
Institute of Transportation
Studies

(University of California, Davis)

Year  Paper UCD−ITS−REP−−

Potential Benefits of Utilizing Fuel Cell

Auxiliary Power Units in Lieu of

Heavy−Duty Truck Engine Idling

This paper is posted at the eScholarship Repository, University of California.

http://repositories.cdlib.org/itsdavis/UCD−ITS−REP−01−01

Copyright c©2001 by the authors.



Potential Benefits of Utilizing Fuel Cell

Auxiliary Power Units in Lieu of

Heavy−Duty Truck Engine Idling

Abstract

Truck manufacturers and vehicle component manufacturer are exploring us-
ing fuel cell auxiliary units (APUs) in lieu of main engine idling. While fuel
cell powertrains continue to face significant technical and economic barriers,
the truck auxiliary power application may offer a viable near−term market for
small (1−5kW) fuel cells. The University of California, Davis Institute of Trans-
portation Studies (ITS−Davis) has conducted a study to quantify the potential
benefits of utilizing APUs in lieu of truck idling. ITS−Davis researchers esti-
mated the potential reductions of (1) air pollutants and greenhouse gases and
(2) heavy truck fuel and lubricant consumption through elimination of truck
idling. For new tractors, idling is estimated to contribute 0.2 to 0.7 metric tons
of nitrogen oxide emissions and 8−24 tons of carbon dioxide per vehicle per
year. Thus, depending upon the emissions from fuel cell system production,
fuel cell APUs in lieu of idling could substantially reduce pollution emissions
and greenhouse gas emissions.
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Abstract.   Truck manufacturers and vehicle component manufacturers are exploring using fuel cell 
auxiliary power units (APUs) in lieu of main engine idling.  While fuel cell powertrains continue to face 
significant technical and economic barriers, the truck auxiliary power application may offer a viable near-
term market for small (1 – 5 kW) fuel cells.  The University of California, Davis Institute of Transportation 
Studies (ITS-Davis) has conducted a study to quantify the potential benefits of utilizing APUs in lieu of 
truck idling.  ITS-Davis researchers estimated the potential reductions of (1) air pollutants and greenhouse 
gases and (2) heavy truck fuel and lubricant consumption through elimination of truck idling.  For new 
tractors, idling is estimated to contribute 0.2 to 0.7 metric tons of nitrogen oxide emissions and 8 to 24 tons 
of carbon dioxide per vehicle per year.  Thus, depending upon the emissions from fuel cell system 
production, fuel cell APUs in lieu of idling could substantially reduce pollution emissions and greenhouse 
gas emissions.  The extent of cost saving that an APU could achieve depends upon the cost of diesel engine 
idling, the market cost of the APU, the APU fuel-type, and quantity of APU fuel consumed.  Conservative 
estimates are that diesel engine idling uses 1818 gallons of fuel per year for an average late model truck 
that idles 6 hours per day, 303 days per year.  The fuel cost per year is $3,127 (at a cost of $1.72 per gallon) 
in addition to preventative maintenance and engine overhaul costs.  Potential costs of the fuel cell APU 
systems are speculative due to the early commercialization stage of the technologies and uncertainty with 
regard to architectures and production volumes.  This paper concludes with a discussion of appropriate fuel 
cell architectures for truck auxiliary power applications and the costs considerations associated with each. 

 

INTRODUCTION 

Truck engine idling occurs to power climate control devices (e.g. heaters and air conditioners), to 

power sleeper compartment accessories (e.g. refrigerators, microwaves, and televisions), to avoid start-up 

problems in cold weather, and as general practice by truck drivers.  Long-haul sleeper tractors in the U.S. 

often idle up to ten hours each day or 50% of total engine run time (1).  Local ordinances limiting idling are 

common in the U.S., and over a dozen states also limit idling (1, 2).  In most states, trucks and buses that 

are idling can be ticketed under state nuisance laws, but this is infrequent (2). In contrast to countries in 

Europe where truck engine idling is often severely restricted, there are no federal laws in the U.S. 

pertaining to truck idling.  Many fleets, such as United Parcel Service, voluntarily restrict idling (2).  

However, despite the clear economic and environmental benefits of limiting idling, idling during delivery 
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and overnight is prevalent.  Argonne National Laboratory estimates that there are 458,000 trucks in the 

U.S. that idle between 3.3 and 16.5 hours per day (1).  

In addition to excess fuel consumption, lubricant consumption, and engine wear, heavy-duty truck idling 

generates air pollutants, greenhouse gases, noise, and vibrations.  Tractor vibration and noise are of special 

concern due to their potential impact on trucker sleeping and fatigue.  Data on environmental and driver 

safety issues are scarce, but information on the estimated fuel consumption, lubricant consumption, and 

maintenance requirements associated with engine idling is widely distributed to the trucking industry by the 

Department of Energy (3). The Department of Energy Office of Heavy-Duty Technologies estimates that 

$1.17 billion is spent each year on fuel for idling, and an additional $1 billion is spent on engine wear and 

maintenance due to idling (3).   

Little quantitative data are available on the amount of emissions and greenhouse gases emitted by heavy-

duty vehicles during idle.  In general, heavy-duty diesel vehicles produce low levels of hydrocarbons (HC) 

and carbon monoxide (CO) in comparison to gasoline engines.  However, diesel trucks contribute relatively 

high amounts of nitrogen oxides (NOx) and particulate (PM).  NOx is a precursor in the formation of ozone 

and is the primary pollutant that many Metropolitan Planning Agencies must reduce in order to attain the 

National Ambient Air Quality Standards set forth by the Clean Air Act. Diesel particulate matter has been 

associated with adverse health effects and in 1998 was declared a toxic air contaminant by the California 

Air Resources Board.  In contrast, emissions of carbon dioxide (CO2), a greenhouse gas, are lower for 

diesel engines than for comparable gasoline engines, but the emissions are still significant. 

Of the alternative power sources available to reduce the need for idling (e.g. battery packs, auxiliary 

generators, direct-fired heaters, absorption coolers) all have economic and technical drawbacks that have 

limited their market acceptance.  Truckers report that using battery power overnight puts too much stress on 

the vehicle’s batteries, and this leads to premature wear out.  Auxiliary generator sets are reported to be 

heavy, expensive, and noisy.  Direct-fired heaters and absorption coolers can be used to assist in climate 

control, but do not provide the power for other accessories such as televisions and refrigerators.  Argonne 

National Laboratory provides a comprehensive comparison of alternative technologies to reduce idling (1).  

One alternative technology, fuel cell auxiliary power units, is a recent application that is being investigated 

by several truck and vehicle components manufacturers. 

The truck fuel cell APU concept has the potential to (a) reduce heavy truck fuel and lubricant consumption 

and the related U.S. dependency on non-renewable foreign energy supplies, (b) reduce particulate and 

greenhouse gases emissions, (c) improve highway safety by greatly increasing the quality of driver rest 

periods; therefore, reducing fatigue, (d) decrease engine wear and tear, (e) reduce noise and heat signature 

levels while idling, (f) increase energy efficiency as well increased payload capacity, and (g) reduce the 

logistics support required for vehicles’ being operated in remote areas.   
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Since fuel cell APUs are in their infancy, the authors chose not to examine the cost and benefits of a 

specific system architecture.  Instead, the authors assessed the emissions reduction and fuel savings that 

could be achieved by eliminating non-driving truck idling.  Specifically, ITS-Davis quantified the potential 

reduction of (1) heavy truck fuel and lubricant consumption, (2) air pollutants and greenhouse gas, and (3) 

truck operator cost. The extent of these savings that an APU will achieve depends upon the market cost of 

the APU, as well as, the fuel-type and quantity of fuel consumed.  The paper concludes with a discussion of 

appropriate fuel cell architectures for truck auxiliary power applications and the costs/benefits associated 

with each. 

 

METHODOLOGY 

 

A two phase approach was employed to estimate the potential impact of fuel cell APUs.  The first 

step was to quantify truck idling and the second was to associate emissions and fuel use with this idling.  

Very little data exists on the characteristics of truck idling (1, 4).  To estimate the duration of idling, the 

authors utilized the existing idling data from Argonne National Laboratory and supplemented this with 

information obtained by Freightliner customer fleets.  Similarly, little data exists on emissions during 

idling.  To quantify the emissions and fuel use associated with idling under various accessory loads, a Class 

8 Freightliner Century Class tractor with 1999 engine was tested using the Environmental Protection 

Agency’s on-road test facility based in Research Triangle Park, North Carolina.  Emissions data are also 

presented from less extensive idling testing by EPA on three 1990 vintage tractors. The emissions estimates 

are then compared with emissions rates from engine certification testing, the Environmental Protection 

Agency’s emissions model (MOBILE5b) and the California Air Resources Board emissions model 

(EMFAC2000).   

Quantification of Truck Idling Time  

 

Idling differs by trip duration, season, geographic location, and operation making it difficult to 

quantify hours of truck idling for the truck population.  Idling can be classified as discretionary (i.e. non-

essential, although possibly desirable) or non-discretionary (i.e. practically unavoidable).  Examples of 

discretionary idling are overnight idling and delivery idling, which often take place to maintain driver 

comfort levels, and could be eliminated using a fuel cell.  An example of non-discretionary idling is when a 

truck idles intermittently in heavy traffic.  It is neither practical nor desirable to turn on and off the engine 

and run a fuel cell in this condition.  Another example of non-discretionary idling is for special applications 

such as powering tanker fuel transfer.  The power draw for tanker trucks is larger than would be required to 

power in-cab accessories, and it is unlikely that a small fuel cell APU would be used.   Since the objective 

of this study was to quantify the amount of idling that would be replaced by an APU, we focused on only 

discretionary idling. 
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To estimate the duration of idling, we utilized the existing idling data from Argonne National Laboratory 

and supplemented this with information obtained by Freightliner customer fleets.  Argonne National 

Laboratory’s informal survey of truck fleets found that trucks idle between 5 hours and 10 hours depending 

on season (1).  The average, baseline truck idling estimated by Argonne is 6 hours per day for 303 days per 

year that a long-haul sleep truck operates (1). This equates to 1818 hours per year.  There is limited 

evidence that the average time idling may be substantially higher.  In Argonne’s study, JB Hunt, a large 

truck fleet, indicated that their trucks idled 40% of the time (1).  This is consistent with the idling reported 

by the fleets contacted by Freightliner LLC.  A 90 truck fleet in Stockton, California idles 44% of the time 

(5).  A third fleet based out of Tennessee idles 47% (5).   

 

These higher idling times may be partially offset by idle reduction programs implemented by fleet owners.  

The Department of Energy sponsors a program to inform fleets of the fuel and lubricant cost during idle, 

and worksheets to assist truckers in calculating their idling cost are available on the American Trucking 

Association’s (ATA) website as well as in their Fleet Manager’s Guide to Fuel Economy (6).  According to 

ATA’s Truck Maintenance Council, 52% of their member fleets have a policy to reduce idling (6).  

However, smaller fleets, those with less than 25 vehicles, are less likely to have these programs, and these 

fleets make up 40% of the long-haul truck industry (1).   

 

Given the variation in idling time, a range of possible idling times were used in this paper.  The lower value 

used was the 1818 hours per year identified in the Argonne National Laboratory study as a baseline.  The 

higher value of 2424 hour per year was calculated by ITS-Davis based on our discussions with the fleets 

that idle between 40-50% time.  This figure is based on the assumption that a truck travels on the road 10 

hours per day, idles 8 hours per day (40%) of the time, 303 days per year.  40% (as opposed to 50% idling 

time) was selected since 10% of idling time was assumed non-discretionary and thus would not be 

eliminated by the fuel cell.  The 10% idle time spent in traffic was estimated based on discussions with 

three long-haul fleets that do intra-state deliveries of bulk products.  The actual percent of non-

discretionary idling time will depend on factors that affect the truck driving cycle such as truck, route, 

traffic conditions, and delivery location.   

 

Quantification of Emissions and Fuel Consumption  

 

Emissions measurements were made on a Freightliner Century Class tractor with 1999 engine.  

The tractor was tested at Research Triangle Park using the Environmental Protection Agency’s (EPA) on-

road emissions testing trailer.  EPA's mobile facility was developed in 1994 by their Emissions 

Characterization and Prevention Branch for the purpose of quantifying gaseous emissions as a function of 

truck operating parameters. A majority of the facility’s functional components are located inside the 45-
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foot cargo van trailer that is towed by the truck being tested. The front 10 feet of the trailer is a laboratory 

space containing the continuous emissions monitoring (CEM) system, all the support equipment (pumps, 

heaters, compressed gases, etc.), and a computerized data acquisition system (DAS which records 

responses from the various operational sensors located throughout the facility. In the rear of the trailer, 

separated by an insulated partition, is space for 18 tons of removable concrete weights, which are used to 

simulate the effects of truck payload on emissions. 

 

The CEM system consists of rack-mounted components that measure undiluted concentrations: Oxygen 

(O2) by magneto-pneumatic detection, carbon dioxide (CO2) and carbon monoxide (CO) by infrared 

absorption, nitrogen oxides (NOx) by chemiluminescence, and total hydrocarbon (THC) by flame 

ionization detection (FID).  The sample delivery system (pump, filter, and sample lines) is heated to 365 F 

to prevent HCs from condensing out. 

 

Using EPA's on-road emissions testing trailer, continuous hydrocarbon, carbon monoxide, carbon dioxide, 

and nitrogen oxide emissions were quantified at idle under a variety of accessory loadings and engine 

speeds.  Four short-duration idle tests were run: 1) at standard idle (600 rpm) after running a 10 minute 

transient cycle, 2) at standard idle after cruising at 55 mph for 10 minutes, 3) a standard idle with the air 

conditioner on after running a 10 minute transient cycle, and 4) a high idle (1050 rpm) with the air 

conditioner running after a transient cycle.  Additionally, a longer duration, 5 hour, idling test was 

conducted at 1050 rpm with air conditioning (mode 5). 

 

The first two tests differ only in preconditioning, and were designed to test for any carry-over potential 

effects of vehicle operation prior to idling.  In the first two tests, accessories in the cab were turned off.  

The second two tests were designed to quantify the effects of engine speed and accessory load.  It is well 

documented that accessory load increases fuel consumption at idle (6), but the corresponding increase in 

emissions is uncertain.  Different engine speeds were used because it is common practice for truckers to 

increase idle engine speed in order to prevent battery depletion while running accessories or to improve 

accessory (such as air conditioning) performance (5).   Examination of engine emissions maps indicated 

that the different engine speeds would produce substantially different emissions results. 

 

For reference, emissions were also measured during two other tests, mode 6, a 15 minute, 55 mph cruise at 

45,000 lbs load with no accessories running and mode 7, a 15 minute, 55 mile per hour cruise with the air 

conditioner running.  A minimum of three replications of each test were run, except for the high idle test 

with the air conditioner running.  Due to time constraints, this test was not replicated.   

 

Idle emissions testing was conducted in March of 2000.  Each day the analyzers were calibrated before and 

after emissions testing.  For the gaseous samples, the raw ppm data were later adjusted based on instrument 



Brodrick et al. 5 

drift and response time.  Exhaust flow was calculated from the velocity head and static pressure 

measurements and used to convert the adjusted ppm measurements to grams/mile.  The ambient 

temperature during emissions measurement ranged between 50 F to 70 F.  Ambient temperature is likely to 

affect emissions, but the extent of this effect could not be determined due to the small range of ambient 

temperatures during testing. 

 

RESULTS 

Reduction in Air Pollutants and Greenhouse Gases 

 

Emissions test results are presented in Table 1.  To verify that the engine emissions were 

reasonable, the emissions measured by EPA were compared with emission estimates obtained from testing 

of a 1999 engine on engine dynamometer at Southwest Research Institute (SwRI).  The engine was tested 

by SwRI and ITS-Davis in April of 2000. 

 

Since the engine at SwRI did not have truck accessories attached, it is not possible to compare the effect of 

running accessories.  Only the EPA standard idle emissions after cruise (mode 1) and transient (mode 2) 

driving are comparable to the SwRI engine tests.  HC idle emissions measured at EPA on the standard idle 

after transient and cruise range from 1.8 g/hr to 2.9 g/hr, and this low, but reasonably consistent with the 7 

g/hr emissions that were measured at SwRI.  The CO idle emissions (14.6-15.9 g/hr) were also consistent 

with the 12 g/hr measured at SwRI.  The NOx idle emissions (103-105 g/hr) were consistent with the 90 

g/hr emissions measured at SwRI.  CO2 idle emissions as well as PM emissions are currently being 

analyzed and will be compared to the emissions estimates from the SwRI engine testing. 

 

Examination of the EPA data reveals that increases in engine loading and accessory loading had significant 

effects as expected.  Raising the engine speed from 600 to 1050 rpm and turning on the air conditioning 

resulted in an increase in NOx emissions of 2.5 times, and a 5 times increase in CO emissions.  HC 

emissions increases were unavailable due to analyzer failure.   With engine speed maintained at 600 rpm, 

and the air conditioner activated, hydrocarbon emissions decreased.  The large increase in HC and CO 

emissions during long-duration idling at high engine speed warrants further study of long-duration idling 

that is typical of the type of idling that would be replaced by APUs. 

 
Table1: Emissions Test Results from EPA On-Road Testing 

  HC CO NOx CO2 
  g/hr g/hr g/hr g/hr 

Mode 1: idle after cruise 1.8 14.6 103 4034 

Mode 2: idle after transient cycle 2.9 15.9 105 4472 
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Mode 3: idle at 600 rpm with a/c 1.4 15.3 166 4976 

Mode 4:  idle at 1050 rpm with a/c - 86.0 254 9441 

Mode 5: long idle at 1050 rpm with a/c 86.4 189.7 225 9743 

Mode 6: cruise 55 mph, no a/c 5.6 65.1 713 60592 

Mode 7: cruise at 55 mph, with a/c 3.9 57.4 777 60320 
 

Emissions at 55 mph cruise are provided in Table 1 for comparison. High idle with air conditioning 

produces NOx emissions of about one third the emissions at 55 mph cruise with air conditioning. High idle 

with air conditioning raises CO levels above those of emissions at 55 mph cruise.   

However, the average emissions levels above provide an incomplete picture of idling emissions.  Close 

examination of the continuous emissions data reveals that the emissions at idle are not steady.  Thus, simple 

averages may be misleading.  Figures 1-3 below are examples of the emissions patterns observed over time 

under three of the test modes. 

Figure 1 is an example of the patterns observed for idling after steady-state freeway driving at 55 mph.  The 

emissions pattern illustrated is for NOx emissions at idle at 600 rpm with no accessory load.  The figure 

illustrates that the idle emissions begin around the 100 g/hr level following the freeway driving.  After 

several minutes, the idle emissions crept up and continued to creep up throughout the idle testing.  This 

indicates that length of idle time over which emissions measurements are made may affect the NOx 

emissions levels.  The observed pattern could partially explain the difference in emissions seen in 

replications of mode 1 and mode 2 tests.  The longer tests had 10-15% higher average emissions because 

more data were taken after this increase in emissions.   This indicates that the emissions numbers generated 

from the short idling tests are conservative, and actual emissions over longer durations, for example during 

overnight idling, are likely to be higher. 

Figure 2 illustrates the trend in idle emissions following lower-speed transient modes that are typical of city 

driving. As with Figure 1, the emissions shown here are for a typical idling test at 600 rpm without 

accessories.  In Figure 2, the NOx emissions immediately following the transient modes were at the 75 g/hr 

level.  The emissions remained in the 75 g/hr region for several minutes.  Then a sudden jump in emissions 

is observed.   This is in sharp contrast to Figure 1 where emissions began at a higher level and crept 

upward.  This pattern was observed to a lesser extent for one of the idle tests following 55 mph cruise.  For 

an unexplained reason emissions started at the lower 75 g/hr level that is more typical of those from idle 

tests following transients than of the idle tests following 55 mph cruises. 

Figure 3 shows yet another pattern.  This figure is an excerpt from a 5 hour overnight idling test with air 

conditioning running and the engine speed at 1050 rpm.  A distinctive pattern was observed for this long 
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idling tests with accessories whereby a repetitive pattern occurred.   This is likely due to the air compressor 

periodically loading the engine.  The overall emissions level is clearly higher than in the shorter emissions 

tests at 600 rpm with no accessories.  When idling emissions data is taken in the future, each of the tests 

will be held for a longer duration to capture and analyze these temporal patterns. 

Based on these observations, it appears that in addition to accessory use and engine speed, the vehicle 

conditions prior to emissions testing as well as the duration of idle testing affects the idle emissions.   

Figure 1: Idle Emissions vs. Time at 600 rpm with No Accessories Following 55 mph Cruising. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Idle Emissions vs. Time at 600 rpm with No Accessories Following Transient, City 
Operation. 
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Figure 3: Idle Emissions vs. Time at 1050 rpm with Air Conditioning on During a Long Idling 
Period. 
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idle with air conditioning, and the Ford was run without air conditioning.  The emissions test results for 

these trucks as well as the modern Freightliner are shown in Table 2.  For the 1989 truck, the results 

represent the average of 8, four-minute idle tests after transient driving with no accessory load.  For the 

1990 trucks, EPA conducted 12, four-minute tests after transient driving with accessory load.  The emission 

figures from the 1999 Freightliner Century Class with 1999 engine are provided in the last row for 

reference. The data for the Freightliner are the average of three idling tests at 600 rpm with the air 

conditioning on. 

Table 2:  Emissions Test Results from EPA Testing of Older Tractors 

     HC CO NOx CO2 

     g/hr st. dev. g/hr st. dev. g/hr 
 
 st. dev. g/hr st. dev. 

1989 Ford  12.4 1.0 21.6 2.3 65.7 6.8 NA NA 

1990 Freightliner  2.6 0.4 44.6 41.1 149.3 22.3 NA NA 

1990 Kenworth  4.9 1.3 79.3 24.8 134.6 36.2 NA NA 

1999 Freightliner 1.4 0.2 15.3 0.6 166 5 4976 73 
 

In Table 2, the NOx emissions from the 1999 Freightliner truck at standard idle with air conditioning is 

only slightly more than those of the 1990 Freightliner and Kenworth trucks.  HC emissions from the 1999 

Freightliner are the significantly lower and the CO emissions are much lower.  

Comparison of Findings to Those in Emissions Models 

As a baseline against which to compare the EPA emissions measurements, we examined the 

emissions factors used in EPA’s and ARB’s emissions models.  Emissions estimates from EPA’s 

MOBILE5b model vary based on environmental factors such as temperature and pressure, as well as, truck 

fleet characteristics, such as truck model year.  Assuming an ambient temperature of 75°F, 9.0 pounds per 

square inch Reid vapor pressure, and the U.S. fleet characteristics noted by EPA in 1998, average idling 

emissions for the U.S. fleet, were 55 g/hr of NOx (7). The average NOx emissions of 55 g/hr are 

approximately half of that measured for the 1999 model year Freightliner at standard idle with no 

accessories.  At standard idle with accessories, the NOx emissions from the 1999 Freightliner are nearly 3 

times higher than the EPA values estimated for fleet average.   This indicates that emissions from idle may 

be underestimated by MOBILE5b. 

ARB’s model EMFAC2000 incorporates idling factors for the first time (8).  The idling factors are 

presented in Table 3.  They were derived from testing on a set of light-heavy duty diesel trucks.  Because 

this was the only data available, emissions rates for the light-heavy trucks are applied to the other two 
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classes of heavier vehicles.  The emissions factors are the same for all model years.  The emissions factors 

are significantly higher than those measured from the Freightliner that EPA tested.   The highest emissions 

measured on the Freightliner tractor were 254 g/hr NOx at 1050 rpm with the air conditioning on.  The 

NOx emissions used in EMFAC2000 are 396 g/hr.  This NOx emissions factor is likewise much higher 

than those measured by EPA on the 1990 vehicles at 600 rpm idle with the air conditioning on.  We suggest 

that prior to finalizing the EMFAC2000 model, idling data be collected for a variety of model year vehicles 

under a variety of accessory loadings and engine speeds to determine if in fact these emissions factors are 

too high. 

Table 3: Idle Emissions Rates in EMFAC2000 

  Idle Trips Idle Emission Rates (grams per hour) 

Weight Class (Percent) HC CO NOx CO2 
LHD 5% 44 247 396 29687 

MHD 5% 44 247 396 29687 
HHD 26% 44 247 396 29687 

 

Cost of Fuel and Lubricant Consumption 

In order to calculate the cost of fuel consumption, it is necessary to assume a fuel consumption 

rate at idle.  The Department of Energy (DOE) publishes a table that estimates fuel consumption as a 

function of brake horsepower (bhp) demand of accessories and engine speed.  The numbers suggested by 

the DOE are shown in Table 4 (2).  The fuel consumption ranges from 0.6 gallons/hour for a truck idling at 

800 rpm with no accessories to 2.25 gallons/hour for a truck idling at 1200 rpm with 30 bhp of accessories.   

 

Table 4: Fuel Consumption (gallons per hour) as a Function of Accessory Horsepower Demand and 
Engine Speed (2) 

 

However, the DOE numbers are estimates used for the general truck population, as opposed to late model 

trucks that would be the target market for the fuel cell APU application.  Thus the applicability of these 

estimates for tractors from model year 1995-2000 has not been determined.   The general trends are similar 

to those observed for the 1999 model year Century Class Tractors tested: fuel consumption will increase 

when truckers idle the truck at higher engine speeds and with higher accessory loads.  Truckers increase the 

RPM Brake Horse Power of Accessories
0 5 10 20 30

800 0.6 0.7 1.0 1.4 1.7
1000 0.75 1.0 1.2 1.55 2.0
1200 1.0 1.2 1.5 1.8 2.25
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idle speed from its default setting in order to prevent battery drain and to improve accessory performance, 

but the extent to which truckers increase the idle engine speed is unknown. 

We wanted to generate a conservative estimate of fuel cost at idling, so we chose to assume a fuel 

consumption of 1.0 gallon per hour.  This is the fuel consumption rate we observed for the 2000 model year 

Argosy Tractors at idle with no accessories running.  A fuel consumption rate of up to 1.4 gallons per hour 

was observed for idling at 1050 rpm with the air conditioner running. This is consistent with what we 

measured on the Freightliner tractor tested by EPA, but there was very little fuel consumption data on that 

tractor due to a communications problem with the engine.  

The cost of fuel was calculated for the range of idling hours discussed in the previous section.  At a cost of 

$1.72 per gallon of diesel fuel for 1818 hours of idling per year at 1.0 gallons fuel per hour, this amounts to 

$3127 per year spend on fuel during idling.  Using the same assumptions for 2424 hours of idling per year, 

the annual cost of fuel for idling is $4169.   

 

In addition to fuel costs, engine idling results in increased maintenance costs associated with substantial 

wear to the engine.  The Truck Maintenance Council (TMC) estimates that idling for only one hour per day 

for a year results in the equivalent of 6,400 miles of engine wear (9).  On a monetary basis, the TMC 

estimates that idling the engine for one hour is equivalent to driving the truck for 7 miles, assuming the 

truck averages 7 mi/gal.  Using the TMC method, Argonne National Laboratory estimates that each hour of 

idling eliminated results in a savings of $0.07 in lubricant changes and $0.07 in engine overhauls (1).  The 

development of these correction factors and appropriateness of them for application to fuel cell APU 

applications in late model vehicles is being evaluated.   

 

Use of an APU will result in the engine being started and stopped more frequently and this will result in 

wear on the engine.  The maintenance cost savings by the APU will be the difference in cost savings due to 

reduced idling and the cost of excess wear caused by increased stops and starts.   At present, there are 

inadequate data on these costs to estimate the net impact on operating costs from this factor. The cost of 

maintenance and wear is being studied currently, and a detailed report on idling costs is being prepared. 

 

DISCUSSION 

The above results were used to determine the potential emissions and greenhouse gas savings that could be 

achieved by eliminating discretionary idling in a 1999 model year truck.  NOx emissions were examined, 

since they are the focus of the regulators, and CO2 emissions were examined because they are a general 

concern to regulators, environmental groups, and the public.  Because emissions savings are highly 

dependent on idle time, accessory loading, and engine speed, several scenarios are presented below (Table 

5) with different combinations of these factors.    
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Table 5: NOx Emissions and CO2 Greenhouse Gas Savings Potential from Eliminating Truck Idling  

Scenario 1: Average idle time 
 (1818 hours per year)        

 

standard idle, 
no accessories 

 
NOx               CO2 

high idle  
with air conditioning 

 
NOx                  CO2 

 baseline idle emissions (g/hr) 100 4350 275 10000 
 hours/day idle 6 6 6 6 
 days/yr idle 303 303 303 303 
 g/yr emissions at idle 181,800 7,908,300 499,950 18,180,000 
 metric tons/yr/vehicle 0.18 7.9 0.5 18.0 

Scenario 2: 40% idle time 
(2400 hours per year)   

  

standard idle, 
no accessories 

 
NOx               CO2 

high idle  
with air conditioning 

 
NOx                  CO2 

 baseline idle NOx emissions (g/hr) 100 4350 275 10000 
 hours/day idle 8 8 8 8 
 days/yr idle 303 303 303 303 
 g/yr emissions at idle 242,400 10,544,400 666,600 2,424,000 
 metric tons/yr/vehicle 0.24 10.5 0.67 24.2 
 

Each year, the a fuel cell auxiliary power unit could save between 0.18 and 0.66 short tons NOx at idle 

depending on idle time, accessories load, and engine speed. This is a significant portion of total NOx 

produced by late model year trucks. The 1999 long-haul truck engine is estimated to produce 6 g/bhp-hr 

NOx based on engine dynamometer emissions testing conducted by ITS-Davis in cooperation with 

Southwest Research Institute.  Assuming the average Class 8 truck travels 100K mi/yr and the conversion 

factor for bhp-hr/mi is 2.6, this truck emits 1.72 tons NOx on-road per year.  Thus, for late model trucks 

that idle average to high amounts, the potential emissions reductions from fuel cell APUs are 10 (0.2/1.72) 

to 39% (0.67/1.72) of these emissions. A more realistic estimate of on-road NOx emissions (12 g/bhp-hr) 

was obtained during EPA on-road emissions testing of the 1999 model year Freightliner.    Based on this 

emissions estimate, the fuel APU could provide an emissions reduction equivalent to 5-19% of on-road 

running emissions.   

The above numbers reflect the potential of fuel cell APUs to reduce emissions.  The emissions levels 

presented assume that fuel cells do not produce additional emissions, and they do not account for full fuel 

cycle emissions (e.g. emissions produced in the manufacturing of fuel cells and the production of their 

fuels).  In order to calculate actual emissions saving from a particular fuel cell APUs, a full fuel cycle 

analysis should be done and the emissions produced during these processes subtracted from the reduction 
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potential.  There is currently no published empirical data on the emissions during fuel cell manufacturing, 

but data are available on emissions during fuel processing and delivery. 

The assumption of no emissions production by the fuel cell itself is true of the hydrogen and methanol 

fueled fuel cells being considered in the near-term, but it does not hold true for solid oxide fuel cells or 

PEM fuel cells fueled with gasoline or diesel fuel.  Solid oxide fuel cells as well as fuel cells that accept 

gasoline or diesel are years away from commercialization for transportation applications, and emissions 

data on these are speculative at best.  Solid oxide fuel cells would produce CO2 emissions and diesel or 

gasoline fueled fuel cells would produce many of the same pollutants seen in conventional vehicle 

operation, although likely at much lower levels.  

APU ARCHITECTURE AND COSTS 

The extent of the savings that an APU will achieve depends upon the market cost of the APU, as well as, 

the fuel-type and quantity of fuel consumed.  As part of the Department of Energy Advanced Vehicle 

Program, Freightliner LLC has completed development of a 1.44-kW (1.9 hp) prototype hydrogen proton-

exchange membrane (PEM) fuel cell auxiliary power unit (APU).  Other potential architectures that will be 

investigated include direct-methanol PEM and solid oxide fuel cells.  A discussion of the characteristics of 

each is provided below.  

 

Truck APUs based on PEM fuel cells are particularly attractive due to the near ambient temperature 

operation of this fuel cell type, the ease of starting and stopping the system, and the flexibility of fuel 

supply, as well as the general interest in commercializing PEM fuel cells for other transportation 

applications (e.g., cars and buses).  PEM fuel cells can be operated on a range of fuel input mixtures, 

including pure hydrogen, impure hydrogen “reformate” gas streams, and even gaseous or liquid methanol 

(in a direct-methanol system).  However, PEM fuel cell systems are intolerant of CO and sulfur because 

their platinum catalysts can be easily poisoned by CO and sulfur-containing compounds.  PEM fuel cell 

systems that do not run on pure hydrogen therefore require gas cleanup systems along with the use of an 

initially low or zero-sulfur fuel.  At present, reforming methanol into hydrogen appears practical because 

methanol can be reformed at relatively low temperatures (about 300 °C), while reforming gasoline or diesel 

is much more difficult due to the more complex processes involved, the higher reformer temperatures (600-

700 °C), and the higher concentrations of CO, oxides of sulfur, and other waste gases in the reformate 

streams.  

PEM fuel cell systems that use methanol directly, rather than first reforming it into a hydrogen-rich gas 

stream, are known as direct-methanol fuel cell systems.  These systems are at an earlier stage of 

development than hydrogen PEM systems, with commercialization still several years off.  Direct-methanol 

fuel cells are widely perceived to have low efficiencies, partly because of fuel lost due to the problem of 

methanol crossover.  This occurs when some fuel is lost due to physical crossover of methanol through the 
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fuel cell electrolyte membrane, but recent progress has been made in solving this problem.  Los Alamos 

National Laboratory reports that with a small five-cell “short stack” it has demonstrated a power density of 

over 1 kW per liter of active stack volume, with methanol fuel utilization rates as high as 82% with 1.0 M 

methanol and 99% with 0.75 M methanol (11).  These achievements are particularly noteworthy in that 

they are due to improvements in the structure of the cell electrodes, rather than to a novel electrolyte 

membrane type or treatment.  Of course, only small (under 1 kW) systems have yet been constructed, and 

precious-metal catalyst loading levels remain about 2.5 times as to high as for indirect-methanol PEM 

systems (12). 

A rather different fuel cell technology option would be a solid-oxide fuel cell system. Unlike PEM cells, 

solid oxide cells operate at high temperatures (typically at about 1000 °C), but recent research is focusing 

on lower temperature operation (600-700 °C) and therefore requires expensive heat-resistant materials such 

as yttria-stabilized zirconia for the ceramic electrolyte and doped lanthanum chromite for the cathode (12). 

Due to their high-temperature operation, solid oxide fuel cells also have significant startup times and 

requirements for thermal management, and would probably need to be operated continuously rather than 

intermittently.  However, solid oxide fuel cells can “internally reform” natural gas, ethane, and some other 

fossil fuels for use in the fuel cell reactions (which are somewhat different than the proton-exchange 

mechanism in PEM cells), resulting in the production of electricity, water, and carbon dioxide.  Solid oxide 

fuel cells would make high-grade heat available for cabin and water heating (compared with the low-grade 

heat available from PEM systems), and this could at least partially offset the difficulties of high 

temperature operation and stringent thermal management requirements. 

With regard to the potential costs of these fuel cell APU systems, estimates are necessarily speculative at 

this time due to the early commercialization stage of the technologies and uncertainty with regard to what 

production volumes will be possible in what timeframe.  A few studies have been conducted on the 

potential manufacturing costs of automotive PEM fuel cell systems in high production volume, with 

estimates ranging from $40 per kW to ($200 per kW for 50-kW systems in production volumes of at 

300,000 units per year (13,14).  These estimates include the fuel cell stack, auxiliary systems, and power 

and control electronics, but not the hydrogen storage system.  Using a formula developed by Directed 

Technologies Inc. (DTI), for estimating the relative costs of different sizes of direct-hydrogen PEM fuel 

cell systems in high-volume production, a 5 kW system would have a manufacturing cost of about $240 per 

kW and a 3 kW system would have a cost of about $435 per kW (13).  Costs per kW tend to be higher for 

smaller systems due to the higher burden of the “balance of system” components, but it should also be 

noted that the DTI estimates were developed primarily for systems in the 30-100 kW range and thus should 

be taken as illustrative only for smaller systems.  In lower volume production conditions, which are likely 

to prevail for some time, manufacturing costs would be higher for small PEM systems, perhaps on the order 

of $1,000 to $3,000 per kW once the current phase of hand-built prototype production of PEM cells and 

stacks is surpassed by automated production.   
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Solid oxide fuel cell systems are also likely to be relatively expensive in the near term, although they can 

use relatively inexpensive nickel or copper-based catalysts rather than platinum or platinum/ruthenium.  

Westinghouse has targeted $1,000 per kW for its complete solid-oxide fuel cell cogeneration systems, 

based on tubular cell construction, while proponents of stacked planar cell configurations argue that costs 

could be as low as $400 per kW (15).  Raw material costs for these systems are relatively low, on the order 

of $7 to $15 per kW, but the need for high temperature ceramic material preparation, electrochemical vapor 

deposition for electrolyte materials, and other complex processing steps presently results in manufacturing 

costs of about $700 per kW for the basic solid oxide fuel cell stack and auxiliaries (13).  

 

The truck APU application for fuel cells could potentially combine with demand from other small and 

medium-sized fuel cell market segments, such as light-duty vehicles, buses and delivery vehicles, 

commercial and residential stand-alone and backup power systems, and so on, to gradually bring down 

manufacturing costs. Fortunately, due to the significant fuel cost savings, the heavy-duty truck APU 

application has the potential of being economically feasible at higher per-kW fuel cell costs than many 

other applications.  This suggests that fuel cell APUs may be a particularly good early market for fuel cell 

introduction in the transportation sector. 

 

CONCLUSIONS 

Fuel cell APUs in lieu of idling could substantially reduce truck fuel consumption, pollution, greenhouse 

gas emissions, and trucking costs associated with truck idle.  The extent of these savings will depend on the 

market cost of the APU, as well as, the fuel-type and quantity consumed.  This paper quantified the 

potential benefits of fuel cell APUs and discussed the projected costs of several promising APU 

architectures.  A review of the findings is presented below. 

 

•  Emissions and fuel consumption during truck idling vary based on engine model year, accessory 

loading, and engine speed.  Limited evidence also suggests that emissions at idle may be affected 

by idle duration and vehicle operation prior to idling.   

•  For modern long-haul tractors, idling is estimated to contribute 0.18 to 0.67 metric tons of 

nitrogen oxide emissions and 8 to 24 tons of carbon dioxide over a year period depending upon the 

engine model year, engine speed, accessory loading, idle time, and fuel consumption rate.  

•  Differences in continuous emissions patterns and emissions levels in long-duration idling warrants 

further study of  long-duration idling typical of the type of idling that would be replaced by APUs. 
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•  Each year (assuming 6 hours and 303 days per year used in the emissions calculations and 

assuming a 1 gallon per hour fuel consumption at idle) 1818 gallons of diesel fuel are consumed at 

idle per truck.  Under the same assumptions, this results  $3,127 in fuel (at a cost of $1.72 per 

gallon) per truck per year. 

•  One potential fuel cell APU architecture would be based on PEM fuel cells, which can be operated 

on a range of fuel input mixtures, including pure hydrogen, impure hydrogen “reformate” gas 

streams, and even gaseous or liquid methanol.  A second potential architecture would be based on  

solid-oxide fuel cells. 

•  Potential costs of these fuel cell APU systems are necessarily speculative due to the early 

commercialization stage of the technologies and uncertainty with regard to what production 

volumes will be possible in what timeframe.  Manufacturer estimates presented in this paper are in 

the range of  $1,000-$3,000 per kW for production in the near term. 
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