

50 0.787 42.109 9.718 6.811

Jobs within an 804-m (0.5-mile) straight-line radius (000s) 50 0.487 136.400 24.351 29.899

Straight-line distance to center of central business district 
(CBD) (in miles; 1 mile = 1.61 km)

50 0.029 40.100 7.746 9.489

Average building setback distance from sidewalk (in feet; 1 
foot = 0.305 m)

50 0.000 524.000 76.020 115.644

Metered on-street parking within a 161-m (0.1-mile) 
straight-line radius (1=yes, 0=no)

50 0.000 1.000 0.620 0.490

Individual P.M. peak-hour bus line stops passing within a 
402-m (0.25-mile) straight-line radius

50 0.000 255.000 43.420 50.836

Individual P.M. peak-hour train line stops passing within a 
804-m (0.5-mile) straight-line radius

50 0.000 59.000 6.820 12.141

Proportion of site area covered by surface parking lots (0.00 
to 1.00)

50 0.000 0.500 0.063 0.124
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predict an adjustment to trip rates that is independent of size. In other words, the new models account 
for variation above and beyond the basic effect of size on numbers of trips. In addition, the models in 
the Trip Generation Manual are based on a more homogeneous sample of sites (isolated, single-use, 
suburban developments) than the sites used in this study. Therefore, it is not appropriate to make a di-
rect comparison between R2-values in the Trip Generation Manual and the adjusted R2-values for these 
models.

Small sample sizes presented a challenge for modeling. In particular, some variable parameter es-
timates were insignificant (e.g., the SGF parameter in the A.M. model had a t-statistic of 0.857; the 
multi-use development indicator variable parameter in the P.M. model had a t-statistic of -0.381). These 
insignificant parameters were retained in the model for symmetry between the A.M. and P.M. versions 
and to ensure the sensitivity of the model to these variables. The ordinary least squares approach was 
used for simplicity and because it is consistent with the current approach by ITE. Because the primary 
purpose of the models is to identify an adjustment factor that can be applied to the ITE-estimated 
vehicle trips, they are useful for practical application despite the small sample size on which they are 
based. Future efforts to add more study sites to the modeling dataset are likely to improve the accuracy 
of individual parameter estimates. 

The modeling dataset included 11 multi-use development sites. Multi-use developments, by defi-
nition, are a combination of several individual land uses. The character of trips generated by multi-use 
developments may be different than trips generated by the other sites (which were each distinct land 
uses), so these 11 sites were not ideal candidates for the dataset, but they helped increase the sample size 
for modeling purposes. The multi-use development indicator variable was included in the models to 
control for the possible unique influence of these sites (even though it had low statistical significance in 
the P.M. model). While this variable is important to include in the model to provide unbiased parameter 
estimates, it should not be used when applying the models to estimate vehicle trip-generation numbers 
(i.e., the value of this variable is always set to zero when the models are applied). The models are only for 
single-use sites or single land uses that are part of multi-use sites; the multi-use method described in the 
ITE Trip Generation Handbook should be used for multi-use sites.

Finally, the overall economic activity levels at each smart-growth study site could have been some-
what different than the activity levels present at the sites in the ITE Trip Generation Manual (2012). 
Economically robust sites could have higher trip generation and economically depressed sites could have 

Table 6:  Final A.M. peak-hour and P.M. peak-hour models.

Dependent Variable = Natural Logarithm of Ratio of Actual Peak-Hour Vehicle Trips to ITE-Estimated Peak-Hour 

Vehicle Trips

A.M. Model P.M. Model

Model Variables Coefficient t-statistic p-value Coefficient t-statistic p-value

Smart-Growth Factor (SGF) -0.096 -0.857 0.397 -0.155 -1.491 0.143

Office land use (1 = yes, 0 = no) -0.728 -3.182 0.003 -0.529 -2.558 0.014

Coffee shop land use (1 = yes, 0 = no) -0.617 -1.677 0.101 -0.744 -2.339 0.024

Multi-use development (1 = yes, 0 = no) -0.364 -1.561 0.127 -0.079 -0.381 0.705

Within 1 mile of university (1 = yes, 0 = no) -1.002 -2.285 0.028 -0.311 -1.099 0.278

Constant -0.304 -2.460 0.018 -0.491 -4.469 0.000

Overall Model

Sample Size (N) 46 50

Adjusted R2-Value 0.294 0.290

F-Value (Test value) 4.74 (p = 0.002) 4.99 (p = 0.001)
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lower trip generation than the average trip-generation level assumed by ITE for each land-use classifica-
tion. It was not possible to control for these possible variations in the modeling process.

3.3	 Model validation

The models predict the ratio of actual to ITE-estimated vehicle trips at smart-growth sites. For the 46 
A.M. study sites, the average model-predicted value was 0.56 (i.e., the ITE method estimated 1.8 times 
too many vehicle trips), and for the 50 P.M. study sites, the average model-predicted value was 0.52 (i.e., 
the ITE method estimated 1.9 times too many vehicle trips).

Eleven sites with A.M. peak-hour trip-generation data and 13 sites with P.M. peak-hour trip-gen-
eration data were reserved for model validation. The validation sites covered the same general land-use 
categories as the model development sites, except they did not include any multi-use sites (since the 
method is not intended for multi-use sites). Validation was done by comparing the model-predicted 
values with observed values at the validation sites (Figure 1 for A.M. and Figure 2 for P.M.). This com-
parison showed that the models predicted the smart-growth adjustment fairly well at some validation 
sites but not at other sites: The model-predicted value was within 50 percent of the observed value at 
seven of the 11 A.M. sites and seven of 13 P.M. sites. In general, the models tended to overestimate at 
the validation sites (i.e., sites had fewer vehicle trips than the model predicted; most data points in Figure 
1 and Figure 2 are below the diagonal line indicating model-predicted values equal to observed values). 
Thus, the models tended to produce more conservative adjustments to ITE-estimated vehicle trips than 
could potentially be justified based on observed data.

4	 Application

The method was designed to be applied in practice. A user-friendly spreadsheet was created that includes 
internal formulas with the model equations, making it easy for practitioners to enter input variable val-
ues and derive estimated vehicle trips.

Because the models are based on study sites in smart-growth areas, they should be applied only to 
sites in smart-growth locations. Therefore, the criteria listed in Table 7 have been established to identify 
sites where it is appropriate to use the models. These criteria are generally more stringent (i.e., more 
representative of smart-growth) than the minimum values of the variables from sites used for model de-
velopment. This conservative approach helps to ensure that the locations where the models are applied 
truly represent smart-growth. Additional details about specific criteria are available in the project report 
(Schneider et al. 2013c).

5	 Future research

There is currently no commonly accepted methodology in the United States for estimating vehicle trip-
generation rates associated with smart-growth projects. This lack of a commonly accepted methodology 
makes it very difficult for practitioners to accurately estimate the traffic impacts of such projects or to 
identify and recommend appropriate or adequate transportation “mitigations,” including pedestrian, 
bicycle, and transit facilities. The models presented in this paper were based on the best trip-generation 
data available from smart-growth sites in California, which are still relatively limited, so they represent an 
important step forward that can be followed by future research to improve model accuracy and broaden 
model applicability. Therefore, it is important to test the models in other urban regions. This will show 
whether or not the model results are consistent for sites in regions with different spatial structure, den-
sity, economic, or climate characteristics than the regions used in this study. Future research could also 
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collect more data to increase the sample size for analysis, test additional variables (e.g., measures of land-
use mix; proximity to important activity centers besides the regional central business district), and create 
separate adjustment models for each broad land-use category (e.g., a residential model, an office model, 

Category Criteria for Model Application

Land-Use Classification •	Models are recommended for the following ITE Land-Use Codes1:
ºº Mid- to high-density residential (220, 222, 223, 230, 232)
ºº Office (710)
ºº Restaurant (931, 939)
ºº Coffee/donut shop (936)
ºº P.M. model may be appropriate for the following ITE Land-Use 
Codes2:

ºº Retail (820, 867, 880)
ºº Models are not appropriate for special attractor land uses (e.g., stadi-
ums, military bases, commercial airports, major tourist attractions) 
within a 402-m (0.25-mile) straight-line radius of the center of the site3

Smart-Growth Development Characteristics •	Models are recommended only for sites that meet all three of the follow-
ing criteria:
ºº The area within an 804-m (0.5-mile) straight-line radius of the site is 
mostly (>80%) developed (rural land and open space are “undevel-
oped”)

ºº There is a mix of land uses within a 402-m (0.25-mile) radius of the 
site (i.e., there are at least two different major land-use categories, such 
as residential, office, retail, industrial, etc.)

ºº J>4,000 and R>(6,900-0.1J), where J is the number of jobs within an 
804-m (0.5-mile) radius of the site and R is the number of residents 
within an 804-m (0.5-mile) radius of the site4

Smart-Growth Transportation Characteristics •	Models are recommended only for sites that meet the following smart-
growth transit service criterion: 
ºº During a typical weekday P.M. peak hour, there is transit service with 
at least: a) 10 bus stop locations on all bus lines that pass within any 
part of a 402-m (0.25-mile) straight-line radius around the study site, 
or b) 5 individual train stop locations on all train lines that pass within 
any part of a 804-m (0.5-mile) radius around the study site

•	Models are recommended only for sites that meet at least one of the two 
following smart-growth pedestrian or bicycle criteria:
ºº There is at least one designated bicycle facility within two blocks of the 
edge of the site5

ºº There is >50% sidewalk coverage on streets within a 402-m (0.25-mile) 
straight-line radius of the site

Notes:
1	 ITE Land-Use Codes are from the ITE Trip Generation Manual, ninth edition, 2012.
2	 The P.M. model was developed using several retail land uses (with ITE Land-Use Codes 820, 867, and 880), so it 

could be appropriate for these classifications. It could also be appropriate for other retail uses (e.g., 813, 814, and 
815) that are likely to experience vehicle trip reductions similar to the reductions experienced by residential, office, 
restaurant, and coffee/donut shop uses when they are located in smart-growth areas. However, the P.M. model should 
be applied with caution to other types of retail land uses (e.g., a retail store that sells heavy goods may generate mo-
tor vehicle trip numbers similar to standard ITE predictions even if it is in a smart-growth area). Note that the A.M. 
model does not apply to retail uses.

3	 This criterion is necessary to avoid applying the models in locations that may have abnormally high trip activity.
4	 The minimum values for jobs and residents are based on characteristics of the study sites used for model development. 

Both inequalities are based on empirical data.
5	 Designated bicycle facilities include multi-use trails, cycle tracks, and bicycle lanes; they do not include shared lane 

markings or basic bicycle route signs without any other facilities.

Table 7:  Criteria for model application.
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Figure 1:  A.M. model validation: Observed vs. model-predicted values.

Figure 2:  P.M. model validation: Observed vs. model-predicted values.
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a coffee shop model, and a model that could be used for whole multi-use developments). While the 
models were based on data collected in California, the methodological approach provides a framework 
for adjusting ITE trip-generation estimates in smart-growth areas outside of California. 

The next edition of the ITE Trip Generation Handbook is likely to support a person-trip-based 
approach for trip-generation analysis. Therefore, the research team also considered developing smart-
growth trip-generation models based on the percentage of trips made by walking, bicycling, and public 
transit at each site. However, 16 sites in the dataset only had vehicle-trip counts and did not include 
trips by mode, so they would have been removed from the analysis. This exclusion of sites would have 
made the dataset too small to develop reliable models. Future data collection efforts should capture 
person-trip data so that this information can be used to develop multimodal trip-generation models for 
smart-growth areas.

Future studies could compare the accuracy and applicability of the method described in this pa-
per with other recently developed trip-generation adjustment methods. This would include comparing 
the trip-generation estimates from each method to ground-truth counts and evaluating ease of use for 
practitioners, for example, using the method employed by Shafizadeh et al. (2012). These comparisons 
could eventually suggest refinements to improve each individual method or lead to a combined method 
with greater predictive power.

6	 Conclusion

This paper presents models that can be used to adjust ITE motor-vehicle trip-generation estimates at 
smart-growth sites based on specific contextual characteristics. One model applies to the A.M. peak 
hour and the other applies to the P.M. peak hour. It is likely that the small-sample models were not 
able to account for all of the complex variation in sites, including different levels of economic activity at 
particular locations. For sites where the models did not predict vehicle trip generation well, validation 
checks showed that the models provided conservative vehicle-trip reductions (i.e., overestimated vehicle 
trips compared to actual counts at most validation sites). While the models are not without their caveats, 
they represent a significant step forward in developing methods to adjust ITE vehicle trip-generation 
estimates in locations with smart-growth characteristics.
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