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1.  Introduction 

 

In an earlier report, we examined the constancy of travel time and money expenditure by 

reviewing the empirical evidence at both the aggregate and disaggregate levels (Chen and 

Mokhtarian, 1999). That report concluded that, although some regularities have been noted at the 

aggregate level, the considerable variation observed at the disaggregate level does not support 

the theory of a constant travel time budget. However, individual travel time and money 

expenditures may be influenced by a number of variables and hence be capable of being modeled 

with some degree of accuracy. The objective of this report is to explore different approaches to 

modeling individuals’ time and money allocations to travel. Although the focus is on travel, it is 

important to consider activities as well, due to possible trade-offs between activities and travel. 

In this report, we consider three categories of activities: mandatory (e.g. paid work), maintenance 

(e.g., grocery shopping, medical appointments) and discretionary (e.g., social, recreational) 

activities. These three categories in general encompass all daily activities.  

 

In this report, we consider the ideal study period to be relatively long – for example, a week or a 

month or even a year. This would hopefully allow us to capture activities and travel that people 

do not conduct on a daily basis. Examples include long distance business travel and vacation 

travel. In addition, in using a rather long study period, we avoid the situation where the amount 

of time allocated to a particular type of activity is zero1.  

 

                                                 
1 In the utility maximization framework, for mathematical tractability it is assumed that the amount of time allocated 
to each type of activity is greater than zero. 
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In this report, we discuss five different approaches to disaggregate modeling of time and money 

allocations to travel and activities: four statistical estimation techniques, and the utility 

maximization framework within which each of the four statistical techniques may be applied. In 

Section 2, we present the single linear equation approach, which assumes a single endogenous 

variable. Where there is more than one endogenous variable, seemingly unrelated regression 

equations (SUR) or structural equations modeling, described in Section 3, are more appropriate. 

In Section 4, we discuss the application of linear and ordinal multinomial models to model 

relative desired mobility. Duration analysis, discussed in Section 5, may also be used to model 

individuals’ time allocation behavior. In Section 6, we present the utility maximization 

framework and propose a modification of this approach as it has been developed to date. Data 

needs are discussed in Section 7. Discussion and conclusions come in Section 8.  

 

2.  Single Linear Equation 

 

The simplest way to model individuals’ expenditure on travel is via the use of a single linear 

equation: 

εxβ +=y , 

where 

y (n cases × 1) could be time or money expenditure on travel, 

x (n × k variables) are explanatory variables for the corresponding dependent variable, 

β (k × 1) is a vector of parameters corresponding to the explanatory variables, and  

ε (n × 1) is a vector of random disturbance terms for the corresponding equation. 

Similar equations could be separately developed for expenditures on each activity type.  
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As a special type of linear regression, a few studies have used analysis of variance to identify 

significant factors associated with travel time expenditures. Using data from a 1976 three-

weekday trip diary in Munich, Germany, Zahavi and Talvitie (1980) show that household size, 

car ownership and the interaction between household size and car ownership have statistically 

significant effects on travel time expenditures.  

 

Kitamura et al. (1992) separately estimated a number of log-linear models in which time 

expenditure on the j-th activity is a function of total time available and other explanatory 

variables, as shown below2: 

jjj xxxTt εββββθ ++++++= ...lnlnlnlnln 3322110 , 

where 

tj is the time allocated to activity j, 

T  is the total time available, measured as 24 hours minus work duration, 

x’s are explanatory variables, and 

θj and β’s are parameters to be estimated. 

The main purpose of the model estimation was to examine the hypothesis: θj = 1. In other words, 

whether the ratio of time expenditures allocated to two activities is invariant to the total amount 

of time available. They found that the results rejected the hypothesis of proportional time 

allocation to activities.  

 

                                                 
2 To deal with cases where tj = 0, a value of 0.5 was added to all cases and the equation was then estimated by the 
Ordinary Least Squares (OLS) method. 
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Levinson (1999) estimated single linear equations (using OLS) on daily travel duration for 

activity i. The independent variables included daily frequency and daily duration of activity i. 

The model was estimated for different types of activities including home, work and related, 

shopping, personal business, school and church, doctor visits, visits to friends and relatives, 

social/recreation and other activities. The results showed that the activity frequency had a 

significant and positive effect on travel time allocation to all types of activities. Except for work 

and related activities, activity duration had a significant effect on travel time expenditure to the 

corresponding activity type. Travel time expenditure decreased as the amount of time spent on 

home activities increased; increased as the amount of time spent on all other activities (except for 

work and related activities) increased. The insignificant relationship between work duration and 

travel time to work is probably due to the high level of fixity of work duration. In other words, 

work duration is relatively constant (8 hours a day for most full-time workers) no matter how 

long one has to travel to work.  

 

One problem with Levinson’s model is that if activity duration is endogenous, the OLS estimates 

will be inconsistent. In reality activity duration is more likely to be endogenous than to be 

exogenous as activity duration may also be determined by travel time duration. In the case where 

some regressors are endogenous, the 2 Stage Least Squares (2SLS) method may be used. In an 

effort to model how individuals allocate their time throughout a day, Ma and Goulias (1998) 

developed models for travel time expenditures on different types of activities. 2SLS was used to 

estimate the model due to the expected endogenity of activity duration. Ma and Goulias found 

that “activity duration is endogenous to travel time only when a person travels to participate in a 

subsistence activity”. In the model of travel time to subsistence (i.e., mandatory) activities (the 
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only estimation model that is presented), both work-related characteristics and person and 

household-related socio-economic characteristics had significant effects on travel time. Full-time 

workers and those who lived farther away from work traveled longer than others. However, Ma 

and Goulias also found that working outside of home decreased the travel time to subsistence 

activities, a result that appeared to contradict the outcome just mentioned. Travel time to 

subsistence activities was found to be negatively related to home departure time, amount of time 

spent on past activity participation and travel on the same day, and number of activities 

conducted earlier on the same day. Additionally, travel time to subsistence activities was also 

positively related to the travel time to a previous subsistence activity on the same day and 

negatively related to the travel time to a previous leisure activity on the same day.  

 

Another problem with Levinson’s model is that, if a large number of observations in the data set 

have zero travel time, the OLS estimates will be inconsistent. One ad hoc solution is to add a 

small positive quantity to all observations, as Kitamura et al. (1992) did. A more rigorous 

approach is to estimate a tobit model, which is appropriate for cases in which the dependent 

variable is censored from below and/or above. Flood (1985) used a tobit model approach to 

account for the problem of a large number of zero observations in modeling the time 

expenditures on market work, home production and leisure by males and females. He found that 

the non-labor income decreased the amount of time allocated to market work for both males and 

females; it however increased males’ time allocated to leisure activities. The wage rate had an 

insignificant effect on males’ time allocation, but significantly increased females’ time allocated 

to market work. A high level of education significantly increased females’ time allocated to 

market work, but reduced their time allocated to leisure activities. Like the wage rate, age had an 
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insignificant effect on males’ time allocation, but significantly increased females’ participation in 

market work. Being a home-owner did not seem to make a difference in males’ time allocation, 

but significantly reduced females’ participation in market work. Larger households placed a 

burden on both female and male adults; it significantly reduced females’ time allocation to 

market work, increased their home production time, and reduced males’ time allocated to leisure 

activities. The availability of household technology, surprisingly, increased females’ time 

allocation to home production. The presence of children less than 5 years old significantly 

reduced females’ participation in market work and increased their time on home production.  

 

3.  Systems of Equations 

 

Within our context, if we were to use the single linear equation approach for both time and 

money expenditures, and including the three activity types (mandatory, maintenance, and 

discretionary) as well as travel, we would be modeling eight equations separately. These eight 

single linear equations may well share some explanatory variables, both observed and 

unobserved. We may gain some efficiency by modeling them jointly. This is especially the case 

when the ε’s (random disturbance terms) are correlated with each other and/or correlated with 

explanatory variables. Even if all explanatory variables on the right hand side of the equation are 

exogenous variables, the ε’s could be correlated with each other. This is because the random 

disturbance terms may not only include factors that are specific to a particular equation, but also 

factors that are common to more than one equation. In the case where endogenous variables are 

present on the right hand side, the ε’s are not only correlated with each other across equations but 

also correlated with explanatory variables within the equation. 



7 

 

In the case where all explanatory variables are exogenous but the ε’s are correlated across 

equations, the set of equations is called a Seemingly Unrelated Regression Equation (SUR) 

System, which can be estimated using the Generalized Least Squares (GLS) method. Efficiency 

over OLS is especially gained by using GLS when the correlation among the ε’s is substantial. 

When the correlation is equal to zero, the GLS estimates are identical to the OLS estimates. 

 

In the case where endogenous variables are present on the right hand side, the set of equations is 

called a Structural Equations System, which can be expressed as: 

ζΓxΒyy ++= , 

where 

y (m variables by 1) is a column vector of endogenous variables and x (n variables by 1) 

is a column vector of exogenous variables, 

B (m by m) is a matrix of parameters representing direct causal links between 

endogenous variables, 

Γ (m by n) is a matrix of parameters representing direct causal links of exogenous 

variables to endogenous variables, and 

ζ (m by 1) is a vector of random disturbances, E[ζ] = 0 and E[ζζ’] = Σ ≠ 0. 

 

In structural equations systems, endogenous variables are not only directly influenced by the 

right-hand variables (both endogenous and exogenous) in its own equation, but also indirectly 

influenced by variables in other equations (through the influence of those variables on the 

endogenous variables of those equations). The presence of endogenous variables on the right 
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hand side means that the endogenous variables are correlated with the disturbance terms, in 

violation of the assumption of OLS. Using OLS to estimate a SES will result in inconsistent 

estimates. Thus, SESs are estimated using the 3-Stage Least Squares (3SLS) method or Full 

Information Maximum Likelihood (FIML) method. 

 

For any endogenous variable, the direct causal effects through the endogenous and exogenous 

variables on the right hand side of its own equation are called direct effects. Therefore, from the 

equation above, the direct effects of exogenous variables constitute the elements of Γ and the 

direct effects of endogenous variables are found in the matrix B. The effects of variables 

mediated by other equations in the system are called indirect effects. Mueller (1996) 

demonstrated that the matrix of indirect effects of endogenous variables on endogenous variables 

is the sum of an indefinite matrix series: 

.⋅⋅⋅+++= 432 BBByyIE  

Similarly, the matrix of indirect effects of exogenous variables x on endogenous variables y can 

be expressed as follows: 

ΓΓΓΓΓ )BBB(BBBBB 432432 ⋅⋅⋅++++=⋅⋅⋅++++=yxIE  

Mueller (1996, p.142) also noted that “for any recursive structural equation models involving NE 

latent endogenous variables, the matrix BNE (and all subsequent powers of B) always will be 

equal to the 0 matrix, guaranteeing that the series in [the above two equations] converges.” The 

sum of direct and indirect effects on an endogenous variable is called the total effect (Bollen, 

1989). As a summary, these direct and indirect effects correspond to entries in the following 

table. 
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Table 1: Direct, Indirect and Total Effects of General Structural Equation Models 
(Mueller, 1996, p. 144) 

 
Effect Component Exogenous  → Endogenous  Endogenous → Endogenous 
Direct (DE) Γ B 
Indirect (IE) (I – B)-1Γ - Γ (I – B)-1 – I – B 
Total (TE) (I – B)-1Γ (I – B)-1 – I 

 

A number of researchers have used structural equation systems to estimate models of time 

expenditure on activities and travel. Flood (1985) developed four structural equation systems to 

examine time expenditures on various activities by male and female adults in the household. The 

first system for home-related activities consisted of eight single equations, corresponding to 

home production, leisure, household work, and TV-watching activities by males and females 

respectively. Estimation of such a system was performed by the 2 Stage Least Squares method 

(2SLS). The second system modeled time expenditures on market work. Due to a large number 

of zero observations for market work for females, estimating the system using only observed 

values of time spent on market work for women would have resulted in biased estimators. 

Hence, a latent indicator, Z, that can take on any real value and is related to Y, the observed time, 

by the last equation is used. That is, the second system is expressed as follows: 

mfmm ZY εγ ++= mmBX , 

fmff YZ εγ ++= ff BX ,  

),0max( ff ZY = , 

where 

Y is the dependent variable, observed time spent on market work, 

Z is a continuous latent variable, defined by Flood as latent preference for time allocated 

to market work,  
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X is a vector of explanatory variables, 

B is a vector of parameters, 

ε is the random disturbance term,  

subscript m refers to males, and  

subscript f refers to females. 

 

Similarly, due to a large number of zero observations for child care and household repair 

activities, the third (for child care) and the fourth (for home repair) systems are expressed as 

follows: 

mfmm ZZ εγ ++= mmBX , 

fmff ZZ εγ ++= ff BX ,  

),0max( ff ZY = , and  

),0max( mm ZY = . 

Estimation of the second, third, and fourth systems is similar to the 2SLS method. First, 

maximum likelihood was used to estimate reduced forms of the equations in the system to obtain 

predicted values of Ym, Zf in the second and third systems and Zm and Zf in the fourth system. 

Then, replace Ym, Zf in the second and third systems and Zm and Zf in the fourth system with their 

predicted values, and then estimate structural parameters by maximum likelihood. Flood found 

that there was no substantial gain in treating the allocation of time in the household as a system. 

The results estimated from structural equations systems were essentially the same as those from 

separate estimation of single linear equations. In general, females’ time allocation had no 

significant effect on males’ time allocation behavior. Males’ time allocation had a significant 

effect only on females’ leisure and home repair activities.  
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Golob (1990) examined how travel times by different modes interacted with each other and with 

car ownership over time using a longitudinal structural equation system with limited and 

categorical dependent variables. He found that there were significant associations among travel 

times by different modes and with car ownership. Golob also found significant impacts of 

exogenous variables on travel times by different modes and car ownership both at the same point 

in time and in the previous year3. The exogenous variables Golob examined included dynamic 

variables that were measured both at the same point in time and the previous year, and static 

variables that were measured only at the same point in time. Dynamic variables included two 

variables related to income, number of persons 18 or older in household, number of persons 12-

17 in household, household composed of 2 adults, presence of children less than 12 years old, 

number of household drivers, presence of 3 or more drivers, and number of household workers. 

Static variables included four variables related to residential location.   

 

Fujii et al. (1997, cited by Kitamura et al., 1997) developed a structural equation system 

analyzing trade-offs between time expenditures on activities and travel. They found that a 10-

minute reduction of commute time would increase average total out-of-home activity duration by 

1.88 minutes, average total in-home activity duration by 7.11 minutes, and average total travel 

time by 0.36 minutes. The number of home-based trip chains after returning home from work 

would increase about 30%, from 0.03 to 0.04. 

 

Golob and McNally (1997) estimated a structural equation model system examining the trade-off 

in time expenditure on different activities (work, maintenance, and discretionary) and 



12 

corresponding travel to each type of activity, separately by females and males residing in the 

same household. Similar to the study by Golob  (1990), they not only found significant 

associations among dependent variables, but also significant impacts of exogenous variables on 

dependent variables4.  

 

Lu and Pas (1999) examined the interaction between individuals’ activity participation and travel 

behavior. They found that daily travel time increased with the amount of time spent on 

maintenance and out-of-home activities, but decreased with the amount of time spent on in-home 

activities. As for socio-demographics, total daily travel time was positively related to age, 

income, and number of workers, and negatively related to number of vehicles and number of 

children. The likely explanation for the relationship to number of vehicles is that households 

with fewer vehicles must rely more on slower transit and walk modes, resulting in longer travel 

times. 

 

4. Application of Linear Models and Ordinal Multinomial Models to Relative Desired 

Mobility 

 

Theoretical and empirical work in this area to date has focused on analyzing observed travel time 

and money expenditures. Mokhtarian and Salomon (forthcoming), on the other hand, 

hypothesized the existence of a “desired or ideal travel time budget”, which varies at the 

disaggregate level as a function of personality, lifestyle, travel-related attitudes, stage in 

lifecycle, and other socio-economic and demographic variables. In practice, it would be difficult 

to obtain a quantitative measure of the ideal travel time budget because respondents may not 

                                                                                                                                                             
3 For detailed results, please refer to Chen and Mokhtarian (1999). 
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articulate such a concept to themselves. However, in a recent data collection effort carried out by 

UC Davis, a measure of relative desired mobility was obtained. Specifically, in the survey, 

respondents were asked to indicate whether they would prefer to travel much less, less, about the 

same, more, or much more compared to what they do now4. This measure was obtained 

separately for short-distance and long-distance travel “overall”, and by purpose and mode 

categories. 

 

It would be useful to model this relative desired mobility, to increase our understanding of 

people’s likely reaction to developments (whether technological, policy-based or personal) that 

make it easier or harder to travel. For example, people who want to travel much more than they 

do now would react differently than those who want to travel much less, to the increased 

availability of new urban mixed-use developments. The simplest modeling method is to use the 

single equation approach in which we set one of the observed measures of relative desired 

mobility as the dependent variable and link this dependent variable to a set of independent 

variables. Alternatively, several or all of the mode-, purpose-, and distance-specific measures 

may be modeled simultaneously as a set of seemingly unrelated regressions. It is also possible to 

construct a conceptual model in which some of the explanatory variables for relative desired 

mobility (such as travel liking, and current mobility) are themselves functions of other variables 

and therefore endogenous. In this case, structural equations modeling would be the appropriate 

approach. 

 

One problem with any of these approaches is that in prediction, the models permit predicted 

values of relative desired mobility outside the range of observed responses. The five-category 

                                                 
4 The time frame to which the word “now” referred was not indicated. 
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ordered-response variable is being treated as an unrestricted continuous variable. A more 

rigorous way to model such variables is via ordered multinomial models. Consider the following 

equation for a latent variable y* : 

uxy += β'* , 

where 

y* is a latent variable, which can be interpreted as the amount people want to travel relative 

to their current amount, measured on a continuous scale, and  

u is a random disturbance term. 

Thus, the observed outcome (i.e., the measured RDM) depends on how large y* is. We can 

express that outcome as follows: 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

>
≤<

≤<
≤<
≤

=

,*,
*,

*,
*,
*,

4

43

32

21

1

α
αα

αα
αα
α

yifmoremuch
yifmore

yifsametheabout
yifless
yiflessmuch

y  

where 

y is the observed measure of relative desired mobility, and 

α1, α2, α3, and α4 are cut points to be estimated. Since the origin of the y* is arbitrary, it is 

often convenient to set, say, α1 = 0 and estimate the remaining sα  relative to that base. In 

our case, however, it would be natural to set the midpoint .0
2

32 =
+αα

 This would allow 

interpretation of the sα as the relative amounts of travel corresponding to each qualitative 

label on the scale, where “more” would be positive and “less” would be negative. Thus, for 

example, it could be determined whether “much more” and “more” are closer together in the 

respondents’ minds than “more” and “about the same” or than “less” and “much less”, etc. 
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Two common examples of ordered multinomial models are ordered probit and ordered logit 

models. The ordered probit model is obtained by assuming that u takes a standard normal 

distribution while the ordered logit model is obtained by assuming that u takes a logistic 

distribution. 

 

5. Duration Analysis 

 

Expenditures of time on activities and travel may also be modeled via duration analysis. A key 

element in duration analysis is the specification of the hazard rate, “a rate at which spells are 

completed after duration t, given that they last at least until t” (Greene, 1993). Suppose the 

random variable T, the duration of the spell, has a continuous probability distribution f(t), where t 

is the realization of T. Its cumulative probability distribution can be expressed as follows: 

∫ ≤==
t

tTdssftF
0

)Prob()()( . 

The probability that spells last at least t is given by the following function: 

)Prob()(1)( tTtFtS ≥=−= . 

Then, the hazard rate function can be expressed as follows: 

∆
≥∆+≤≤

=
→∆

)|Prob(lim)(
0

tTtTttλ  

 = 
)(
)(

tS
tf . 

The hazard rate function λ(t) can take many forms, depending on the type of distribution 

assumed for f(t). Commonly assumed distributions include exponential, Weibull, and log-

logistic. For the exponential distribution, the hazard rate λ(t) = γ, where γ is a constant. In other 
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words, the hazard function is memoryless; the rate at which the spell is completed does not 

depend on the duration of the spell. For the Weibull distribution, the hazard rate 1)( −= ααγλ tt , 

where γ > 0 and α > 0. Depending on the values of γ and α, the hazard rate function can be 

either monotonically increasing or decreasing, with the exponential distribution resulting as the 

special case when α = 1. For the log-logistic distribution, the hazard rate 

)1/()( 1 γαγλ αα ttt += − , where γ > 0 and α > 0. For α > 1, the hazard function first increases 

with duration t and then decreases. For 0 < α < 1, the hazard function first decreases with 

duration and then increases. For α = 1, the hazard function monotonically decreases with t. 

 

The estimation of the hazard rate function can be done either parametrically or non-

parametrically. In the parametric method, the duration density function is assumed to be f(t,θ), 

where t is the duration and θ  refers to parameters to be estimated. The log-likelihood function 

may be expressed as ∏
=

=
n

i
itfL

1

),( θ  for a sample of n completed spells. Given an assumed 

functional form of λ, consistent parameters can be estimated via the usual maximum likelihood 

procedure.  

 

Sometimes, not only the duration t, but also other explanatory variables, affect the hazard 

function. For example, the hazard rate may be affected by the socio-economic characteristics of 

the individual. Kiefer (1988) summarized a number of specifications in which explanatory 

variables can be included. The simplest one is the proportional hazard model, which is expressed 

as follows: 
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)(),(),,,( 00 txxt λβλβλ Φ= , 

where 

)(0 tλ  is the baseline hazard function, corresponding to .1)( =⋅Φ  

Commonly, ),( βxΦ is specified as ).'exp( βx With the proportional hazard model specification, 

the effect of explanatory variables is to multiply the baseline hazard function by a factor. In other 

words, the effect of an explanatory variable on duration is constant. 

 

Another model specification in which explanatory variables can be included is called the 

accelerated lifetime model, which is specified as follows: 

),()],([),,( 0 ββλβλ xxtxt ΦΦ= , 

where 

dtSd /ln)( 00 −=⋅λ , 

)],([),,( 0 ββ xtSxtS Φ= , and 

S0 is the baseline survival function. 

The accelerated lifetime model essentially rescales the time axis by )(⋅Φ . Kiefer (1988) 

commented that proportional hazard model specifications allow fairly general transformations of 

the duration variable but restrict the error distribution to only the type I extreme value 

distribution, whereas the accelerated lifetime hazard model specifications allow fairly general 

specifications of the error distribution but restrict the transformation of the duration variable. 

 

Neither proportional hazard model specifications nor accelerated model specifications allow for 

interaction between the explanatory variables and the duration t, which sometimes may be too 

restrictive. Within our context, one may hypothesize, for example, that the effect of age on 
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duration of travel time may become stronger with the length of the spell. To remedy this 

problem, the model specification for the hazard rate function may be expressed as follows 

(Kiefer, 1988): 

)],,(exp[),,( ββλ xtgxt = . 

The above specification allows an explanatory variable to have a different effect on duration at 

one point in time than at another.  

 

There have been several applications of duration models to travel behavior analysis. Hamed and 

Mannering (1993) used a hazard rate function with a Weibull distribution to model travelers’ 

postwork home-stay duration. They found that the home-stay duration was positively related to 

number of workers in the household, and negatively related to the number of children in the 

household. If the individual arrived home between 9:00 am and 4:00 pm, the chance of 

participating in activities outside of home was greater than if the individual arrived at home at 

other times. If the individual arrived home between 6:00 pm and 8:00 pm, the chance of 

participating in activities outside of home was less than if the individual arrived home at other 

times. The estimated duration parameter was less than one, suggesting that the longer an 

individual stays at home, the less likely that he will participate in an activity outside of home.  

 

In modeling the duration of shopping during the return home trip from work, Bhat (1996a) 

compared proportional hazard models with a Weibull baseline specification and with a non-

parametric baseline specification. Within each specification, he also compared among models 

without heterogeneity, with gamma heterogeneity, and with non-parametric heterogeneity. He 

found that the parametric baseline specification provided biased estimates. Control of 
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heterogeneity did not alleviate the problem of biased estimates, though ignoring heterogeneity 

did not underestimate the duration dependence. In conclusion, Bhat recommended using a non-

parametric baseline model specification and testing for various distributions to control for 

heterogeneity, in preference to arbitrarily choosing a particular parametric baseline model 

specification.  

 

The above discussion of duration analysis only concerns spells with a single exit. This may be 

undesirable in some situations under which spells can end in a number of ways. For example, the 

spell of a particular activity such as paid work could end at the start of a recreational activity or a 

shopping activity. The hazard rate for the transition from paid work to recreational activity may 

well be very different from that for the transition from paid work to shopping activity. 

Competing risk models have been developed to deal with spells with more than one exit. The 

hazard rate function is expressed as follows (Ettema et al., 1995): 

∆
≥=∆+≤≤

=
→∆

)|1,(Prob
lim)(

0

tTDtTt
t k

kλ , 

where 

λk(t) is the rate at which the spells will end at the kth exit, and 

Dk is the dummy variable indicating whether exit k is chosen or not. 

The proportional hazard and accelerated lifetime versions of competing risk models can be 

expressed as follows: 

)(),(),,( 0 txxt kkkkk λββλ Φ=  for the proportional hazard model, and 

),()],([),,( 0 kkkkkkkk xxtxt ββλβλ ΦΦ= for the accelerated lifetime model. 
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In estimation, either a non-parametric or a parametric distribution for the k-th specific baseline 

hazard rate function may be specified. 

 

Competing risk models have also been applied in travel behavior modeling. Ettema et al. (1995) 

used competing risk models to model the activity duration and the type of activity for the new 

engagement. They compared both a generic model specification (a model that was generic to all 

types of activity) and an activity type-specific model specification. They found that the 

performance of the generic model was not as good as the activity type-specific model 

specification in terms of the goodness of fit ratios.  

 

Bhat (1996b) estimated a joint model of outcome and outcome-specific hazards to model the 

duration of shopping and social/recreation activities of workers during the evening commute 

home. In the sample, the individual may choose to go directly home, to participate in shopping 

activities before returning home, or to participate in social/recreational activities before returning 

home. Bhat estimated two versions of the model: one assuming independence between activity 

type choice and activity duration and the other accommodating the potential correlation between 

activity type choice and activity duration. The parameter estimates for the activity type choice 

model were almost identical for both versions of the model. Older age increased the probability 

of choosing shopping activities, but decreased the probability of choosing recreational activities. 

Compared to females, males were more likely to participate in recreational activities than in 

shopping activities. The presence of children under eleven years old decreased the probabilities 

of choosing both shopping and recreational activities. Higher household income increased the 

probability of choosing recreational activities, but had no impact on shopping activities. 
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Availability of automobile and being able to depart from work before 4:00 pm increased the 

probability of choosing recreational activities. Long work duration increased the probability of 

going directly home.  

 

For duration models for shopping and recreational activities, the parameter estimates agreed in 

sign, but differed in magnitude. The duration of recreational activities was positively related to 

being male, household income, and returning young adult (1 if the individual is an employed 

adult living with one or both parents) and negatively related to work duration. The duration of 

shopping activities was positively related to returning young adult and departure from work 

before 4:00 pm and negatively related to driving alone to work and work duration. Bhat also 

noted that the model accommodating the potential correlation between activity type choice and 

duration was better than the model assuming independence between the two because the 

estimated correlation coefficient was found to be significantly different from zero.  

 

In an effort to model how individuals allocate their time throughout a day, Ma and Goulias 

(1998) developed a number of competing risk duration models in the form of an accelerated 

lifetime specification to model activity duration and probabilities associated with various activity 

types (including subsistence, maintenance, and leisure activities). Ma and Goulias (1998) argued 

that the traditional competing risk model has the assumption of independence between activity 

type and the time that the activity will terminate, which is not realistic. For estimation, they 

adopted the two-step approach of Cardell (1997; cited in Ma and Goulias, 1998), in which they 

first estimated a multinomial logit model for the probabilities of activity types in which to 
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engage, followed by an activity duration model that included a log-sum term from the 

multinomial logit model.  

 

6. Utility Maximization Framework 

 

6.1. Previous Approaches 

 

Under the utility maximization framework, individuals are assumed to make choices in order to 

maximize an underlying utility function. Utility maximization is usually not unrestricted; rather 

the utility is maximized subject to constraints (e.g., a budget constraint). In microeconomics, a 

consumer’s selection of quantities of goods and services subject to a budget constraint is 

commonly expressed as follows: 

Max.   

)(XU  

subject to:  

y≤PX , 

where 

U is the consumer’s utility for the vector X, 

 X is a vector of quantities of the goods and services in the choice set, 

 P is the corresponding vector of prices for the goods and services in the choice set, and 

 y is a scalar representing the total possible expenditure. 
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A number of empirical studies have been conducted to describe individuals’ allocation behavior. 

Kitamura (1984) examined how individuals allocate time among various activities. He 

formulated the problem as follows: 

Max.   

∑
=

=
J

j
jjjjJ xtVtttU

1
21 ),(),...,,( ξ  

subject to:  
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Jjt j ...,,2,1,0 =≥ , 

where 

U is the total utility of the individual’s time allocation behavior, 

tj is the amount of time spent on the j-th activity, 

ξj is an unknown and random weight of the utility for activity j in calculating the total 

utility, ξj > 0,  

Vj is the utility derived from the j-th activity, 

xj is a vector of exogenous variables characterizing the j-th activity, and 

T is the total amount of time available. 

Assuming jjjjjjj txfxtV ln)(),( γ= , where γj >0 is an unknown but constant scale factor, and 

setting 0/ =∂∂ jtL  (where L is the Lagrangian function), the optimal time allocation to the j-th 

activity can be derived as follows: 

T
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, i, j = 1, 2, …, J, 
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which  can be further written as: 

ijiiijjjij xfxftt ξξγγ lnln))(ln())(ln()/ln( ** −+−= . 

Suppose xj > 0, j = 1, 2, …, J, and let ∏
=

=
j

jk

K

k
jkjj xxf

1

)( α , j = 1, 2, …, J; jej
ηξ = , j = 1, 2, …, J; 

and ,...)(..., jη ∼ MVN(0, Ση). Also suppose that for some base activity i, its utility function can 

be expressed as follows, by setting 1)( =iii xfγ : 

iiii txtV ln),( = . 

Let the first activity be the base activity for the normalization. Then )/ln( *
1

* tt j  can be expressed 

as follows: 

jjjjj XRtt εα ++= '*
1

* )/ln( , j =1, 2, …, J, 

where 

jjR γln= , 

),...,,( 21
'

jjKjjj αααα = , 

'
1 )ln,...,(ln

jjKjj xxX = , 

1ηηε −= jj , and 

),...,( 1 Jεε ∼ MVN(0, Σε). 

The above formulation can be estimated using the least squares method. The formulation 

assumes that all tj > 0, which may not be a realistic assumption when J is not small or the study 

period is short. In other words, it is entirely possible for an individual not to perform some 

activities at all during the study period. This naturally leads to a situation where the dependent 

variable (time allocation to a particular activity) is censored at zero. Assuming J = 2 (where the 



25 

two types of activities are mandatory and discretionary), Kitamura formulated a tobit model that 

accommodated zero time allocated to one of the activities. The estimation results using the 1977 

Baltimore Travel Demand Data Set showed that both work-related variables and socio-economic 

variables were significant. More specifically, having a work location within the city of Baltimore 

or arriving at work after 9 A.M. reduced the time allocated to discretionary activities. Although 

not verified by comparing the commute times of those who allocated little time and those who 

allocated much time to discretionary activities, the significance of these two variables may 

suggest relatively long commutes by the former group either due to long distances or slow traffic 

speeds. The use of an automobile for the work trip had a positive impact on the time allocated to 

discretionary activities. Work duration had a negative effect on the time allocated to 

discretionary activities, which was quite expected. Time allocated to discretionary activities 

seemed to vary by day of week, with Friday being the highest among weekdays. In terms of 

socio-economic characteristics, availability of cars in the household and number of nonworkers 

increased the amount of time allocated to discretionary activities. Males spent more time on 

discretionary activities than females. Time allocated to discretionary activities decreased 

significantly with age and number of children in the household. Women with children between 5 

to 15 years old spent more time on discretionary activities than did others, probably due to 

participating in activities with their children. 

 

Mathematically, Kitamura’s model can be readily applied to modeling travel time expenditure in 

our context. Conceptually, there is a problem in doing that. There may be relationships between 

activity duration and travel time expenditure that cannot be determined freely by the individual. 

For example, given home and work locations that are fixed over the short run, for a particular 
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individual, an eight-hour work duration requires one hour’s commute every day; no matter how 

much the individual likes or hates the commute, he can’t change it over the short run. Such a 

linkage between activity allocation and travel allocation was not addressed in Kitamura’s model 

as it was developed to model activity duration only. 

 

Flood (1985) modeled the amount of time spent on home production, leisure, sleep and personal 

care, and market work activities by male and female adults in the same household. As the time 

spent on market work can be obtained from the total time available minus the sum of the time 

spent on the other three activities, Flood’s model excluded the variable for the amount of time 

spent on market work. The household was assumed to maximize total utility, given by the 

following form: 

Max.   

),,,,,,( 321321 yttttttU fffmmm  
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where 

tm1, tm2, tm3 are time allocations to home production, leisure, and sleep and personal care 

activities by the male, 
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tf1, tf2, tf3 are time allocations to home production, leisure, and sleep and personal care 

activities by the female, 

p is the price of consumption,  

y is the total household consumption of goods and services, 

wm, wf are the male and female wage rates, 

T is the total time available per day, that is 24 hours, and 

µ is the household non-labor income. 

Following Becker (1965), Flood assumed p = 1 for all households and then converted the 

monetary budget constraint to one in terms of full income, expressed as follows: 

∑ ∑
= =

++≡≤++
3

1

3

1i i
fmfifmim TwTwYtwtwy µ . 

By using the indirect translog utility function (Christensen et al., 1975) and Roy’s identity, Flood 

was able to derive closed-form demand functions. The explanatory variables included in Flood’s 

model were mainly socio-economic characteristics related to the individual and the household. 

He found that the presence of children had a significant impact on females’ time allocation 

behavior: with the presence of young children in the household, females spent almost two more 

hours on home production, 25 minutes less on sleeping/personal care, and an hour and 20 

minutes less working. The effect on female time allocation of having one additional household 

member was the same in sign to that of the presence of young children, but of lesser magnitude. 

The largest effect of having an additional member was on the female’s time allocation to home 

production, which increased by 42 minutes. Being a home-owner increased time allocation to 

home production and leisure for both males and females, and females’ time allocation to 

sleep/personal care. However it reduced time allocated to market work for both males and 

females, and males’ time for sleep/personal care. Compared to other variables, age and education 
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had a minimal effect on time allocation behavior. Age had a negative effect on males’ market 

work time but a positive effect on males’ sleep/personal care time. Higher education increased 

females’ market work time, but decreased females’ leisure time and males’ market work time. 

The negative relationship between education level and males’ market work time was quite 

unexpected. At the same education level, females spent more time on market work than did their 

male counterparts. 

 

The concern with Flood’s model is similar to that of Kitamura’s model, if it were to be applied in 

our context. Neither Kitamura nor Flood accounted for time allocation to travel. Kraan (1996), 

on the other hand, formulated a model that contained terms measuring the total distance traveled, 

including the distance to work, and total travel time (expressed as distance divided by average 

speed). Her model is expressed as follows: 

Max.   

)1,0(,,,,; ∈⋅⋅⋅⋅ χωϑγβχωϑγβ GTfdT H  

subject to: 

wtotH TTT
v
dT −=++ , 

wfdT TwYGfcdcTc ⋅+=+⋅+⋅+⋅ , 

0,,,, ≥GTfdT , 

where 

T is the total time spent on out-of-home/non-work activities (maintenance and leisure),  

d is the total distance traveled, including the distance to work, 

f is the frequency of all out-of-home/non-work activities, 
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TH is the total time spent on in-home/non-work activities, 

G is the total amount of money spent on consumption goods and services other than 

travel and out-of-home/non-work activities, 

v is average speed, 

Ttot is the total time budget, measured as 24 hours minus the hours needed for sleep, 

Tw is the total amount of time spent on working, 

cT, cd, cf are unit costs of T, d, and f, 

w is the wage rate,  

Y is unearned income including benefits and interest, etc., and 

β, γ, ϑ , ω, and χ are unknown parameters to be estimated. 

Kraan’s utility function included five terms: time allocated to out-of-home/non-work activities, 

total distance traveled, frequency of out-of-home/non-work activities, time allocated to in-

home/non-work activities, and total amount of money spent on consumption goods and services. 

Her formulation sets the marginal utility with respect to each of these five arguments as positive 

and diminishing. This is based on the assumption that ceteris paribus, one would prefer to have 

more of each of these five arguments. For example, everything else being equal, one would 

prefer to spend more time on out-of-home/non-work activities, or travel to a farther destination, 

or perform more out-of-home/non-work activities, or spend more time on in-home/non-work 

activities or spend more money on consumption goods and services. The monetary budget 

constraint did not include those costs incurred with in-home/non-work activities such as utility 

bills; these in-home costs may be viewed as being combined with the cost of consumption G. 
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Through the above formulation, Kraan was able to derive closed-form non-linear demand 

functions for T, d, f, TH, and G. Due to the unavailability of data, the empirical application of the 

above model was conducted by forgoing the monetary budget constraint. In her empirical 

application, the ϑ  parameter restricting the frequency of all out-of-home, non-work activities 

was set to zero and consequently the decision variable f dropped out of the model. Under these 

restrictions, Kraan derived the following simple linear equations for time allocated to out-of-

home/non-work activities, total travel time, and time allocated to in-home/non-work activities: 

totTT ⋅
++

=
ωγβ

β , 

tott Tt
v
d

⋅
++

==
ωγβ

γ , 

totH TT ⋅
++

=
ωγβ

ω , 

where 

tt is the total travel time, calculated as the ratio of distance to speed. 

Without loss of generality, the slope parameters can be multiplied by any positive constant α. 

Setting ωγβα ++= , the demand functions can be expressed as follows: 

1εβ +⋅+= totout TcT , 

2εγ +⋅+= totttt Tct , 

3εω +⋅+= totHH TcT , 

where 

cout, ctt, and cH are constants added to the demand function, and 

ε1, ε2, and ε3 are random disturbances in the demand functions.  
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Estimation of the above three demand functions was performed by minimizing ∑ 2ε with 

respect to ,,,,, Hout ccωγβ  and ttc , where ∑ 2ε can be expressed as follows: 

∑ ∑ ∑ ⋅−−+⋅−−+⋅−−=∑
k k k
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k
t

k
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k
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TctTcTTcT 2222 )()()( γωβε , 

where k is the index for individual in the sample. The minimization was performed through 

ordinary least squares. After ,,γβ  and ω  were estimated, they were normalized to ensure the 

sum to be equal to one.  

 

In estimation, Kraan used the Netherlands Time Budget Survey Data of 1990. She estimated the 

demand functions for the entire sample and all activities, for the entire sample and only 

discretionary activities, and for various population groups by all activities and only discretionary 

activities. In the estimation that involved all activities and all subjects in the sample, she found 

that time allocations to out-of-home/non-work activities, in-home/non-work activities, and travel 

increased with the total time budget (measured as 24 hours minus the hours needed for sleep). 

The increase was the largest for out-of-home/non-work activities. The increases for in-home 

activities and total travel time were similar in terms of their magnitude. In the estimation that 

involved only discretionary activities and all subjects in the sample, Kraan found that the largest 

and positive effect of the total time budget was on in-home/non-work activities. Time allocated 

to out-of-home/non-work activities also increased with the total time budget, but (in contrast to 

the model including all activities) total travel time decreased with the total time budget.  

 

For the estimation that compared different population groups and for all activities, Kraan divided 

the sample into six clusters based on employment status, including full-time workers, part-time 

workers, students, housewives, pensioners, and unemployed. Demand functions were estimated 
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for each of these clusters. Additional demand functions were estimated for students living on 

their own (a subgroup within the students cluster) and for single workers, which includes single 

workers from both full-time workers and part-time workers. Kraan found that except for time 

allocated to in-home/non-work activities for single workers and total travel time for single 

workers, all estimated slope coefficients were significant at a 95% confidence level. Kraan also 

estimated the demand functions for only discretionary activities for the same of set of clusters. 

Again, she found that all slope coefficients were significant at a 95% confidence level, meaning 

a significant impact of the total time budget on all types of time allocation for all types of 

population groups.  

 

Although incorporating time allocation to travel, Kraan’s model has some limitations. First, like 

Kitamura’s model, although in a different form, Kraan assumed a positive but diminishing 

marginal utility with respect to time allocated to out-of-home/nonwork activities, in-home/non-

work activities, frequency of all out-of-home/nonwork activities, and total distance traveled. On 

the other hand, in Flood’s model, the utility function is a flexible functional form that is 

approximated by a second order Taylor Series expansion. Obviously, a flexible functional form 

is preferable to a more constrained one, especially in an area of study that is still exploratory. 

The second problem of Kraan’s model is shared with Kitamura’s and Flood’s model approaches 

if they were used to model travel time allocation. Kraan’s model, although incorporating travel 

time, did not address the linkage that might exist between activity duration and travel duration. 

There is the purely accounting relationship that all time expenditures must sum to the total 

amount of time available, but there is no explicit acknowledgement of the relationship that out-

of-home activities are necessarily accompanied by some amount of travel. 
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6.2. Proposed Approach 

 

To incorporate the relationship between time allocated to both activities and travel, we propose a 

utility maximization framework following Evans (1972): 

Max. 

),,,,( GaaaaV tdmw  

subject to: 

τ=+++ tdmw aaaa , 

YawGacacac wttddmm +⋅=+++ , 

ddmmwwt abababa ++≥ , ,0,, ≥dmw bbb  

where 

aw is the time spent on working, 

am is the time spent on maintenance activities, 

ad is the time spent on discretionary activities, 

at is the time spent on travel, 

G is the cost of other goods and services consumed, 

τ is the total time available, 

cm is the unit cost of maintenance activities, 

cd is the unit cost of discretionary activities, 

ct is the unit cost of travel, 

w is the wage rate, 

Y is all unearned income including dividends, interest, etc., and 
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mw bb , , and db  are the number of units of time spent on work, maintenance, and 

discretionary activities, respectively, associated with one unit of travel time. 

In the above formulation, the first constraint is the time constraint while the second constraint is 

the monetary constraint. In the last constraint, we assume a linear inequality relating the time 

allocated to activities and the travel to engage in those activities. The linear specification is 

probably quite a simplification of reality, nevertheless it serves as a first step toward modeling 

the relationship between activity duration and travel time expenditure. This constraint 

hypothesizes that each unit of time spent on activity i requires at least bi units of travel time. If 

the individual derives only negative utility from travel, he will not spend more than the required 

minimum on travel. If the individual also derives positive utility from travel (e.g., one may well 

derive positive utility from driving through Yosemite National Park), he may spend more than 

the required minimum on travel. In the discussion of this approach, we will set this constraint to 

an equality. The equality constraint, for the case where the individual wants to spend exactly the 

required minimum amount of time on travel, represents the boundary condition. When the 

equality constraint is applied even in the case where the individual wants to spend more than the 

required minimum amount of time on travel, the positive utility derived from travel is reflected 

in inflated estimates of the b’s. 

 

Using the Lagrange multiplier approach to constrained maximization, and assuming aw, am, ad 

and at > 0 (which is required to ensure the solution does not fall on a boundary), the relevant first 

order conditions are as follows: 

ww kbwV +−= µλ , 

mmm kbcV ++= µλ , 
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ddd kbcV ++= µλ , 

kcV tt ++= µλ , 

µ=GV , 

k ≥ 0; either k = 0 or ddmmwwt abababa ++= , 

where 

Vw, Vm, Vd, and Vt, are marginal utilities of time expenditures on work, maintenance, 

discretionary activities and travel, 

VG is the marginal utility of monetary expenditure on other goods and services, 

λ is the marginal utility of relaxing the time constraint by one unit, called the marginal 

utility of time, 

µ is the marginal utility of relaxing the monetary constraint by one unit, called the 

marginal utility of money, and 

k is the marginal utility of relaxing the constraint on the individual’s allocation of time to 

travel by one unit. 

Marginal utilities of time allocated to work, maintenance, and discretionary activities and travel 

are therefore functions of λ, µ, k, the corresponding b, and the corresponding unit cost or wage 

rate. The marginal utility of other consumption G is equal to the marginal utility of money. The 

last condition is a Kuhn-Tucker condition. k > 0 if the individual spends exactly the minimum 

amount of time on travel and k = 0 if the individual spends more than the minimum amount of 

time on travel. If the individual is willing to spend more than the minimum amount of time on 

travel, then any small increase or decrease in the minimum amount of time he must spend on 

travel will not alter his utility level.  
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In order to derive the demand functions, let us first examine the constraint: 

τ=+++ tdmw aaaa , which can be rewritten as: dmwt aaaa −−−= τ . In other words, we only 

need to solve the demand functions for wa , ma , and da . As noted earlier, we will also set the 

inequality constraint: ddmmwwt abababa ++≥ , to an equality constraint: 

ddmmwwt abababa ++= . Substituting at in the constraint: YawGacacac wttddmm +⋅=+++ , 

we obtain the following equation: 

YGabccabccabcw ddtdmmtmwwt =++++++− )()()( . 

Let 

wtw bcwp +−= , 

mtmm bccp += ,  

dtdd bccp += , and 

1=Gp . 

We then can re-write the constraint as: YGpapapap Gddmmww =+++ . Following the notation 

of Becker (1965), we may term dmw ppp  and ,,  as full prices of maintenance, discretionary and 

work activities, that is, the cost of the activity itself plus the cost of the required associated travel 

time. The full price of the work activity is negative, representing the net income earned by that 

activity. Gp  is the price of other consumption goods, which is set to be 1. This revised constraint 

conforms to the usual monetary budget in classical microeconomics problems. 

 

Following the approach of Deaton and Muellbauer (1980), any arbitrary cost function can be 

approximated by the following function, provided that ∑ ∑ ∑ ∑ ====i j k j jkjkji 0,1 ** βγγα : 
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where 

),(log puc  is the logarithm of the cost function, 

u is the utility level, 0 ≤ u ≤ 1, 

p is a vector of prices for various goods and services, and 

kkjk ββµγαα ,,,,, 0
*

0  are parameters. 

Any cost function has a fundamental property: ii qppuc =∂∂ /),( , where qi is the quantity of the 

i-th good or service or the duration of performing the i-th activity (the sα  in our notation). 

ii qppuc =∂∂ /),(  can be re-written as: i
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),(log , where wi is the budget share 

of good i. From this property, Deaton and Muellbauer (1980) derived demand functions for the 

budget share of good i, called the Almost Ideal Demand System (AIDS). As our formulation of 

the model has conformed to the classical microeconomic problem, we can now apply the AIDS 

system in our context. The demand functions for dmw aaa ,,  and G  in the share form can be 

derived as follows: 
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Setting wmmw γγ = , wddw γγ = , and mddm γγ = , Plog can be written as follows: 
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In the above system of demand functions, parameters to be estimated include α0, αw, αd, αm, αG, 

βw, βd, βm, βG, γww, γmw, γdw, γmm, γdm, γdd, γGw γGm, and γGd. Variables whose values are known 

include aw, ad, am, and G as well as Y. For p’s, the c’s are known but the b’s are unknown. 

Therefore, in order to estimate the parameters listed above, one must first estimate the b’s such 

that the p’s become known. The b’s may be estimated by the following function: 

ε+++= ddmmwwt abababa . 

Therefore, estimation of the above system of demand functions can be performed in two separate 

steps. In the first step, one estimates the b’s and then, using estimated values of the b’s in the 

demand system, other parameters of interest can be estimated.  

 

In the actual estimation of the model, specification of the monetary constraint can be quite a 

problem. The wage rate is easy to determine but the unit costs of maintenance and discretionary 

activities and travel are difficult to determine due to the tremendous variation in terms of costs 
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from individual to individual. The difficulty is also aggravated by the lack of data on the costs of 

different activities and travel. Most time use studies only collect information on subjects’ time 

use, not their monetary expenditures. Therefore, in the actual estimation of the model, one may 

have to forgo the monetary constraint entirely (as Kraan did), in which case, the model 

formulation is expressed as follows: 

Max. 

),,,( tdmw aaaaV  

subject to: 

τ=+++ tdmw aaaa , 

ddmmwwt abababa ++= . 

The two constraints can be consolidated into one by substituting the second constraint into the 

first time constraint. The consolidated constraint can be expressed as follows: 

τ=⋅++⋅++⋅+ ddmmww ababab )1()1()1( . 

The consolidated constraint again conforms to the classical microeconomic problem, by setting 

ww bp += 1' , mm bp += 1' , and dd bp += 1' . Similarly, the demand functions for mw aa , , and da  

in the share form can be derived as follows: 
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Similarly, by setting wmmw γγ = , wddw γγ = , and mddm γγ = , we obtain the following function. 
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In the above system of demand functions, parameters to be estimated include α0, αw, αd, αm, βw, 

βd, βm, γww, γmw, γdw, γmm, γdm, and γdd. Variables whose values are known include aw, ad, and am. 

Similarly, in order to estimate the above demand system, the p’s must be known. This implies 

that the b’s must be estimated before the estimation of the demand system. Again, we suggest 

that the b’s first be estimated from the function: ε+++= ddmmwwt abababa . Then, the 

parameters in the demand system can be estimated using estimated values of the b’s. 

 

7. Data Needs 

 

Although differing in the way that models are estimated, for each of the approaches we have 

described, we would expect travel time and activity duration and expenditure to be a function of 

the same set of variables. Specifically, for application of any of these methodologies, ideally the 

following set of variables is needed: 

 

• duration of travel over a study period,  
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• duration of activities over a study period,  

• money allocation to travel, 

• money allocation to activities, 

• expenditures on other goods and services, 

• personal and household characteristics, 

• transportation network-related characteristics, and 

• other variables including personality, lifestyle, and attitudinal variables. 

 

A measure of the duration of travel over a study period is obviously unavoidable if one is 

interested in travel time allocation. Similarly, if one is also interested in monetary expenditure on 

travel, the cost of the observed travel needs to be measured. Collection of information on 

activities is mainly due to the belief in the existence of a linkage between activities and travel. In 

fact, a number of empirical studies have verified the existence of such a linkage. From the 

resource perspective, the linkage between activities and travel exists because every one of us 

faces finite budgets in terms of time and money. From the conceptual perspective, the linkage 

exists because engaging in certain activities comes with a travel “overhead”. Empirical evidence 

has also shown that variables identifying personal and household characteristics as well as 

transportation network-related characteristics are important in individuals’ travel time and money 

allocation behavior. Other variables such as attitudes variables may also play an important role in 

travel time and money allocation and warrant further investigation. 

 

In a typical activity diary, duration of activities is usually measured and duration of travel can be 

derived. Similarly, in a typical trip diary, duration of travel is usually measured and duration of 
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activities can be derived. Generally, a trip diary also collects out-of-pocket travel-related 

expenditures, such as parking fees, transit fares, and tolls. The operating cost of a personal 

vehicle may be calculated based on the mileage. As for activity-related costs, neither activity or 

trip diaries usually collect this information. The same applies to expenditures on other goods and 

services. In other words, to examine a complete picture of travel time and money allocation, a 

new data collection effort may be needed to collect information on activity-related costs and 

expenditures on other goods and services. Information on personal and household characteristics 

is usually collected along with either an activity or trip diary. Information on transportation 

network-related characteristics can be obtained from land use and travel surveys. If the 

researchers are interested in testing the significance of other variables (e.g., attitudinal variables), 

data collection on these variables may need to be initiated as they are not generally measured in 

travel or activity diary studies.  

 

Although having access to all of the variables listed above would be ideal, the lack of some of 

them would not necessarily invalidate a modeling effort. For example, even though data on 

money allocation may not be available, it is still productive to analyze travel time allocation. 

Many interesting research questions on travel time allocation exist and these research inquiries 

well deserve a modeling effort. For example, one might want to investigate the applicability of 

duration models in our context. Or, one might want to simply apply our utility maximization 

framework with real-world data sets and test the theoretical framework.  

 

Tables 2 and 3 in the Appendix list four selected available data sets in the US. The Nationwide 

Personal Transportation Survey (NPTS) collected information on individuals throughout the US 
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while the other three are regional household surveys. All of these would permit (with varying 

levels of accuracy) the estimation of time expenditures on travel and activities. All but the NPTS 

have data on travel costs; none have data on activity costs. All contain some data on personal and 

household characteristics. Transportation network characteristics could be inferred for the three 

regional data sets. The NPTS and the Puget Sound data sets also contain a limited amount of 

attitudinal data.  

 

The Puget Sound Transportation Survey is a panel survey that initially started in 1989. In a panel 

survey, information on sample households and individuals is collected at multiple times 

throughout a study period that usually lasts multiple years. As time progresses, the households 

and individuals who drop out are replaced by newly-recruited households and individuals with 

similar characteristics. Use of panel surveys has many advantages in travel behavior analysis and 

these advantages are readily applicable in our context. 

 

By examining multiple measurements for the same observation unit, many unobserved factors 

can be controlled and thus more precise measurement of behavioral changes can be obtained 

(Kitamura, 1990). For example, typical cross-sectional studies might attribute the differences in 

travel behavior to age differences while in fact the difference should be attributed to a generation 

effect. Or if there were a period effect (e.g., the effect of oil embargo years on travel behavior), a 

typical cross-section survey cannot detect it. 

 

Panel survey analysis can also be very useful in forecasting. The validity of applying results from 

a cross-sectional data set to forecast the future must be based on the following conditions 
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(Kitamura, 1990). First, “behavioral changes are instantaneous.” Second, “behavioral changes 

are symmetric, or reversible.” And last, the “behavioral relation is stationary (invariant over 

time).” Evidence from recent literature and our own observations of daily lives casts serious 

doubts on these conditions. Behavioral change over time is a gradual, dynamic adaptation to the 

stimuli and this process may involve time lags and asymmetry. Panel data sets can be used to 

model these dynamic behavioral changes more precisely than cross-sectional data sets. 

 

The many advantages of panel data sets do not come without drawbacks. When using panel data 

sets in modeling, researchers must also handle problems such as attrition (households/individuals 

who drop out in later waves) and panel conditioning (the responses in later waves are influenced 

by responses in early waves). And these problems usually imply that more complicated modeling 

procedures ought to be used. Therefore, the decision on whether to use a panel data set must be 

weighed carefully in the modeling effort. 

 

8.  Discussion 

 

In this report, we have discussed how a single linear equation, structural equations modeling, and 

duration analysis can be applied to model travel time and money expenditures, and how the first 

two of these techniques plus ordinal multinomial models can be applied to model relative desired 

mobility, as measured in another UC Davis study. Any one of these techniques can be used to 

estimate travel time expenditures in the context of micro-simulation. As an emerging approach to 

regional travel demand forecasting, micro-simulation models the entire activity and travel pattern 

of individuals within the region for the study period (e.g., a day). Once the activity and travel 
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patterns are generated for each individual, activities in the same category (e.g., maintenance or 

discretionary) can be summed up to obtain the total amount of time spent on each category for 

each individual. Similarly, travel time can also be obtained. 

 

An alternative to these applied approaches is a theoretical approach in which individuals are 

assumed to exercise a behavioral principle in decision making, subject to a number of 

constraints. Then, demand functions of travel time and money expenditures may be derived from 

such a framework. The utility maximization framework proposed in Section 6 of this report falls 

into the theoretical approach category. Here, individuals are assumed to maximize their utilities, 

which are functions of travel time expenditures. In maximizing their utilities, individuals are 

subject to a number of constraints. Once the demand functions are assumed, some of the same 

applied modeling techniques may be used to estimate the parameters5. The rest of this section 

discusses pros and cons of these different modeling techniques, and of the utility maximization 

approach itself. 

 

The advantage of the single linear equation approach is its simplicity to estimate and interpret. 

The disadvantage is its inability to handle the potential association between activity duration and 

travel time expenditure correctly. Suppose one intends to regress a single linear equation with 

travel time expenditure as the dependent variable, but activity duration is endogenous to the 

process (i.e., a function of travel time). If OLS estimation were used, either including or 

excluding activity duration on the right hand side results in inconsistent and biased estimates. 

Due to the endogeneity with activity duration, one may use 2SLS in which one first regresses 

                                                 
5 E.g., for the demand functions derived from the utility maximization framework in Section 6, either single linear 
equations, seemingly unrelated equations, or structural equations systems may be used.  
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activity duration against a number of exogenous variables and obtains the predicted values of 

activity duration and then regresses travel time expenditure using the predicted values of activity 

duration. 

 

Due to the potential association between travel time expenditure and activity duration, it may be 

more insightful to examine both ends of the relationship. One may hypothesize that not only does 

activity duration affect travel time expenditure, but also vice versa. The single linear equation is 

incapable of examining this two-way relationship, even with 2SLS. Additionally, because 2SLS 

still estimates two single linear equations separately, the information contained in both equations 

is not fully utilized. To remedy this problem, one may regress equations for activity duration and 

equations for travel time expenditure simultaneously and this is where seemingly unrelated 

regression equations and structural equations modeling come into the picture. A seemingly 

unrelated equations system assumes exogeneity of the explanatory variables but allows 

correlation of error terms across equations. The structural equations system goes one step further; 

it allows endogeneity of explanatory variables.  

 

All approaches discussed so far are linear regression models. With these models, one regresses 

one or more dependent variables against a set of variables (which can be both endogenous and 

exogenous). These models assume that the dependent variable is unrestricted and continuous. 

Sometimes, the dependent variable of interest has limited response categories: for example, the 

observed measure on relative desired mobility discussed earlier has only five response 

categories. In this case, it is best to use ordinal multinomial models. None of these models 

account for the dependence of the choice of whether to terminate travel on the duration of the 



47 

endogenous variables themselves. This sometimes becomes undesirable because one may 

hypothesize that the longer a person has traveled, the more likely he is to want to terminate that 

travel. In this case, the likelihood that a trip will be terminated (and hence affect total travel time 

expenditure) depends upon how long the trip has lasted. Duration models are designed to account 

for such a dependence. 

 

Despite their promising aspects, duration models are not without problems. In application, it is 

often assumed that not only the duration of the dependent variable itself, but also other 

explanatory variables affect the likelihood that the spell (dependent variable) will terminate. In 

order to obtain consistent estimates, the set of explanatory variables entered must be exogenous. 

This can hardly be the case if duration models were applied in our context to model travel time 

expenditure, due to the endogeneity of activity duration. Like the single equation approach, 

duration models are incapable of examining the two-way relationship between activity time 

expenditure and travel time expenditure, as can be done with a structural equations system. 

Another issue that arises if duration models were applied in our context is that the estimated 

travel time expenditure is the total duration of multiple spells of travel during the study period 

(e.g., a week). In other words, the travel time expenditure of interest is not continuous. This may 

well complicate the shape of the hazard rate curve.  

 

Finally, the utility maximization framework itself is not without limitations. One common 

criticism is that the assumption of utility maximization is unrealistic. Indeed, due to limited 

information and information processing capabilities, individuals quite often do not maximize, but 

rather satisfy, their preferences. Within the utility maximization framework, the derivation of 
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closed-form demand functions is sometimes not possible. This sometimes limits the way 

explanatory variables are entered into the utility function. In our context, we used a flexible 

functional form for the utility function and closed-form demand functions are then derived 

through approximation of the cost function.  

 

In conclusion, then, no single approach to modeling travel time and money expenditures is 

dominant. Each has its pros and cons, and selection of a specific approach is at the discretion of 

the analyst. It would be interesting to compare different approaches using the same data. Flood 

(1985) used single linear equations, structural equations modeling, and utility maximization to 

analyze data on household allocation. He concluded that results (in terms of signs of coefficients) 

were similar for these approaches. It would be desirable to conduct additional comparative 

studies of this nature, but Flood’s results suggest a certain amount of robustness with respect to 

the modeling approach taken. 
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Table 2: Information on Selected US Data Sets 

Data Sets Location Survey Year Administration Sample Size Diary Period Cost Contact 
Nationwide 
Personal 
Transportation 
Survey 

USA May, 1995 to 
July, 1996 

Telephone 
interview 

42,000 
households 
(all hhld. 
members 
who are 5 
years or 
older) 

1 day Free http://www-
cta.ornl.gov/n
pts/1995/down
load_table.sht
ml 

Oregon and 
Southwest 
Washington 

Portland, 
Oregon 

Spring, 1994 
to Winter 
1995 

Telephone and 
mail-back 
surveys 

4,451 hhlds 
for RP data; 
3,244 hhlds 
for SP data 

2 days Free to 
research 
organizations 

Kyung-Hwa 
Kim at 
kimk@metro.
dst.or.us 

Bay Area 
Household 
Survey 

9 countries 
including San 
Francisco, San 
Mateo, Santa 
Clara, 
Alameda, 
Contra Costa, 
Solano, Napa, 
Sonoma, and 
Marin 

1996 Random Digit 
Dialing (RDD) 
recruitment, 
telephone 
reminder calls, 
mail-back 
surveys, and 
CATI data 
retrieval 

5861 
households 

2 days Free to 
research 
organizations 

For additional 
information, 
contact MTC 
planning staff 
at 510-464-
7700. Also see 
www.mtc.dst.
ca.us/datamart
/index.htm 

Puget Sound 
Transportation 
Panel Survey 
1989-1996 

4 counties 
including 
King, Kitsap, 
Pierce, and 
Snohomish 

1989-1996 Random Digit 
Dialing (RDD), 
and mail-back 
surveys 

About 1700 
households  

1 day Free to 
research 
organizations 

For additional 
information, 
contact PSRC 
planning staff 
at 206-464-
7964 
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Table 3: Components of Selected US Data Sets 

Data Set Types of Data Collected Variables 
Stated Preference None 

Household  Household size, number of household vehicles, income, location 
Person Age, gender, education, relationship within the household, driver status, 

annual miles driven if a worker 
Attitudes Rating of potential problems in traveling, such as mobility, congestion, safety, 

traffic conditions, and pavement conditions 
Vehicle  Annual miles driven (based on odometer readings recorded typically two 

months apart), make, model, model year 

Nationwide Personal 
Transportation 
Survey (NPTS) 

Revealed 
Preference 

Trip level Trip purpose, mode, length (in miles and minutes), time of day, vehicle 
characteristics (if a household vehicle was used), number of occupants, driver 
characteristics (for private vehicle trips only and if a household member was 
driving) 
Pricing effects (roads, congestion and parking) 
Residential location choice 

Stated Preference 

Automobile acquisition  
Household Address, size, survey dates, structure, income, number of phone lines, number 

of cell or car phones, presence/absence of visitors on the survey date, tenure at 
the current address, zip code of previous address, own or rent, number of 
vehicles, shared phone lines, and transportation disability 

Person Gender, race, English proficiency, employment status, age, household 
language, drivers’ license, student status, employee-related information, and 
student-related information 

Activity Type, location, starting and ending times, duration, accompanying young 
people 

Trip Mode, starting and ending times, cost 

Oregon and 
Southwest 
Washington 
Household Activity 
and Travel Surveys 

Revealed 
Preference 

Vehicle Year, make, model, type, year purchased, fuel type, ownership, purchased as a 
replacement or add-on, odometer reading at beginning of the 1st survey day 
and at the end of the 2nd survey day 
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Table 3: Components of Selected US Data Sets (Continued) 

Data Set Types of Data Collected Variables 
Stated Preference Pricing effects on cost and travel time 

Household Household size, income, type of dwelling, address 
Person Gender, age, driver’s license, employment status, number of jobs, industry, 

occupation, length of employment, student status, student level, race, income 
Activity Type, location, starting and ending times 
Trip Trips regarding across the bay or not, mode, destination, starting and ending 

times, vehicle used, number of people accompanying, parking cost, parking 
location, transit route, fare, type of payment etc. 

Bay Area Household 
Survey Revealed 

Preference 

Vehicle Number of vehicles, make, model, year, fuel efficiency, number of bicycles  
Stated Preference None 

Household Household income, lifecycle stage, household size, number of adults, number 
of children in different age groups, number of household vehicles, change of 
residence, zip code, census tract, traffic analysis zone etc. 

Person Age, gender, employment status, occupation, city code for work location, 
travel mode to/from work, number of work days per week, frequency that 
children are picked up, travel mode to/from school, frequency using bus per 
week, have transit pass or not, driver’s license, parking costs, panel 
participation, occupation change code, workplace change code, work zip 
code, work census tract, work traffic analysis zone etc. 

Attitudes Importance ratings of travel attributes (e.g., safety, on time), performance 
ratings of alternative travel modes (SOV, bus, carpool), agreement and 
disagreement statements related to features of alternative modes, importance 
ratings of alternative improvements in land use, transportation, and 
environment. 

Puget Sound 
Transportation 
Panel Survey 1989-
1996 

Revealed 
Preference 

Trip Mode, starting and ending times, cost, vehicles used, trip origin census tract, 
trip origin traffic analysis zone, trip destination census tract, trip destination 
traffic analysis zone, travel distance etc. 
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