APPENDIX K: INPUT-OUTPUT DATA FOR HYDROGEN FROM COAL AND HYDROGEN FROM BIOMASS CONVERSION PROCESSES

An Appendix to the Report "A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials"

> Guihua Wang Mark Delucchi <u>madelucchi@ucdavis.edu</u>

UCD-ITS-RR-03-04K

available on the internet at <u>www.its.ucdavis.edu/publications.html</u> (by year) or by contacting <u>itspublications@ucdavis.edu</u>

> Institute of Transportation Studies One Shields Avenue University of California Davis, CA 95616

> > September 2005

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
R. H. Williams, 2001			
	Coal input rate(<i>MW</i> _{th})	1550	1554
	CO ₂ emission rate(kgC/GJ _{H2})	36.33	2.62
	CO ₂ disposal rate(t CO ₂ /h)	-	445.9
	Electric power balance(MWe)		
	Gas turbine output	-	58.9
	Steam turbine output	143.5	107.1
	Syngas expander output	-	-
	Air separation	-41.8	-41.9
	Extra O ₂ compressor	-25.5	-25.6
	Gasification auxiliaries	-14.7	-14.7
	CO_2 compressor(\rightarrow 150 bar)	-	-37.0
	Purge compressor for PSA unit	-	-8.6
	Other auxiliaries	-6.4	-5.2
	Net power output(<i>MWe</i>)	55.1	33.0
	1 st law efficiency (η _{1st}), HHV basis (%)	68.07	66.47
	Effective efficiency (η_{eff}) of H ₂ production, HHV basis (%)	70.30	67.68
	Plant capacity factor (%)	80	80
	Notes: 1) For this case, H ₂ and electricity is co-produced. The main outputs are H ₂ , electricity, sulfur, N ₂ , and CO ₂ . 2) η_{1st} = (electricity + H ₂ output) / (coal input); η_{eff} = (H ₂ output) / (coal input – coal saved), where the coal saved is the amount of coal that would otherwise have to be consumed in a stand-alone facility to produce the amount of electricity generated as a co-product of H ₂ . 3) t = metric tonne. 4) CO ₂ recovery case involves CO ₂ compression to 150 bars for pipeline transport to a sequestration site. 5) 92.7% of coal C is recovered as CO ₂ for disposal.		

Table 1. Overview of literature on hydrogen production process via coal gasification

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
Bechtel Corporation			
et al.,2003			
	<u>Configuration</u>		
	Plant location	Midwest	
	# of air separation units	1	
	# of gas turbines	0	
	# of gasification trains	1	
	# of gasification vessels	2	
	# of syngas processing trains	1	
	# of 50% H ₂ trains	2	
	Design Feed Rates		
	Feedstock type	Illinois NO. 6 coal	
	Coal, TPD as received	3,517	
	Coal, TPD dry	3,007	
	Feed, MMBtu HHV/hr	3,195	
	Feed, MMBtu LHV/hr	3,076	
	Flux, TPD	0	
	Water, gpm	2,457	
	Oxygen, TPD of 95% O ₂	2,522 (99.5%)	
	Oxygen, TPD of O ₂	2,507	
	Design Product Rates		
	Electric power, MW	-18.4	
	Steam (750 °F/700 psig), Mlb/hr	-	
	Hydrogen, MMscfd	141.2	
	Sulfur, TPD	76	
	Slag (@15% water), TPD	474	
	Fuel gas, MMBtu HHV/hr	-	
	Solid waste to disposal, TPD	-	
	Gas Turbine		
	Cold gas efficiency (HHV), %	76.5	
	Steam turbine power, MW	70.6	

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	Internal power use, MW	89.0	
	Emissions		
	SO _x as SO ₂ , lb/hr	191	
	NO _x as NO ₂ , lb/hr	27	
	CO, lb/hr	1,840	
	CO ₂ , Mlb/hr	638.0	
	Sulfur removal, %	98.5	
	Performance parameters—emissions		
	SO _x (SO ₂) as lb/MMBtu(H ₂ , HHV)	0.060	
	NO _x (NO ₂) as lb/MMBtu(H ₂ , HHV)	0.008	
	CO, lb/MMBtu(H ₂ , HHV)	0.576	
	CO ₂ , lb/MMBtu(H ₂ , HHV)	200	
	Notes:		
	1) For this case, there is no CO ₂ capture and no electricity co-produced for export.		
	 2) The gasifier is Global Energy's two-stage gasifier which employs full slurry quench to control the second stage outlet temperature. 3) From 3,007 TPD of dry Illinois NO. 6 coal and 18.4 MW of import power, the coal-to-H₂ plant produces 141.2 MMscfd of hydrogen, 76 TPD of sulfur and 474 TPD of slag (15% water). 4) All the carbon in the feed eventually is converted to CO₂ except for the small amounts that are contained in the slag and leave as CO. 		
	5) Heavy metals are very low in the gasificat	ion facility because they a	ire encapsulated in the slag.
	Other metals such as mercury and selenium	are volatile and are detec	ted in the syngas; however,
	metals removal should be easier compared	to a conventional combust	tion plant. Mercury removal
	was not considered in the plant design.	· · · · · · · · · · · · · · · · · · ·	
	6) Slag, the major solid byproduct of the gas	ification process, can be r	narketed as construction
	material. There are no solid wastes from the	coal gasification process-	-no scrubber sludge, fly
	ash or bottom ash. Small amounts of used c	atalysts or adsorbents stil	l require disposal.
	() $(PU = ton per day.$	a ta transport CO ta tha	a questration site
C Dizer et al. 2002	o) CO ₂ capture involves energy requirement	s to transport OO_2 to the s	
G. RIZEQ EL al., 2002	Plant size MW		100
	Cool conscient TDD		400
	Coal capacity, TPD		2,800

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture	
	Capacity factor, %		75	
	CO ₂ capture, %		99	
	Efficiency, %(HHV)		57.4	
	Fuel flexibility		Coal, biomass planned	
	Notes: 1) This process is called AGC (Advanced Gasification Combustion: it is a novel concept			
	addressed by Vision 21 program), which is different from IGCC.			
	2) For this case, H_2 and electricity is co-produced. The main outputs are high-purity H_2 , electricity,			
	sequestration-ready CO_2 and SO_2 .			
	3) Process efficiency = (electricity + H ₂ output) / (coal input), which could be as high as 67% on a			
	HHV basis.			
	4) No NO _x formation.			
	5) Hg concentrated in Reactor 1 product stream for AGC, whereas Hg concentrated in syngas			
	stream for IGCC.			
	6) CO ₂ capture involves energy requirement	is to transport CO ₂ to the s	sequestration site.	
R. H. Williams et al., 2003				
	Comparison of process efficiency			
	Electricity, % HHV	η _e = 100*(el	ec out)/(coal in)	
	Quench	40.8	34.9	
	Syncooler	44.3	37.1	
	H ₂ , % HHV	η _h = 100*(H ₂ out)/[coal in – (elec out / η _e)]	
	Quench	69.7	67.0	
	Syncooler	72.9	69.6	
	Case 1: Conventional Tech.			
	Size (H ₂), MWh	1,265	1,265	
	Power coproduct, MWe	78	39	
	η _h , % ΗΗV	69.7	67.0	
	Case 2: Conventional Tech.			
	Size (H ₂), MWh		268	
	Power coproduct, MWe		349	
	Case 3: Co-storage of CO ₂ and SO ₂			

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture	
	Size (H ₂), MWh		1,000	
	Power coproduct, MWe		18	
	η _h , % ΗΗV		69.1	
	Notes:			
	1) These cases correspond to 70 bar coal gasifier, conventional technology, i.e., IGCC.			
	2) Gasifier at 70 bar with (i) quench or (ii) radiative + convective syngas cooler.			
	3) Co-capture and co-storage of SO ₂ and CO ₂ would probably be cost-effective, though viability of			
	co-storage option requires clarification.			
	4) Increasing gasifier pressure (70 \rightarrow 120 bar) raises system efficiency and offers potentially lower			
	H_2 cost, if electricity coproduct has high value	e.	<u></u>	
	5) But efficiency gains often are not cost-effe	ective (coal prices are low)).	
	6) CO ₂ capture cases involve energy require	ements for CO_2 capture an	d storage.	
J. Ogden et al.,				
2003	Notoo			
	1) To make enough H for all Columbus cars in a coal > H plant with 65% energy conv			
	Efficiency, would need to use $\sim 12,22\%$ of present of coal flow at General Gavin			
	2) General Gavin nower plant is operated at only $\sim 74\%$ canacity factor today (because it follows			
	electricity load) If this plant is "repowered" w	vith a coal IGCC with CO	capture and run at a	
	higher capacity factor, then it might be possi	ble to supply electric and	needs and make enough H_2	
	during off-peak electric demand hours for lig	ht duty vehicles.		
P. Chiesa et al.,		y		
2003				
	Capacity factor, %	80	80	
	Quench: % of coal LHV input			
	Gas turbine	4.23	4.23	
	Steam turbine	7.49	7.49	
	Syngas expander	0.00	0.00	
	ASU and gas compression	-5.37	-5.37	
	Auxiliaries	-1.32	-1.36	
	CO ₂ removal and compression	-0.82	-2.91	
	Net electric output	4.21	2.09	

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture	
	Net H ₂ output	57.46	57.46	
	Note:			
	The above info is based on 70 bar, S removal, 99+ purity, and max H ₂ .			
	Syncooler: % of coal LHV input			
	Gas turbine	4.51	4.51	
	Steam turbine	9.38	9.38	
	Syngas expander	0.00	0.00	
	ASU and gas compression	-5.39	-5.39	
	Auxiliaries	-1.49	-1.49	
	CO ₂ removal and compression	-0.82	-2.89	
	Net electric output	6.18	4.11	
	Net H ₂ output	57.45	57.45	
	Note:			
	The above info is based on 70 bar, S removal, 99+ purity, and max H_2 .			
	Quench: % of coal LHV input.			
	Gasifier at 120 bar			
	Gas turbine		4.33	
	Steam turbine		6.62	
	Syngas expander		1.71	
	ASU and gas compression		-5.56	
	Auxiliaries		-1.40	
	CO ₂ removal and compression		-2.90	
	Net electric output		2.80	
	Net H ₂ output		57.28	
	Quench: % of coal LHV input.			
	<u>Co-capture of H₂S and CO₂</u>			
	Gas turbine		4.23	
	Steam turbine		7.49	
	Syngas expander		0.00	
	ASU and gas compression		-5.37	
	Auxiliaries		-1.36	

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	CO ₂ removal and compression		-2.91
	Net electric output		2.09
	Net H ₂ output		57.46
	Quench: % of coal LHV input.		
	Fuel grade purity		
	Gas turbine		3.91
	Steam turbine		7.25
	Syngas expander		0.18
	ASU and gas compression		-4.98
	Auxiliaries		-1.40
	CO ₂ removal and compression		-2.91
	Net electric output		2.06
	Net H ₂ output		58.17
	Quench: % of coal LHV input.		
	Increase E/H ₂ by reducing flow to PSA		
	Gas turbine		22.31
	Steam turbine		15.03
	Syngas expander		0.73
	ASU and gas compression		-6.97
	Auxiliaries		-1.64
	CO ₂ removal and compression		-2.91
	Net electric output		26.56
	Net H ₂ output		17.25

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture	
	Notes:			
	1) Such plant can operate with Electricity/ H_2 ratios spanning the whole range from about zero to			
	infinity.			
	2) In configurations with syngas cooler, efficiencies ~70% can be achieved at the expense of			
	higher CO ₂ emissions.			
	3) Co-capture of CO_2 and H_2S appears to have the same cost of sulfur removal alone. If that is			
	confirmed, co-capture allows capturing CO_2 at almost zero cost.			
	4) Increasing gasification pressure from 70 to 120 bar does not seem to give significant			
	advantages.			
	5) "Fuel-grade" (~93% pure by volume) H_2 V	S pure H ₂ increases election	ric efficiency by ~1% and	
	decreases H_2 cost by ~4%.			
	6) Final delivery pressure of CO_2 (after comp	pression) is 150 bars.		
T 16 6 6 1	7) CO ₂ capture includes energy requirement	is to transport CO_2 to the s	sequestration site.	
I. Kreutz et al.,				
2002		4	4	
	Plant scale, GW _{th} H ₂	1	1	
	Capacity factor, %	80	80	
	Plant lifetime, yr	25	25	
	Construction time, yr	4	4	
	Conventional Tech., efficiency, % HHV			
	Base case	71.6	69.4	
	Fuel-grade H ₂	75.5	74.7	
	HSMR-Based System, efficiency, % HHV			
	Base case	75	69.1	
	Cooled raf. Turbine	66	57.8	
	High perm HSMR	76	69.9	

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture	
	Notes:	Notes:		
	1) HSMR refers to Hydrogen Separation Membrane Reactor.			
	2) Sequestration lowers efficiency and increases costs.			
	3) Co-sequestration has potential to lower costs.			
	4) H_2 purity comes at a significant cost. Fuel grade (~94% H_2) can be produced at a significantly			
	lower cost in a system with significantly lower capital cost.			
	5) CO ₂ capture cases involve the capture, compression, dehydration, and pipeline transport of			
	CO _{2.}			
D. Gray et al., 2002				
	Case 1			
	Carbon sequestration, %	0		
	H ₂ , MMscfd	131		
	Coal, TPD (AR)3,000Efficiency, %HHV63.7Excess electric power, MW20.4			
	Case 2			
	Carbon sequestration, %		87%	
	H ₂ , MMscfd		119	
	Coal, TPD (AR)		3,000	
	Efficiency, %HHV		59	
	Excess electric power, MW		26.9	
	Note:			
	For Cases 1 and 2, applied is a Texaco que	nch gasification system wi	th conventional acid gas	
	removal and PSA for hydrogen recovery. Th	ey are a single train 3,000	tons per day plant.	
	Case 3			
	Carbon sequestration, %		100	
	H ₂ , MMscfd		158	
	Coal, TPD (AR)		3,000	
	Efficiency, %HHV		75.5	
	Excess electric power, MW		25	

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture	
	Note:			
	The configuration for Case 3 uses advanced E-gas gasification with hot gas cleanup in			
	combination with a ceramic membrane system operating at about 600 °C.			
	Case 4			
	Carbon sequestration, %	0		
	H ₂ , MMscfd	149		
	Coal, TPD (AR)	6,000		
	Efficiency, %HHV	62.4		
	Total power generated, MW	592		
	Parasitic power required, MW	117		
	Excess electric power, MW	475		
	Case 5			
	Carbon sequestration, %		95	
	H ₂ , MMscfd		153	
	Coal, TPD (AR)		6,000	
	Efficiency, %HHV		56.5	
	Total power generated, MW		484	
	Parasitic power required, MW		126	
	Excess electric power, MW		358	
	Note:			
	In Cases 4 and 5, two trains of advanced en	trained gasification are us	ed and the coal feed is	
	6,000 TPD. One train makes synthesis gas t	to feed the PSA unit for hy	drogen production and the	
	other train makes synthesis gas to feed a co	mbined cycle power plant		
	Case 6			
	Carbon sequestration, %		100	
	H ₂ , MMscfd		153	
	Coal, TPD (AR)		6,000	
	Efficiency, %HHV		59	
	Total power generated, MW		619	
	Parasitic power required, MW		202	
	Excess electric power, MW		417	

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	Note:		
	Case 6 is similar to Case 3 except that two trains of gasification are used.		
	Case 7		
	Carbon sequestration, %	0	
	H ₂ , MMscfd	0	
	Coal, TPD (AR)	3,000	
	Efficiency, %HHV	65.7	
	Total power generated, MW	624	
	Parasitic power required, MW	57	
	Excess electric power, MW	567	
	Case 8		
	Carbon sequestration, %		98
	H ₂ , MMscfd		0
	Coal, TPD (AR)		3,000
	Efficiency, %HHV		61.3
	Total power generated, MW		590
	Parasitic power required, MW		61
	Excess electric power, MW		529
	Case 9		
	Carbon sequestration, %		90
	H ₂ , MMscfd		149
	Coal, TPD (AR)		6,000
	Efficiency, %HHV		64.5
	Total power generated, MW		629
	Parasitic power required, MW		120
	Excess electric power, MW		509
	Case 10		
	Carbon sequestration, %		95
	H ₂ , MMscfd		150
	Coal, TPD (AR)		6,000
	Efficiency, %HHV		65.2

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	Total power generated, MW		879
	Parasitic power required, MW		359
			(Air Separation Unit [ASU],
			109; CO ₂ compr., 68; H ₂
			compr., 8; and SOFC air
			compression, 175)
	Excess electric power, MW		519
	Notes:		
	1) Cases 7 and 8 are baseline SOFC (Solid Oxide Fuel Cell) configurations that only produce		
	electric power.		
	2) Case 9 is a two-gasification train carbon s	sequestered co-productior	n case where a SOFC
	topping cycle configuration is used in combined	nation with a PSA system	for hydrogen separation.
	3) Case 10 is a two gasification train co-production case where a SOFC topping cycle		
	configuration is used in combination with a ceramic membrane system for hydrogen separation.		
	Notes:		
	1) In the above Cases 1 to 10, efficiency = (electricity + H_2 output) / (coal input) on a HHV basis.		
	2) Excess electric power refers to net power output; e.g., for Case 6, total power production is 619		
	NIVE and parasitic power needed is 202 NIVE leaving net power for sales of 417 NIVE.		
	3) IPD = ton per day.		
	4) For CO_2 capture cases, the performance and economics of these technologies are analyzed		
	transport CO, to the acquestration site	ation, that is, they include	energy requirements to
	CO_2 to the sequestration site.	d that \$10 partop of earb	on is added for
	5) For cases with sequestration it is assume	diavide stream has been	incloted and the earbon
	dioxido stroom is compressed to 200 bars	uloxide stream has been	isolated, and the carbon
D. Chicago et al	dioxide stream is compressed to 200 bars.		
2005			
2003	Specifications of Illinois #6 each		
	Specifications of IIInols #6 coal:		
	(as ine recusion kind an cases below)		1 07
		(4.60
	H (% by weight)		4.09
	U (% by weight)	8.83	

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	N (% by weight)	1.10	
	S (% by weight)		3.41
	Moisture (% by weight)	12.00	
	Ash (% by weight)	8.70	
	HHV (MJ/kg)	26.143	
	LHV (MJ/kg)	24.826	
	Case 1: Quench		
	Gasification pressure, bar	70	
	Hydrogen purity, %	99.999	
	Net power output, MW	78.4	
	CO ₂ captured, % of input	0	
	CO ₂ emissions, g/kWh	751.8	
	CO ₂ emissions, kg/GJ (H ₂ , LHV)	140.7	
	Fuel input, MW (LHV)	1862.7	
	H ₂ output, MW (LHV)	1070.3	
	η _E , % (LHV)	4.21	
	η _Η , % (LHV)	57.46	
	Case 2: Quench		
	Gasification pressure, bar		70
	Hydrogen purity, %		99.999
	Net power output, MW		38.9
	CO ₂ captured, % of input		91.28
	CO ₂ emissions, g/kWh		70.1
	CO ₂ emissions, kg/GJ (H ₂ , LHV)		11.8
	Fuel input, MW (LHV)		1862.7
	H ₂ output, MW (LHV)		1070.3
	η _E , % (LHV)		2.09
	η _H , % (LHV)		57.46
	Case 3: Syngas Cooler		
	Gasification pressure, bar	70	
	Hydrogen purity, %	99.999	

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	Net power output, MW	111.0	
	CO ₂ captured, % of input	0	
	CO ₂ emissions, g/kWh	692.6	
	CO ₂ emissions, kg/GJ (H ₂ , LHV)	135.2	
	Fuel input, MW (LHV)	1795.6	
	H ₂ output, MW (LHV)	1031.5	
	η _E , % (LHV)	6.18	
	η _H , % (LHV)	57.45	
	Case 4: Syngas Cooler		
	Gasification pressure, bar		70
	Hydrogen purity, %		99.999
	Net power output, MW		73.82
	CO_2 captured, % of input		90.43
	CO ₂ emissions, g/kWh		73.4
	CO ₂ emissions, kg/GJ (H ₂ , LHV)		12.3
	Fuel input, MW (LHV)		1795.6
	H ₂ output, MW (LHV)		1031.5
	η _E , % (LHV)		4.11
	η _Η , % (LHV)		57.45
	Case 5: Syngas Cooler		
	Gasification pressure, bar		70
	Hydrogen purity, %		99.999
	Net power output, MW		89.49
	CO_2 captured, % of input		90.65
	CO ₂ emissions, g/kWh		73.4
	CO ₂ emissions, kg/GJ (H ₂ , LHV)		12.0
	Fuel input, MW (LHV)		1069.2
	H ₂ output, MW (LHV)		535.6
	η _E , % (LHV)		8.37
	η _Η , % (LHV)		50.10
	Case 6: Syngas Cooler		

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	Gasification pressure, bar		70
	Hydrogen purity, %		99.999
	Net power output, MW		100.3
	CO ₂ captured, % of input		73.53
	CO ₂ emissions, g/kWh		73.4
	CO ₂ emissions, kg/GJ (H ₂ , LHV)		42.1
	Fuel input, MW (LHV)		972.0
	H ₂ output, MW (LHV)		486.9
	η _E , % (LHV)		10.32
	η _Η , % (LHV)		50.10
	Case 7: Quench		
	Gasification pressure, bar		70
	Hydrogen purity, %		~93
	Net power output, MW		38.34
	CO ₂ captured, % of input		91.28
	CO ₂ emissions, g/kWh		70.1
	CO ₂ emissions, kg/GJ (H ₂ , LHV)		11.6
	Fuel input, MW (LHV)		1862.7
	H ₂ output, MW (LHV)		1083.6
	η _E , % (LHV)		2.06
	η _н , % (LHV)		58.17
	Case 8: Quench		
	Gasification pressure, bar		120
	Hydrogen purity, %		99.999
	Net power output, MW		51.42
	CO ₂ captured, % of input		91.11
	CO ₂ emissions, g/kWh		70.1
	CO ₂ emissions, kg/GJ (H ₂ , LHV)		11.8
	Fuel input, MW (LHV)		1837.1
	H ₂ output, MW (LHV)		1052.4
	η _E , % (LHV)		2.80

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	η _H , % (LHV)		57.28
	Case 9: Syngas cooler		
	Gasification pressure, bar		120
	Hydrogen purity, %		99.999
	Net power output, MW		66.03
	CO ₂ captured, % of input		90.12
	CO ₂ emissions, g/kWh		73.4
	CO ₂ emissions, kg/GJ (H ₂ , LHV)		13.0
	Fuel input, MW (LHV)		1760.1
	H ₂ output, MW (LHV)		1006.9
	η _E , % (LHV)		3.75
	η _н , % (LHV)		57.21
	Case 10: Quench		
	Co-capture of CO ₂ and H ₂ S		
	CO ₂ captured, % of input		94.93
	CO ₂ emissions, g/kWh		38.0
	CO ₂ emissions, kg/GJ (H ₂ , LHV)		6.4
	$H_2S + CO_2$ compr., MW		-3.9
	η _E , % (LHV)		1.88
	η _H , % (LHV)		57.47
	Case 11: Syngas Cooler		
	Co-capture of CO ₂ and H ₂ S		
	CO ₂ captured, % of input		94.08
	CO ₂ emissions, g/kWh		43.3
	CO ₂ emissions, kg/GJ (H ₂ , LHV)		7.2
	$H_2S + CO_2$ compr., MW		-3.7
	η _E , % (LHV)		3.90
	η _H , % (LHV)		57.46
	Case 12: Syngas Cooler		
	Co-capture of CO ₂ and H ₂ S		
	CO ₂ captured, % of input		94.29

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	CO ₂ emissions, g/kWh		43.3
	CO ₂ emissions, kg/GJ (H ₂ , LHV)		6.9
	$H_2S + CO_2$ compr., MW		-2.2
	η _E , % (LHV)		8.16
	η _H , % (LHV)		50.11
	Case 13: Syngas Cooler		
	Co-capture of CO ₂ and H ₂ S		
	CO_2 captured, % of input		77.18
	CO ₂ emissions, g/kWh		43.3
	CO ₂ emissions, kg/GJ (H ₂ , LHV)		37.3
	$H_2S + CO_2$ compr., MW		-2.0
	η _E , % (LHV)		10.11
	η _Η , % (LHV)		50.11
	Case 14: Quench		
	Co-capture of CO ₂ and H ₂ S		
	CO ₂ captured, % of input		94.93
	CO ₂ emissions, g/kWh		38.0
	CO ₂ emissions, kg/GJ (H ₂ , LHV)		6.3
	$H_2S + CO_2$ compr., MW		-3.9
	η _E , % (LHV)		1.85
	η _Η , % (LHV)		58.17
	Case 15: Quench		
	Co-capture of CO ₂ and H ₂ S		
	Gasification pressure, bar		120
	CO ₂ captured, % of input		94.76
	CO ₂ emissions, g/kWh		38.0
	CO ₂ emissions, kg/GJ (H ₂ , LHV)		6.5
	$H_2S + CO_2$ compr., MW		-3.8
	η _E , % (LHV)		2.59
	η _H , % (LHV)		57.30

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture	
	Case 16: Syngas Cooler			
	Co-capture of CO ₂ and H ₂ S			
	Gasification pressure, bar		120	
	CO ₂ captured, % of input		93.77	
	CO ₂ emissions, g/kWh		43.3	
	CO ₂ emissions, kg/GJ (H ₂ , LHV)		7.8	
	$H_2S + CO_2$ compr., MW		-3.7	
	η _Ε , % (LHV)		3.54	
	η _H , % (LHV)		57.22	
	Notes:			
	1) In the above Cases 1 to 16, η_E = (net electric	ctric power) / (coal input Ll	HV), and $\eta_{\rm H}$ = (H ₂ LHV) /	
	(coal input LHV).			
	2) "CO ₂ captured" refers to the percentage c	of the carbon in the input c	oal that is captured and	
	stored as CO ₂ .			
	3) Results show that state-of-the-art comme	rcial technology allows tra	nsferring to de-carbonized	
	hydrogen 57-58% of coal LHV, while exporti	ng to the grid de-carboniz	ed electricity amounting to	
	 2-6% of coal LHV. 4) The specific CO₂ emissions (g/kWh) charged to electricity are assumed to equal those from the 			
	electricity-only plant that is most similar in de	esign; the remaining CO ₂ e	emissions are charged to	
	H ₂ .			
	5) CO ₂ capture includes energy requirement	s to transport CO ₂ to the s	sequestration site.	
(S&T) ² Consultants				
Inc., 2003				
	Case 1 Cited by the study			
	Coal consumed, TPD (ton/day)	3,000		
	Coal description	Pittsburgh #8 coal		
	Coal quality, HHV	12,450 BTU/lb		
	Hydrogen produced, MMscfd	131		
	Excess power produced, MW	20.4		
	Coal consumed per MMBTU hydrogen	135.5 lb		
	Excess electricity produced per MMBTU	11 kWh		
	hydrogen			

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	Cold gas efficiency	59.3%	
	Overall efficiency	63.0%	
	Note:		
	1) This case should be the same one as Cas	se 1 in the study by Gray e	et al. (2002).
	Case 2 Cited by the study		
	Coal consumed, TPD (ton/day)	2,500	
	Coal description	Pittsburgh #8 coal	
	Coal quality, HHV	12,450 BTU/lb	
	Hydrogen produced, MMscfd	112	
	Excess power produced, MW	38	
	Coal consumed per MMBTU hydrogen	132 lb	
	Excess electricity produced per MMBTU	24 kWh	
	hydrogen		
	Cold gas efficiency	59.9%	
	Overall efficiency	64.4%	
	Note:		
	1) This case should be the same one as Cas	se 1 in the US DOE (2002) study.
	Emissions Factors for Hydrogen		
	Production Plants:		
	(Grams/million BTU consumed [HHV])		
	Aldehydes (as HCHO) exhaust	n.e.	
	Fuel evaporation or leakage	4.5	
	NMOC exhaust	88.2	
	Evaporation + NMOC exhaust	92.8	
	Carbon in evap. + NMOC exh.	54.6	
	Ozone-weighted total NMOC	58.1	
	CH ₄ (exhaust)	9.3	
	СО	7.6	
	N ₂ O	1.4	
	$NO_x (NO_2)$	29.4	
	$SO_x(SO_2)$	29.4	

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	PM	5.9	
	PM ₁₀	4.4	
	PM _{2.5}	n.e.	
	Note:		
	 The emissions factors for the coal to hydrogen process have been set the same as the coal to methanol process. These were originally derived from EPA AP-42 and other sources by the literature authors. 		
US DOE, 2002			
	Specifications of Pittsburgh #8 coal:		
	(as the feedstock for all cases below)		
	C (% by weight)	6	9.36
	H (% by weight)		5.18
	N (% by weight)	1.22	
	S (% by weight)	2.89	
	O (% by weight)	11.41	
	Ash (% by weight)	9.94	
	Total (% by weight)	100 6.00	
	Moisture (% by weight)		
	Ash (% by weight)		9.94
	Volatile matter (% by weight)		5.91
	Fixed carbon (% by weight)	4	8.15
	Total (% by weight)		100
	Higher heating value (HHV)	12,4	50 Btu/lb
	Case 1		
	Plant size, tons H ₂ /day	312.6	
	(MMscfd) @346 psia	(112)	
	H ₂ output purity	>99.5%	
	Coal feed (dry basis), tpd	2,500	
	Feedstock description	Pittsburgh #8 coal,	
		<10% ash	
	Plant availability	80%	

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	Cold gas efficiency, HHV	57.7%	
	Equivalent thermal efficiency, HHV	62.3%	
	Steam export?	No	
	CO ₂ recovered, tpd (percent)	0	
	Net power	38 MW	
	H ₂ SO ₄ output, tpd	230	
	Case 2		
	Plant size, tons H ₂ /day		317.8
	(MMscfd) @346 psia		(114)
	H ₂ output purity		>99.5%
	Coal feed (dry basis), tpd		2,500
	Feedstock description		Pittsburgh #8 coal, <10%
			ash
	Plant availability		80%
	Cold gas efficiency, HHV		58.6%
	Equivalent thermal efficiency, HHV		60.1%
	Steam export?		No
	CO ₂ recovered, tpd (percent, pressure)		6,233 (92%, 30 psia)
	Net power		12 MW
	H ₂ SO ₄ output, tpd		230
	Note:		
	1) For the above Cases 1 to 2, they are con-	ventional hydrogen plants.	
	Case 3		
	Plant size, tons H ₂ /day		430.8
	(MMscfd) @346 psia		(147)
	H ₂ output purity		>99.5%
	Coal feed (dry basis), tpd		2,500
	Feedstock description		Pittsburgh #8 coal, <10%
			ash
	Plant availability		80%
	Cold gas efficiency, HHV		79.5%

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture	
	Equivalent thermal efficiency, HHV		80.4%	
	Steam export?		No	
	CO ₂ recovered, tpd (percent, pressure)		6,362 (94%, 20 psia)	
	Net power		7 MW	
	H ₂ SO ₄ output, tpd		230	
	 Notes: 1) For the above Case 3, it is an advanced hydrogen plant with HSD operation at 1112°F (600°C), and maximum H₂ production from 2,500 tpd dry gasifier is persued. 2) Case 3 is using E-Gas (Destec two-stage entrained) oxygen-blown gasifiers. 3) Case 3 utilizes a hydrogen separation device (HSD) being developed by Oak Ridge National Laboratory (ORNL). The HSD is based on a high-temperature membrane separation concept that can be designed to selectively separate hydrogen from other gases. By utilizing the HSD, it should be possible to separate hydrogen from CO₂ passively and economically. 			
	 Notes to the above Cases 1 to 3: 1) Cold gas efficiency equals HHV of the pro 2) Effective thermal efficiency (ETE) is defin ETE= (Hydrogen heating value + Electrical HHV. 3) Coal quality is 12,450 Btu/lb (HHV). 4) For cases 2 and 3, A low-pressure H₂S st pressure CO₂ stream is sent offsite for sequ doesn't involve the energy requirements to cos 5) tpd = ton per day. 	oduct gas divided by the H ed as follows. Btu Equivalent) / (Fuel hea ream is sent to the sulfurio estration. Thus, it seems t compress and pipeline CO	HV of the feed x 100. arting Value), based on c acid plant and a low- hat the CO_2 capture here $_2$ to a storage site.	

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
C. Hamelinck et al.,			
2002			
	Case 1		
	Biomass input (dry tonne/h)	80.0	
	Biomass input (MW _{th} HHV)	428.4	
	Load (h/year)	8,000	
	Biomass input (PJ/year, HHV)	12.3	
	Fuel output, MW (HHV)	175.5	
	Net electricity, MW	72.7	
	(Gross - Internal)	(93-21)	
	Efficiency fuel, % HHV	41.0	
	Efficiency power, % HHV	17.0	
	(Fuel + E) efficiency, % HHV	57.9	
	(Fuel only) efficiency, % HHV	66	
	Note:		
	1) For Case 1: IGT, hot gas cleaning, dual shift	, pressure swing adsorption, o	combined cycle.
	Case 2	· · · ·	•
	Biomass input (dry tonne/h)	80.0	
	Biomass input (MW _{th} HHV)	428.4	
	Load (h/year)	8,000	
	Biomass input (PJ/year, HHV)	12.3	
	Fuel output, MW (HHV)	259.2	
	Net electricity, MW	-0.7	
	(Gross - Internal)	(25-26)	
	Efficiency fuel, % HHV	60.5	
	Efficiency power, % HHV	-0.2	
	(Fuel + E) efficiency, % HHV	60.3	
	(Fuel only) efficiency, % HHV	60	

Table 2. Summary of literature data on hydrogen production process via biomass gasification

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture		
	Note:				
	1) For Case 2: IGT, max H ₂ , high temperature dust filter, ceramic membrane (internal shift),				
	expansion turbine.				
	Case 3				
	Biomass input (dry tonne/h)	80.0			
	Biomass input (MW _{th} HHV)	428.4			
	Load (h/year)	8,000			
	Biomass input (PJ/year, HHV)	12.3			
	Fuel output, MW (HHV)	177.1			
	Net electricity, MW	84.4			
	(Gross - Internal)	(103-19)			
	Efficiency fuel, % HHV	41.3			
	Efficiency power, % HHV	19.7			
	(Fuel + E) efficiency, % HHV	61.0			
	(Fuel only) efficiency, % HHV	74			
	Note:				
	1) For Case 3: IGT, hot gas cleaning, ceramic	membrane (internal shift), co	ombined cycle.		
	Case 4				
	Biomass input (dry tonne/h)	80.0			
	Biomass input (MW _{th} HHV)	428.4			
	Load (h/year)	8,000			
	Biomass input (PJ/year, HHV)	12.3			
	Fuel output, MW (HHV)	303.0			
	Net electricity, MW	-22.4			
	(Gross - Internal)	(0-22)			
	Efficiency fuel, % HHV	70.7			
	Efficiency power, % HHV	-5.2			
	(Fuel + E) efficiency, % HHV	65.5			
	(Fuel only) efficiency, % HHV	63			
	Note:				
	1) For Case 4: BCL, scrubber, steam reformer	r, dual shift, pressure <mark>swing a</mark>	dsorption.		

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	Case 5		
	Biomass input (dry tonne/h)	80.0	
	Biomass input (MW _{th} HHV)	428.4	
	Load (h/year)	8,000	
	Biomass input (PJ/year, HHV)	12.3	
	Fuel output, MW (HHV)	149.0	
	Net electricity, MW	72.2	
	(Gross - Internal)	(97-25)	
	Efficiency fuel, % HHV	34.8	
	Efficiency power, % HHV	16.9	
	(Fuel + E) efficiency, % HHV	51.6	
	(Fuel only) efficiency, % HHV	56	
	Note:		
	1) For Case 5: BCL, scrubber, dual shift, press	ure swing adsorption, combin	ied cycle.
	Notes to above Cases 1 to 5:		
	1) These are results of the Aspen+ performance calculations, for 430 MW _{th} input HHV systems		
	(equivalent to 380 MW _{th} LHV for biomass with 3	30% moisture).	
	Net electrical output is gross output minus in	ternal use.	
	3) The fuel only efficiency is calculated by $\eta = f_{1}$	uel / (MW _{th,in} – electricity / η_e)	. The electricity part is
	assumed to be produced from biomass at η_e =	45% HHV efficiency.	1
F. S. Lau et al.,			
2002			
	Case 1: Bagasse		
	Ultimate analysis		
	С	46.46	
	Н	5.4	
	N	0.18	
	S	0.06	
	Ash	8.5	
	O (by difference)	39.36	
	CI	0.04	

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	Proximate analysis		
	Ash	6.99	
	Volatile	80.06	
	Fixed C	12.95	
	HHV (MJ/kg)	17.77	
	Biomass fed, tonnes/day	500	
	(moisture content)	(20%)	
	Heat Used in Reformer [GJ/h]	24.8	
	Heat Used in Dryer [GJ/h]	45.8	
	Heat Recovered from PSA Reject [GJ/h]	60.0	
	Heat Recovered from Reformer Stream		
	[GJ/h]	19.1	
	Net Heat from the system [GJ/h]	8.5	
	Power Used in PSA Compressor [GJ/h]	6.97	
	Power Used for Air Separation [GJ/h]	5.90	
	H ₂ Product Heating Value [GJ/h], HHV	186	
	Dry Biomass Feed Heating Value [GJ/h],		
	HHV	297	
	Cold Efficiency, HHV	0.628	
	Effective Thermal Efficiency, HHV	0.583	
	H ₂ / Dry Biomass [g/kg]	78.1	
	Case 2: Switchgrass		
	Ultimate analysis		
	C	47.73	
	Н	5.56	
	N	0.67	
	S	0.12	
	Ash	5.24	
	O (by difference)	40.57	
	CI	0.11	
	Proximate analysis		

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	Ash	5.24	
	Volatile	80.09	
	Fixed C	14.67	
	HHV (MJ/kg)	18.62	
	Biomass fed, tonnes/day	500	
	(moisture content)	(12%)	
	Heat Used in Reformer [GJ/h]	25.7	
	Heat Used in Dryer [GJ/h]	0	
	Heat Recovered from PSA Reject [GJ/h]	80.5	
	Heat Recovered from Reformer Stream		
	[GJ/h]	8.1	
	Net Heat from the system [GJ/h]	62.9	
	Power Used in PSA Compressor [GJ/h]	8.20	
	Power Used for Air Separation [GJ/h]	5.10	
	H ₂ Product Heating Value [GJ/h], HHV	220	
	Dry Biomass Feed Heating Value [GJ/h],		
	HHV	342	
	Cold Efficiency, HHV	0.644	
	Effective Thermal Efficiency, HHV	0.744	
	H ₂ / Dry Biomass [g/kg]	84.1	
	Case 3: Nutshell Mix		
	Ultimate analysis		
	C	48.51	
	Н	5.65	
	N	0.77	
	S	0.01	
	Ash	3.07	
	O (by difference)	41.98	
	CI	0.01	
	Proximate analysis		
	Ash	2.38	

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	Volatile	76.28	
	Fixed C	21.34	
	HHV (MJ/kg)	19.80	
	Biomass fed, tonnes/day	500	
	(moisture content)	(12.5%)	
	Heat Used in Reformer [GJ/h]	24.2	
	Heat Used in Dryer [GJ/h]	0	
	Heat Recovered from PSA Reject [GJ/h]	89.0	
	Heat Recovered from Reformer Stream		
	[GJ/h]	5.3	
	Net Heat from the system [GJ/h]	70.1	
	Power Used in PSA Compressor [GJ/h]	8.45	
	Power Used for Air Separation [GJ/h]	4.10	
	H ₂ Product Heating Value [GJ/h], HHV	230	
	Dry Biomass Feed Heating Value [GJ/h],		
	HHV	361	
	Cold Efficiency, HHV	0.637	
	Effective Thermal Efficiency, HHV	0.756	
	H ₂ / Dry Biomass [g/kg]	88.3	
	Notes:		
	1) The process flow designs for the three cases	s were developed using a GT	l proprietary gasifier
	model and the Hysys process design and simu	lation program. The gasifier n	nodel utilizes GTI's
	data bank that has been assembled for a large	number of feeds and operatin	ng experiences.
	2) Cold Efficiency = {Hydrogen Heating Value i	n the Product (HHV)} / {Bioma	ass Heating Value in
	the Feed (HHV)}.		
	3) Effective Thermal Efficiency = {Hydrogen He	ating Value in Product (HHV)	+ Net Heat from
	System} / {Biomass Heating Value in Feed (HH	IV) + (Electricity Use / 0.35)}.	
	4) Net Heat from the System = Heat Recovered	d from Reformer Effluent + He	eat Recovered from
	PSA Reject – Heat Used in Reformer – Heat U	sed in Biomass Dryer.	1
H. L. Chum et al.,			
2001			
	Efficiency (HHV), from gasification	60%	

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
R. H. Williams et al., 1995			
	Case 1: IGT gasifier		
	Feedstock characteristics:		
	Dry, ash free composition	CH _{1.52} O _{0.68}	
	HHV (GJ/dry tonne)	19.28	
	Initial moisture (%)	45	
	Moisture after drying (%)	15	
	Energy inputs from:		
	Feedstock (GJ/GJ hydrogen product), HHV	1.50	
	Electricity (kWh/GJ hydrogen product [HHV])		
	Pumps	0.99	
	Compressors	7.77	
	Lockhopper	1.30	
	Oxygen	11.17	
	PSA	11.88	
	Total	33.11	
	Steam (kg/kg dry feed)	1.0	
	Energy ratio (ER), HHV	0.669	
	Fraction of electricity input from:		
	Waste heat	0.109	
	Purge gases	0.000	
	External sources	0.891	
	Thermal efficiency (TE), HHV	0.564	
	Case 2: MTCI gasifier		
	Feedstock characteristics:		
	Dry, ash free composition	CH _{1.63} O _{0.66}	
	HHV (GJ/dry tonne)	19.40	
	Initial moisture (%)	45	
	Moisture after drying (%)	20	
	Energy inputs from:		

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	Feedstock (GJ/GJ hydrogen product), HHV	1.32	
	Electricity (kWh/GJ hydrogen product [HHV])		
	Pumps	0.01	
	Compressors	26.21	
	Lockhopper	0.00	
	Oxygen	0.00	
	PSA	9.23	
	Total	35.45	
	Steam (kg/kg dry feed)	1.37	
	Energy ratio (ER), HHV	0.759	
	Fraction of electricity input from:		
	Waste heat	0.033	
	Purge gases	0.000	
	External sources	0.967	
	Thermal efficiency (TE), HHV basis	0.611	
	Case 3: BCL gasifier		
	Feedstock characteristics:		
	Dry, ash free composition	CH _{1.54} O _{0.65}	
	HHV (GJ/dry tonne)	19.46	
	Initial moisture (%)	45	
	Moisture after drying (%)	10	
	Energy inputs from:		
	Feedstock (GJ/GJ hydrogen product), HHV	1.37	
	Electricity (kWh/GJ hydrogen product [HHV])		
	Pumps	0.04	
	Compressors	22.84	
	Lockhopper	0.00	
	Oxygen	0.00	
	PSA	8.90	
	Total	31.79	
	Steam (kg/kg dry feed)	0.95	

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	Energy ratio (ER), HHV	0.732	
	Fraction of electricity input from:		
	Waste heat	0.317	
	Purge gases	0.000	
	External sources	0.683	
	Thermal efficiency (TE), HHV	0.636	
	Case 4: Shell gasifier		
	Feedstock characteristics:		
	Dry, ash free composition	CH _{1.52} O _{0.68}	
	HHV (GJ/dry tonne)	19.28	
	Initial moisture (%)	45	
	Moisture after drying (%)	11	
	Energy inputs from:		
	Feedstock (GJ/GJ hydrogen product), HHV	1.27	
	Electricity (kWh/GJ hydrogen product [HHV])		
	Pumps	0.29	
	Compressors	6.21	
	Lockhopper	0.88	
	Oxygen	14.22	
	PSA	11.62	
	Total	33.23	
	Steam (kg/kg dry feed)	1.65	
	Energy ratio (ER), HHV	0.788	
	Fraction of electricity input from:		
	Waste heat	0.032	
	Purge gases	0.151	
	External sources	0.817	
	Thermal efficiency (TE), HHV	0.645	

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	Notes:		
	1) In all cases the production facility is designed to produce gaseous H_2 at a pressure of 75 bars.		
	2) For PSA, electricity use is assumed to be 4.46 kWh/kmole of CO ₂ .		
	3) For the Steam item in the above cases, this is the total amount of steam generated for the		
	process, excluding steam that is used for electricity production.		
	4) The energy ratio (ER) is defined as the energy content of the product fuel divided by the energy		
	in the input feedstock (HHV basis), which takes no account of the energy required to provide		
	electricity or heat from external sources.		
	5) The thermal efficiency (TE) is defined as the	e energy content of the produc	t fuel divided by the
	energy content of all energy inputs to the proce	ess, including the feedstock ar	nd additional amounts
	of feedstock used to generate the electricity an	d heat requirements not provi	ded from byproduct
	process heat or purge gases.		
L. Basye et al., 1997			
	Conversion efficiency, based on HHV	57.8%	
	Capacity	1.31 million Nm ³ /day for	
		biomass gasifier (46 million	
		SCF/day)	
	Plant operating factor	328 day/year	
	Annual production, GJ (HHV)	5,486,000	
		$(4.9 \times 10^{\circ} \text{ MBtu}, 429 \text{ million})$	
		Nm [°] , 38.6 million kg)	
	Life of plant in years	20	
G. Brinkman, 2003			
	Efficiency (Source: Williams)	73%	
	Efficiency (Source: Bowen)	66%	
	Efficiency (Source: Spath)	57%	
	Efficiency (Source: Hamelinck)	61%	
	Statistics:		
	Mean	65%	
	Standard Deviation	8%	
	Note:		
	 For this report, all energy content values are 	e expressed in terms of higher	heating value (HHV).

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
P. L. Spath et al.,			
2000			
	Case 1: Battelle/FERCO		
	H ₂ production rate @ 100% capacity (kg/day)	22,737	
	Biomass feed rate for each technology (bone	314	
	dry Mg/day)		
	Case 2: Battelle/FERCO		
	H ₂ production rate @ 100% capacity (kg/day)	75,790	
	Biomass feed rate for each technology (bone	1,046	
	dry Mg/day)		
	Case 3: Battelle/FERCO		
	H ₂ production rate @ 100% capacity (kg/day)	113,685	
	Biomass feed rate for each technology (bone	1,569	
	dry Mg/day)		
	Case 4: IGT		
	H ₂ production rate @ 100% capacity (kg/day)	22,737	
	Biomass feed rate for each technology (bone	311	
	dry Mg/day)		
	Case 5: IGT		
	H ₂ production rate @ 100% capacity (kg/day)	75,790	
	Biomass feed rate for each technology (bone	1,035	
	dry Mg/day)		
	Case 6: IGT		
	H ₂ production rate @ 100% capacity (kg/day)	113,685	
	Biomass feed rate for each technology (bone	1,553	
	dry Mg/day)		
	Case 7: Pyrolysis		
	H ₂ production rate @ 100% capacity (kg/day)	22,737	
	Biomass feed rate for each technology (bone	542	
	dry Mg/day)		
	Case 8: Pyrolysis		

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	H ₂ production rate @ 100% capacity (kg/day)	75,790	
	Biomass feed rate for each technology (bone	1,806	
	dry Mg/day)		
	Case 9: Pyrolysis		
	H ₂ production rate @ 100% capacity (kg/day)	113,685	
	Biomass feed rate for each technology (bone	N/A	
	dry Mg/day)		
	 For both of the gasification technologies studied in this analysis, three plant sizes were examined. Only two plant sizes were studied for hydrogen via pyrolysis. The largest plant size was not considered to be feasible for pyrolysis due to the large quantity of biomass that would be required since a portion of the oil that is produced from the biomass goes to the coproduct rather than to hydrogen. 		
(S&T) ² Consultants			
Inc., 2003			
	Investigated plant performance		
	Hydrogen produced, MW _{th} [HHV]	259	
	Biomass input, MW _{th} [HHV]	430	
	Electricity required, MW	1	
	Model inputs by GHGenius		
	Hydrogen produced, million BTU [HHV]	1	
	Biomass input, Ibs	198.9	
	Electricity required, kWh	1.13	
	Notes:		
	1) For the base modeling case, the work of Har	nelinck is used.	
	2) The electrical requirements are the net requi	rements after the electricity p	produced by the
	process and the total process demands are cor	nsidered. The wood required	as the input must
	have a moisture content of less than 30% in thi	s case.	
	3) The thermal efficiency for this case is about	60% which is comparable to	that reported in
	several of the other studies.		

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	Emissions Factors: Mann's Case		
	(Grams/million BTU [HHV] feed INPUT)		
	Aldehydes (as HCHO) exhaust		
	Fuel evaporation or leakage		
	NMOC exhaust	150	
	CH ₄ (exhaust)	0.08	
	CO	0.25	
	N ₂ O		
	$NO_{x} (NO_{2})$	140	
	$SO_{x}(SO_{2})$	74	
	PM	1.1	
	PM ₁₀		
	PM _{2.5}		
	Emissions Factors: EREN's Case		
	(Grams/million BTU [HHV] feed INPUT)		
	Aldehydes (as HCHO) exhaust		
	Fuel evaporation or leakage		
	NMOC exhaust	10.0	
	CH ₄ (exhaust)		
	CO	21.8	
	N ₂ O		
	$NO_{x} (NO_{2})$	68.2	
	$SO_x (SO_2)$	85.6	
	PM		
	PM ₁₀		
	PM _{2.5}		
	Emissions Factors: AP-42's Case		
	(Grams/million BTU [HHV] feed INPUT)		
	Aldehydes (as HCHO) exhaust	2.4	
	Fuel evaporation or leakage		
	NMOC exhaust	6	

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	CH ₄ (exhaust)	9.5	
	CO	270	
	N ₂ O	6	
	$NO_x (NO_2)$	100-225	
	$SO_x(SO_2)$	11	
	PM		
	PM ₁₀	18-227	
	PM _{2.5}	16-195	
	Emissions Factors: GHGenius's Case		
	(Grams/million BTU [HHV] feed INPUT)		
	Aldehydes (as HCHO) exhaust	0.5	
	Fuel evaporation or leakage	0.0	
	NMOC exhaust	10.0	
	CH ₄ (exhaust)	2.0	
	CO	50	
	N ₂ O	4	
	$NO_{x} (NO_{2})$	75	
	$SO_{x}(SO_{2})$	Calc.	
	PM		
	PM ₁₀	25	
	PM _{2.5}	25	
	Notes:		
	1) Two reports (Mann and Spath, 1997, and US	S DOE EREN) on biomass ga	asification used for
	power generation were found with information	on emissions.	
	2) The AP-42 results were for wood combustio	n.	
	3) The values chosen by GHGenius are based	on the other researchers' val	ues as well as
	considering the values in the model for wood fi	red boilers. These factors are	an estimate and are
	not based on any test data.		
H. Audus et al.			
	Ultimate analysis for SRC feed		
	Acacia		

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	C	50.7	
	Н	5.7	
	0	41.9	
	Ν	0.6	
	S	0.01	
	Ash	1.0	
	Eucalyptus		
	С	48.3	
	Н	5.9	
	0	45.1	
	Ν	0.15	
	S	0.01	
	Ash	0.5	
	Case 1: Biomass Gasi. Power plant		
	Power plant efficiency (Maniatis reports)	30.6%	
	Power plant efficiency (Ciferno et al.)	33%	
	Future efficiency assumed (LHV)	40%	
	Biomass fed (t/yr, dry)	121,000	
		(2.0 million GJ/yr [LHV])	
	Biomass type	Mixture of acacia and	
		eucalyptus	
	Electricity output (MWh/yr)	225,000	
		(0.8 million GJ/yr)	
	CO ₂ storage (t CO ₂ /yr)	0	
	CO ₂ emissions (t CO ₂ /yr)	216,000	
	SO ₂ (t/yr)	26	
	PM (t/yr)	8	
	Case 2: Biomass Gasi. Power plant		
	Future efficiency assumed (LHV)		32%

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	Biomass fed (t/yr, dry)		121,000
			(2.0 million GJ/yr
			[LHV])
	Biomass type		Mixture of acacia
			and eucalyptus
	Electricity output (MWh/yr)		178,000
			(0.64 million GJ/yr)
	CO ₂ storage (t CO ₂ /yr)		184,000 (85%)
	CO ₂ emissions (t CO ₂ /yr)		32,000
	Notes:		
	1) Compared with coal IGCC, combining bioma	ass gasification with gas turbir	ne combustion in an
	integrated cycle is referred to as BIGCC here.		
	2) The recent work on coal IGCC reported by Bressan et al. indicate that the adoption of CO ₂		
	capture and compression incurs an energy penalty of about 8% points. The penalty would not be		
	less for BIGCC, and we have therefore assumed that the BIGCC plant with CO ₂ capture has an		
	efficiency of 32% (c.f. the 40% assumed originally for a future commercial unit).		
	3) t = metric tonne.		
	4) All the analysis in this study is based on LHV.		
	5) The CO ₂ capture case includes the energy requirements to capture, compress, and transport		
	CO ₂ to a storage site.		
W. Iwasaki, 2003			
	Wood biomass composition:		
	Moisture (% wet base)	4.8	
	Combustible (% wet base)	95.0	
	Ash (% wet base)	0.2 49.0	
	C (% dry base)		
	H (% dry base)	6.7	
	O (% dry base)	44.1	
	N (% dry base)	0.0	
	S (% dry base)	0.0	
	Cl (% dry base)	0.0	
	HHV (MJ/kg), wet base	17.6	

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	LHV (MJ/kg), wet base	16.1	
	Wood biomass feed, t/d	100	
	Product H ₂ , m ³ /h (NTP)	2,740	
		(5.9 t/d)	
	H ₂ purity	99.99%	
	Conversion efficiency (HHV)	47.9%	
	Note:		
	1) t/d = metric tonne per day.		
	2) Hydrogen is produced by biomass gasification	on with pyrolysis process.	
S. P. Babu			
	Demonstration Power Plant		
	Feed capacity, kW	8,000	
	Electrical output, kW	2,000	
	Thermal output, kW (HHV)	4,500	
	Electrical efficiency, %	25.0	
	Thermal efficiency, % (HHV)	56.3	
	Total efficiency, %	81.3	
	Note:		
	1) Following the initial development of the Fast	Internal Circulation Fluidized	Bed (FICFB) Process
	in a laboratory test unit at Technical University of Vienna (TUV), a demonstration plant was		
	erected. This plant is situated in Burgenland an	id went into operation in Autu	mn 2001. Those data
	above are for this demonstration plant.		
EERE, 2005			
	BGCC Power Plant		
	(For the base year 1997)		
	Annual capacity factor	80%	
	Net kJ/kWh (HHV)	10,000	
	Thermal Efficiency	36.0% (HHV)	
	Annual energy delivery	526 GWh/yr	
	Plant size	75 MW _e	
	Energy: Biomass	2.26 PJ/yr (HHV)	

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	Feedstock: Biomass (dry)	0.267 Tg/yr	
	Emissions from a High-pressure, Direct		
	Gasification System		
	PM10, g/Nm ³	0.007	
	NOx @ 15% O ₂ , g/GJ of feed input	64.5	
	CO, g/GJ of feed input	20.6	
	Non-CH4 Hydrocarbons, g/GJ of feed input	9.6	
	SO ₂ , g/GJ of feed input	81.8	
	Ash, Mg/yr	2,912	
	Boiler blowdown, Mg/yr	6,989	
	 This case is electricity production from biomass using a biomass gasification combined cycle (BGCC) system. The emissions data shown are taken from DeLong and are based on alfalfa feed. Those emissions are from a high-pressure, direct gasification system. 		
J. P. Ciferno et al., 2002			
	Case 1: MTCI Technology		
	Feedstock type	Pulp sludge	
	Throughput (tonne/day)	7	
	Emissions		
	Liquid waste (tar/oil) (kg/kg feed)	-	
	Solid waste (char/ash) (kg/kg feed)	0.091	
	Product tar content	-	
	СО	-	
	NO _x	25 ppm	
	SO ₂	9 ppm	
	Organic carbon	-	
	NH ₃	-	
	H₂S	-	
	Case 2: GTI Technology		

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	Feedstock type	Wood	
	Throughput (tonne/day)	12	
	Emissions		
	Liquid waste (tar/oil) (kg/kg feed)	0.03	
	Solid waste (char/ash) (kg/kg feed)	0.03	
	Product tar content	2-3%	
	СО	-	
	NO _x	-	
	SO ₂	-	
	Organic carbon	-	
	NH ₃	-	
	H ₂ S	-	
	Case 3: Lurgi Technology		
	Feedstock type	Bark	
	Throughput (tonne/day)	84-108	
	Emissions		
	Liquid waste (tar/oil) (kg/kg feed)	Low	
	Solid waste (char/ash) (kg/kg feed)	0.01-0.04	
	Product tar content	1 g/m ³	
	СО	250 mg/m ³	
	NO _x	250 mg/m ³	
	SO ₂	100 mg/m ³	
	Organic carbon	150 mg/m ³	
	NH ₃	5 mg/m ³	
	H ₂ S	5 mg/m ³	
	Case 4: Aerimpianti Technology		
	Feedstock type	RDF	
	Throughput (tonne/day)	45-100	
	Emissions		
	Liquid waste (tar/oil) (kg/kg feed)	-	
	Solid waste (char/ash) (kg/kg feed)	250-630 kg/h	

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	Product tar content	25-40 kg/h	
	CO	-	
	NO _x	-	
	SO ₂	<300 ppm	
	Organic carbon	-	
	NH ₃	-	
	H ₂ S	-	
	Case 5: SEI Technology		
	Feedstock type	Wood	
	Throughput (tonne/day)	181	
	Emissions		
	Liquid waste (tar/oil) (kg/kg feed)	592	
	Solid waste (char/ash) (kg/kg feed)	-	
	Product tar content	Burned	
	CO	-	
	NO _x	-	
	SO ₂	-	
	Organic carbon	-	
	NH ₃	-	
	H ₂ S	-	
	Case 6: TPS Technology		
	Feedstock type	Wood	
	Throughput (tonne/day)	9	
	Emissions		
	Liquid waste (tar/oil) (kg/kg feed)	<100	
	Solid waste (char/ash) (kg/kg feed)	-	
	Product tar content	100 g/m ³	
	CO	-	
	NO _x	-	
	SO ₂	-	
	Organic carbon	-	

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	NH ₃	-	
	H ₂ S	-	
	Case 7: Sofresid Technology		
	Feedstock type	MSW	
	Throughput (tonne/day)	195	
	Emissions		
	Liquid waste (tar/oil) (kg/kg feed)	0	
	Solid waste (char/ash) (kg/kg feed)	10	
	Product tar content	Burned	
	СО	-	
	NO _x	120 ppm	
	SO ₂	79 ppm	
	Organic carbon	<10 ppm	
	NH ₃	-	
	H₂S	-	
	 Notes: 1) RDF Refuse Derived Fuel; MSW—Municipal Solid Waste. 2) Emissions are highly variable and depend on gasifier type, feedstock, process conditions (temperature and pressure) and gas conditioning systems. 3) Gasification of municipal solid waste and sewage sludge results in ash containing heavy metals 		
M. M. DeLong, 1995			
	Alfalfa Stems Analysis		
	Feedstock analysis (as fed to gasifier):		
	C (wt%)	42.8	
	H (wt%)	5.3	
	N (wt%)	1.9	
	CI (wt%)	0	
	S (wt%)	0.07	
	O (wt%)	35.8	
	Moisture (wt%)	9.4	

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	Ash (wt%)	4.8	
	HHV (dry basis), Btu/lb	8,08	3
	HHV (as fed to gasifier), Btu/lb	7,32	6
	IGCC Biomass Gasi. Power Plant:		
	Overall Plant Performance		
	Dried biomass feed rate, lb/h (9.4% moisture)	91,300	
	Gasifier heat input (HHV), MMBtu/h	669	
	Combustion turbine firing rate (HHV),	614	
	WIWB(U/I)		
	Steem @ 4.100 lb/b MMDtu/b	F	
	- Steam @ 4,100 lb/n, MMBtu/n	5	
	- Flue gas @ 310,000 lb/n, MMBtu/n	20	
	Combustion turbine gross power, kw	50,100	
	Steam turbine gross power, kw	29,300	
		79,400	
	Auxiliary power, kw	4,310	
	Net plant output, KW	75,090	
	Net plant heat rate (HHV), Btu/kWh	8,910	
	Net plant efficiency (HHV), %	38.3	
	Combustion Turbine Performance		
	Fuel consumption (HHV), MMBtu/h	614	
	Combustion turbine gross power, kW	50,100	
	Exhaust flow, lb/h	1,397,500	
	Exhaust temperature, °F	973	
	Exhaust composition, % vol.		
	Oxygen	12.8	
	Water vapor	7.5	
	Carbon dioxide	6.2	
	Nitrogen and Argon	73.5	
	Estimated Emissions (at Gas Turbine		
	Exhaust)		

Literature sources	Configuration or Other Items	With CO ₂ Venting	With CO ₂ capture
	NO _x (as NO ₂ at 15% O ₂), ppmvd	40	
	CO, ppmvd	25	
	SO _x (as SO ₂), ppmvw	40	
	Total IGCC Emissions at Full Load		
	Gaseous emissions		
	SO _x (as SO ₂)	127 lb/h (40 ppmvw)	
	NO _x (as NO ₂)	99 lb/h (40 ppmvd @ 15%	
		O ₂)	
	CO	32 lb/h (25 ppmvd)	
	PM ₁₀	6 lb/h (4 ppm weight)	
	UHC	15 lb/h (20 ppmvd)	
	Solids emissions		
	Bottom ash, Ib/h	4,700	
	Fly ash, lb/h	1,800	
	Aqueous emissions		
	Boiler blowdown, lb/h	2,200	
	Notes:		
	1) ppmvw = parts per million by volume on wet gas basis;		
	ppmvd = parts per million by volume on dry g	gas basis; and	
	ppm weight = parts per million on weight bas	SiS.	
	2) The gaseous emissions are mainly from combustion turbine.		
	3) The alfalfa stem feedstock is used here as the	ne biomass source.	
	4) UHC = unburned hydrocarbons.		
	5) For SO _x , NO _x , and CO, total IGCC emissions at full load are the same as emissions at gas		
	turbine exhaust.		
	6) NO _x is controlled to 40 ppmvd (parts per million by volume on a dry gas basis) at 15% O ₂ by a		
	combination of fuel-bound nitrogen-to-ammonia reduction by the gasifier system and by the use of		
	special low-Btu fuel combustion turbine combustors.		

REFERENCES

R. H. Williams, "Toward Zero Emissions for Transportation Using Fossil Fuels," *Transportation, Energy, and Environmental Policy*: 63-103, September (2001).

Bechtel Corporation, Global Energy Inc, and Nexant Inc., *Gasification Plant Cost and Performance Optimization*, Final Report, DOE Contract No. DE-AC26-99FT40342, U.S. Department of Energy, National Energy Technology Laboratory (NETL), September (2003).

G. Rizeq, J. West, et al, *Fuel-Flexible Gasification-Combustion Technology for Production of H*² *and Sequestration-Ready CO*², annual technical progress report, DOE Award No. DE0FC26-00FT40974, GE Energy and Environmental Research Corporation (GE EER), October (2002).

R. H. Williams, Robert H. Socolow et al., "Co-Production of Hydrogen and Electricity from Fossil Fuels with CO₂ Capture", Presentation at Second Annual conference on Carbon Sequestration, Washington, May 5-8 (2003).

J. Ogden and E. Kaijuka, "Conceptual Design of Optimized Fossil H₂ Energy Systems with Capture and Sequestration of CO₂", Presentation at the National Carbon Sequestration Conference Alexandria, VA, May 7 (2003).

P. Chiesa, S. Consonni et al., "Co-production of Hydrogen, Electricity and CO₂ from Coal using Commercially-Ready Technology", Presentation at Second Annual conference on Carbon Sequestration, Washington, May 5-8 (2003).

T. Kreutz, B. Williams et al., "Production of Hydrogen and Electricity from Coal with CO₂ Capture", Presentation at the 6th International Conference on Greenhouse Gas Control Technologies (GHGT-6), Kyoto Japan, September 30-October 4 (2002).

D. Gray, and G. Tomlinson, "Hydrogen from Coal," Mitretek Technical Paper, MTR 2002-31, July (2002).

P. Chiesa, S. Consonni, T. Kreutz, and R. Williams, "Co-production of hydrogen, electricity and CO₂ from coal with commercially ready technology. Part A: Performance and emissions," *International Journal of Hydrogen Energy* **30**: 747 – 767 (2005).

(S&T)² Consultants Inc., "The Addition of Coal and Biomass to Hydrogen Pathways to GHGenius," Prepared for Office of Energy Efficiency of Natural Resources Canada, August 25 (2003).

US DOE, *Hydrogen Production Facilities Plant Performance and Cost Comparisons,* Final report, Parsons Infrastructure and Technology Group Inc., March (2002).

C. Hamelinck and A. Faaij, "Future prospects for production of methanol and hydrogen from biomass," *Journal of Power Sources* **111**: 1–22 (2002).

F. S. Lau, D. A. Bowen et al, *Techno-Economic Analysis of Hydrogen Production by Gasification of Biomass*, Final Technical Report, DOE Contract Number: DE-FC36-01GO11089, prepared for the Period September 15, 2001 to September 14, 2002, Gas Technology Institute, Dec (2002).

H. L. Chum and R. P. Overend, "Biomass and renewable fuels," *Fuel Processing Technology* **71**: 187–195 (2001).

R. H. Williams, E. D. Larson et al., "Methanol and hydrogen from biomass for transportation," *Energy for Sustainable Development*, Volume I No. 5, January (1995).

L. Basye and S. Swaminathan, "Hydrogen Production Costs --A Survey", Sentech Inc., Dec 4 (1997).

G. Brinkman, "Economics and Environmental Effects of Hydrogen Production Methods," Fall (2003).

P. L. Spath, J. M. Lane et al, "Update of Hydrogen from Biomass -Determination of the Delivered Cost of Hydrogen," Report, prepared for the U.S. Department of Energy's Hydrogen Program, National Renewable Energy Laboratory, April (2000).

H. Audus and P. Freund, "Climate Change Mitigation by Biomass Gasification Combined with CO₂ Capture and Storage," IEA Greenhouse Gas R&D Programme, Cheltenham, U.K.

W. Iwasaki, "A consideration of the economic efficiency of hydrogen production from biomass," *International Journal of Hydrogen Energy* **28**: 939–944 (2003).

S. P. Babu, "Biomass Gasification for Hydrogen Production – Process Description and Research Needs," Gas Technology Institute, IEA Thermal Gasification Task.

EERE, "Gasification-based Biomass",

http://www.eere.energy.gov/consumerinfo/pdfs/bio_gasification.pdf</u>, accessed Apr 20 (2005).

J. P. Ciferno and J. J. Marano, "Benchmarking Biomass Gasification Technologies for Fuels, Chemicals and Hydrogen Production," Prepared for U.S. Department of Energy National Energy Technology Laboratory, June (2002).

M. M. DeLong, *Economic development through biomass system integration: Summary report*, Report Number: NREL/TP--430-20517, DOE Contract Number: AC36-83CH10093, Gas Technology Northern States Power Company, Oct (1995).