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A Stochastic Multi-agent Optimization Model for Energy
Infrastructure Planning under Uncertainty and Competition

Zhaomiao Guoa, Yueyue Fana,∗

aDepartment of Civil and Environmental Engineering
University of California Davis, CA 95616

Abstract

This paper presents a stochastic multi-agent optimization model that supports energy infrastruc-

ture planning under uncertainty. The interdependence between different decision entities in the

system is captured in an energy supply chain network, where new entrants of investors compete

among themselves and with existing generators for natural resources, transmission capacities,

and demand markets. Directly solving the stochastic energy supply chain planning problem

is challenging. Through decomposition and reformulation, we convert the original problem to

many traffic network equilibrium problems, which enables efficient solution algorithm design.

Keywords: energy supply chain, oligopolistic market, equilibrium, stochastic multi-agent

optimization, decomposition

1. INTRODUCTION

Renewable energy sources (e.g. wind, solar, bioenergy, etc.) have catapulted to the forefront

of the energy, environment, and national security debate. Many countries, especially the United

States, have passed aggressive renewable portfolio standards (such as California’s Renewables

Portfolio Standard, EPAct2005 Renewable Fuel Standard, and the presidential initiative), re-5

quiring renewable resources to produce anywhere between 20% - 33% of the electricity usage. It

is less clear that the infrastructure systems needed to produce and deliver renewable energy will

be in place to meet these standards in an efficient and sustainable manner. One of the roadblocks

in meeting these standards is the complexity associated with renewable energy infrastructure

systems, brought by the correlations and interactions between three major components: natural10

phenomena, renewable energy production systems, and current infrastructures (e.g. electricity

grid). Critical to gaining a better understanding of this complexity is the ability to model the
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close coupling between these components so that effective energy planning decisions can be made

at a system level.

To this end, several modeling challenges need to be addressed. First of all, a power supply15

system often involves non-cooperative behaviors of multiple decision entities. Typically, there

are multiple generation companies supplying electricity to a region’s electricity grid, which is

usually operated by a separate non-profit Independent System Operator (ISO). ISO is in charge

of coordinating, controlling and monitoring the operation of the electrical system in order to

keep stability and efficiency of the network and instantaneously balance supply and demand20

(CalISO, 2013). Capturing the interactive behaviors of different system players simultaneously

presents a great modeling challenge. Secondly, the physical infrastructure facilities for producing

and delivering energy are also interdependent due to their spatial and functional correlations

(Rinaldi et al., 2001). This requires a “supply chain” framework that considers the entire energy

path from an energy feedstock resource to the end users. Coping with uncertainty is another25

major challenge. Renewable energies, compared with conventional fuels, face more uncertainties

in future feedstock supply, due to unpredictable weather conditions and changing regulations

and policies (Lew and Piwko, 2010). Despite of the importance of addressing uncertainties

in renewable energy supply system planning as identified in (IEA, 2006), very few stochastic

models exist in renewable energy infrastructure planning literature.30

Regarding non-cooperative behaviors among multiple decision entities, several stochastic

oligopolistic models exist in the energy modeling literature, such as (Genc et al., 2007; Pineau

and Murto, 2003). These models are non-spatial in the sense that the network structure of

the electricity supply system is not incorporated. There are also studies approaching from an

energy supply chain perspective, mainly contributed by Nagurney and coauthors. For example,35

Nagurney (2006) and Nagurney et al. (2007) showed that a supply chain network equilibrium

problem is equivalent to a traffic network equilibrium problem by using the concept of super

network structure and variational inequalities. Matsypura et al. (2007) modeled the operations

of both renewable and nonrenewable fuel suppliers in a supply chain network. Liu and Nagurney

(2009) developed an integrated approach for modeling electricity and other types of fuel markets40

simultaneously while considering both the economic transaction and the physical transmission

of energy flow over the supply chain network. Liu and Nagurney (2011) proposed an analytical

model for energy firm merging and acquisition through supply chain network integration. Most

of these past studies were based on deterministic approaches, assuming perfect foresight of

model input parameters. A recent paper by Liu and Nagurney (2013) extended their methods45
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to include demand and cost uncertainty in power market operation using a two-stage stochastic

programming framework.

In this paper, we establish a stochastic multi-agent optimization model that supports long-

term renewable infrastructure planning. Rather than emphasizing on operational decisions

as in most power supply chain studies (Nagurney, 2006; Nagurney and Matsypura, 2007; Liu50

and Nagurney, 2007; Nagurney, 2014), we focus on strategic planning of energy production

infrastructure, which means the physical configuration of the supply chain network is not fixed.

In addition, we explicitly incorporate the transmission network between supplies and demands,

unlike the above mentioned non-spatial stochastic oligopolistic energy models and most existing

power supply chain models, which are built on simplified transshipment network (supply nodes55

and demand nodes are connected via direct links rather than a general transmission network).

This treatment allows us to better capture the network effects, but also requires innovative

computational methods to overcome the increases model complexity.

The remaining part of this paper will be organized as follows. In Section 2, we first introduce

a general stochastic modeling framework, which is an extension of the classic single-player two-60

stage stochastic programming to multi-decision-maker cases. We then describe the behavior

of each party involved in the power grid, and give specific assumptions and formulation of

the proposed model. In Section 3, we demonstrate how the original energy problem may be

reformulated and converted to multiple user-equilibrium traffic network assignment problems.

In Section 4, we present numerical results and draw planning and policy implications. The last65

section concludes the paper with insights, discussions, and future extensions.

2. MATHEMATICAL MODEL AND ANALYSES

2.1. A stochastic multi-agent optimization modeling framework

The research question is stated as: How should renewable energy investors strategically

plan their production infrastructure (where and at what capacities to build their production70

facilities), to ensure long-term economic benefit while integrating renewable energies with the

existing power grid?

Even though our emphasis is on the strategic planning of production infrastructure, the

cost-effectiveness of a planning decision depends on how the system is likely to be operated

afterwards. To model the planning and operational stages in an integrated framework, one75

should recognize the very distinguishable natures of the two types of decisions against uncer-

tainty, which may be related to demand, supply, and technology. At this point, let us use a
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general notation ξ to represent the uncertain vector. We assume ξ follows a discrete probabil-

ity distribution, described by a set of discrete scenarios and associated probabilities. Planning

decisions, such as infrastructure setup, are usually made before future uncertainty is revealed80

and are difficult to readjust once implemented. On the other hand, operational decisions such

as electricity production and dispatching quantities can be adjusted based on the actual realiza-

tion of uncertain parameters (for example, the actual demand or a more accurate hour-ahead

demand forecast). This feature fits well in a stochastic programming framework (Louveaux,

1986; Birge and Louveaux, 2011), which recognizes the non-anticipativity of planning decisions85

while allowing recourse for operational decisions.

The classic two-stage stochastic program for a single decision maker, in the simplest form,

may be presented as follows (Birge and Louveaux, 2011):

minimize
x

f(x) + Eξ [Q(x, ξ)] (1a)

subject to x ∈ F (1b)

Q(x, ξ) = inf
y
{g(x,y, ξ)|y ∈ G(x, ξ)} , (1c)

where x represents the planning-stage decision, and y the operational decision, which depends

on the choice of planning decision and the actual realization of the uncertain parameters ξ.

The objective is to minimize the first-stage planning cost, f(x), plus the expected value of the

second-stage operational cost, Q(x, ξ), subject to the feasibility constraints of x and y.90

In our problem, each decision entity makes her own decision, but needs to simultaneously

account for other decision entities’ behaviors given the interdependence among them. For ex-

ample, too much electricity generation at a local point may increase transmission congestion,

which could affect all parties in the power system. Using a two-player problem as an example,

the above formulation (1a ∼ 1c) may be extended to the following:

(x1,y1) = arg min
x1,y1

{f1(x1,x2) + Eξ [g1(x1,x2,y1,y2, ξ)]}

(x2,y2) = arg min
x2,y2

{f2(x1,x2) + Eξ [g2(x1,x2,y1,y2, ξ)]}

s.t. (x1,x2) ∈ F and (y1,y2) ∈ G(x1,x2, ξ),

where xi and yi(ξ) represent the planning decision and the operational decision of player i

(i = 1, 2), respectively; and fi and gi are the first-stage and second-stage costs of player i,

respectively. Each player aims at minimizing her own total planning and operating cost in

an average sense. Note that yi(ξ) is ξ-specific, but for brevity, we write it as yi. Also, for
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generality, we denote fi as a function of the planning decisions of both players, which may be95

simplified to fi(xi) in many cases. This problem may be classified as a stochastic multi-agent

optimization problem, for which new research endeavors are being pursued to better understand

the analytical and numerical properties (Jofre and Wets, 2014).

2.2. Detailed Formulation for Each Decision Entity

The electricity market in the US is generally considered as an oligopoly market, even though100

the levels of market competitiveness vary by regions (Bushnell et al., 2007). As pointed out in a

review paper on power generation planning (Kagiannas et al., 2004), as the electricity market has

undergone from monopoly to competition, studies dealing with both investment and operations

in an oligopolistic electricity market are critically needed. Depending on the decision variables

and anticipation of rivals’ reaction (Day et al., 2002), an US electricity market is often modeled105

based on one of the following:

• Cournot competition (Cournot and Fisher, 1897), which assumes each generator submits

a supply quantity instead of a pair of bidding price and supply capacity. The advantage of

Cournot models is that they allow for more complex market settings. If one is interested

in transmission network constraints or some detail generation characteristics, Cournot110

models are preferred (Willems et al., 2009; Hu et al., 2004). However, Cournot model is

known to be sensitive to demand parameters.

• Supply Function Equilibrium (SFE) Models are also widely used in electricity market.

SFE models assume firms can only submit one bid (i.e. available production quantity as a

function of price) for all demand realization, regardless of time and demand shock. They115

were developed to address varying demand conditions (Day et al., 2002).

In this study we adopt the concept of Cournot competition and compute the equilibrium

nodal electricity price given generators’ access locations and cost functions. These equilibrium

prices will be used by each firm to estimate its total revenue. Conceptually, choice between

Cournot and SFE models depends on whether companies are bidding without price dependency120

or bidding without market state dependency (Willems et al., 2009). Numerically, Cournot

competition is usually easier than SFE models due to issues of multiple equilibrium and unstable

solutions brought by the latter. It can be shown that if firms know exactly the market realization,

SFE and Cournot models yield the same solution (Willems et al., 2009).
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2.2.1. Modeling the decision of electricity generation companies125

A new energy generator that is entering the system has two types of decisions to make.

During the planning stage, it decides where and at what capacity to invest its production

facilities. At the operational stage, it chooses its best production or pricing strategy. This

generator makes all these decisions to maximize the expected total profit while taking into

account the decisions of other entities in the system. For each generation Firm ∀i ∈ I:130

maximize
gji (ξ),c

j
i

−
∑
k∈K

∑
j∈Jk

φc(c
j
i ) + Eξ

∑
k∈K

∑
j∈Jk

[
ρk(ξ)gji (ξ)− φg(gji (ξ), ξ)

] (2a)

subject to gji (ξ)− αj(ξ)cji ≤ 0, ∀j ∈ Jk, k ∈ K, ξ ∈ Ξ; (2b)

gji (ξ) ≥ 0, ∀j ∈ Jk, k ∈ K, ξ ∈ Ξ; (2c)

cji ≥ 0, ∀j ∈ Jk, k ∈ K. (2d)

where:

Jk : set of wind farm locations connecting to access point k, indexed by j;

K : set of access points, indexed by k;

I : set of companies, indexed by i;

cji : capacity allocated at location j by firm i;135

gji : production quantity by Firm i at location j ;

ρk : ISO’s electricity purchasing price at each accessing point k;

αj : renewable energy capacity discount factor at location j. This parameter is usually

weather dependent. For example in wind energy case, a less windy day would correspond

to a smaller value of αj ;140

φc(·) : total capital cost function with respect to facility capacity;

φg(·) : total production cost function with respect to generation quantity and scenario;

ξ : vector of uncertain parameters, whose support is denoted by Ξ.

Note that throughout the entire paper, we denote vectors in lowercase bold font. The objective

function (2a) maximizes the total profit of each firm, which is the total revenue minus the total145
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capital and production costs. The decision variables include the capacity and generation amount

at each potential production location. We assume that electricity can be sold at a uniform

price at each access point (Locational Marginal Price), so the total revenue is calculated by∑
k∈K

∑
j∈Jk ρkg

j
i . Constraint (2b) ensures that the total electricity generated at a production

facility does not exceed its production capacity. The rest are non-negative restrictions.150

2.2.2. Modeling the decision of Independent System Operator (ISO)

The ISO decides the wholesale price and transmission flow of each transmission line to

balance electricity supply and demand in the network instantaneously. Considering the non-

profit nature of ISO, we set its goal as to maximize total consumer surplus. Since ISO’s decisions

are operational, these can be adjusted based on the actual realization of future uncertainty,

i.e., scenario dependent. To capture congestion effect of transmission lines, we assume that

transmission cost is a monotone increasing function of the transmuted flow quantity, which is

a similar treatment as in (Hearn and Yildirim, 2002). Denote the transmission network by

G = (N ,V) , where N is the set of nodes (indexed by n) and V is the set of links (indexed by

a). Electricity from a supply (origin) node to a demand (destination) node is modeled as an

O-D flow. ISO’s decision, in a given scenario, is formulated as:

minimize
x,t

φt(v)Tv + ρ∗Tg −
∑
k∈K

∫ dk

0

wk(s)ds (3a)

subject to v =
∑
q∈Q

xq, (3b)

Axq = tqEq, ∀q ∈ Q, (3c)∑
q∈Q

tqEq+ = g, (3d)

∑
q∈Q

tqEq− = d, (3e)

xq ≥ 0, ∀q ∈ Q, (3f)

tq ≥ 0, ∀q ∈ Q. (3g)

where:

v : aggregated link flow vector. Each element corresponds to a link;

t : O-D flow vector. Each element corresponds to an O-D pair;

φt(·) : transmission cost function, which depends on link flow;155
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ρ∗ : equilibrium wholesale price vector. Each element corresponds to a node;

g : electricity supply vector. The jth element corresponds to the total energy supplied by

all companies at node j, that is gj =
∑
i∈I g

j
i ;

xq : link flow vector associated with OD pair q. Each element corresponds to a link ;

d : electricity demand vector. Each element corresponds to a node;160

dk : total electricity demand at node k;

wk (·) : inverse demand function at node k;

A : node-link incidence matrix, whose rows correspond to nodes and columns correspond

to links, with +1 indicates the starting node of a link and -1 the ending node.

Q : set of O-D pairs, indexed by q;165

tq : O-D flow associate with O-D pair q;

Eq : O-D incidence vector of O-D pair q with +1 at the origin and -1 at the destination;

Eq+ : “O” incidence vector of O-D pair q with +1 at the origin;

Eq− : “D” incidence vector of O-D pair q with +1 at the destination.

The objective function (3a) maximizes (minimizes the negative value of) the total consumer170

surplus. The first term in function (3a) is the total transmission cost, the second term is the

total whole-sale price for all the electricity consumed in the system. The summation of the first

two terms is the total price passed onto consumers. The third term is the willingness to pay by

all consumers. Constraint (3b) defines the aggregate link flow vector as the sum of all O-D flow

vectors. Constraints (3c ∼ 3e) ensure the flow conservation at each node, including the supply175

and demand nodes. The rest constraints set non-negative restrictions on flow and demand. We

shall point out that the market clearing conditions adopted in several studies, such as (Nagurney,

2006), are implied by the ISO formulation, which becomes clear in Section 2.4. Note that this

model, different from the typical DC models used for short-term transmission network operation,

incorporates elastic demand, which reflects long-term effect of market equilibrium.180

Directly solving the above stochastic multi-agent optimization model can be numerically

challenging. In Section 2.3, we show how the stochastic problem can be reduced to simpler

problems through scenario decomposition. In Section 2.4, we convert each scenario problem, by

8



using variational inequalities, to a traffic user equilibrium problem, for which efficient solution

algorithms have been developed in the transportation literature.185

2.3. Scenario Decomposition

There is a rich literature on scenario decomposition for solving large-scale stochastic pro-

gramming problems via augmented Lagrangian method (Rockafellar, 1976). Let us first intro-

duce an important concept, nonanticipavity (Rockafellar and Wets, 1991), which states that a

reasonable policy should not require different actions relative to different scenarios if the sce-

narios are not distinguishable at the time when the actions are taken. Let S be a discrete

set of possible scenarios for ξ and s(s ∈ S) denote an individual scenario with probability ps.

One may consider solving each scenario-dependent problem and denote its solution as xs for

each s. However, these solutions cannot be directly implemented, because at the time when

an investment decision is made, one does not know yet which scenario is going to happen. In

order to consolidate the s-dependent solutions to an implementable solution, we must impose

the following nonanticipativity condition:

xs = xs
′
,∀s ∈ S, s′ ∈ S, s 6= s′ (4)

or equivalently

xs − z = 0,∀s ∈ S (5)

where z is a vector of free variables.

Through introducing an augmented Lagrangian function that adds a penalty of violating

the nonanticipativity condition to the original objective function, Rockafellar and Wets (1991)

developed a scenario-decomposition method, the progressive hedging (PH) method, for classic190

two-stage stochastic programming problems involving a single decision-maker. In this work, we

extend the idea of scenario decomposition to multiple decision-maker cases.

Let xsi and ysi be the planning decision and the operational decision of player i(∈ I) in sce-

nario s(∈ S), respectively. The stochastic multi-agent optimization problem can be reformulated

as:

(xsi ,y
s
i ) = arg min

xs
i ,y

s
i

{
E
[
fi(x

s
i ,x

s
−i) + gi(x

s
i ,x

s
−i,y

s
i ,y

s
−i, ξ)

]}
,

s.t. (xsi ,x
s
−i) ∈ F, xsi = zi, and (ysi ,y

s
−i) ∈ G(xsi ,x

s
−i, ξ),

∀i ∈ I, s ∈ S
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For the ith player, define

Li(x,y, z,ω) =
∑
s∈S

ps
[
fsi (xs) + gsi (x

s,ys) + ωsi
T (xsi − zi) +

1

2
γ‖xsi − zi‖2

]
(6)

as the augmented Lagrangian, where ωsi is the dual vector associated with the nonanticipativ-

ity constraints (5) and γ > 0 is a penalty parameter. Therefore, the augmented Lagrangian

integrates the nonanticipativity constraints with the original objective function. The stochastic

problem for player i becomes

minimize Li(x,y, z,ω) over all feasible xsi and ysi . (7)

Due to the nonseparable penalty term 1/2γ‖xsi − zi‖2 in (6), the problem cannot be de-

composed directly. The PH method achieves decomposition by alternatingly fixing the scenario

solutions (xsi ,y
s
i ) and the implementable solution zi in (7). One may refer to (Rockafellar195

and Wets, 1991) for details of the PH method as a scenario-decomposition method for classic

two-stage stochastic programming problems.

2.4. Analyzing each scenario-dependent problem

Once the large-scale stochastic problem is decomposed, we need to iteratively solve many

scenario-dependent deterministic problems. Each scenario-dependent problem itself is a multi-200

agent optimization problem, which is still computationally challenging. Next, we will show that,

through creation of a virtual network and reformulation, we can convert the problem of interest

to a traffic equilibrium problem, which allows us to exploit efficient algorithms developed by

the transportation network science community. Of course, both multi-agent optimization and

traffic equilibrium problems can be expressed using variational inequalities (VI). In some sense,205

it is not surprising that the two problems can be converted to each other, even though the

equivalence is not apparent at first. For numerical implementation, one could directly rely on

general purpose solvers designed for VI problems. On the other hand, there is an advantage

in exploiting special problem structure, such as many efficient algorithms specifically developed

for traffic equilibrium problems.210

Let us first convert each player’s optimization to a VI. Note that all the functions and

variables are deterministic in each scenario dependent problem, therefore we do not carry the

notation ξ in the following discussion. Assuming objective function (2) is concave and continu-
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ously differentiable, the model can be rewritten as the following VI1:

∑
k∈K

∑
j∈Jk

{
−

ρ∗k +
∑
k′∈K

 ∂ρk′

∂gji

∣∣∣∣∣
g=g∗

∑
j∈Jk′

gj∗i

− ∂φg

∂gji

∣∣∣∣∣
gji=g

j∗
i

− λij∗c

(gji − gj∗i )

−

− ∂φc

∂cji

∣∣∣∣∣
cji=c

j∗
i

+ αjλij∗c

(cji − cj∗i )+
(
−gj∗i + αjcj∗i

) (
λijc − λij∗c

)
}
≥ 0,∀ (gi, ci,λi) ∈ K 1

i

(8)

K 1
i ≡

{
(gi, ci,λi) ∈ R

3li
+ |(2b) is satisfied

}
where:215

λijc : dual variable of capacity constraint of firm i on location j;

gi : vector that concatenates gji variables;

ci : vector that concatenates cji variables;

λi : vector that concatenates λijc variables;

li : number of optional locations for each conpanies i;220

K 1
i : feasible set of firm i’s decision.

Similarly, the ISO’s problem can be expressed using VI as follows:

∑
q∈Q

[
φt(v

∗) +∇φt(v∗)v∗ −ATλq∗
]T

(x q − x q∗)

+
∑
q∈Q

[
EqTλq∗ + ρ ∗TEq+ − w(d∗T )Eq−

]
(tq − tq∗) ≥ 0, ∀x q, t q ∈ K 2

(9)

K 2 ≡ {(x, t) |(3b) ∼ (3g) is satisfied}

where:

∇φt(·) : Jacobian matrix of link cost function;

1Note that since the wholesale prices depend on the production quantities, chain rule of differentiation should

be used while taking derivatives to arrive at the VI.
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λq : dual vector associated with constraint (3c) of O-D pair q. Each row corresponds to a225

link;

K 2 : feasible set of ISO decision.

Note that the market clearing conditions (Nagurney, 2006) are implied by the ISO formulation:

The second term in Equation (9) means that if the demand of OD pair q, tq, is zero, then

the wholesale price plus the transmission cost can be larger than the consumer willingness to230

pay; otherwise, the wholesome price plus the transmission cost must be equal to the consumer

willingness to pay. In addition, note that in constraint (3c), ISO is required to balance demand

and supply at all time, so the dual variable associated with this equality constraint is a free

variable.

As stated before, the decisions of all participants in this system are interdependent and235

should be modeled simultaneously as a whole system. We state the system equilibrium more

formally by the following definition.

Definition 1. (Power System Equilibrium). The equilibrium state of a power system is that

all generators achieve their own optimality (cf. (8)) and ISO achieves its optimality (cf. (9)).

We claim the following Lemma, which provides the equivalent condition of the power system240

equilibrium conditions.

Lemma 1. (Variational Inequality Condition for the Power System Equilibrium). The equi-

librium conditions governing the power system equilibrium are equivalent to finding solutions

satisfying the following variational inequality (10):

∑
k∈K

∑
j∈Jk

−∑
k′∈K

 ∂ρk′

∂gji

∣∣∣∣∣
g=g∗

∑
j∈Jk′

gj∗i

+
∂φg

∂gji

∣∣∣∣∣
gji=g

j∗
i

+
∂φc

∂cji

∣∣∣∣∣
cji=c

j∗
i

(gji − gj∗i )
+ [φt(v

∗) +∇φt(v∗)v∗]T (v − v∗)− w(d∗T ) (d− d∗)

+
∑
k∈K

∑
j∈Jk

{
∂φc

∂cji

∣∣∣∣∣
cji=c

j∗
i

[(
cji − g

j
i

)
−
(
cj∗i − g

j∗
i

)]

− λij∗c
[(
cji − g

j
i

)
−
(
cj∗i − g

j∗
i

)]
+
(
cj∗i − g

j∗
i − 0

) (
λijc − λij∗c

)}
≥ 0

∀ (gi, ci,λi) ∈ K 1
i ,∀i,∀ (x, t) ∈ K 2

(10)

Proof. Combining VI (2) and (4), we have the following terms cancelled out:

1.
∑
q∈Q

[
−AT γq∗

]T
(xq − xq∗) and

∑
q∈QE

qT γq∗ (tq − tq∗)
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2.
∑
k∈K

∑
j∈Jk ρ

∗
k

(
gji − g

j∗
i

)
and

∑
q∈Q ~ρ

∗TEq+ (tq − tq∗)

The first cancellation is derived by Constraint (3c), and the second cancellation is derived by245

Constraint (3d). Then, add − ∂φc

∂cji

∣∣∣
cji=c

j∗
i

(
gji − g

j∗
i

)
and subtract − ∂φc

∂cji

∣∣∣
cji=c

j∗
i

(
gji − g

j∗
i

)
, and

reorganize the formulation in terms of variables g and c−g. Finally, after the use of Constraint

(3b) and (3e) to substitute (x, t) with (v,d), VI (10) is derived. �

Next we will show the VI problem in (10) is equivalent to a transportation network user

equilibrium problem. Let us use a simple case illustrated in Figure 1 as an example to explain250

the construction of a virtual network corresponding to a traffic network equilibrium problem. In

Figure 1, a virtual node C denotes an investment firm; F denotes a potential renewable energy

farm location or an existing generator. The link flow from a node C to a node F means the

capacity that firm C invests at location F. For an existing generator, link flow of C-F is set to be

the existing generation capacity. Each node P or U corresponds to a firm. The flows on link F-P255

and link F-U denote the electricity production quantity and the unused capacity of that firm

at location F, respectively. Virtual node I is created to denote electricity that shares the same

transmission infrastructure to access the existing power grid. Physical node A denotes an access

point or a demand node in the power grid. In general, there are multiple access points and

demand nodes in a power network. The flow on link P-I denotes the total electricity production260

of each firm, and the flow on link I-A or P-A denotes the transmission quantity between the

corresponding locations.

Capital investment�

Power Grid (Transmission Line)�

Actual production�

Strategic bidding�

C1�
!

C2�
!

F1� F2� F3�

U1� P1� P2� U2�

I1�

U3�

C3� F4� P3� A1�

Figure 1: A Network Structure of the Problem

Theorem 2. (Virtual Network Equivalence) The VI (10) is identical with the VI governing
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transportation user equilibrium of the virtual network shown in Figure 1 if link costs and demand

market are defined in the following manner:265

• For the links within “Capital investment” layer in Figure 1 (i.e. from Node C to Node F),

the link cost is set to be the marginal capacity cost, i.e. ∂φc(c
j
i )/∂c

j
i . In case of existing

generators, the cost attached to this link is set to be zero.

• For links connecting Node F and Node P, the link cost is marginal production cost, i.e.

∂φg(g
j
i )/∂g

j
i .270

• For links connecting Node F and Node U, the link cost represents the cost of shutting off

unused generation capacity. In case such cost is negligible, it can be set to zero.

• For links connecting Node P and Node I, we interpret the link cost as strategic escalating of

electricity price of each generator, which is set to −
∑
k′∈K

(
∂ρk′

∂gji
(g)
∑
j∈Jk′

gji

)
. Because

we assume oligopoly competition, rather than perfect competition in the electricity supply275

industry, each firm will try to produce electricity at a level where the wholesale price equals

to the marginal cost plus this term so that the profit is maximized.

• For links within the power grid, a marginal transmission cost is imposed by the ISO, i.e.

φt(v) +∇φt(v)v.

• The demand functions of the nodes within the power grid are assumed to be given and280

depend on the retail price only, while the demand function of Node U is assigned zero

despite of the value of capacity shadow price.

Before we give the proof of Theorem 2, we introduce the following Theorem provided in

(Nagurney, 2006):

Theorem 3. A travel link flow pattern and associated travel demand and disutility pattern is a

traffic network equilibrium if and only if the variational inequality holds: determine (f∗, d∗, λ∗) ∈

K 3 satisfying: ∑
a∈L

φa (f∗)× (fa − f∗a )−
∑
n∈N

λ∗n × (dn − d∗n)

+
∑
n∈N

[d∗n − dn(λ∗)]× [λn − λ∗n] ≥ 0,∀(f ,d,λ) ∈ K 3
(11)

K 3 ≡
{

(f ,d,λ) ∈ R|L|+2|N |
+ |there exist an χ satisfying (12) and (13)

}
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285

fa =
∑
p∈P

χpδap,∀a ∈ L (12)

dn =
∑
p∈Pn

χp,∀n ∈ N (13)

where:

N : demand node set of virtue transportation network (indexed by n);

L : link set of virtue transportation network (indexed by a);

P : path set of virtue transportation network (indexed by p);

δap : binary indicator, δap = 1 if link a is contained in path p, and δap = 0 otherwise;290

φa(·) : link cost function of link a with respect to link flow;

fa : link flow of link a;

dn : demand at demand node n;

dn(·) : demand function at demand node n with respect to travel disutility;

λn : travel disutility at demand node n;295

χp : path flow of path p;

Notice that in Theorem 3, travel disutility is restricted to non-negative value, which is not

applicable in power market, where price can become negative if necessary (e.g. the ISO may pay

consumers to use electricity if supply exceeds demand and shutting down production facilities

is too costly). So we propose the following Corollary to account for this situation.300

Corollary 4. (Unrestricted Locational Price). In a virtual transportation network where con-

sumer can gain time (instead of spend time) to travel, a travel link flow, travel demand and

disutility pattern (negative means utility) is a traffic network equilibrium if and only if it satis-

fies the following VI: determine (f∗, d∗, λ∗) ∈ K 4 satisfying:∑
a∈L

φa (f∗)× (fa − f∗a )−
∑
n∈N

λ∗n × (dn − d∗n) ≥ 0,∀(f ,d,λ) ∈ K 3
(14)

K 3 ≡
{

(f ,d,λ) ∈ R|L|+|N |+ ×R|N ||there exist an χ satisfying (12) and (13)
}
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Note that since the dual vector λ does not have sign restriction, its corresponding optimality

condition is simply the original constraints associated with it, i.e. (3c), which can be equivalently

expressed by (12) and (13).

Now we propose the proof for Theorem 2.305

Proof (Theorem 2). There are two types of demand nodes in the virtual transportation

network: the nodes within transmission network, denoted by “A”; and the virtual nodes rep-

resenting unused capacity, denoted by “U”. A-nodes do not have non-negativity constraint on

price, so VI (14) is applied for these nodes (Corollary 4), while VI (11) is applied for U-nodes

(Theorem 3). After algebraic simplification, the VI governing the virtual transportation network310

is identical with VI (10). �

Note that in each iteration of the PH method, the objective function is updated by adding a

Lagrange multiplier and a penalty term, i.e. ωsi
T (xsi −zi)+ 1

2γ‖x
s
i −zi‖2, which is a function of

the planning decision variable. Therefore, the corresponding VI that needs to be solved during

each iteration of the PH procedure should be modified as:

∑
k∈K

∑
j∈Jk

[
−
∑
k′∈K

 ∂ρk′

∂gji

∣∣∣∣∣
g=g∗

∑
j∈Jk′

gj∗i

+
∂φg

∂gji

∣∣∣∣∣
gji=g

j∗
i

+
∂φc

∂cji

∣∣∣∣∣
cji=c

j∗
i

+ ωs∗ij

+ γ
(
cjs
∗

i − cjs∗i
)](

gji − g
j∗
i

)
+ [φt(v

∗) +∇φt(v∗)v∗]T (v − v∗)− w(d∗T ) (d− d∗)

+
∑
k∈K

∑
j∈Jk

{ ∂φc
∂cji

∣∣∣∣∣
cji=c

j∗
i

+ ωs∗ij + γ
(
cjs
∗

i − cjs∗i
)[(cji − gji)− (cj∗i − gj∗i )]

− λij∗c
[(
cji − g

j
i

)
−
(
cj∗i − g

j∗
i

)]
+
(
cj∗i − g

j∗
i − 0

) (
λijc − λij∗c

)}
≥ 0

∀ (gi, ci,λi) ∈ K 1
i ,∀i,∀ (x, t) ∈ K 2

(15)

The additional terms involving ωs∗ij + γ
(
cjs
∗

i − cjs∗i
)

is attributed to the nonanticipativity con-

dition. Therefore the link cost associated with C-F should be modified from ∂φc(c
j
i )/∂c

j
i (see

Theorem 2) to:

modified C-F link cost = ∂φc(c
j
i )/∂c

j
i + ωsij + γ

(
cjs
∗

i − cjsi
)

(16)

Based on the same network structure shown in Figure 1, we now have the PH-transportation

network solution procedure for the stochastic problem as shown in Algorithm 1. Following

this decomposition procedure, the original stochastic energy supply chain problem is converted
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to many scenario-dependent deterministic traffic network equilibrium problems, which can be315

solved efficiently by Frank-Wolf algorithm (LeBlanc, 1975), which is implemented in this study,

or by other recent methods summarized in (Bar-Gera, 2010).

We shall note that in general the VI defined in (15) may have multiple solutions. For the

numerical implementation reported herein, we consider only the single-solution case. Alterna-

tively, one may consider a min-max formulation to seek the best investment decision in the320

equilibrium condition that returns the worst-case performance.

Algorithm 1 PH-Transportation Network Solution Algorithm

Step 1: Initialization

for each s in S do

update link cost according to Theorem 2

call Traffic Assignment Algorithm . Such as the algorithm in (LeBlanc, 1975)

(c(0), g(0),ρ(0),λ(0)
c )← call Recover Decision Function . See Appendix Subroutine

end for

z(0) ←
∑
s∈S p

sc
(0)
s

ω
(0)
s ← γ(c

(0)
s − z(0)), ∀s ∈ S

Step 2: PH-iteration

τ = 0 . Initialize PH iteration index

while ε ≥ 10−4 do

for each s in S do

τ ← τ + 1

update link cost according to Theorem 2 and (16).

call Traffic Assignment Function . Such as the algorithms in (LeBlanc, 1975)

(c(τ), g(τ),ρ(τ),λ(τ)
c )← call Recover Decision Function . See Appendix Subroutine

z(τ) ←
∑
s∈S p

sc
(τ)
s

ω
(τ)
s ← ω

(τ−1)
s + γ(c

(τ)
s − z(τ)), ∀s ∈ S

end for

ε←
∑
s∈S‖cτs − zτ‖+

∑
s∈S‖cτs − cτ−1s ‖

end while

return (c,g,ρ,λc)
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3. NUMERICAL EXAMPLES

3.1. A simple example for illustration and solution validation

Example 1 is constructed to illustrate how the energy problem may be decomposed and con-

verted to traffic network equilibrium problems. The example is intentionally set to be symmetric325

so that a benchmark solution can be easily obtained analytically, which then is used to validate

the proposed solution procedure. This example includes two energy investment companies, one

wind farm location option, and one electricity demand market. Two scenarios with equal prob-

ability are considered. Transmission cost is set to be zero and transmission capacity unlimited.

The specifics of cost and demand functions are given in Table 1.330

Table 1: Parameter Setting in Example 1

Capital Cost Function Generation Cost Function
Demand Function

Scenario Firm 1 Firm 2 Firm 1 Firm 2

1 10× c1 10× c2 (gs11 )
2

+ 30× gs11 (gs12 )
2

+ 30× gs12 ρ = −D + 100

2 10× c1 10× c2 (gs21 )
2

(gs22 )
2

ρ = −D + 100
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Figure 2: The Virtual Network for Example 1. (Note:

the number attached to each arc is the assigned link cost

defined in Theorem 2)

Figure 2 shows the corresponding vir-

tual network, with four paths: p1 =

(C1, F1, P1, I1, A1), p2 = (C2, F1, P2, I1, A1),

p3 = (C1, F1, U1), p4 = (C2, F1, U2). The

solution yielded from our solution algorithm335

is given in Table 2. Each path in the vir-

tual transportation network carries a physi-

cal meaning in the energy supply chain. For

example, path flow on p1 means the amount

of power supplied by firm C1 through wind340

farm location F1 to demand market A1; path

flow on p3 represents the unused capacity of

firm C1 at farm location F1. In addition to

path flow, link flow also has a corresponding

implication in the energy supply chain. For345

example, link flow from C1 to F1 represents

the total capacity investment by firm C1 at location F1. Using this correspondence, we extract
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the numerical solutions for the energy infrastructure investment problem, as shown in Table 3.

These results are consistent with Cournot-Nash equilibrium calculated analytically. The opti-

mal solution to the stochastic multi-agent optimization problem suggests that each firm invest350

for a generation capacity of 16 units. As a comparison, if the company could wait until future

uncertainty is revealed before making investment decision, the deterministic solutions are would

be 12 units for scenario 1 and 18 units for scenario 2.

Table 2: Traffic Equilibrium Solutions for the Virtual Network

Items Scenario 1 Scenario 2 Items Scenario 1 Scenario 2

p1 14 16 λU1 0 20

p2 14 16 λU2 0 20

p3 2 0 λA1 72 68

p4 2 0

Table 3: Power Market Equilibrium Results

Items Firm 1 Firm 2

Capacity 16 16

Generation s1 : 14 s2 : 16 s1 : 14 s2 : 16

Capacity Shadow Price s1 : 0 s2 : 20 s1 : 0 s2 : 20

Total Profit s1 : 232 s2 : 672 s1 : 232 s2 : 672

Expected Profit 452 452

Whole Sale Price = Retail Price s1 : 72 s2 : 68

Consumer Surplus s1 : 392 s2 : 512

Table 4 summarizes the numerical implementation details, including the parameter setting,

computing environment, and computing time. The convergence pattern of the two scenario-355

dependent planning decisions is plotted in Figure 3, in which the termination criterion is reached

within less than 30 iterations.
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Table 4: Numerical Implement Information

Item Value

PH method parameter γ 1

Computing time .218s

Computing tools Matlab 2012b 64 bit (Mac Version)

Computing environment Mac OSX, 2.3 GHz Intel Core i7, RAM 8GB

Figure 3: Convergence of the Planning Decision
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3.2. A realistic case study based on SMUD power network

To draw meaningful practical implications from the theoretical results reported here, we

implement our model and algorithm on a regional power network in Sacramento Municipal360

Utility District (SMUD). The transmission network consists of 25 nodes, 11 of which are demand

nodes (Node 1∼11), and 65 links. The network structure is shown in Figure 4.
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Figure 4: Sacramento Municipal Utility District (SMUD) Network

Four optional investment locations (Node 21∼24) are being considered, two of which are in

remote areas (Node 21 and 22) with lower investment costs but also lower transmission resource;

the other two locations (Node 23 and 24) are just the opposite. The two further locations are365

connected to Node 20 by a single transmission line; the two closer locations are connected to

Node 2 and 3 via separate transmission lines. We consider two firms with different technologies

as investors. Firm 2 has mature technologies whose production cost is certain, while Firm 1

represents emerging technology, whose future production cost is uncertain. We also assume that

the investment cost of one firm is independent of the other firm’s decision2. The parameter370

values are given in Appendix 2. This setting is referred as base case in the following analysis.

2Symmetric assumption and separable investment cost are not required in our model and algorithm.
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An optimal solution is obtained using Algorithm 1 on the same computer as in Example

1, with a total computing time of 3312 seconds. The PH algorithm converges in 13 iterations

with an absolute gap of 0.615 (see Figure 5). Each scenario-dependent problem within the PH

algorithm is solved using Frank-Wolfe algorithm. See Figure 6 for its convergence pattern3.375
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Figure 5: Convergence of PH Algorithm
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Figure 6: Convergence of Frank-Wolfe Algorithm

In Table 5, we examine the impacts of transmission network on investment decisions by

comparing results from two cases: the base case, and the case without considering the trans-

mission network (free-transmission Case). In the base case, both firms invest less in the further

locations (location 21 and 22) due to transmission restrictions and costs. However if the trans-

mission network is ignored, the firms would increase their investment in the further locations380

to take advantage of cheaper capital cost. This comparison shows that ignoring transmission

network may lead to poor investment recommendations. Therefore, a supply chain model that

captures the essence of transmission network between supplies and demands is critical.

Next, we will use the proposed model to explore the impacts of oligopolistic competition on

total investments, average electricity price (see Figure 7), and total system surplus (see Figure385

8). The total system surplus is defined as the total consumer willing-to-pay subtracts the total

system cost. The consumer surplus is defined as the total consumer benefits subtracts the

total electricity bill they pay. Thus we decompose total system surplus into three components:

consumer surplus, generators profits (surplus) and transmission revenues4. We compare the

3 For the same scenario-dependent problems, PATH, a general-purpose optimization solver for complemen-

tarity problems, was unable to obtain solutions.
4In this example, ISO is allowed to make short term revenues from transmission services. But eventually, this
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Table 5: Impacts of Transmission Network on Investment Decisions

Locations
Base Case Free-transmission Case

Firm 1 Firm 2 Firm 1 Firm 2

21 84.0 84.2 217.1 215.1

22 84.0 83.3 216.9 214.7

23 260.2 258.8 215.9 213.8

24 260.5 258.4 215.9 214.0

Total 688.6 684.7 865.8 857.5

results among three market types (cases): the base case, monopoly case (only Firm 2) and390

perfect-competition case. From Figure 7, with more competition involved in power supply side,

lower electricity price and higher total investment can be expected. This is mainly due to

the fact that electricity generally has low price elasticity of demand. Lacking competition will

make supplier exert market power by strategically withholding their investment (long term) and

manipulate the market price (short term). From Figure 8, we can see that as market competition395

level increases, the total system surplus increases, the transmission revenues increases and the

generator surplus decreases to zero. These results demonstrate that an energy planning model

capturing oligopoly market is critical - simplifying an oligopolistic electricity market to either

a central-planner case or a perfect market case would compromise the long-term investment

decisions and thus the total system surplus.400 Competition_v2
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Figure 7: Impacts of Strategic Behavior on Price

and Investment
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Figure 8: Impacts of Strategic Behavior on Total System

Surplus

Finally, we explore the impacts of uncertainty. In Table 6, we compare results from the

stochastic model (base case) and a deterministic approach. The deterministic approach takes the

revenue will be used for transmission investment so that ISO keeps long term profit neutral.
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expected value of Firm 1’s production cost as model input, in which case the two firms become

symmetric. The results show that when there is no uncertainty about future technology, both

firms reduce their investment. This is somehow counter intuitive because it is generally believed405

that uncertainty discourages industry from investing. We think the results observed here is due

to combined effects of oligopoly market and uncertainty. In an oligopoly market, firms have

market power to influence the price so that the market price is always larger than the marginal

production (plus marginal capital) cost. Since the firms are allowed to adjust their production

quantities in the operational stage (second stage of stochastic programming), they can always410

maintain a non-negative profit in each scenario. Therefore, firms are more “optimistic” when

they make the first stage investment decisions - with uncertainty about future production cost,

both firms will focus more on the good scenario for themselves. However, if the firms take a

more risk-averse attitude instead of a risk-neutral one, we expect to have different results. We

also observe that investment at cheaper locations are more sensitive to uncertainty, indicated415

by the last column in Table 6. The intuition is that when facing future technology/productivity

uncertain, a firm is more likely to favor cheaper locations to compensate its potential risk.

Table 6: Comparing Investment Decisions between Stochastic and Deterministic Approach

Locations
Base Case Case 4 Changes

Firm 1 Firm 2 Firm 1 Firm 2 Firm 1 Firm 2

21 84.0 83.7 80.3 79.9 4.6% 4.7%

22 84.0 83.3 80.8 80.2 4.1% 3.8%

23 260.2 258.8 257.7 257.3 1.0% 0.6%

24 260.5 258.4 257.2 257.1 1.3% 0.5%

Total 688.6 684.2 675.9 674.6 1.9% 1.4%

4. DISCUSSION

This study focuses on renewable energy infrastructure planning in the context of an electricity

supply chain. The main contribution is on the development of modeling and solution methods to420

address challenges brought by uncertainties and oligopolistic competition among energy produc-

ers over a complex network structure. Through using stochastic decomposition and variational

inequalities, we show that the stochastic energy supply chain planning problem can be converted
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to multiple scenario-dependent traffic equilibrium problems. This analysis allowed us to exploit

efficient solution techniques developed by the transportation research community, resulting in425

greater numerical performance than directly using general-purpose optimization solvers.

There are several directions for future research. One may explore the roles of risk attitudes

and information quality on energy infrastructure investment strategies, which may be used to

design efficient information sharing strategy across stakeholders in the system. In addition,

with the connections established between the energy planning and traffic network equilibrium430

problems, one may extend the rich knowledge generated in the transportation literature to energy

modeling. For example, knowledge about price of anarchy, congestion pricing, and dynamic

equilibrium may be extended to energy system planning and policy related questions, such

as how to influence individual energy investment decisions from user-optimal to system-optimal

through economic incentives. We hope the work reported here will inspire more interdisciplinary435

research across transportation and energy.
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Appendix 1: Subroutine Pseudocode500

Algorithm 2 PH-Transportation Network Sub-Function

function Recover Decision(path flow χ, travel disutility λ)

fa ←
∑
p∈P xpδap,∀a ∈ L . get link flow

c← fC−F . get investment decision

g ← fF−P . get production decision

ρ, λc ← λ . get electricity price and capacity shadow price

return (c,g,ρ,λc)

end function
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Appendix 2: Data for Example 2

Table 7: Capacity Cost Data

Node # Firm 1 Firm 2

21 24.3× c1 24.3× c2
22 24.3× c1 24.3× c2
23 46.1× c1 46.1× c2
24 46.1× c1 46.1× c2

Table 8: Generation Cost Data

Scenario # Firm 1 Firm 2 Probability

1 110× g1 60× g2 0.5

2 10× g1 60× g2 0.5

Table 9: Demand Function Parameters db and da(Demand Function is d = −da ∗ w + db)

Node 1 2 3 4 5 6 7 8 9 10 11

Intercept (db) 202 78 318 167 180 277 293 183 148 363 333

Slope (da) -0.075 -0.196 -0.048 -0.091 -0.085 -0.055 -0.052 -0.083 -0.103 -0.042 -0.046
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Table 10: Transmission Capacity ct(link transmission cost function is φt = 10 ∗ [1 + (v/ct)4)]

Link # From Node End Node Capacity Link # From Node End Node Capacity

1 1 7 307 34 8 2 309

2 1 10 319 35 11 2 478

3 2 6 319 36 6 3 478

4 2 8 309 37 6 3 319

5 2 11 478 38 5 4 289

6 3 6 478 39 10 4 467

7 3 6 319 40 13 4 319

8 4 5 289 41 10 5 319

9 4 10 467 42 12 6 319

10 4 13 319 43 9 7 319

11 5 10 319 44 12 7 319

12 6 12 319 45 14 8 744

13 7 9 319 46 13 9 319

14 7 12 319 47 14 10 638

15 8 14 744 48 15 11 638

16 9 13 319 49 15 11 638

17 10 14 638 50 15 3 638

18 11 15 638 51 15 3 478

19 11 15 638 52 6 16 478

20 3 15 638 53 11 16 319

21 3 15 478 54 17 2 319

22 16 6 478 55 17 10 303

23 16 11 319 56 17 19 331

24 2 17 319 57 17 18 319

25 10 17 303 58 8 18 303

26 19 17 331 59 20 18 309

27 18 17 319 60 20 19 307

28 18 8 303 61 21 25 1000

29 18 20 309 62 22 25 1000

30 19 20 307 63 23 2 400

31 7 1 307 64 24 3 400

32 10 1 319 65 25 20 300

33 6 2 319 30




