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I. INTRODUCTION

Among economists there is a general consensus that a carbon pricing mecha-
nism, through either a tax or a cap-and-trade market for greenhouse gas (GHG)
emissions allowances, is the preferred choice for a broad-based climate policy. A
stable and predictable price of carbon into the distant future will more effec-
tively incent firms and consumers to make long-lived investments in expensive
lower-carbon technologies and stimulate innovation in the development of new
low-carbon technologies, on which the ultimate success of any climate policy de-
pends.

Existing cap-and-trade policies, however, have not been very successful in cre-
ating a stable, market-driven price of carbon.1 Prices in existing cap-and-trade
markets for greenhouse gasses (GHGs) have been volatile and, most recently,
have been so low as to create little incentive to invest in GHG reduction. The
European Union Emissions Trading System (EU-ETS), the world’s largest GHG
market has experienced both a sharp crash in prices (Ellerman and Buchner,
2008) and a long slow decline to economically insignificant levels. The EU-ETS
responded in 2014 by reducing the emissions cap. The Regional Greenhouse Gas
Initiative (RGGI) in the Northeastern U.S. has gone through a similar experi-
ence.2 Although emissions may come in under the caps, low or highly uncertain
average emissions allowance prices do little to achieve the long-term climate policy
goals of significant investments in low-carbon technologies.

In this paper, we argue that extreme price outcomes are very likely to occur
in most real-world cap-and-trade markets for GHGs. We explore the relative
importance of two aspects of GHG emissions that drive this conclusion. The
first is the high level of exogenous GHG emissions volatility. GHG emissions are
closely tied to economic activity and also vary with natural conditions such as
temperature and rainfall. These uncertainties have long been recognized as an
issue when forecasting both damages and mitigation cost.3 The second factor is
that the price elasticity of GHG abatement is likely to be relatively small over
the range of prices generally deemed acceptable – at least over the timeframe of
a decade – and very difficult to predict over a longer timeframe.

The inelasticity of the supply of GHG emissions abatement is exacerbated by
other environmental policies that are commonly present in the same jurisdictions
as cap-and-trade markets. These so-called “complementary policies” – such as

1Even regions that have implemented carbon taxes have had a difficult time maintaining their future
carbon pricing commitments. In 2008, British Columbia implemented a 10 Canadian dollar (CAD) per
ton of CO2 tax that would increase by $5 per year. However, in 2012 the province decided to freeze the
tax at $CAD 30 per ton. The Australian government implemented a 10 Australian dollar per ton of CO2

tax on July 1, 2012. In 2013, the Liberal party, led by Tony Abbott, campaigned and formed a coalition
government on a platform that included abolishing the CO2 tax. On July 17, 2014 the Australian Senate
voted to abolish the CO2 tax.

2As of this writing, allowances in the EU-ETS and RGGI were both around $5 per metric tonne.
3When discussing controversies about mitigation costs, Aldy et. al. (2009) note that “[f]uture mitiga-

tion costs are highly sensitive to business-as-usual (BAU) emissions, which depend on future population
and Gross Domestic Product (GDP) growth, the energy intensity of GDP, and the fuel mix.”
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fuel economy standards for cars and mandated renewable generation shares for
electricity – may increase the political acceptance of cap-and-trade markets by re-
quiring certain pathways to GHG reductions, but as we demonstrate below, these
same mechanisms steepen the abatement supply curve by mandating mitigation
that would otherwise be price responsive.

In recognition of the problems created by uncertain allowance prices, economists
have proposed hybrid mechanisms that combine caps with price-collars that can
provide both upper (Jacoby and Ellerman, 2004) and lower (Burtraw et al.,
2009) bounds on allowance prices. Such hybrid mechanisms can greatly reduce
allowance price risk while ensuring a better match between ex-post costs and ben-
efits (Pizer, 2003). While the EU-ETS has no such bounds, the trading system
proposed under the never-enacted Waxman-Markey bill of 2010 included price
collars of a sort, as does California’s program. The fact that California’s market
currently has the highest price among mandatory GHG cap-and-trade programs
is largely due to its relatively high floor price.

California’s cap-and-trade market undertook its first allowance auction on Novem-
ber 14, 2012 and compliance obligations began on January 1, 2013. The quantity
of available allowances has been set for the first eight years, through 2020, after
which the future of the program is uncertain. There is an auction reserve price
(ARP), managed through adjustments to the supply of allowances at the periodic
auctions, that sets a soft floor price for the market. This price floor rises each
year. There is also an allowance price containment reserve (APCR) designed to
have a restraining effect on prices on the high end by adding a pre-specified num-
ber of allowances to the pool when prices exceed certain trigger levels at anytime
during the program. This is a very soft price ceiling in that if all allowances in
the APCR are used there would be no further mechanism to restrain allowance
price increases.

Using data from prior to the commencement of California’s market, we develop
estimates of the distribution of allowance prices that account for uncertainty in
GHG emissions, as well as the elasticity and uncertainty of the supply curve of
abatement. Instead of estimating the full probability distribution of allowance
prices, we focus on computing probabilities that allowance prices lie on four dis-
tinct segments of the abatement supply curve: (1) at or near the price floor
(auction reserve price), (2) above the price floor and below the first step of the
APCR (i.e., on the upward sloping portion of the abatement supply curve), (3) at
or above the first step of the multi-step (described below) APCR and at or below
the last step of the APCR, and (4) above the last price step of the APCR. We
find that uncertainties in “business-as-usual” (BAU) emissions and the quantity of
abatement available from complementary policies create variation in the amount
of abatement needed to meet a cap that is much larger than price-responsive
abatement adjustment could plausibly provide.

One of the primary factors determining where in that distribution the market
will equilibrate is the BAU emissions, which is substantially the result of economic
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activity driving electricity consumption and vehicle travel, as well as the emissions
intensities of those activities, plus emissions from natural gas combustion in the
residential, commercial and industrial sectors. We develop an econometric model
of the drivers of GHG emissions using time-series methods, which we estimate with
emissions and economic data starting in 1990, in order to estimate the distribution
of future GHG emissions.

The steep supply of emissions abatement between the effective price floor and
the APCR, along with substantial uncertainty we find in both business-as-usual
emissions and abatement from complementary policies, implies a bimodal distri-
bution of prices with most of the probability mass at either low or high price
outcomes. We find that there is a very small probability of an “interior solution”
in which supply and demand for emissions equilibrate at a level that is not driven
primarily by administrative interventions that set a floor or ceiling.

In the case of California’s market, we find that the emissions cap has been set
at a level that implies a very high probability total GHG emissions will be below
the cap and the allowance market price will be very close to or at the price floor.4

In all of the scenarios we examine, we also find a low probability that the price
will be in the intermediate range above the auction reserve price floor and below
the containment reserve price. Thus, most of the remaining probability weight
is on outcomes in which some or all of the allowances in the price containment
reserve are needed.

Throughout this analysis, we assume that the emissions market is completely
competitive; no market participant is able to unilaterally, or collusively, change
their supply or demand of allowances in order to profit from altering the price
of allowances. In Borenstein, Bushnell, Wolak and Zaragoza-Watkins (2014) we
analyze the potential for market power and market manipulation given the char-
acteristics of supply and demand in the market. While we find a potential for
short-term manipulation of the market, we do not find a plausible incentive to
exercise market power in a way that would change the equilbrium price over the
full 8-year course of the market.

Based on our empirical analysis, we believe that all GHG emissions allowance
markets with a finite compliance period face a high probability that the market
price will be determined by an administrative price floor or price ceiling. As
we demonstrate below, many of the features of the market design that make a
GHG emissions allowance market politically feasible also steepen the supply curve
for abatement. Highly unpredictable BAU emmissions create a wide support of
the demand for allowances while relatively inelastic abatement supply implies
that only if allowance demand is in a narrow band will the market price not be
determined by the administrative price floor or ceiling.

4Throughout this paper we refer to a single “allowance market.” The trading of allowances and their
derivatives takes place through several competing and coexisting platforms including quarterly auction
of allowances by the State. We assume that prices between these markets will be arbitraged so that all
trading platforms will reflect prices based upon the overall aggregate supply and demand of allowances
and abatement.



EXPECTING THE UNEXPECTED 5

The remainder of the analysis proceeds as follows. Section II characterizes the
set of possible outcomes in the market for California emissions allowances given
the characteristics of the supply and demand for GHG emissions abatement. Sec-
tion III describes how we model the BAU drivers of GHG emissions over the
2013-2020 life of the program using a Vector Autoregression (VAR) model that
imposes the restrictions implied by the existence of cointegrating relationships
among the elements of the VAR. In Section IV, we explain how we incorpo-
rate into the price projections the major additional California GHG reduction
programs, known in California as “complementary policies.”5 These include a
renewable portfolio standard (RPS) that mandates increased electricity genera-
tion from renewable sources, a fuel economy standard that reduces fuel use per
vehicle mile traveled, a low-carbon fuel standard (LCFS) that lowers the mea-
sured emissions intensity of the transport fuel used, and additional programs to
improve non-transport and transport energy efficiency. Even though the impacts
of these programs will be largely independent of allowance prices, the effects of
these programs will be highly dependent on the economic and emissions variables
that we model in the VAR. In Section V, we discuss other forms of abatement
that will affect the supply-demand balance, including abatement responsive to
the allowance price. We present results in Section VI under the baseline scenario
for complementary policies and other abatement activities, and we also show how
cap-and-trade might operate in the absence of complementary policies. Section
VII concludes.

II. THE CALIFORNIA CAP-AND-TRADE MARKET

We focus on estimating the potential range and uncertainty in allowance prices
over the entire 8-year span of the market.6 The underlying source of demand for
allowances is emissions of GHGs from the covered entities, which are a function
of the levels and intensities of their emissions-producing activities. Banking and
(slightly limited) borrowing of allowances is permitted between the years of each
compliance period and banking is permitted between compliance periods. Because
of the relatively generous allowance budgets in the earlier years and a policy
change adopted during the first year of the program,7 under nearly any scenario,

5The terminology presents some irony, because in economic terms these programs are probably more
aptly described as substitutes for a cap-and-trade program.

6In late 2013, the ARB finalized plans to link California’s cap-and-trade market with the market in
Quebec, Canada as of January 1, 2014. Our analysis does not include Quebec, though it could easily be
extended to do so if comparable data were available for Quebec. Quebec’s total emissions were roughly
1/7 that of California. Consequently, the supply-demand balance of allowances for Quebec could alter
the probabilities presented in this paper. Given the limited amount of emissions abatement possibilities
in Quebec versus California, including Quebec in our analysis is likely to increase the probability of
higher price outcomes.

7See the ARB Board resolution dated October 18, 2012 at
http://www.arb.ca.gov/cc/capandtrade/final-resolution-october-2012.pdf and an issue anal-
ysis from the Emissions Market Assessment Committee dated September 20, 2012 at
http://www.arb.ca.gov/cc/capandtrade/emissionsmarketassessment/pricecontainment.pdf. For the
recently adopted changes, see
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emissions during the first two compliance periods (ending December 31, 2014 and
December 31, 2017) will not exceed the caps, so the eight years of the market are
likely to be economically integrated. As a result, we examine the total supply and
demand balance over the entire eight years of the program (2013-2020). Because
there is a large degree of uncertainty around the level of BAU emissions, we
pay particular attention to establishing confidence intervals for the time path of
annual emissions from 2013 to 2020.

We carry out the analysis based on estimates of the distribution of future emis-
sions using data through 2010 and through 2012. Data through 2010 were avail-
able by mid-2012, less than a year before the market commenced. Presumably,
a cap would have to be set by 6-12 months before any cap-and-trade market be-
gins. This approach to the analysis addresses the question of what distribution
of outcomes a regulator should be able to expect at the time the cap is set. Data
through 2012 represent all information on activity prior to the opening of the
market. Some of these data were not available until well after the market opened,
but noisy estimates of these data may have been available at the beginning of
2013. Beyond considering two different information sets on which our distribu-
tions of future emissions are based, this approach also allows us to study how
much uncertainty is resolved in the two intervening years.

The number of allowances available in the California GHG cap-and-trade pro-
gram derives from the allowance cap, a portion of which is allocated to the Al-
lowance Price Containment Reserve. Of the 2,508.6 million metric tonnes (MMT)
of allowances in the program over the 8-year period, 121.8 MMT of allowances
are assigned to the APCR to be made available in equal proportions at allowance
prices of $40, $45, and $50 in 2012 and 2013. In later years, these price levels
increase by 5% plus the rate of inflation in the prior year.

The supply of abatement is multi-faceted. It features several elements that
combine to create a very steep abatement supply curve, which we will demonstrate
implies the potential for a very wide distribution of price outcomes. Abatement
of capped emissions flow through two mechanisms: a market-driven effect in
which firms or consumers reduce emissions in response to the level of allowance
prices, and an independent effect in which emissions are reduced due to additional
“complementary policies” outside the cap-and-trade program, regardless of the
price of allowances.

The supply of relatively price-independent abatement comes from (a) comple-
mentary policies that abate GHGs independent of the price in the market, (b)
activities that reduce measured GHGs due to the process of accounting for elec-
tricity imports (“reshuffling”8), and (c) offsets, which we discuss later (and which

http://www.arb.ca.gov/regact/2013/capandtrade13/capandtrade15dayattach1.pdf. This rule change
allows borrowing up to 10 percent of the available allowances three years in the future, which virtually
eliminates the possibility that BAU emissions minus the amount of abatement exceeds the amount of
available allowances during the first two compliance periods.

8Also known an “resource shuffling.” These terms include a practice known as “relabeling,” which is
reselling out-of-state power that comes from a high-emissions source so that the buyer can then import
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might be considered a form of lessening demand rather than increasing the sup-
ply of allowances, but the analysis would be unchanged). While incentives for
reshuffling and offsets are affected by the price of allowances, previous analyses
suggest that the bulk of this activity would be realized at prices below or just
slightly above the auction reserve price.9

In its revised scoping plan of 2010, ARB’s preferred model projects that 63% of
emissions abatement would arise from complementary policies rather than from
responses to the cap.10 It is important to recognize that these reductions are
not costless; indeed many are likely to impose costs above the allowance price.
Rather, these reductions, and the accompanying costs, will occur approximately
independently of the level of the allowance price. Therefore, while these policies
provide reductions, and contribute to the goal of keeping emissions under the
cap, they do not provide the price-responsive abatement that can help mitigate
volatility in allowance prices.

In this paper, we treat the impact of these complementary policies as influencing
the distribution of the supply of abatement. For example, aggressive vehicle
fuel-efficiency standards should lead to slower growth in the emissions from the
transportation sector, which we represent as a change in the rate at which the
emissions intensity of vehicles declines over time independent of the allowance
price. Similarly mandates for renewable energy production decrease the amount
of electricity demand that needs to be served by more carbon intensive sources,
thereby reducing emissions.

As described below, the supply of price-responsive mitigation is also limited by
some of the allowance allocation policies that have been implemented with Cali-
fornia’s cap-and-trade market. The large amount of allowances allocated through
mechanisms that are likely to reduce the price impact of allowance prices to con-
sumers – output-based updating for many industrial emitters and allocations to
utilities that will use them to limit the impact of allowance prices on consumer
prices – will limit the amount of price-responsive emissions mitigation.11 Most of
the remaining emissions reductions in response to allowance prices would therefore
come from consumer responses to changes in energy prices, namely transporta-
tion fuels (gasoline and diesel), natural gas, and, possibly, electricity consumption.

the power into California at the administratively determined default emissions rate.
9The potential levels of reshuffling and relabeling are examined in Bushnell, Chen, and Zaragoza-

Watkins (2014). The offset market is discussed below. Some offset supply may be available at prices
somewhat above the auction reserve price.

10Four additional sensitivity models project between 30% and 63%
of emissions abatement would arise from complementary policies. See
http://www.arb.ca.gov/cc/scopingplan/economics-sp/updated-analysis/updated sp analysis.pdf at
page 38 (Table 10).

11Output-based updating describes allocation of allowances to a company based on the quantity of out-
put (not emissions) that the firm produces. Output-based updating reduces the firm’s effective marginal
cost of production and, thus, reduces the incidence of the allowance price on firms and consumers, while
retaining the full allowance price incentive for the firm to adopt GHG-reducing methods for producing
the same level of output. See Fowlie (2012). If applied to a large enough set of industries or fraction
of the allowances, Bushnell and Chen (2012) show that the effect can be to inflate allowance prices as
higher prices are necessary to offset the diluted incentive to pass the carbon price through to consumers.
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Compared to the aggregate level of reductions needed and expected under Califor-
nia GHG reduction legislation, known as “AB 32,” we show that the reductions
from these energy price effects are relatively small.12 This is due in part to a
feature of the program, described later, that will use revenues from the sale of
allowances to limit the magnitude of potential retail electricity price increases. A
similar policy applies to the retail natural gas sector.

Figure 1. Supply of Abatement

The combination of large amounts of “zero-price” abatement, and relatively
modest price-responsive abatement creates a “hockey stick” shaped abatement-
supply curve (See Figure 1). Analysis undertaken by ARB indicates that the
marginal abatement cost curve rises sharply after the relatively low-cost abate-
ment options are exhausted. ARB states in its updated Scoping Plan dated
March 2010 that “...GHG emissions in the model show limited responsiveness to
allowances prices...This lack of responsiveness results from the limited reduction
opportunities that have been assumed to be available in the model.”13

12Offsets and reshuffling/relabeling may also be sensitive to allowance prices, but are considered sep-
arately.

13Available at: http://www.arb.ca.gov/cc/scopingplan/economics-sp/updated-
analysis/updated sp analysis.pdf. See also, the ARB analysis contained in Appendix F: Compliance
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Figure 2. Hypothetical Distribution of Abatement Demand (BAU minus allowances outside

price containment reserve) versus Abatement Supply

One potential implication of this is that allowance prices may be more likely to
be either at or near the level of the auction reserve price or at levels set by the
APCR policy than they are to be at some intermediate level. When one considers
an uncertain range of BAU emissions, even if strongly centered on the expected
level, the probabilities of prices falling at either the APCR ceiling or auction
reserve price floor could constitute a large fraction of the overall distribution of
potential emissions outcomes. This intuition is illustrated in Figure 2, which
superimposes a hypothetical symmetric distribution of the amount of abatement
needed (BAU emissions less the total amount of available allowances) onto the
same horizontal axis as the abatement supply curve.

A. Price Evolution and Estimated Equilibrium Price in the Market

The analysis we present here models abatement supply and demand that evolves
over time and is then aggregated over the 8-year span of the market. We calculate
the equilibrium as the price at which the aggregate demand over the 8 years is

Pathways Analysis available at: http://www.arb.ca.gov/regact/2010/capandtrade10/capv3appf.pdf.
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equal to the aggregate supply. We analyze this program alone, assuming that the
market is not continued after the 8 years or integrated into some other program.
When the market commenced, there was no clarity on how the program would
evolve after 2020. That remains the case today.

At any point in time, two conditions will drive the market price, an intertem-
poral arbitrage condition and a market equilibrium condition. If the markets for
allowances at different points in time are competitive and well integrated, then
intertemporal arbitrage enabled by banking and borrowing (within and across
compliance periods) will cause the expected price change over time to be equal
to the nominal interest rate (or cost of capital).14 At the same time, the price
level will be determined by the condition that the resulting expected price path
– rising at the nominal interest rate until the end of 2020 – would in expectation
equilibrate the total supply and demand for allowances for the entire program.15

Throughout the market’s operation, new information will arrive about the de-
mand for allowances (e.g., weather, economic activity, and the energy intensity of
Gross State Product (GSP) in California) and the supply of abatement (e.g., sup-
ply of offsets, response of consumers to fuel prices, and the cost of new technologies
for electricity generation). These types of information will change expectations
about the supply-demand balance in the market over the length of the program
and thus change the current equilibrium market price. With risk neutral traders,
the price at any point in time should be equal to the expected value of all the
possible future prices that equilibrate the realized supply (less allowances and
offsets) and realized demand for abatement.

For instance, while high allowance prices are a possibility if the economy grows
rapidly and abatement efforts are less effective than anticipated, early in the
market operation, that would be only one of many possible future outcomes that
the market price would reflect. Over time, however, if economic growth were
stronger and abatement weaker than expected, this would become an increasingly
likely scenario and price would rise faster than had been previously anticipated.
Thus, if lower-probability outcomes were to occur over time, their impact would
become evident gradually in the adjustment of the market price. In that case, an

14This is the outcome envisioned when banking was first developed (Kling and Rubin, 1997). See also
Holland and Moore (2013), for a detailed discussion of this issue. Pizer and Prest (2016) suggest that
intertemporal arbitrage may also may cap-and-trade preferred to a tax under some circumstances where
either type of program may be subject to updating.

15Because of lags in information and in adjustment of emissions-producing activities, supply and
demand will not be exactly equal at the end of the compliance obligation period (December 31, 2020).
At that point, the allowance obligation of each entity would be set and there would be no ability to take
abatement actions to change that obligation. The supply of allowances would have elasticity only at the
prices of the APCR where additional supply is released and the level at which a hard price cap is set,
if one is enacted. Thus, the price would either be approximately zero (if there is excess supply) or at
one of the steps of the APCR or a hard price cap (if there is excess demand). Anticipating this post-
compliance inelasticity, optimizing risk-neutral market participants would adjust their positions if they
believed the weighted average post-compliance price outcomes were not equal to the price that is expected
to equilibrate supply and demand. Such arbitrage activity would drive the probability distribution of
post-compliance prices to have a (discounted) mean equal to the equilibrium market price in earlier
periods.
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extremely high market price would probably not occur until the later years of the
program.

Table 1—Emissions from Key California Sectors in 1990 and 2012 (in millions of metric tonnes

(MMT)

Source 1990 Emissions 2012 Emissions

Electricity (domestic) 44.76 48.18
Electricity (imports) 29.61 43.09
Transportation (on road) 140.35 146.05
Industrial 74.86 65.62
Nat. Gas and Other 62.40 59.91

III. ESTIMATING THE BUSINESS AS USUAL EMISSIONS

Perhaps the largest factor driving the supply-demand balance in the GHG al-
lowance market will be the level of emissions that would take place under BAU.
There is, however, considerable uncertainty about BAU emissions over the period
2013 to 2020. The scope of the cap-and-trade program is very broad, and was
implemented in two phases. The first phase, which began January 1, 2013 covers
large stationary sources, which are dominated by power plants, oil refineries, and
other large industrial facilities. Emissions from these sources in California are re-
ferred to as “Narrow Scope Emissions.” The second phase, which began January
1, 2015, expands the cap to include emissions associated with the combustion of
transportation fuels and natural gas at non-industrial facilities. The sum of these
emissions and Narrow Scope Emissions are referred to as “Broad Scope Emis-
sions.” Table 1 summarizes the aggregate emissions from the key sectors in 1990
and 2012.

Historically, there has been considerable variability in the level of economic
activity in each of these sectors, which in turn implies considerable uncertainty
in the production of GHG emissions from these activities. Figure 3 presents
the annual emissions from each sector over a 23-year period beginning in 1990.
Predicting the level of economic activity from each of these sectors just one year
in advance has the potential for significant uncertainty. Simulating the level of
economic activity and GHG emissions eight or more years into the future involves
even greater uncertainty, which implies a greater potential for very low or high
allowance price realizations.

Imported electricity is a substantial category of emissions in the cap-and-trade
program, likely to constitute more than 10% of total emissions. However, it is
impossible to partitition aggregate GHG emissions from generation units out-
side California into those caused by electricity imports into California and those
caused by serving electricity demand outside of California. Below we discuss
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Figure 3. California Emissions Data 1990-2012

the challenges faced by the ARB in designing the adminstrative process used to
incorporate emissions attributable to electricity imports. Because of this admin-
istrative process, electricity imports is the one area of BAU emissions in which
we cannot estimate uncertainty. Using a point estimate for this component of ag-
gregate GHG emissions is likely to lead to an understatement of the uncertainty
in total BAU emissions.

To derive estimates of the expected future time path of in-state GHG emissions
and the uncertainty associated with this forecast, we estimate a seven-dimensional
VAR model with determinants of the three major components of state-level GHG
emissions that are covered under the program and the key statewide economic
factors that impact the level and growth of GHG emissions.16 Due to the short
time period for which the necessary disaggregated GHG emissions data have been
collected, the model estimation is based on annual data from 1990 to either 2012
(up to the date of the market opening) or 2010 (the information that was available

16VARs are the econometric methodology of choice among analysts to construct short to medium-term
(from 1 to 10 time periods into the future) forecasts of macroeconomic variables and for this reason are
ideally suited to our present task. Stock and Watson (2001) discuss the successful use of VARs for this
task in a number of empirical contexts.
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at the time political consensus for the capped level of emissions was developed).
The short time series puts a premium on parsimony in the model. As a result,

we use a 7-variable model that includes the three drivers of GHG emissions–in-
state fossil-fuel electricity production, vehicle-miles traveled (VMT), and non-
electricity natural gas combustion and industrial process GHG emissions–and the
two economic factors that most influence those drivers–real GSP and the real
price of gasoline in California. To facilitate forecasting the future time path of
GHG emissions in the transportation and electricity sectors under different sets
of complementary policies for reducing GHG emissions in these sectors, we also
model the behavior of the emissions intensity of the transportation and electricity
sectors in California. Our approach is to estimate a VAR for these seven variables,
simulate them through 2020 and apply a range of emissions intensities to the
economic drivers of transportation and electricity emissions in order to simulate
future GHG emissions under different complementary policies in these two sectors.

Several features of our VAR model are chosen to match the time series relation-
ships between the seven variables implied by economic theory and existing state
policies to limit GHG emissions. We allow for the fact that all seven variables
exhibit net positive or negative growth over our sample period and model them
as stochastic processes that are second-order stationary in growth rates rather
than second-order stationary in levels. The results of unit root tests reported in
Appendix A for each of individual time series are consistent with this modeling
assumption. We also impose restrictions on the parameters of the VAR model
implied by the cointegrating relationships between these seven variables that are
supported by the results of these hypothesis tests. Engle and Yoo (1987) show
that imposing the parameter restrictions implied by cointegrating relationships
between variables in a VAR improves the forecasting accuracy of the estimated
model.

A. Model

Let Xt = (X1t, X2t, ..., X7t)
′ denote the vector composed of the seven annual

magnitudes included in the VAR for year t, t = 1990, 1991, ..., 2012. The elements
of Xt are:

X1t = CA electricity production net of hydroelectric generation (TWh)
X2t = Total VMT (Thousands of Miles)
X3t = Industrial GHG & Other Natural Gas Emissions (MMT)
X4t = Real Retail Gasoline Price ($2011/Gallon)
X5t = Real Gross State Product ($2011)
X6t = Emissions Intensity of In-State Thermal Gen. (Metric Tonnes/MWh)
X7t = Emissions Intensity of VMT (Metric Tonnes/Thousand Miles)

The definitions of the units abbreviations used are: TWh = terawatt-hours,
MMT = millions of metric tonnes, VMT = vehicle miles traveled, MWh =
megawatt-hours.
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All real dollar magnitudes are expressed in 2011 dollars. All GHG emissions
are in metric tonnes of CO2-equivalents. As noted above, we include real GSP
in the model to capture the empirical regularity observed both over time and
across jurisdictions that a higher level of economic activity leads to greater en-
ergy consumption and GHG emissions. The price of gasoline reflects the fact
that movements in transport fuel prices change the energy intensity of economic
activity and total vehicle miles traveled.

Estimating this VAR produces parameters that allow us to construct simulated
realizations of the elements of Xt = (X1t, X2t, ..., X7t) from 2013 to 2020. Note
X3t is already in terms of metric tonnes of GHG. However, in order to get the
total GHG emissions covered under the program, we do two further calculations.
First, from X1t, the realization of the production of electricity in California net of
hydroelectric generation in year t, we subtract the anticipated amount of renew-
able and nuclear energy produced in year t, described in more detail below. The
remaining residual production is assumed to be provided by thermal generation
and it is this residual amount that is multiplied by the thermal intensity, X6t.
Emissions from in-state electricity generation are included in the cap-and-trade
program in all years from 2013 to 2020. Second, we parse X3t – industrial GHG
and other natural gas emissions – for 2013 and 2014 into the portion of these
emissions that are and are not covered by the program during those years. As
discussed further below, industrial processes and natural gas combustion by large
industrial sources are covered in the first two years of the program, while off-road
diesel consumption, and residential and small business emissions from natural gas
consumption are not covered until 2015.

We do not include the GHG emissions from electricity imports in the VAR
because this is an administratively determined number. Historically, the spe-
cific energy deemed to be “delivered” to California is the result of the financial
contracting decisions of the importing firm, not the result of the actual flows
of specific electrons into the state. Specifically, coal-fired electricity would be
deemed to be “delivered” to California because a coal-fired power plant outside
of California contracted with a buyer in California to supply electricity. Because
incentives for this contracting choice changed dramatically with the start of the
cap-and-trade program, historical data on GHG emissions from electricity im-
ports are not predictive of future values. We instead take the ARB’s forecast for
BAU emissions from electricity imports and then adjust total electricity emissions
for reshuffling, as described later.

Define Yit = ln(Xit) for i = 1, 2, ..., 7 and Yt = (Y1t, Y2t, ..., Y7t)
′. In terms of this

notation a first-order autoregression or VAR that is stationary in first-differences
can be written as

Θ(L) · Yt = µ+ εt (3.1)

where L is the lag operator which implies, LkYt = Yt−k, I is a (7x7) identity
matrix, Θ(L) is (7x7) matrix function in the lag operator equal to (I−Θ1L) where
Θ1 is a (7x7) matrix of constants, µ is a (7x1) vector of constants, and εt is a (7x1)
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white noise sequence with (7x1) zero mean vector and (7x7) covariance matrix Ω.
In terms of the lag operator notation (1− L) = ∆, so that ∆Yt = Yt − Yt−1.

Model (3.1) allows each element of Yt to be non-stationary, reflecting the fact
that each element exhibits net positive or negative growth over the sample period.
A linear time series process that is stationary in first-differences is also called an
integrated process with the order of integration equation equal to 1. For each of
the elements of Yt we performed a Dickey-Fuller test of the null hypothesis that
the time series contained a unit root and were unable to reject that null hypothesis
at α = 0.05 level of significance for each series (Dickey and Fuller, 1979).17 These
hypothesis testing results are consistent with our decision to model the vector
∆Yt as 2nd-order stationary process.

It is often the case that stationary linear combinations of non-stationary eco-
nomic time series exist because of long-run economic relationships between these
variables. This logic suggests that linear combinations of the elements of Yt are
likely to be 2nd-order stationary in levels. Time series processes that are 2nd-
order stationary in first-differences (i.e., ∆Yt is 2nd-order stationary) and have
stationary linear combinations of the levels of their elements are said to be coin-
tegrated.18 For a k-dimensional VAR in first-differences of Yt, the number of
stationary linear combinations of the elements of Yt is called the cointegrating
rank of the VAR. The cointegrating rank is also equal to the rank of the matrix
(I − Θ1). The existence of cointegrating relationships among elements of Yt im-
poses restrictions on the elements of Θ1. Suppose that the rank of the matrix
(I−Θ1) is equal to r (0 < r < 7). This implies that the following error correction
representation exists for Yt:

∆Yt = µ− γZt−1 + εt (3.2)

where Zt = α′Yt is a (r x 1) vector of 2nd-order stationary random variables
(these are the stationary linear combinations of Yt) and γ is a (7 x r) rank r
matrix of parameters, α is a (7 x r) rank r matrix of co-integrating vectors, and
(I −Θ1) = − γα′.

Johansen (1988) devised a test of the cointegrating rank of a VAR that is
2nd-order stationary in first-differences. Following the multi-step procedure rec-
ommended by Johansen (1995) for determining the rank of a VAR, we find that
the null hypothesis that the rank of (I −Θ1) is equal to 1 can be rejected against
the alternative that the rank is greater than 1 at an α = 0.05 significance level.19

However, the null hypothesis that the rank of (I−Θ1) is 2 against the alternative
that it is greater than 2 cannot be rejected at an α = 0.05 significance level.
According to Johansen’s procedure, this sequence of hypothesis testing results is
consistent with the existence of 2 stationary linear combinations of the elements
Yt. We impose these co-integrating restrictions on the parameters of VAR model

17Results of the Dickey-Fuller tests are shown in Appendix A.
18See Engle and Granger (1987) for a complete discussion of this concept and its implications.
19Results of these tests are shown in Appendix A.
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(3.2) that we estimate to forecast future GHG emissions. Imposing the restric-
tions implied by the two cointegrating relationships between the elements of Yt
reduces the number of free parameters in the (7x7) matrix (I − Θ1) from 49 to
28 = (7x2) x 2, the total number of elements in γ and α.

We utilize Johansen’s (1988) maximum likelihood estimation procedure to re-
cover consistent, asymptotically normal estimates of µ, Ω, and Θ1 with these
co-integrating restrictions imposed. The coefficient estimates from this model
written in the notation of equation (3.2) are given in Appendix A.

Using these parameter estimates we can then compute an estimate of the joint
distribution of (X ′2013, X

′
2014, ..., X

′
2020)′ conditional on the value of X2012 that

takes into account both our uncertainty in the values of µ, Ω, γ, and α because
of estimation error and uncertainty due to the fact that (X ′2013, X

′
2014, ..., X

′
2020)′

depends on future realizations of εt for t = 2013, ..., 2020.20

We employ a two-stage smoothed bootstrap approach to compute an estimate
of this distribution.21 The first step computes an estimate of the joint distribu-
tion of the elements of µ, Ω, γ and α by resampling from the smoothed empirical
distribution of the (7x1) vector of residuals from the estimated Vector Autoregres-
sion (VAR) and re-estimating µ, Ω, γ, and α using Johansen’s (1988) maximum

likelihood (ML) procedure. We use the following algorithm. Let µ̂, Ω̂, and Θ̂1

equal the estimates of the elements of the VAR imposing the cointegration rank
restriction that (1−Θ1) = − γα′. Compute

ε̂t = Yt − µ̂− Θ̂1Yt−1 (3.3)

for t =1991 to 2012. Note that we can only compute values of ε̂t for t =1991 to
2012, because our sample begins in 1990 and the (t− 1)th observation is required
to compute the value of ε̂t for period t = 1991. Construct the kernel density
estimate of the ε̂t as

f̂(t) =
1

Th7

T∑
t=1

K{1

h
(t− ε̂t)} (3.4)

where T is the number of observations, h is a user-selected smoothing parame-
ter, and K(t) is a multivariate kernel function that is everywhere positive and
integrates to one. We use the multivariate normal kernel

K(x) =
1

(2π)7/2
exp(−1

2
x′x) where x ∈ <7

and h = 0.5. We found that our results were insensitive to the value chosen for
h, as long as it was less than 1.

20We describe the estimate for the approach that uses data through 2012. The approach is comparable
using data only through 2010, but results for 2011 and 2012 are simulated as part of the procedure to
create simulated values for 2013 through 2020.

21For a discussion of the smoothed bootstrap, see Efron and Tibshirani (1993).
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We then draw T = 22 values from (3.4) and use the parameter estimates and
these draws to compute re-sampled values of Yt for t = 1, 2, ..., T = 22. Let
(ε̂m1 , ε̂

m
2 , ..., ε̂

m
22)′ denote the mth draw of the 22 values of ε̂t from f̂(t). We compute

the Y m
t , the 22 resampled values of Yt for t =1991 to 2012, by applying the

following equation starting with the value of Yt in 1990 (Y m
1990 = Y1900 for all m)

Y m
t = µ̂+ Θ̂1Y

m
t−1 + ε̂mt . (3.5)

We then estimate the values of µ, Ω, and Θ1 by applying Johansen’s (1988)
ML procedure using the Y m

t and imposing the cointegration rank restriction that

(1 − Θ1) = − γα′. Call the resulting estimates µ̂m, Ω̂m, and Θ̂m
1 . Repeating

this process M = 1000 times yields the bootstrap distribution of µ̂, Ω̂, and Θ̂1.
This step accounts for the uncertainty in future values of Yt due to the fact that
true values of the of µ, Ω, and Θ1 are unknown and must be estimated.

To account for the uncertainty in YT+k due to future realizations of εt, for each

m and set of values of µ̂m, Ω̂m, and Θ̂m
1 , we draw nine values from f̂(t) in equation

(3.4), calling these values (ε̂mT+1, ε̂
m
T+2, ...ε̂

m
T+8)′. Using these draws and µ̂m, Ω̂m,

and Θ̂m
1 we compute future values YT+k for k = 1, 2, ..., 8 given YT using the

following equation:

Y m
T+k|T = µ̂m + Θ̂m

1 Y
m
T+k−1|T,T−1 + ε̂mT+k for k = 1, 2, ..., 8 (3.6)

This yields one realization of the future sample path of Yt for t =2013, 2014,...,
2020. The elements of Yt are then transformed to Xt by applying the transfor-
mation Xit = exp(Yit) to each element of Yt to yield a realization of the future
time path of Xt. The elements of Xt are then transformed to produce a real-
ization of the future time path of GHG emissions by each covered sector. This
two-step process of computing µ̂m, Ω̂m, and Θ̂m

1 and then simulating Y m
T+k|T for

k = 1, 2, ..., 8 replicated m = 1 to M = 1000 times produces 1,000 realizations
from the simulated distribution of X ′2013, ..., X

′
2020)′.

Although California’s cap-and-trade program phases in the entities under the
cap over time, our approach forecasts emissions from Phase I entities (narrow
scope) and Phase II entities (broad scope) over the entire post-sample period.
Phase I, in effect during the first compliance period of 2013 and 2014, covers
emissions from in-state and imported electricity generation and emissions from
large industrial operations. Phase II, in effect for the second and third compliance
periods, 2015-2017 and 2018-2020, expands the program to include combustion
emissions from transportation fuels and emissions from natural gas and other
fuels combusted at residences and small commercial establishments.

B. Data

To compute the GHG emissions intensities of the in-state electricity sector
and transportation sector from 1990 to 2012 that enter the VAR model, we re-
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quire data on the annual emissions from instate electricity production and annual
emissions from the transportation sector to enter the numerator of each of these
intensities. Annual emissions from the large industrial processes and the resi-
dential and commercial natural gas sector from 1990 to 2012 is the final GHG
emissions-related time series required to estimate the VAR.22 To construct these
data, we start with data on annual emissions for each covered sector in California
for 1990 to 2012.

The remaining data that enter the VAR come from a variety of California state
and federal sources:

Annual emissions levels for each covered sector are taken from the 1990-2004
Greenhouse Gas Emissions Inventory and the 2000-2012 Greenhouse Gas Emis-
sions Inventory (hereafter, Inventory).23 This is the longest series of consistently
measured emissions data and the basis for developing the 1990 statewide emissions
level and 2020 emissions limit required by AB 32. The annual Inventory dataset
was prepared by ARB staff and relies primarily on state, regional or national
data sources, rather than individual facility-specific emissions. The Inventory’s
top-down approach to quantifying emissions differs importantly from the bottom-
up method of accounting for facility-specific emissions under the cap-and-trade
program. In particular, the Inventory likely overstates emissions from industrial
activity relative to those covered in the first compliance period of the cap-and-
trade program. That is, the Inventory methodology may attribute some emissions
to the industrial sector, such as natural gas combustion from small industrial or
commercial sources that are not covered until the second compliance period. We
investigate the impact of this difference by comparing the Inventory data to an-
nual data collected under the Mandatory Reporting Regulation (MRR), which is
the methodology used to calculate an entity’s compliance obligation under the
cap-and-trade program.24

Comparing the 2008-2012 MRR and Inventory industrial emissions data series
shows annual Inventory industrial emissions fifteen percent higher than MRR
industrial emissions, on average. We address this difference by forecasting indus-
trial capped source emissions in the first compliance period using the Inventory
industrial emissions data series adjusted downward by fifteen percent. We use the
unadjusted Inventory data as our measure of industrial capped source emissions
covered in the second and third compliance periods. This approach does not ap-
pear to impact either our expected time path or the degree of uncertainty in the
future time path. Because our maintained assumption is that the first compli-
ance period difference is due to differences in accounting, as opposed to classical
measurement error, using the Inventory emissions estimates for the second and
third compliance periods should not bias our emissions estimates upward.

22Emissions from the off-road consumption of diesel also comprises a small component of the “other”
category.

23The Inventory is available at: http://www.arb.ca.gov/cc/inventory/inventory.htm.
24Information on the MRR is available at: http://www.arb.ca.gov/cc/reporting/ghg-rep/reported-

data/ghg-reports.htm.
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Table 2—Summary Statistics of Data for Vector Autoregression

year year

mean S.D. min max min. max.

California Elec. Generation (TWh) 195.3 14.2 166.1 220.1 1991 2006

California Hydro. Gen (TWh) 34.9 9.4 22.4 51.7 1992 1998

Vehicle Miles Traveled (Billions) 302.9 26.7 258.0 330.0 1991 2005
Industry, Natural Gas 129.6 4.8 121.6 139.4 1995 1998

& Other Emissions (MMT CO2e)
Gross State Product (Nominal $Trillion) 1.44 0.49 0.77 2.20 1990 2012

Gasoline Price (Nominal $/gallon) 2.10 1.01 1.09 4.03 1990 2012

In-state Electric Thermal

Intensity (tons/MWh) 0.483 0.065 0.390 0.624 2012 1993

Vehicle Emissions.
Intensity (tons/1000 VMT) 0.508 0.030 0.444 0.546 2012 1992

Note: Data are for 1990-2012

California GSP is collected from the Bureau of Economic Analysis (BEA).25

Gasoline prices are collected from the Energy Information Administration (EIA).26

In-state electric generation is collected from the California Energy Commission
(CEC).27

Our primary measure of VMT is compiled from a series of state-level trans-
portation surveys administered by the National Highway Transportation Safety
Administration’s (NHTSA) Office of Highway Information (OHI). These data
capture on-road VMT and were independently constructed and reported by the
states, rather than centrally calculated by OHI.

While these data measure on-road VMT, the cap-and-trade program caps emis-
sions from all diesel and gasoline combusted as transportation fuel in California,
regardless of whether the fuel is combusted on-road or off-road. To address this
potential source of bias we deviate from ARB’s emissions categorization of “trans-
portation” by excluding GHG emissions from off-road vehicle activities, in favor of
categorizing them into “Natural Gas and Other.” Therefore, beginning with total
transportation sector combustion emissions, we partition emissions into on-road
and off-road activities using the more granular activity-based emissions values
reported in the Inventory. The emissions levels reported in Table 1 reflect this
partition of on-road and off-road emissions. The details of this partitioning are
further described in Appendix B.

Finally, to adjust the emissions from natural gas, off-road diesel, and industrial
processes for partial coverage under the cap of these emissions in 2013-14, we
multiply the value of Xm

3,T+k for each simulation by 0.53 · 0.85(= 0.4675) for the
values in 2013 and 2014. This adjustment reflects that over the last 20 years,

25Gross Domestic Product by State is available at: http://www.bea.gov/regional/index.htm#data.
26Retail fuel price by State is available at: http://www.eia.gov/dnav/pet/pet pri gnd dcus sca w.htm.
27In-state California electric generation and consumption are available from the CEC at

http://energyalmanac.ca.gov/electricity/index.html.
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the industrial sector has consistently accounted for approximately 53% of emis-
sions from non-electricity-generation natural gas combustion and other industrial
processes (X3) (min: 51.5% and max: 56.5%), and the Inventory accounting dif-
ference (discussed above), which leads us to attribute 85% of industrial emissions
to sources covered under the first compliance period.

Summary statistics for all data of the VAR are in Table 2. We have undertaken
a number of sensitivity analyses of our allowance price distribution modeling
results to these assumptions and found them to be largely invariant to reasonable
changes.

C. Results

The parameter estimates for the 7-variable VAR are shown in Appendix A. The
top panel of Figure 4 shows actual GSP data through 2010 and forecasts from
the VAR for 2011-2020, with 95% confidence intervals for the forecast, while the
bottom panel displays actual data through 2012 and forecasts for 2013-2020. The
vertical dots show the distribution of simulation outcomes. The uncertainty in
GSP suggest how difficult it would be to forecast business as usual emissions,
which are the product of GSP and the emissions intensity of economic activity.
The two years of growth experienced in 2011 and 2012 increased the mean 2020
forecast from to 2.44 to 2.49 trillion dollars. Table 3 lists the means and standard
deviations of simulated values of each element of Xt for each year from 2013 to
2020, based on estimates using data through 2010, as well as the annual and
cumulative emissions resulting from those values. Table 4 shows forecasts based
on data through 2012. Section IV describes the details of our procedure for using
these results to simulate future values of annual emissions covered by the program
for each year from 2013 to 2020.

D. Robustness to an alternative GHG forecast method

The VAR approach to forecasting GHG emissions may be seen by some as
imposing excessive structure on such a short time series of data.28 To examine
the robustness of this approach, we also explored a bare bones bootstrap GHG
forecast method that draws GHG growth rates for each year from the distribu-
tion of GHG growth rates over the 23-year sample, 1990-2012. We created 1000
bootstrap GHG paths, all starting at the observed 2012 (or 2010, to examine
the potential forecast when the cap was set) GHG emissions and then for each
successive year drawing from the 22 annual growth rates from 1990-2012 (or 20
annual growth rates through 2010) with replacement. This will likely tend to
understate the forecast uncertainty, both because it ignores positive serial corre-
lation in growth rates and because it fails to capture the potential for a confluence

28There is also a broader concern that this is a very short time series on which to forecast up to
a decade of future emissions. We agree wholeheartedly, but the fact is that it is representative of the
information on which policy makers must make decisions on GHG caps.
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of outlier events of the components of GHG growth that isn’t present in the 22
years of annual change. Using this approach and data through 2012, the mean
forecast BAU GHG emissions for the 2013-2020 period is 2571.4 with a standard
deviation of 108.4, about 14% lower than the standard deviation from the VAR
forecast. Using data through 2010, the mean forecast BAU GHG emissions for the
2013-2020 period is 2579.5 with a standard deviation of 129.7, about 33% lower
than from the VAR forecast using data through 2010. Thus, the uncertainty in
BAU forecasts with this bare bones forecasting approach is smaller, but largely
consistent with the VAR approach.

IV. ACCOUNTING FOR COMPLEMENTARY POLICIES IN

FORECASTS

While the ARB identified many categories of complementary policies and stated
the reductions in GHG emissions that are expected to result from each policy,
it is unclear how the baseline from which the ARB estimates are claimed relates
to the simulations we obtain from the VAR. Thus, rather than incorporating po-
tential reductions from an uncertain baseline, we proceed by applying emissions
intensities of electricity generation and VMT that reflect the likely outcomes of
the complementary policies. That is, the effects of complementary policies are
incorporated into our simulations of GHG emissions from 2013 to 2020 through
changes in the ratios we use to translate forecasts of X1t and X2t, in-state elec-
tricity production minus hydroelectric energy production and VMT respectively,
into GHG emissions.

Much of California’s greenhouse gas policy was in flux during the 2010-2012 time
period, making it difficult to identify exactly when aspects of the complementary
programs became expected policies. Rather than attempting to parse exact dates
or believed probabilities, we assume that the major programs set in law by 2013
were anticipated at the times we simulate distributions of outcomes. Also, in
order to avoid confusing the VAR forecast errors with speculation about when a
complementary policy was set, we assume the same anticipated complementary
policies for the 2010 forecast as for the 2012 forecast.

In the case of electricity, the main complementary policies are energy efficiency
(EE) investments and the RPS. We treat both of these measures as impacting the
quantity of non-zero carbon-emissions-producing power generation, rather than
the intensity of overall generation. In the case of the RPS, we include California’s
adoption in April 2011 of a 33% RPS target by 2020.29

For three decades prior to the opening of California’s cap-and-trade program,
nuclear power was the largest contributor of zero-emissions electricity generation,
coming from Diablo Canyon Nuclear Power Plant and San Onofre Nuclear Gener-
ation Stations (SONGS). In January 2012, SONGS was shut down due to faulty

29In 2015, California adopted a new target of 50% by 2030, but this did not change the target for 2020.
The state now seems likely to exceed the 33% level by 2020, but we do not make further adjustments as
it was not clear in 2010-2012 how difficult attaining the 2020 standard would be.



22 JUNE 2016

upgrades that had been made in 2009 and 2010, and there was widespread spec-
ulation about when it would reopen. In June 2013, Southern California Edison
announced that the SONGS closure would be permanent. In the simulations, we
assume that SONGS does not produce electricity. Diablo Canyon was widely as-
sumed to operate through 2020, though PG&E announced in 2016 that it would
close permanently in 2025. In the simulations, we assume annual output from
Diablo Canyon equal to its annual average over the period 2003-2012.

To get from a simulation of X1t for 2013-2020 to a simulation of GHG emissions
from in-state thermal electricity generation, we first subtract off estimates of
future renewable and nuclear power generation from each simulation of X1t. These
values are taken from external data sources rather than generated within the VAR.
What remains is a simulation of in-state fossil fuel electricity generation. We then
multiply this number by the simulated value of the emissions intensity of in-state
fossil-fuel generation from our two-step procedure.
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Figure 4. Forecast Results – Gross State Product
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Data for renewable generation come from the California Energy Almanac for
actual generation levels and from the Statewide Annual Planning Renewable Net
Short (RNS) Update for future renewable generation levels. Both reports are pro-
duced by the California Energy Commission. The RNS update provides forecasts
of renewable energy needs, which includes adjustments for exempted sales, energy
efficiency, and imported renewable energy. For the years 2013-2018 we assume
that the State will exactly meet RPS targets quantified in these reports.

Table 5—Assumed Zero-Carbon Electricity Output and Vehicle Emissions Intensities

Zero-Carbon Power EMFAC BAU Forecast
Year RPS Nuclear VMT Intensity VMT Intensity

GWh GWh tons/1000 miles tons/1000 miles

2013 35893 17530 0.477 0.444
2014 41807 17530 0.468 0.440
2015 49297 17530 0.456 0.436
2016 49297 17530 0.440 0.432
2017 52397 17530 0.423 0.429
2018 54997 17530 0.406 0.425
2019 62797 17530 0.390 0.421
2020 67797 17530 0.374 0.418

These values for carbon-free electricity are summarized in the second and third
columns of Table 4. The remaining in-state generation, net of hydro, is assumed
to be from fossil-fueled generation sources.

We then multiply this simulated value of in-state, fossil-fueled electricity gener-
ation by X6t, the emissions intensity factor produced by the simulation of future
values from the VAR, to translate the simulation of in-state, fossil-fueled elec-
tricity generation into GHG emissions. Mathematically, we calculate electricity
emissions from in-state, fossil-fueled electricity generation to be

ElecGHGm,T+k = (Nhydro TWHm,T+k −RPS TWHT+k −Nuke TWHT+k) · EIm,T+k,

where Nhydro TWHm,T+k is the realization of X1,T+k for simulation draw m
of the in-state production of electricity net of hydro production. The variables
RPS TWH and Nuke TWH are the values of renewable and nuclear annual
TWH described in Table 4 and EIm,T+k is X6,T+k, the realization of emissions
intensity for thermal generation in California for simulation draw m.

Reflecting California’s longstanding commitment to energy efficiency, there is a
strong pre-existing trend of efficiency improvements already present in the time-
series data we used to forecast the BAU emissions. Total emissions per unit of
GSP declined at an average rate of about 1.8% per year from 1990 to 2012. We
are therefore concerned that further reductions from our forecast to account for
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EE improvements would double count the reductions that are already part of the
forecast. Indeed, as table 3 indicates, emissions per unit of GSP decline under
our BAU forecast by about 1.74% per year from 2013 to 2020. We therefore
make no further adjustments in addition to EE effects already integrated into our
forecasts.

To incorporate the impact of complementary policies targeting the transporta-
tion sector, we interact the forecast of VMT from the VAR with two different
possible values of emissions intensity per mile. The first value, essentially a BAU
intensity, takes X7,T+k, the VMT intensity forecast by the VAR, without any
further adjustment. The second value we use is based upon expectations of the
impacts of AB 32 transportation policies derived from EMFAC 2011, the ARB
tool for forecasting fleet composition and economic activity in the transportation
sector. We summarize it here and described in more detail in the Appendix B.

Using EMFAC, we derive anticipated emissions intensities (essentially fleet av-
erage miles per gallon) assuming that the mileage standards for new vehicles are
met, but that the penetration of biofuels remains at 10%.30 Thus, under this sce-
nario the emissions-per-mile are reduced solely due to the increased fuel-efficiency
of vehicles.31

Column 4 of table 4 presents the the point estimate of fleet average emissions
intensity from the EMFAC model assuming fuels economy standards are met, but
biofuels remain at 10% of the fuel mix. Column 5 presents the mean transport
intensity value forecast by the VAR. However, even though the standards may
be fully complied with, considerable uncertainty remains as to the emissions in-
tensity of the full transportation emissions. Among other factors, a substantial
minority of transport emissions come from commercial trucking and other heavy-
duty vehicles that will not be subject to the same kind of binding fuel economy
standards as the passenger vehicle fleet.

In order to reflect the underlying random aspects of vehicle emissions, even with
successfully implemented complementary policies, we model the effect of these
policies as a shift in the distribution of emissions intensity from a BAU level to
a level achieved, on average, by the policies. This is accomplished by shifting
each VMT emissions intensity realization, X7,T+k, by an amount equal to the
difference between the BAU mean intensity level and the EMFAC 2011 forecast
of the policy-induced point estimate. This adjusted emissions intensity is then
multiplied by the coinciding VMT realization for the same VAR simulation draw

30The carbon content of that 10% of biofuels may in fact be lower due to the LCFS, but from a
cap-and-trade perspective that does not matter, because all biofuels are treated equally as zero emissions
under the cap, and the pre-2012 level of biofuels was already about 10%.

31In a third scenario, we assumed that all LCFS and miles-per-gallon (MPG) standards are met. This
reduces emissions-per-mile both through improved MPG and through a higher percentage of biofuels,
which are treated as having zero GHG emissions for the purposes of the cap-and-trade program, in the
transportation fuel mix. Even before the market commenced in 2013, this scenario seemed quite unlikely
due to debates about the ability of most cars to use fuel with more than 10% biofuels without damaging
engines. This approach results in substantially lower transport emissions intensity and would yield an
even higher predicted probability of a price at or near the floor than we present below.
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Figure 5. Targeted Transportation Policies Shift Emissions Distribution

to calculate total transport sector emissions for year t. More formally, transport
emissions can be expressed as

TransportCO2m,T+k = VMTm,T+k · (TIm,T+k − (ET+k(TI)− TIpolicyT+k ))

where VMTm,T+k and TIm,T+k are the VMT and transport emissions intensity

from simulation draw m of the VAR during year T + k, respectively, and TIpolicyT+k
is the transport emissions intensity derived by EMFAC 2011 in year T + k.

Both of these adjustments–shifting MWh of in-state electricity generation and
adjusting the intensity of VMT emissions–yield estimates of the emissions that will
result from the three sectors covered in the California economy. These reductions
will be independent of the price of allowances.

Figure 6 shows actual data (up to 2010 or 2012) and forecast from VAR for
Broad Scope Emissions, with 95% confidence intervals for the forecast. The ver-
tical dots show the distribution of simulation outcomes. The upper panel shows
the forecast circa 2010 and the lower panel the forecast using data through 2012.
Using the additional two years of data, 2011 and 2012, the mean BAU forecast
for 8 years of cumulative emissions declines by about 10 MMT in 2020 and 80
MMT cumulative (about 3.5%) over the 8 years of the program. It is important
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Figure 6. Forecast Results – Broad Scope Emissions



30 JUNE 2016

to note that at the time California finalized its regulation, the ARB’s forecast of
2020 BAU emissions from capped sources was around 400 MMT per year, and
the cap is scheduled to decline from that level to about 375 per year by 2020. As
can be seen from figure 6, many forecast draws (which include complementary
policies) fall below this level of emissions by 2020. Indeed even the mean 2012
vintage forecast (again with other policies) falls below the 2020 target. As we
shall see, this is a large contributing factor to the expectation of low allowance
prices.

Three other adjustments are necessary, however, before comparing this demand
for allowances with the supply that is available under the cap-and-trade program:
the impact of imported electricity, emissions offsets, and changes in the price of
allowances. We incorporate these effects in the next section.

V. ADDITIONAL SOURCES OF EMISSIONS ABATEMENT

While the VAR estimation and simulations described in the previous section
account for the changes in BAU emissions levels, transport emissions intensities,
and zero-carbon electricity generation, the price of allowances will also affect total
emissions by changing the cost of emitting GHGs. In addition the use of offsets
and electricity contract reshuffling will reduce the total amount of emissions that
sources must cover by submitting allowances. Thus, informed assumptions about
the size of these additional sources of abatement will be important to estimating
the supply-demand balance in the allowance market.

In Appendix C, we assess in detail the potential abatement from higher al-
lowance prices. We also incorporate the effect of exogenous energy price increases
were forecast at the time the market commenced. These assessments rely in part
on regulatory decisions that affect how allowance prices will be passed through,
as well as on previous estimates of demand elasticities. Here, we summarize the
range of potential impacts we consider and discuss them briefly. Table 7 shows
these ranges as well as the possible impact of offsets and reshuffling. It is imme-
diately clear that the size and uncertainty of the offsets and reshuffling impact is
much larger than the potential impact from demand response to higher energy
prices. We discuss offsets and reshuffling in more detail.

A. Price-elastic Response of Demand

To evaluate the impact of allowance prices on the demand for GHG-producing
products, it is important to recognize that the actual allowance price path will
evolve over time as more information arrives about whether the market is likely
to have insufficient or excess allowances over the life of the eight-year program, as
discussed in section II. Even if very high prices were to eventually occur, they may
not be observed until much later in the program, when participants are fairly cer-
tain of whether the market will be short or long allowances. Furthermore, there
could be considerable uncertainty about future prices throughout the program.
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Thus, to the extent that response to high allowance prices involves irreversible
investments, there may be significant option value in waiting to make those in-
vestments until more of the uncertainty is resolved.32 For these reasons, while
we use the APCR price levels to calculate potential responses to high prices in
every year of the program, we consider low to medium elasticities in recognition
that APCR-level prices are very unlikely until later years and delayed responses
of market participants – due to uncertainty and option value – will reduce the
total responses to those prices.

For gasoline and diesel price response, we assume 100% allowance price pass-
through based on many papers that study pass-through of tax and crude oil price
changes (see, for example, Marion and Muehleggar (2011)). We use an elasticity
assumption that is below most long-run elasticity estimates, because improved
vehicle fuel economy is a large part of the difference between long-run and short-
run elasticity estimate. Complementary policies, however, are already requiring
higher fuel economy than consumers would choose.

For natural gas, elasticities are taken from the literature, but for political rea-
sons discussed in Appendix C, passthrough is likely to be far less than 100% and
possibly close to zero. For electricity, elasticities are also taken from the litera-
ture, but passthrough is likely to be zero for residential customers and slightly
more than 100%, on average, for commercial and industrial customers, again for
political reasons.

Table 6—Summary of Potential for Price-Responsive Emissions Abatement

Price-responsive Range of Energy Price Changes Abatement in program

Allowance Demand Elasticities At Different Levels of Allowance at highest APCR step
Reduction Price Over years in program ($2012): each year (MM tons)

Auction Lowest step Highest step
Sector Low High Reserve of APCR of APCR Low High

Electricity
most C&I ($/MWh) -0.2 -0.5 $3.68/$5.17 $13.74/$19.34 $17.18/$24.17 21.3 52.4

Transportation ($/Gallon) -0.1 -0.2 $0.10/$0.12 $0.36/$0.46 $0.45/$0.58 10.6 21
Natural Gas ($/MMBTU) -0.3 -0.5 $0.57/$0.80 $2.13/$3.00 $2.66/$3.75 28.1 45.4

Notes: All energy price changes assume 100% passthrough.
Range of price changes shown are for first and last year covered by cap-and-trade program
Range of price changes for Transportation and Natural Gas are for 2015-2020 only, electricity for 2013-2020

Range of Transportation price changes based on weighted average of gasoline and diesel
Transportation abatement impact is for tailpipe emissions only, does not include associated upstream emissions

GHG intensities assumed are explained in the Appendix C

In Appendix C, we also discuss possible changes in industrial emissions and
explain why – due to a combination of low elasticities and policies designed to
lower the cost of cap-and-trade for industrial emiters – these changes are likely

32In addition, considerable policy uncertainty continues even into 2016 due to a lawsuit opposing the
way in which the program was established by the legislature.
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to be very small.
We also account for two other possible price changes not attributable to the cap-

and-trade program. Real prices of electricity in California were likely to rise over
the 2013-2020 period due to increased use and integration of renewable energy
and other factors. We take a 2012 estimate of those increases and apply a range
of elasticity assumptions. The real price of transportation fuels could also rise
due to the cost of using more renewable fuels mandated under the LCFS. We
take a range of possible estimates of this effect. Our estimates do not explicitly
anticipate the 2014-15 collapse of oil prices and the associated decline in transport
fuel prices, though the VAR estimate includes a wide range of possible gasoline
prices, as shown in tables 3 and 4.

B. Offsets

The cap-and-trade program permits a covered entity to meet its compliance
obligation with offset credits for up to eight percent of its annual and triennial
compliance obligations. This means that over the 8-year program up to 218 MMT
of allowance obligations could be met with offsets.

As of the start of the program, ARB had approved four categories of compliance
offset projects that could be used to generate offsets: U.S. Forest and Urban For-
est Project Resources Projects; Livestock Projects; Ozone Depleting Substances
Projects; and Urban Forest Projects. Each individual offset program is subject to
a rigorous verification, approval, and monitoring process. The ARB approved two
offset project registries – American Carbon Registry33 and the Climate Action
Reserve34 – to facilitate the listing, reporting, and verification of specific offset
projects. The ARB reports that approximately 5.3 million offsets were listed with
ARB under a voluntary early action offset program that are eligible for conversion
to cap-and-trade program compliance offsets.

Offsets were expected to be a relatively low-cost (though not free) means for
a covered entity to meet a portion of its compliance obligation.35 The number
of offsets expected to be available in the cap-and-trade program is subject to a
high degree of uncertainty and best guesses put the estimate substantially be-
low the potential number of offsets that could be used (i.e., 8% of compliance
obligations). One third-party study from September 2012 estimates the number
of offsets available under all four protocols between 2013 and 2020 at 66 MMT,
only 30% of the 218 MMT of offsets that theoretically could be used to satisfy
compliance obligations.36 ARB, however, was considering adding at least addi-
tional offset protocols, such as rice cultivation and mine methane capture and
destruction, both of which were approved after the program began. The addition

33See http://americancarbonregistry.org/carbon-accounting/california-compliance-offsets.
34See http://www.climateactionreserve.org/.
35http://www.arb.ca.gov/regact/2010/capandtrade10/capv3appf.pdf.
36http://americancarbonregistry.org/acr-compliance-offset-supply-forecast-for-the-ca-cap-and-trade-

program.
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of these two protocols it was estimated would more than double the number of
offsets available between 2013 and 2020.37

For the purposes of our analysis, we consider the low scenario based on the
existing protocols (66 MMT), a medium scenario that adds in estimates for rice
cultivation and coal mine methane (130 MMT), and the highest scenario under
which the full allowed 218 MMT of offsets are approved and utilized for compli-
ance.38 These offsets enhance the effective supply of allowances. Most estimates
of the price at which offsets would be available put their cost at below or just
above the auction reserve price. For all three scenarios we assume that the offsets
utilized are available below the auction reserve price. In reality, studies sug-
gest that some may require a price slightly above the auction reserve price, but
still likely below $20/tonne. We group these with the abatement available at or
slightly above the auction reserve price.

C. Imported Electricity, Reshuffling, and Relabeling

California’s cap-and-trade program attempts to include all emissions from out-
of-state generation of electricity delivered to and consumed in the state. Prior to
the market commencing, ARB projected annual BAU emissions from imported
electricity of 53.53 MMT, during the period 2013-2020.39 However, due to the
nature of the Western electricity market, it is generally not possible to identify
the specific generation resource supplying imported electricity. Electricity im-
porters therefore have an incentive to engage in a variety of practices that lower
the reported GHG content of their imports, a class of behaviors broadly labeled
reshuffling. While reshuffling would not yield aggregate emissions reductions in
the Western Interconnection, it could be a major source of measured emissions
reductions under the California cap-and-trade program.

Under one extreme, California importers could reshuffle all imports to be GHG-
free resources, resulting in no demand for allowances to cover imported electricity.
ARB has tried to limit reshuffling, focusing on avoiding reshuffling of imports
from coal plants partially owned by California utilities. Based on the information
available when the market opened, we project emissions associated with imports
from these plants to account for 109 MMT during the eight-year period. We
treat this as a lower bound on emissions from imports, assuming that all other
imported energy is sourced from zero-GHG generation.

In 2010 there were about 85 net TWh of electricity imported into California.
If we assume imported electricity remains at this level during the 8 years, this

37Ibid.
38The analysis described in this document assumes a single eight-year compliance time horizon. As

a result, the analysis does not address the fact that current rules do not allow a shortfall of offsets in
an earlier compliance periods to be recaptured in later time periods, and thus results in a permanent
shortfall in offsets from the theoretical potential. It seems quite likely that this rule would be adjusted
if allowance price increased and the limit on offsets were constraining.

39This comes from the ARB’s 2012-2020 California GHG Emissions Forecast.
http://www.arb.ca.gov/cc/inventory/data/tables/2020 ghg emissions forecast 2010-10-28.pdf
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implies 680 TWh over the 8 years of the cap.40 Assuming as a baseline that the
roughly 109 TWh of electricity imports from coal-fired plants generate about 109
MMT of emissions, we consider three possibilities for the remaining 571 TWh of
imports. The highest is that all the remaining energy is imported at an emissions
rate of 0.428 tons/MWh. This is the California cap-and-trade market’s adminis-
tratively set “default” emissions rate applied to any imports that do not claim a
specific source for the power. We consider this to be the highest plausible average
emissions rate that would be claimed for non-coal imports. We then consider
two other scenarios in which the emissions rate are set, somewhat arbitrarily
to one-third (lowest) and two-thirds (medium) of the 0.428 rate. The resulting
abatement levels are shown in table 7.

40California Energy Commission. http://energyalmanac.ca.gov/electricity/electricity generation.html.
The net total includes roughly 90 TWh of imports and 5 TWh of exports.
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Table 7—Summary of Abatement Supply Scenarios

Baseline Abatement Scenarios in MMTs of CO2

Low Medium High

Low High Low High Low High
ARP APCR APCR ARP APCR APCR ARP APCR APCR

Electricity

Elasticity 4.6 15.5 19.0 7.7 26.9 32.9 10.9 38.0 46.4
Transport

Elasticity 2.4 8.6 10.6 3.6 12.8 15.8 4.8 17.0 21.0

Natural Gas
Elasticity 0.0 0.0 0.0 1.5 5.3 6.5 3.0 10.5 13.0

Exogenous Elec.

rate effects 13.9 13.9 13.9 24.1 24.1 24.1 34.1 34.1 34.1
Transport LCFS 0.0 0.0 0.0 6.6 6.6 6.6 13.2 13.2 13.2

Offsets 66.0 66.0 66.0 130.0 130.0 130.0 218.0 218.0 218.0

Resource Shuffling 74.6 74.6 74.6 157.6 157.6 157.6 238.3 238.3 238.3

Total Abatement 161.5 178.6 184.1 330.8 362.7 372.8 522.0 568.2 582.8

Abatement Scenarios with No Complementary Policies in MMTs of CO2

Low Medium High

Low High Low High Low High

ARP APCR APCR ARP APCR APCR ARP APCR APCR

Electricity
Elasticity 5.1 17.3 21.3 8.4 30.1 37.0 12.0 42.7 52.4

Transport
Elasticity 6.7 24.1 29.6 9.0 31.9 39.3 11.2 39.7 48.8

Natural Gas

Elasticity 7.1 23.4 28.1 9.5 30.8 36.9 11.8 38.0 45.4

Exogenous Elec.
rate effects 13.9 13.9 13.9 24.1 24.1 24.1 34.1 34.1 34.1

Transport LCFS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Offsets 66.0 66.0 66.0 130.0 130.0 130.0 218.0 218.0 218.0
Resource Shuffling 74.6 74.6 74.6 157.6 157.6 157.6 238.3 238.3 238.3

Total Abatement 173.4 219.3 233.6 338.5 404.4 424.8 525.4 610.7 637.0
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VI. ESTIMATED MARKET CLEARING IN THE CAP-AND-TRADE

MARKET

To estimate the possible outcomes in the allowance market, we combine the
1000 simulations of BAU emissions (adjusted for complementary policies) with
1000 simulated outcomes from the additional sources of abatement discussed in
section V. Each source of abatement is drawn independently and all draws are
independent of the BAU emissions draws. Given the very short data series and
outside sources for much of the abatement assumptions, incorporating estimated
or assumed correlations of these draws from empirical analysis isn’t likely to be
credible. Nor, unfortunately, are even the signs of these correlations obvious.41

Thus, we simply append a simulated draw of additional abatement sources to
each draw of BAU emissions adjusted for complementary policies.

To produce the simulated abatement, we assume that the distribution of pos-
sible abatement from each source in table 7 is a β(2, 2) distribution with support
from the low to the high scenario abatement level from each.42 Combined with
the simulated BAU plus complementary policies outcomes, this produces 1000
simulations of total covered emissions at various allowance market prices.

We consider four mutually exclusive and exhaustive potential market clearing
price ranges: (1) at or near the auction reserve price, with all abatement supply
coming from low-cost abatement and offset supply (some of which may require
a price slightly above the auction reserve), (2) noticeably above the auction re-
serve price, though without accessing any of the allowances in the allowance price
containment reserve (APCR), with marginal supply coming from price-elastic
sources, (3) above the lowest price at which allowances would be available from
the APCR, but at or below the highest price of the APCR, and (4) above the
highest price of the APCR.

California has considered program modifications to address the possibility of
the price containment reserve being exhausted, but as of this writing none has
been adopted. We do not address how high the price might go in case (4). This
would be difficult to do even in the absence of this policy uncertainty, because it
will be greatly influenced by the state’s policy decisions. We simply report the
estimated probability of reaching this case and note that prices could be extremely
high.

Based on the 1000 simulations, we report in table VI the distribution of esti-
mated demand for allowances at each of the three break-points between the four

41For instance, lax offset policy could be positively correlated with lax policy towards reshuffling, or an
inability to control reshuffling could lead to a looser allowance market and put less pressure of regulators
to approve questionable offset applications.

42A β(2, 2) distribution looks like an inverted U with endpoints, in this case, at the low and high
scenario abatement levels. The β(2, 2) is symmetric between the endpoints which doesn’t correspond
exactly to the distribution suggested by table 5 in all cases, but the implied asymmetry in table 5
would have no noticeable impact on the results. We also estimated possible outcomes assuming that the
abatement followed a triangular distribution with the low and high ends of the support from the low and
high abatement scenarios and the mode at the medium scenario. The results differed very little from
using the β(2, 2) distribution.
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price regions. The supply quantity at which the market will ultimately clear will
depend on the price interval: below 2386.8 at the price floor, 2386.8 MMT from
the price floor to just below the lowest price of the APCR, then increasing in
three equal-sized additions of 40.6 MMT from the allowance reserve to be 2508.6
MMT at or above the highest price of the APCR. Combining demand and supply,
the bottom panel of table VI shows the probabilities that the equilibrium price
will fall into each price range.

Table 8—Net Allowance Demand and Price Probabilities: No Complimentary Policies

Allowance Price Level
Net Allowance at floor at low-APCR at high-APCR
Demand (MMT) price price price

2318 2286 2276
(182) (182) (182)

Probability above ARP above
Distribution of near ARP below APCR in APCR APCR
Equilibrium Price

(2010 data) 91.8 % 2.6 % 4.0 % 1.6 %

(2012 data) 97.2 % 1.3 % 1.4 % 0.1 %

Assuming the moderate scenario for transportation emissions intensity and us-
ing the forecast as of 2010, we find a 92% chance of the market clearing at or very
close to the price floor and a 3% probability of the market clearing on the upward-
sloping part of the abatement supply curve that is above the auction reserve price
and below the APCR. The remainder of the distribution is in price ranges that
would likely be very problematic politically, with 4% probability of settling in
the APCR, and a 2% probability of exhausting the APCR. These results reflect
the best information at the time the regulations were effectively codified in 2010.
With just two more years of data, the price distribution shifts downward notice-
ably. Using data through 2012, the probability of prices falling into the price-floor
region rises to over 97%.

A. How much difference do complementary policies make?

As sections IV and V discussed, we make a number of assumptions about com-
plementary policies in order to adjust the BAU estimates to reflect changes that
are likely to occur during 2013-2020. Some of these adjustments are directly as-
sociated with state policies outside cap-and-trade that are also likely to reduce
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GHGs. In this subsection, we re-estimate the distribution of possible outcomes
under a counter-factual in which complementary policies are not pursued and cap-
and-trade is the single mechanism for reaching GHG reduction goals. To do this,
we make assumptions about the alternative path of regulatory rules – such as the
RPS mandate and light-duty fuel economy standards. We also make assumptions
about consumption changes that would result if complementary policies were not
pursued and the full cost of allowances were passed through to consumers of trans-
port fuels, natural gas and electricity. Thus, we are assessing a more idealized
implementation of cap-and-trade in which no other programs pursue GHG reduc-
tion, but all sectors are assumed to be fully exposed to the price of allowances.

To implement this approach, we make the following changes in abatement as-
sumptions:
1) Renewable electricity output is frozen at its 2012 level (32316 TWh per year);
2) Baseline transportation emissions intensity (i.e., with zero price of GHG emis-
sions) follows the BAU path forecast in the VAR (shown in table 3) rather than
the lower emissions intensity associated with fuel economy standards;
3) A higher transportation fuels elasticity range is assumed, -0.3 to -0.5, because
of the absence of stricter fuel economy standards;
4) Natural gas elasticity range of -0.3 to -0.5, as before, but now assuming 100%
passthrough;
5) Electricity elasticity range of -0.2 to -0.5, as before, but now applied to 100%
passthrough of emissions from electricity generation;
6) No LCFS, so no impact of the LCFS on the price of fuels.

Table 9—Net Allowance Demand and Price Probabilities: No Complimentary Policies

Allowance Price Level
Net Allowance at floor at low-APCR at high-APCR
Demand (MMT) price price price

2318 2286 2276
(182) (182) (182)

Probability above ARP above
Distribution of near ARP below APCR in APCR APCR
Equilibrium Price

(2010 data) 79.6 % 8.5 % 8.8 % 3.1 %

(2012 data) 92.3 % 4.6 % 2.9 % 0.2 %

The effects of the assumptions 1 and 2 are indicated in table 4. The effects of
assumptions 3-6 are shown in the bottom panel of table 6.
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As we did before, we generated 1000 simulations of BAU emissions adjusted
for zero-carbon generation and transportation emission intensity, though now
incorporating assumptions 1 and 2 in the list above, and we combine that with
1000 simulations of the price-sensitive and other abatement activities, though now
incorporating assumptions 3 through 6 in the list above. We report in table 9 the
distribution of estimated demand for allowances at each of the three break-point
between the four price regions. Combining demand and supply, the bottom panel
of table 9 shows the probabilities that the equilibrium price will fall into each
price range.

Under this scenario with no complementary policies, the 2010 vintage forecast
yields a much smaller chance of the market clearing at or very close to the price
floor, 79.6% vs. 91.8%, and a significantly larger (but still modest) probability,
8.5% vs. 2.6%, of the market clearing on the upward-sloping part of the abatement
supply curve but still below the APCR. The probability of very high prices about
doubles, however, with a 8.8% probability of settling in the APCR, and a 3.1%
probability of exhausting the APCR. Using the 2012 vintage forecast, the impacts
of complementary policies are less pronounced, reflecting the fact that the cap
was less likely to be binding in any event when analyzed with data through 2012.

VII. IS CALIFORNIA DIFFERENT?

Our findings are consistent with the results in the California market through
mid-2016. In 2012, some allowances traded for nearly $20 when the price floor
was $10.50, but by early 2013 the price had fallen to within one dollar of the
price floor and has remained in that range ever since. The two quarterly auctions
auctions in 2016 produced prices at the floor, in the second auction selling only
about 10% of the available allowances.

The analysis is also consistent with the outcomes in the EU-ETS and RGGI,
both of which have substantial complementary policies and both of which have
seen prices drop to very low levels. Of course, low prices could simply result
from setting a very high GHG cap ex ante. However, in the EU-ETS, RGGI and
California, the cap was set to reduce emissions relative to a higher historical level
and there was an upward trend in emissions before the cap-and-trade program
was put in place.

Still, one might ask how applicable the particular analysis of California’s BAU
emissions uncertainty, complimentary policies and price-responsive abatement is
to other locations. While a similar analysis of the EU-ETS or RGGI markets is
beyond the scope of this paper, a few important similarities are worth noting.

One might think that California’s future BAU emissions are more uncertain
than would be the case in a larger market. BAU emissions are a function of
economic activity and larger economies are likely to be less volatile due to diver-
sification. While there is some sign of this in comparing California and the U.S.,
the effect is not large. The standard deviation of GHG annual growth rate over
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1990-2012 is 2.46% for California and 2.18% for the entire U.S.43 For the EU-ETS,
the corresponding number for covered CO2 emissions for the period 1990 to 2004,
the period before the start of Phase II of the EU-ETS, is 2.34%. Consequently,
even for large regions like the U.S. and EU, BAU emissions uncertainty is com-
parable to that in California. For smaller states or countries that are considering
cap-and-trade markets, this uncertainty could be even greater.

Although, California has pursued complementary policies more aggressively
than most of the rest of the U.S. or many other parts of the world, regions with
cap-and-trade markets typically have significant complementary policies. While
complementary policies do reduce the elasticity of abatement supply, the previous
subsection shows that drastically reducing complementary policies – to below
levels that are likely to be in place in other areas that adopt cap-and-trade –
still leaves a very inelastic abatement supply and a very high probability that the
market equilibrium price will be driven by an administratively determined floor
or ceiling.

California does differ from other parts of the U.S. and many other regions
outside the U.S. in that it implemented a cap-and-trade market starting with fewer
opportunities for market-driven abatement from its electricity sector. California’s
share of coal-fired generation in 2012 (all under contracts for imported electricity),
was less than one-quarter of the U.S. average in 2012, so California’s electricity
generation sector had less opportunity to substitute natural gas for coal as the
price of GHG rises.

In our analysis, the only substitution of gas for coal shows up in reshuffling
opportunities, and takes place entirely at prices at or near the floor, so is not
attributed to price-responsive abatement. In other markets, a higher GHG price
would trigger market-driven coal-to-gas substitution. Even in those cases, how-
ever, Cullen and Mansur (2015) show that the GHG price at which significant
substitution occurs, which is very sensitive to natural gas prices, would be ex-
tremely difficult to predict at the time a market opens, and could be very high. In
their baseline 2025 fuel cost scenario ($2.25/MMBTU for coal and $5.75/MMBTU
for natural gas), they estimate (table 7.2) that a $60/tonne GHG price would re-
duce emissions as a result of coal-to-gas switching by only about 10% of U.S.
electricity emissions (or 4% of U.S. non-agricultural GHG emissions).

Even taking the extreme assumption that the entire U.S. coal fleet, responsible
for about 1500 MMT of emissions in 2014, converts to natural gas generation,
this would yield approximately 750 MMT/yr of GHG reductions, or about 12%
of the U.S. 2014 total of about 6300 MMT of non-agricultural CO2 emissions.44

By comparison, our estimates for the 8-year standard deviation of BAU emissions
in California (Table 3) is about 200 MMT out of 2700. Four standard deviations,
the approximate size of a 95% confidence interval on BAU emissions, would con-
stitute almost 30% of the expected BAU amount. Therefore even if California had

43U.S. figure is based on the USEPA Emissions Inventory sum of CO2, CH4, and N2O.
44See USEPA, 2016.
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proportinally as much coal-to-gas switching opportunity as the U.S. as a whole
had in 2012, the price-responsive abatement available in California would still be
far less than a reasonable range of uncertainty in BAU emissions.45 This “best-
case” calculation supports the view that our results are relevant for cap-and-trade
markets in other parts of the U.S. and other regions of the world.

VIII. CONCLUSION

If cap-and-trade programs for greenhouse gasses are to succeed and be expanded
around the the world, it is important that the outcomes of these markets are
reasonable and understandable. We have analyzed supply and demand in the
California cap-and-trade market over the 2013-2020 period for which it has been
authorized in order to forecast the range of possible outcomes and the factors
that could drive those outcomes. We find that great uncertainty associated with
BAU emissions creates a wide range of possible allowance demand while a steep
supply curve of abatement creates quite inflexible allowance supply. As a result,
we conclude that absent administrative restrictions, the price of allowances in the
market would likely be extremely low or high.

Our analysis has demonstrated two implications of using cap-and-trade mech-
anisms for addressing GHG emissions that do not seem to have been widely
appreciated. First, there is very considerable uncertainty in the BAU emissions
from which any assessment of needed abatement must start. Many policy anal-
yses of the California program have taken BAU emissions as a known quantity.
Our analysis suggests that BAU uncertainty is likely to be at least as large as
uncertainty about the effect of abatement measures. Second, over the range of
prices that have been considered politically acceptable, at least in California,
there is likely to be relatively little price elasticity of emissions abatement. This
is in part intrinsic to the demand for emitting GHGs, but exacerbated by the
complementary policies – such as the renewable portfolio standard and auto fuel
economy standards – that have been adopted by California. The complementary
policies force many of the changes that consumers and producers might otherwise
have made in response to an emissions price. Inelastic abatement supply is also
driven by output-based free allowances to most industrial emitters, which reduces
the passthrough of allowances prices to final consumers.

Together these two conclusions suggest that equilibrium prices in cap-and-trade
markets for GHGs may be much more volatile than is generally recognized. The
“hockey stick” shape of the abatement supply curve – driven by the large quantity
of abatement required by complementary policies and then the inelasticity of
additional supply beyond that – combined with significant uncertainty in the

45As coal is phased out in the U.S. in response to low gas prices and other environmental policies, this
is becoming an even smaller potential source of abatement. On the other hand, if the cost of renewable
electricity continues to fall, it is possible that more substitution to renewables could occur as a GHG
price rises (within a politically acceptable range), even without the complementary tax credit policies
that currently exist.
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demand for abatement – driven by uncertainty in BAU emissions – implies that
extreme prices (both high and low) are most likely. Based on data through 2010
– by which time most features of the market were determined – we find an over
90% probability that the market would have excess allowances, leaving the price
at or very close to the administrative floor. But we also find about a 6% chance
that the price would rise to the point of triggering regulatory intervention to
contain further increases. We estimate less than a 3% probability of the market
clearing in an intermediate region that is not primarily determined by the price
containment policies. Using data through 2012, some of which were not available
until well after the market began, we find an even higher probability of the price
being driven primarily by the administrative floor.

While California may be somewhat of an outlier in factors that make the abate-
ment supply curve inelastic, our analysis of the program in the absence of comple-
mentary policies, a comparison of California BAU uncertainty with other areas,
and work by others on the potential for coal-to-gas switching in electricity gener-
ation suggests that any cap-and-trade program for greenhouse gasses is likely to
face the same problem of volatility, if not to exactly the same magnitude. Thus,
credible price ceilings and floors will likely play an important role in successful
implementation of these programs.

One reaction to our findings has been that the likelihood of extreme-price out-
comes would be greatly reduced if the cap-and-trade market were established for
a much longer period, such as many decades, because the elasticity of abate-
ment supply is likely to be larger over a longer period of time. While this view
of abatement supply elasticity is almost surely correct, two factors suggest that
prices in a longer cap-and-trade market may not be less extreme. First, a cap-
and-trade market established for a longer period of time is likely to create greater
uncertainty about whether politicians will be willing to stick with a given capped
quantity throughout the market period. Second, though abatement supply elas-
ticity would likely be greater over a longer period, so would the uncertainty of
BAU emissions. There is no empirical evidence of which would increase faster
as the established market period lenghtens.46 In addition, the endpoint prob-
lem we have described would still arise in a longer program when the remaining
uncertainty in BAU emissions is sufficiently small that market participants can
determine that there will either be excess or too few allowances to achieve com-
pliance given the maximum amount of abatement possible until the end of the
program.

Another reaction to our findings has been to conclude that pricing greenhouse
gases is an ineffective policy. Our work does not support this inference. Pricing
GHGs creates incentives for technological advance, and in the future might create
large incentives for switching from high-GHG to low-GHG technologies as their

46Even longer run markets with substantial abatement supply elasticity would be likely to exhibit price
volatility if borrowing and banking were restricted. Existing markets have generally permitted nearly
unlimited banking, but have placed tight restrictions on borrowing.
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relative costs change. The magnitudes of these effects could be quite large, but
they are extremely uncertain, consistent with our conclusion that the probability
of an interior solution in a cap-and-trade market – one not driven primarily by
an administrative price floor or ceiling – is quite low. To the extent that a
stable and predictable price of carbon into the distant future creates an economic
signal more conducive to producing low-carbon investments and innovations, this
suggests that a greenhouse gas tax or cap-and-trade with a narrow price collar
(floor and ceiling) is likely preferred.
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Online Appendix A: Parameter Estimates and Unit Root/Cointegration

Tests for VAR

This appendix describes the results of the unit root tests for each of the individual

elements of the vector Yt, the results of the cointegrating rank tests for the vector

autoregressive model for Yt, and presents the parameter estimates of the error

correction vector autogressive model that is used to perform our simulations.

The following variable definitions are used throughout this appendix.

ln twh p hydro = Natural Logarithm of In-State Electricity Production
Net of In-State Hydroelectric Generation (TWh)

ln vmt = Natural Logarithm of Total VMT
(Thousands of Miles)

ln ngother industrial = Natural Logarithm of Emissions from Non-Electricity
Natural Gas Combustion and Other Industrial Processes
(MMT)

ln real gas price = Natural Logarithm of Real Retail Gasoline Price ($2011/Gallon)
ln real gsp = Natural Logarithm of Real Gross State Product ($2011)
ln thermal intensity = Natural Logarithm of Emissions Intensity of

In-State Thermal Generation (MT/MWh)
ln transport intensity = Natural Logarithm of Emissions Intensity

of VMT (MT/Thousand Miles)

We perform three versions of the unit root test for each element of Yt and report

two test statistics for each hypothesis test. Let Yit equal the ith element of Yt.

The zero mean version of the unit root test assumes Yit follows the model,

Yit = αYit−1 + ηit

meaning that Yit is assumed to have a zero mean under both the null and alterna-

tive hypothesis. The hypothesis test for this model is H: α = 1 versus K: α < 1.

We report two test statistics for this null hypothesis

ρ̂ = T (α̂− 1) and τ̂ =
α̂− 1

SE(α̂)

where α̂ is the ordinary least squares (OLS) estimate of α and SE(α̂) is OLS

standard error estimate for α̂ from a regression without a constant term and T
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is the number of observations in the regression. The column labeled “Pr < ρ̂”

is the probability that a random variable with the asymptotic distribution of the

ρ̂ under the null hypothesis is less than the value of the statistic in the column

labeled “ρ̂”. The column labeled “Pr < τ̂” is the probability that a random

variable with the asymptotic distribution of the τ̂ under the null hypothesis is

less than the value of the statistic in the column labeled “τ̂”.

Variable Type ρ̂ Pr < ρ̂ τ̂ Pr < τ̂
ln twh p hydro Zero Mean 0.02 0.6720 0.63 0.8439

Single Mean -5.18 0.3718 -1.49 0.5148
Trend -17.14 0.0370 -2.59 0.2873

ln vmt Zero Mean 0.01 0.6710 1.61 0.9688
Single Mean -2.09 0.7496 -2.22 0.2071

Trend 0.05 0.9920 0.01 0.9931
ln ngother industrial Zero Mean -0.01 0.6660 -0.29 0.5682

Single Mean -15.52 0.0102 -2.51 0.1288
Trend -15.77 0.0604 -2.45 0.3458

ln real gas price Zero Mean 0.52 0.7959 0.92 0.8979
Single Mean -0.99 0.8726 -0.47 0.8769

Trend -10.80 0.2678 -2.35 0.3903
ln real gsp Zero Mean 0.03 0.6759 1.50 0.9614

Single Mean -2.12 0.7453 -1.55 0.4865
Trend -12.68 0.1622 -1.64 0.7372

ln thermal intensity Zero Mean 0.38 0.7619 1.24 0.9387
Single Mean -0.26 0.9312 -0.13 0.9329

Trend -17.49 0.0325 -3.62 0.0551
ln transport intensity Zero Mean 0.01 0.6705 1.65 0.9711

Single Mean 2.93 0.9986 1.22 0.9970
Trend -3.27 0.9075 -0.61 0.9656

Table A1—Unit Root Test Statistics (Data from 1990 to 2010)

The second version of the unit root test assumes a non-zero mean. In this case

the assumed model is:

Yit = µ+ αYit−1 + ηit

where µ 6= 0. The hypothesis test is still H: α = 1 versus K: α < 1. The two test

statistics for this null hypothesis are

ρ̂ = T (α̂− 1) and τ̂ =
α̂− 1

SE(α̂)
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Variable Type ρ̂ Pr < ρ̂ τ̂ Pr < τ̂
ln twh p hydro Zero Mean 0.01 0.6733 0.51 0.8174

Single Mean -6.26 0.2785 -1.73 0.4024
Trend -17.81 0.0345 -2.55 0.3024

ln vmt Zero Mean 0.01 0.6733 1.93 0.9835
Single Mean -2.10 0.7499 -2.16 0.2264

Trend -2.89 0.9292 -0.90 0.9375
ln ngother industrial Zero Mean -0.01 0.6672 -0.38 0.5341

Single Mean -12.84 0.0337 -2.39 0.1573
Trend -14.73 0.0970 -2.47 0.3371

ln real gas price Zero Mean 0.81 0.8620 1.33 0.9482
Single Mean -0.07 0.9437 -0.03 0.9453

Trend -13.11 0.1557 -2.54 0.3084
ln real gsp Zero Mean 0.03 0.6787 1.66 0.9721

Single Mean -2.11 0.7486 -1.56 0.4836
Trend -9.28 0.3928 -1.71 0.7092

ln thermal intensity Zero Mean 0.39 0.7669 1.38 0.9525
Single Mean -0.22 0.9345 -0.13 0.9342

Trend -18.57 0.0261 -3.65 0.0498
ln transport intensity Zero Mean 0.01 0.6731 1.95 0.9842

Single Mean 2.26 0.9970 1.37 0.9981
Trend -2.16 0.9570 -0.65 0.9639

Table A2—Unit Root Test Statistics (Data from 1990 to 2012)

where α̂ is the OLS estimate of α and SE(α̂) is OLS standard error estimate for

α̂ from a regression that includes a constant term and T is the number of obser-

vations in the regression. The test statistics and probability values are reported

in the same manner as for the zero mean version of the test statistic.

The third version of the test assumes that the mean of Yit contains a time trend

so that the assumed model is:

Yit = µ+ νt+ αYit−1 + ηit

where µ 6= 0 and ν 6= 0. The hypothesis test is still H: α = 1 versus K: α < 1.

The two test statistics for this null hypothesis are again

ρ̂ = T (α̂− 1) and τ̂ =
α̂− 1

SE(α̂)

where α̂ is the OLS estimate of α and SE(α̂) is OLS standard error estimate for

α̂ from a regression that includes a constant term and a time trend, and T is
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the number of observations in the regression. The test statistics and probability

values are reported in the same manner as for the zero mean version of the test

statistic.

For all three versions of the unit root test and two test statistics, there is little

evidence against the null hypothesis for all seven elements of the Yt. In all but

a few cases, the probability value is greater than 0.05, which implies no evidence

against the null hypothesis for a size 0.05 test of the null hypothesis. Although

there are a few instances of probability values less than 0.05, this to be expected

even if the null hypothesis is true for all of the series, because the probability of

rejecting the null given it is true for a 0.05 size test is 0.05.

H0: H1: Eigenvalue LR(r) 5% Critical Value
Rank=r Rank > r

0 0 0.9890 182.9117 123.04
1 1 0.8064 92.6520 93.92
2 2 0.7493 59.8157 68.68
3 3 0.5573 32.1462 47.21
4 4 0.4359 15.8494 29.38
5 5 0.1576 4.3994 15.34
6 6 0.0473 0.9692 3.84

Table A3—Cointegration Rank Test Using Trace (Data from 1990 to 2010)

H0: H1: Eigenvalue LR(r) 5% Critical Value
Rank=r Rank > r

0 0 0.9349 148.2205 123.04
1 1 0.7707 88.1306 93.92
2 2 0.6666 55.7307 68.68
3 3 0.5181 31.5668 47.21
4 4 0.4124 15.5074 29.38
5 5 0.1402 3.8117 15.34
6 6 0.0220 0.4897 3.84

Table A4—Cointegration Rank Test Using Trace (Data from 1990 to 2012)

Table A2 presents the results of our cointegrating matrix rank tests. In terms of

the notation of our error correction model

∆Yt = µ+ ΛYt−1 + εt
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where Λ is (7x7) matrix that satisfies the restriction Λ = −γα′ and γ and α are (7

x r) matrices of rank r. Hypothesis test is H: Rank(Λ) = r versus K: Rank(Λ) > r,

where r is less than or equal to 7, the dimension of Yt. Each row of the table

presents the results of Johansen’s (1988) likelihood ratio test of the null hypothesis

that Rank(Λ) = r against the alternative that Rank(Λ) > r, for a given value

of r. Johansen (1995) recommends a multi-step procedure starting from the null

hypothesis that Rank(Λ) = r = 0 and then proceeding with increasing values of

r until the null hypothesis is not rejected or all null hypotheses are rejected in

order to determine the rank of Λ. Rejecting the null hypothesis for all values of

r would imply that the elements of Yt are not cointegrated.

The column labelled “LR(r) ” is Johansen’s (1988) likelihood ratio statistic for the

cointegrating rank hypothesis test for the value of r on that row of the table. The

column labelled “5% Critical Value” is the upper 5th percentile of the asymptotic

distribution of the LR statistic under the null hypothesis. The column labelled

“Eigenvalue” contains the second largest to smallest eigenvalue of the estimated

value of Λ. Let 1 > λ̂1 > λ̂2, ... > λ̂K equal the eigenvalues of the maximum

likelihood estimate of Λ ordered from largest to smallest. The LR(r) statistic for

test H: Rank(Λ) = r versus K: Rank(Λ) > r is equal to

LR(r) = −T
K∑

j=r+1

ln(1− λ̂j)

Following Johansen’s procedure, we find that the null hypothesis is rejected for r

= 0 and r = 1, but we do not reject the null hypothesis at a 0.05 level for r = 2 or

for any value larger than 2. For this reason, we impose the restriction that rank

of Λ is equal to 2 in estimating and simulating from our error correction vector

autoregressive model.
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Table A3 presents the results of estimating our error correction vector autoregres-

sive model in the notation in equation (A-1). The prefix “∆” is equal to (1−L),

which means that the dependent variable in each equation is the first difference

of variable that follows. The variable Λij is the (i,j) element of Λ and µj is the

jth element of µ.
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Equation Parameter Estimate Standard Variable
Error

∆ln twhp hydro µ1 -3.16497 7.41185 1
Λ11 -0.90797 0.16030 ln twh phydro(t−1)

Λ12 -0.04557 0.31175 ln vmt(t−1)

Λ13 0.43626 0.39916 ln ngother industrial(t−1)

Λ14 0.51279 0.13009 ln real gas price(t−1)

Λ15 0.25462 0.24442 ln real gsp(t−1)

Λ16 0.78766 0.15811 ln thermal intensity(t−1)

Λ17 -0.64422 0.15543 ln transport intensity(t−1)

∆ln vmt µ2 3.23031 1.94785 1
Λ21 -0.03538 0.04213 ln twh phydro(t−1)

Λ22 -0.13503 0.08193 ln vmt(t−1)

Λ23 -0.17238 0.10490 ln ngother industrial(t−1)

Λ24 -0.04776 0.03419 ln real gas price(t−1)

Λ25 0.10388 0.06423 ln real gsp(t−1)

Λ26 -0.04942 0.04155 ln thermal intensity(t−1)

Λ27 0.05568 0.04085 ln transport intensity(t−1)

∆ln ngother industrial µ3 13.56635 3.05399 1
Λ31 -0.22393 0.06605 ln twh phydro(t−1)

Λ32 -0.58336 0.12845 ln vmt(t−1)

Λ33 -0.70553 0.16447 ln ngother industrial(t−1)

Λ34 -0.16438 0.05360 ln real gas price(t−1)

Λ35 0.46622 0.10071 ln real gsp(t−1)

Λ36 -0.14971 0.06515 ln thermal intensity(t−1)

Λ37 0.18797 0.06404 ln transport intensity(t−1)

∆ln real gas price µ4 24.15989 15.84184 1
Λ41 -0.03031 0.34263 ln twh phydro(t−1)

Λ42 -0.96771 0.66633 ln vmt(t−1)

Λ43 -1.35863 0.85315 ln ngother industrial(t−1)

Λ44 -0.47406 0.27806 ln real gas price(t−1)

Λ45 0.68979 0.52241 ln real gsp(t−1)

Λ46 -0.55460 0.33795 ln thermal intensity(t−1)

Λ47 0.56426 0.33222 ln transport intensity(t−1)

∆ln real gsp µ5 10.86102 3.82811 1
Λ51 -0.27389 0.08279 ln twh phydro(t−1)

Λ52 -0.48400 0.16101 ln vmt(t−1)

Λ53 -0.53674 0.20616 ln ngother industrial(t−1)

Λ54 -0.08437 0.06719 ln real gas price(t−1)

Λ55 0.40840 0.12624 ln real gsp(t−1)

Λ56 -0.04513 0.08166 ln thermal intensity(t−1)

Λ57 0.09077 0.08028 ln transport intensity(t−1)

∆ln thermal intensity µ6 3.88238 7.29254 1
Λ61 0.22018 0.15772 ln twh phydro(t−1)

Λ62 -0.11361 0.30673 ln vmt(t−1)

Λ63 -0.28296 0.39273 ln ngother industrial(t−1)

Λ64 -0.18772 0.12800 ln real gas price(t−1)

Λ65 0.02615 0.24048 ln real gsp(t−1)

Λ66 -0.26595 0.15557 ln thermal intensity(t−1)

Λ67 0.23180 0.15293 ln transport intensity(t−1)

∆ln transport intensity µ7 -1.29460 2.93945 1
Λ71 -0.04659 0.06357 ln twh phydro(t−1)

Λ72 0.04246 0.12364 ln vmt(t−1)

Λ73 0.08605 0.15830 ln ngother industrial(t−1)

Λ74 0.04908 0.05159 ln real gas price(t−1)

Λ75 -0.01852 0.09693 ln real gsp(t−1)

Λ76 0.06735 0.06271 ln thermal intensity(t−1)

Λ77 -0.06021 0.06164 ln transport intensity(t−1)

Table A5—Error Correction Vector Autoregression Parameter Estimates (Data from 1990

to 2010)
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Equation Parameter Estimate Standard Variable
Error

∆ln twhp hydro µ1 -5.61018 8.83126 1
Λ11 -0.74263 0.15577 ln twh phydro(t−1)

Λ12 0.34744 0.39158 ln vmt(t−1)

Λ13 0.46426 0.42465 ln ngother industrial(t−1)

Λ14 0.30195 0.08583 ln real gas price(t−1)

Λ15 0.29752 0.25703 ln real gsp(t−1)

Λ16 0.95089 0.18625 ln thermal intensity(t−1)

Λ17 -0.11378 0.10290 ln transport intensity(t−1)

∆ln vmt µ2 -1.13172 2.19675 1
Λ21 -0.05129 0.03875 ln twh phydro(t−1)

Λ22 0.05850 0.09741 ln vmt(t−1)

Λ23 0.07039 0.10563 ln ngother industrial(t−1)

Λ24 0.03026 0.02135 ln real gas price(t−1)

Λ25 0.00431 0.06394 ln real gsp(t−1)

Λ26 0.08697 0.04633 ln thermal intensity(t−1)

Λ27 -0.01716 0.02560 ln transport intensity(t−1)

∆ln ngother industrial µ3 16.90635 3.38313 1
Λ31 -0.24950 0.05967 ln twh phydro(t−1)

Λ32 -0.74309 0.15001 ln vmt(t−1)

Λ33 -0.79904 0.16268 ln ngother industrial(t−1)

Λ34 -0.13292 0.03288 ln real gas price(t−1)

Λ35 0.50473 0.09846 ln real gsp(t−1)

Λ36 -0.21129 0.07135 ln thermal intensity(t−1)

Λ37 0.19352 0.03942 ln transport intensity(t−1)

∆ln real gas price µ4 14.77866 19.88947 1
Λ41 -0.10720 0.35081 ln twh phydro(t−1)

Λ42 -0.66138 0.88191 ln vmt(t−1)

Λ43 -0.72329 0.95638 ln ngother industrial(t−1)

Λ44 -0.15036 0.19331 ln real gas price(t−1)

Λ45 0.37791 0.57887 ln real gsp(t−1)

Λ46 -0.30195 0.41947 ln thermal intensity(t−1)

Λ47 0.17535 0.23175 ln transport intensity(t−1)

∆ln real gsp µ5 6.03318 4.32473 1
Λ51 -0.26997 0.07628 ln twh phydro(t−1)

Λ52 -0.24214 0.19176 ln vmt(t−1)

Λ53 -0.24046 0.20795 ln ngother industrial(t−1)

Λ54 0.00934 0.04203 ln real gas price(t−1)

Λ55 0.28161 0.12587 ln real gsp(t−1)

Λ56 0.11825 0.09121 ln thermal intensity(t−1)

Λ57 0.05794 0.05039 ln transport intensity(t−1)

∆ln thermal intensity µ6 10.43990 8.05869 1
Λ61 0.17007 0.14214 ln twh phydro(t−1)

Λ62 -0.49889 0.35733 ln vmt(t−1)

Λ63 -0.57207 0.38750 ln ngother industrial(t−1)

Λ64 -0.18345 0.07832 ln real gas price(t−1)

Λ65 0.12927 0.23454 ln real gsp(t−1)

Λ66 -0.47660 0.16996 ln thermal intensity(t−1)

Λ67 0.13908 0.09390 ln transport intensity(t−1)

∆ln transport intensity µ7 -3.31294 3.25415 1
Λ71 -0.01845 0.05740 ln twh phydro(t−1)

Λ72 0.15339 0.14429 ln vmt(t−1)

Λ73 0.17232 0.15648 ln ngother industrial(t−1)

Λ74 0.04696 0.03163 ln real gas price(t−1)

Λ75 -0.06075 0.09471 ln real gsp(t−1)

Λ76 0.11298 0.06863 ln thermal intensity(t−1)

Λ77 -0.04184 0.03792 ln transport intensity(t−1)

Table A6—Error Correction Vector Autoregression Parameter Estimates (Data from 1990

to 2012)
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Online Appendix B: Transportation Emissions

Our approach to forecasting emissions from the transportation sector is to decom-

pose GHG emissions into its VMT component and an average emissions factor per

mile of travel. Separating emissions into VMT and an average emissions factor

allows us to more accurately capture the underlying drivers of GHG emissions

trends and to better model the effects of complementary policies that may cause

these emissions drivers to deviate from their preexisting trends. Essentially, our

data are derived from the basic identity relating annual GHG emissions to annual

VMT and an annual average emissions factor per mile:

GHGt = VMTt · ĒIt.

As described in the main text, our primary measure of VMT is compiled from a

series of state-level transportation surveys administered by the National Highway

Transportation Safety Administration (NHTSA) Office of Highway Information

(OHI). The California data were reportedly constructed by the California De-

partment of Transportation (CalTrans) from a mix of in-road traffic monitors

(e.g., from the California Performance Measurement System (PeMS)) and traffic

counts conducted by CalTrans. Figure B1 displays the series of annual California

on-road VMT as reported in these surveys.

While these data measure on-road VMT, the cap and trade program caps emis-

sions from all diesel and gasoline combusted as transportation fuel in Califor-

nia, regardless of whether the fuel is combusted on-road or off-road. Therefore,

this measure of on-road VMT understates the total VMT covered under the cap

and (when carried through our calculations) overstates average emissions factors

for on-road VMT. Because certain complementary policies target on-road-vehicle

emissions factors (e.g., CAFE), an overstated measure of BAU’ emissions fac-

tors could lead us to conclude that complementary policies should be expected to

achieve a greater impact than might realistically be feasible.

To address this potential source of bias we deviate from ARB’s emissions cate-

gorization by excluding GHG emissions from off-road vehicle activities from the

transportation sector, in favor of categorizing them into “Natural Gas and Other.”

Therefore, beginning with total transportation sector combustion emissions, we

partition emissions into on-road and off-road activities using the more granular

activity-based emissions values reported in the Inventory. Table B1 reports the

results of this partitioning, revealing the contribution of off-road emissions to be
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Figure B1. Annual California On-road VMT 1990-2011

small and somewhat weakly correlated with total transportation sector emissions,

ranging from a low of 2.57% in 1993 to a high of 4.52% in 2006, around a mean

of 3.55%.

To decompose transportation sector GHG emissions into VMT (miles) and an

average emissions factor per mile (grams/mile), we divide our adapted series of

on-road GHG emissions by our measure of on-road VMT, the ratio of which

is our implied average emissions factor per mile of travel. Table B2 reports our

adjusted transportation sector emissions, VMT, and the calculated average annual

emissions factors for on-road activity over the period 1990-2011.

B1. Transportation Complimentary Policies

To incorporate the impact of complimentary policies targeting the transportation

sector, we use EMFAC 2011, the ARB’s tool for forecasting fleet composition and
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Year Off-road (MMT) On-road (MMT) Share On-road
1990 6.09 137.96 95.77%
1991 6.18 134.45 95.61%
1992 5.15 141.73 96.49%
1993 3.68 139.40 97.43%
1994 4.77 140.42 96.71%
1995 4.97 143.53 96.65%
1996 4.78 145.00 96.81%
1997 4.54 148.31 97.03%
1998 4.23 151.25 97.28%
1999 4.30 155.80 97.31%
2000 5.33 163.48 96.84%
2001 5.54 163.58 96.72%
2002 6.17 169.88 96.49%
2003 6.50 166.35 96.24%
2004 6.95 167.45 96.02%
2005 7.62 167.69 95.66%
2006 7.94 167.65 95.48%
2007 7.40 167.56 95.77%
2008 6.23 157.04 96.18%
2009 5.22 153.28 96.71%
2010 5.40 149.19 96.51%
2011 5.67 146.08 96.26%

Table B1—On-road and Off-road Transportation Emissions 1990-2011

activity in the transportation sector. The advantage of explicitly modeling on-

road vehicle fleet composition and activity is that we can more precisely simulate

the impact of complimentary policies that are designed to directly target specific

segments of the vehicle fleet. Moreover, because vehicles are long-lived durable

goods, it is advantageous for a model to be capable of carrying forward the effects

of earlier policies as the composition of the vehicle fleet evolves through time.

EMFAC 2011 is an engineering-based model that can be used to estimate emis-

sions factors for on-road vehicles operating and projected to be operating in Cal-

ifornia for calendar years 1990-2035. EMFAC 2011 uses historical data on fleet

composition, emissions factors, VMT, and turnover to forecast future motor ve-

hicle emissions inventories in tons-per-day for a specific year, month, or season,

and as a function of ambient temperature, relative humidity, vehicle population,

mileage accrual, miles of travel and speeds. Emissions are calculated for forty-two

different vehicle classes composed of passenger cars, various types of trucks and

buses, motorcycles, and motor homes. The model outputs pollutant emissions for
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Year Emissions (MMT) EF (kg/mi) VMT (MM mi)
1990 137.96 0.53 258,926
1991 134.45 0.52 257,976
1992 141.73 0.54 262,548
1993 139.40 0.52 266,408
1994 140.42 0.52 271,943
1995 143.53 0.52 276,371
1996 145.00 0.52 278,043
1997 148.31 0.53 279,096
1998 151.25 0.52 290,630
1999 155.80 0.52 300,066
2000 163.48 0.53 306,649
2001 163.58 0.53 310,575
2002 169.88 0.53 320,942
2003 166.35 0.51 323,592
2004 167.45 0.51 328,917
2005 167.69 0.51 329,267
2006 167.65 0.51 327,478
2007 167.56 0.51 328,312
2008 157.04 0.48 327,286
2009 153.28 0.47 324,486
2010 149.19 0.46 322,849
2011 146.08 0.46 320,784

Table B2—On-road Emissions, Emissions Factors, and VMT 1990-2011

hydrocarbons, carbon monoxide, nitrogen oxides, particulate matter, lead, sulfur

oxides, and carbon dioxide. EMFAC 2011 is used to calculate current and future

inventories of motor vehicle emissions at the state, air district, air basin, or county

level. Accordingly, the model can be used to forecast the effects of air pollution

policies and programs at the local or state level.

For our purposes, EMFAC 2011 generates adjusted estimates of average VMT

and annual GHG emissions for each on-road vehicle-class by model-year. From

the EMFAC 2011 outputs, we calculate annual average emissions factors for on-

road VMT by taking the ratio of the sum of GHG emissions over the sum of

VMT across vehicle-classes and model-years within each calendar year. A known

weakness of the EMFAC 2011 model is that it does not accurately reflect the

effects of the Great Recession on new light-duty vehicle sales, emissions factors or

fleet VMT for the years 2009-present. In terms of new vehicle sales, EMFAC 2011

figures there to have been approximately 30% more new vehicle sales in California

in 2009 than were actually recorded by the California Board of Equalization. This
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difference has declined, approximately linearly, over time as sales of new vehicles

have slowly rebounded, and are on track to return to pre-recession levels in 2015.

Additionally, EMFAC 2011 has VMT growing steadily through the recession,

while in reality VMT sharply declined in 2009 and has declined modestly ever

since.

To account for these differences we adjust new vehicle sales and total (not per-

capita) VMT for model-years 2009-2014. Beginning with a 30% reduction in sales

and VMT for model-year 2009, we reduce the adjustments to sales and VMT in

each subsequent model-year by five percentage points, so that 2014 is the last

model-year impacted by our adjustment. Importantly, as the impact of the Great

Recession on the size of each model-year fleet can reasonably be expected to

persist over time, these adjustments are imposed across all calendar years 2009-

2020. That is, because fewer model-year 2009 vehicles were sold in 2009, there will

accordingly be fewer model-year 2009 vehicles in the fleet in future years. While

the decline in VMT was almost certainly not purely driven by the decline in new

vehicles sales, the reduction in VMT resulting from the sales adjustment causes

EMFAC 2011’s measure of VMT to closely mimic the actual path of VMT over the

same time period. In the absence of better information about the distribution of

changes to VMT across model-years, we make this simplifying assumption, noting

the goodness of fit.

To account for the impact of complementary policies, we calibrate average emis-

sions factors and emissions intensities of transportation fuel over the period 2012-

2020 using our adjusted EMFAC 2011 model.

To account for CAFE, a policy that proposes to drive the average emissions

intensity of new light-duty cars and trucks from 26.5 in 2011 to 54.5 in 2020,

we calculate average emissions factors by model-year and vehicle class from the

adjusted EMFAC 2011 forecasts and force new light-duty vehicles in model-years

2012-2020 to match the fuel-economy standards established by CAFE. We then

calculate annual average emissions factors for calendar years 2012-2020, by taking

the VMT weighted sum over the set of all model-year by vehicle-class emissions

factors.

To account for the LCFS, a policy that proposes to reduce the average carbon

content of all on-road vehicle transportation fuel sold in California by an addi-

tional 10% between now and 2020, we adjust the emissions intensity of gasoline

and diesel according to the incremental share of zero-GHG fuel that must be sold

in order to achieve the LCFS. Here it is worth noting an important difference

between the cap and trade program and EMFAC 2011 methods of accounting
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Year
CAFE & 10% Biofuels CAFE & LCFS

EF (kg/mi) MPG (mi/gal) EF (kg/mi) MPG (mi/gal)
2012 0.48 18.36 0.48 18.60
2013 0.48 18.68 0.47 19.04
2014 0.47 19.02 0.46 19.52
2015 0.46 19.51 0.44 20.16
2016 0.44 20.24 0.42 21.07
2017 0.42 21.06 0.40 22.07
2018 0.41 21.91 0.38 23.13
2019 0.39 22.80 0.37 24.25
2020 0.37 23.80 0.35 25.50

Table B3—Adjusted EMFAC 2011 Average Emissions Factors and MPG 2012-2020

for GHG emissions from biofuels. While the cap and trade program does not

assign a compliance obligation to emissions from ethanol, EMFAC 2011 includes

combustion emissions from fossil and bio-fuels in the measure of GHG emissions.

Therefore, our adjustment of emissions intensity of gasoline and diesel must take

into account not only the incremental contribution of the LCFS, but also the

preexisting levels of biofuels in California transportation fuel.

We model the full implementation of the LCFS as a linear decline in GHG emis-

sions intensity of on-road gasoline VMT as beginning at 89% in 2012 and falling

to 81% in 2020. For diesel, the share of preexisting biofuels is quite small, so we

model the decline in GHG emissions intensity of on-road diesel VMT as beginning

at 98% in 2012 and falling to 90% in 2020. These declines are taken after the

implementation of CAFE, so in practice they are implemented as reductions in

the annual average emissions factors calculated above. In light of recent court

challenges, we also consider an alternative implementation of LCFS where the

regulation is not fully implemented. In this scenario GHG emissions intensity of

on-road gasoline VMT is held steady at 89% through 2020 and no penetration of

biodiesel is modeled. Table B3 reports annual average emissions factors and im-

plied average MPG under the combinations of full implementation of CAFE with

full and partial implementations of the LCFS. The combined impact of the full

implementation of these policies and the preexisting trend in VMT emissions in-

tensity takes average emissions factors from 0.49kg/mi in 2012 down to 0.36kg/mi

in 2020.

Unlike our VAR, EMFAC 2011 only provides point estimates for the emissions

intensity of VMT. We believe that taking the point estimates of VMT intensity

from EMFAC 2011 could eliminate an important source of variance in our VAR.
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To account for the uncertainty in VMT intensity we incorporate the EMFAC

2011 point estimates for each of the adjusted EMFAC 2011 cases into the VAR

framework. We treat the impact of complimentary policies as varying with the

realization of VMT coming from our VAR. Here, we calculate the annual emission

reduction of the complimentary policies targeting the transportation sector as the

product of the realized random draw of VMT from our VAR and the difference

between mean VTM emission intensity from the VAR and the relevant EMFAC

2011 annual point estimate of VMT emission intensity.
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Online Appendix C: Abatement in Response to the Market Price of

Allowances

A cap and trade system is based on the presumption that as the allowance price

rises, the implied increased production costs will change consumer and producer

behavior. In order to assess the impact of the change in the emissions price on

quantity demanded in the allowance market, we first analyze such price-elastic

demand for allowances in four areas on the consumer side: demand for gasoline,

diesel, electricity, and natural gas. For each of these areas, we calculate the

emissions reduction that would occur with the price at the auction reserve price

floor, at the price to access the first (lowest) tier of the APCR, and at the price

to access the third (highest) tier of the APCR.47 We also consider responses of

industrial emissions to allowance prices.

C1. Demand for Fuels

The potential impact of the allowance price on consumption of transportation

fuels – gasoline and diesel – is a function of short-run effects, such as driving less

and switching among vehicles a family or company owns, and longer-run effects,

such as buying more fuel-efficient vehicles and living in areas that require less use

of vehicles. If, however, fuel-economy standards have pushed up the average fuel-

economy of vehicles above the level consumers would otherwise voluntarily choose

(given fuel prices), then raising fuel prices will have a smaller effect, because the

fuel-economy regulation has already moved some customers into the vehicle fuel

economy they would have chosen in response to higher gas prices. For this rea-

son, in jurisdictions with binding fuel-economy standards, such as California, the

price-elasticity of demand for transportation fuels is likely to be lower. Short-

run price elasticity estimates are generally -0.1 or smaller.48 Long-run elasticities

are generally between -0.3 and -0.5.49 Furthermore, the fuel-economy standards

would reduce the absolute magnitude of emissions reductions in another way: by

lowering the base level of emissions per mile even before the price of allowances

has an effect. Recall that we incorporate the direct impact of fuel-economy stan-

dards on emissions, holding constant vehicle miles traveled, when we account for

transport emissions intensities in the VAR simulation.50

47Each of these price levels escalates over time in real terms, so we calculate the price-sensitive abate-
ment for each year separately.

48See Hughes, Knittel and Sperling, 2008.
49See Dahl, 2012
50The VAR also accounts for estimates of uncertainty in the change in gasoline prices absent GHG

costs.
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We recognize that improved fuel-economy standards will phase in gradually during

the cap and trade compliance periods. To balance these factors, we assume that

the base level of vehicle emissions is unchanged from 2012 levels in calculating the

price response, and we assume that the price elasticity of demand will range from

-0.1 to -0.2.51 Our fuel price elasticity value is linked to our assumption about the

effectiveness of the fuel-economy regulations. If these regulations move consumers

into the higher-MPG vehicles they would have bought in response to higher fuel

prices, then that emissions savings occurs regardless of the price of allowances.

If fuel prices then rise, we would not expect as great a quantity response, as

consumers have already purchased cars that are optimized for higher fuel prices.

At the highest price in the price containment reserve in each year (which, in 2012

dollars, is $49.06 in 2013 going up to $69.03 in 2020),52 the result using a -0.1 elas-

ticity is a reduction of 10.6 MMT over the life of the program from reduced use of

gasoline and diesel. Assuming an elasticity of -0.2 about doubles the reduction to

21.0 MMT. As part of the later analysis without complementary policies, we also

consider the potentially more-elastic response if vehicle fuel economy standards

are not separately increased. Assuming elasticities of -0.3, -0.4, and -0.5 yields

reductions of 29.6 MMT, 39.3 MMT, and 48.8 MMT, respectively.53 (Note the

fuels will be under the cap only in 2015-2020, so we calculate reductions for only

these six years.) When we examine the market with no complementary policies,

we combine this last case with the business-as-usual transport emissions intensity

described in the previous section, essentially assuming this higher price elasticity

if higher fuel-economy standards had not been effectively implemented.

In the primary scenario with complementary policies, we also consider the poten-

tial cap-and-trade market impact of the state’s low-carbon fuel standard, which

could end up significantly raising gasoline prices. Discussions with market par-

ticipants and regulators suggest that the impact is likely to be capped at $0.40

per gallon, and could be much smaller if regulations are relaxed. We consider

scenarios in which the LCFS raises gasoline prices by zero, $0.20 and $0.40 per

gallon, using an elasticity of -0.15.

51We also assume that the allowance cost of tailpipe CO2 emissions is passed through 100% to the
retail price. Many studies on passthrough of fuel taxes and crude oil price changes, including Borenstein,
Cameron and Gilbert (1997), Lewis (2011), and Marion and Muehlegger (2011), have found passthrough
to retail price equal or very close to 100%.

52These allowance prices translate to an increase of about $0.39 to $0.55 per gallon of gasoline at the
pump in 2012 dollars (after accounting for 10% biofuels. For diesel, it implies and increase of $0.50 to
$0.70 per gallon.

53Each of these estimates assumes that biofuels share of retail gasoline is 10%.
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C2. Demand for Electricity

The impact of a rising allowance price on emissions from electricity consumption

depends primarily on the pass-through of allowance costs to retail prices of elec-

tricity. As noted earlier, three large regulated investor-owned utilities (IOUs) that

serve the vast majority of load in California receive free allocations of allowances

that they must then sell in the allowance auctions, resulting in revenues to the

utilities. Those revenues must then be distributed to customers. They can be

used to reduce the retail rate increases that would otherwise occur due to higher

wholesale electricity purchase prices caused by generators’ allowance obligations

for their GHG emissions. Publicly-owned utilities are not obligated to sell their

allowances, but are effectively in the same position of deciding how much of the

value of the free allowances will be used to offset rate increases that would result

when wholesale prices rise.

Based on a resolution from the CPUC in December 2012,54 a best guess seems to

be that the revenues from utility sales of allowances will be used first to assure

that Cap and Trade causes no price increase to residential consumers. In addition,

the revenues will be allocated to dampen price increases for small commercial

customers and likely greatly reduce them for energy-intensive trade exposed large

industrial and commercial customers. Remaining revenues will be distributed to

residential customers through a semi-annual lump-sum per-customer credit. It

appears that most electricity sold to commercial and industrial customers will see

the full pass-through of energy price increases due to allowance costs.55

The CPUC estimates that 85% of revenues will go to residential customers, who

make up about 34% of demand.56 Conversely, 15% of revenues will go to non-

residential customers, that is, customers who comprise 66% of demand. If the

total allocation of allowances is about equal to 100% of a utility’s associated

indirect (i.e., through power providers) obligation, and the utility is allowed to

cover its cost of compliance, this means that the 66% of demand that is not

residential will bear associated costs equal to 85% of the total cost of allowances

that cover the utility’s obligation.

54http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M040/K841/40841421.PDF. The full de-
cision is at http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M039/K594/39594673.PDF.

55It is worth noting that it is far from straightforward once the program begins for a regulator to
know what the counterfactual price of electricity would have been if allowances had sold for a different
price or for a price of zero. The price of allowances has a complex impact of wholesale electricity
expenditures depending on the emissions intensity of the marginal supplier versus the average supplier
and the competitiveness of the wholesale electricity market. Thus, it is not clear how the CPUC would
make good on a promise not to pass-through the cost of allowances without a detailed study of the impact
that cost on equilibrium wholesale electricity prices.

56The 34% figure is based on 2012 EIA data for all of California.



EXPECTING THE UNEXPECTED 19

With a statewide average GHG intensity of 0.350 metric tonnes per MWh (based

on the 2011, most recent, GHG inventory), this means that the price of elec-

tricity per MWh would increase for non-residential customers by an average of

(0.85/0.66) ·0.350 ·allowance price. At an allowance price of $50/tonne, this raises

average non-residential rates by $22.54/MWh and at $70.36/tonne by $31.55/MWh.57

We apply these increases to the state average retail rates for commercial and in-

dustrial customers, based on EIA data, to get a percentage price response. Com-

mercial and industrial electricity demand elasticity estimates are few and not at

all consistent. The only study we found in the last 20 years is Kamerschen and

Porter (2004), which estimates a long-run industrial price elasticity of demand of

-0.35 when controlling for heating and cooling degree-days. We use this figure,

though we recognize that it could be too large because the long-run assumption

imparts an upward bias to the impact if price is actually increasing over time

and we calculate the elasticity based on same-year average price.58 On the other

hand, some earlier studies – reviewed in Taylor (1975) – find much larger long-run

elasticities, in some cases above 1 in absolute value.

The -0.35 elasticity is then applied to the share of IOU-served demand subject to

this price change, which we take to be 66%, to calculate the resulting reduction

in demand. Because the resulting impact on electricity consumption would be

a reduction at the margin, we multiply the demand reduction by an assumed

marginal GHG intensity – which we take to be 0.428 tonne/MWh – to calculate

the reduction in emissions at different prices. The result is a reduction of 7.7

MMT when the price is at the auction reserve throughout the program, 26.9

MMT when price is at the lowest step of the containment reserve, and 32.9 MMT

when price is at the highest step of the containment reserve.59

Electricity prices, however, are likely to rise for all customers over the years of the

57The 0.350 MT/MWh figure is arrived at by taking total 2011 GHG electricity emissions measured
for in-state (38.2 MMT) and assumed for imports (53.5 MMT) and dividing by total consumption (261.9
MMWh). Two assumptions are implicit in this calculation. First, we calculate the impact by spreading
the cost of the allowances over all non-residential customers, rather than calculating a slightly higher
increase for a slightly smaller set of customers by excluding trade exposed large customers and reducing
the obligation of small customers. This is unlikely to make a noticeable difference. Second, we assume
that the wholesale price obligation is increased by the cost of the allowances, when it could be more
or less depending on the GHG intensity of the marginal versus the average producer and the share of
long-term supply contracts with prices set prior to or independent of the impact of GHG costs on market
price.

58In particular, because the price at any time should reflect all expectations of future changes, the
increase in price over time, if it were to occur, would be due to a series of unpredicted upward shocks.
Thus, one would not expect market participants to behave as if they had foreseen these shocks.

59We also calculate a low elasticity case of -0.2 and a high elasticity case of -0.5, the results for which
are shown in table. The baseline price on which all price increases are calculated is the average price over
the life of the program assuming a 2.15% annual real increase in electricity prices during this period, as
discussed next.
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program for reasons independent of the price of allowances – increased renewables

generation, rising capital costs, and replacement of aging infrastructure, among

others – and these increases will reduce consumption.

Taking an average statewide retail electricity price of $149/MWh in 2012,60 we

assume that this price will increase by 2.15% (real) per year due to exogenous

(to Cap and Trade) factors.61 Again assuming a long-run demand elasticity of

-0.35 and a marginal CO2e intensity of 0.428 tonne/MWh, yields a reduction of

24.1 MMT (if the allowance price is at the highest price in the price containment

reserve) over the life of the program. Table 6 also shows the low and high elasticity

results for -0.2 and -0.5 elasticities.62

Thus, at the highest level of the price containment reserve we estimate total abate-

ment from electricity demand reduction of 57.0 MMT over the life of the program.

Using an elasticity of -0.2 reduces the impact of electricity demand reduction to

31.8 MMT at the highest price of the containment reserve. The marginal GHG

intensity of 0.428 is based on a combined-cycle gas turbine generator. If some of

the reduction comes out of renewable, hydro or nuclear generation the marginal

intensity will be lower. The impact scales linearly with the assumed marginal

GHG intensity.

C3. Demand for Natural Gas

ARB policy will give free allowances to natural gas suppliers (who are nearly

all investor-owned regulated utilities in California) equal to their obligation as-

sociated with their 2011 supply, but then declining at the cap decline factor. If

this were done, then nearly all of the suppliers’ obligations could be covered with

the free allowances (or the revenue from selling them in the allowance auction).

CPUC Decision 12-12-033 suggests that the most likely outcome through 2020 is

there would be almost no impact of emissions pricing on retail natural gas price,

and therefore almost no price-responsive emissions reduction by consumers in this

sector.63 That outcome is not certain, however, so we also explore the impact

of emissions prices being partially passed through to consumers. “Consumers”

in this case include all emissions sources not covered in the industrial categories.

60http://www.eia.gov/electricity/monthly/epm table grapher.cfm?t=epmt 5 6 a
61This increase is based on a projected real increase from $144/MWh in 2012 to $211/MWh in 2030,

an average increase of 2.15% per year. See Energy & Environmental Economics (2014).
62Ito (2014) estimates a medium-long run price elasticity for residential electricity demand of -0.1,

suggesting that a lower elasticity might be more relevant under the no complementary policies case when
we assume 100% passthrough to all types of customers.

63See http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M040/K631/40631611.PDF.
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(Large industrial customers, which are in the program beginning with the first

compliance period, are discussed in subsection C5.)

If the cost of natural gas emissions were fully passed through to these consumers,

then an allowance price at the auction reserve would raise natural gas prices by

an average of $0.71/MMBTU (in 2012 dollars) over the 2015-2020 period. At the

lowest price in of the APCR, the allowance cost would raise the price of natural

gas by an average of $2.71/MMBTU and at the highest price of the APCR, the

effect would be to raise the natural gas price by an average of $3.40/MMBTU. We

assume an average retail price of $8.49/MMBTU across all nonindustrial types of

natural gas customers64 before allowance costs, and examine 0%, 15% and 30%

passthrough of the allowance cost to retail. It’s difficult to know the elasticity

of retail demand for natural gas. We take an estimate of -0.4 over the 6-year

time frame of natural gas in the program.65 We assume a baseline emissions rate

of 49.7 MMT/year for each of the six years that non-industrial customers are

in the program. Based on these assumptions, at the highest price in the price

containment reserve, 30% passthrough would be associated with 13.0 MMT of

abatement over the life of the program. For analysis with no complementary

policies, we assume 100% pass-through and consider low, medium and high cases

with elasticities of -0.3, -0.4, and -0.5 respectively.

C4. Abatement from Out-of-State Electricity Dispatch Changes

To the extent that some high-emitting out-of-state coal plants are not reshuffled

or declared at the default rate, there is possible elasticity from higher allowance

prices incenting reduced generation from such plants. We considered this, but

current ARB policy suggests that short-term energy trades would fall under a

safe harbor and would not be considered reshuffling. If that is the case, then

an operator would be better off carrying out such trades than actually reducing

output from the plant. This suggests that allowance price increases might incent

some changes in reported emissions. In any case, we consider that as part of the

reshuffling and relabeling analysis.

64According to the EIA (http://www.eia.gov/dnav/ng/ng pri sum dcu SCA a.htm) in 2012 residential
averaged $9.22/MMBTU, commercial about $7.13/MMBTU for the about half of commercial customers
in their data. These are likely the smaller customers because larger customers probably have proprietary
contracts, which the price data don’t cover. The $8.49/MMBTU price is the quantity-weighted average
based on EIA estimated quantities.

65Though some estimates of the price elasticity of gas and electricity demand are higher than those
we use here, such estimates generally include substitution from gas to electricity and vice versa, which
would have a much smaller net impact on emissions.
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C5. Industrial Emissions

For the industries covered under output-based updating, there may still be some

emissions reductions as the allowance price rises. This could happen in two ways.

First, once a baseline ratio of allowances to output is established, these firms

have an incentive to make process improvements that reduce GHG emissions for

a given quantity of output. It is unclear how much of such improvement is likely

to occur. At this point we have no information on this. Our current estimates

assume this is zero. ARB’s analysis of compliance pathways suggests that at

a price of up to $18/tonne (25% of the highest price of the APCR in 2020),

the opportunity for industrial process reduction is at most 1-2 MMT per year.66

Second, because the output-based updating is not 100%, additional emissions that

result from marginal output increases do impose some marginal cost on the firms.

That impact is likely to be small, however, because the effective updating factors

average between 75% and 90% over the program, which implies that the firm faces

an effective allowance price of 10% to 25% of the market price for emissions that

are associated with changes in output. At this point, we have not incorporated

estimates of this impact, but it seems likely to be quite small.

66See figures F-3 through F-9 of Appendix F, “Compliance Pathways Analysis,” available at
http://www.arb.ca.gov/regact/2010/capandtrade10/capv3appf.pdf.




