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ABSTRACT: The future costs of electric-drive vehicles, like those of any new technology, are uncertain. One method
for forecasting cost reductions uses the concept of the ‘experience’ curve. Experience curves take into account scale

economies, technological improvements in production

processes, improvements in product design, and improved

efficiency of workers and production management. Here we analyze the future manufacturing cost of a brushless
permanent magnet electric vehicle drivetrain using experience curves and a Monte Carlo simulation technique. Our
preliminary forecast is a drop in manufacturing cost from today's $13,000 (with about 2,000 units of cumulative
production) to a cost of about $1200 when full scale economies and learning’ have been realized. In an ongoing study at
the University of California, Davis, experience curves are being integrated with a detailed vehicle cost model to develop

more sophisticated cost forecasts for complete electric vehicles.

1. INTRODUCTION

The dramatic surge in interest in electric vehicles (EVs)
during the past decade has resulted in much technological
advancement, and the impending introduction of
advanced, purpose-built, and high quality EVs. Dramatic
improvements in EV technology are made possible by
revolutionary advances in electrical and materials
engineering, computer-aided manufacturing,
microprocessor controls, and electrochemistry. Despite
these advances, however, important questions remain
regarding the costs of these new technologies and how
these costs are likely to evolve over time. There
remains uncertainty about market response, scale and
success of rescarch and development, materials costs, and
other variables. Due to the nascent state of most EV
technologies, there will be a significant level of
uncertainty involved in forecasting future EV technology
costs for some time.

Here we use a Monte Carlo experience curve
framework (o integrate uncertain variables into the
technology cost analysis. This technique assures that
uncertainty effects are not masked and results are not
presented in a manner that conveys an artificial level of
cost certainty. Following a brief review of learning and
experience curve theory, we apply this framework to
forecast the manufacturing costs of a brushless
permanent magnet (BPM) EV drive system.

2. EXPERIENCE AND LEARNING CURVES
The concept of the learning curve has been applied to
manufacturing settings since at least 1936, when T.P.
Wright discovered an interesting relationship between the
labor hours needed to manufacture an airframe and the
total number of airframes built. Wright found that each
time the total quantity of airframes produced doubled, the
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labor hours required to assemble the airframe decreased
by a stable percentage [1]. Since this early work,
thousands of studies have been conducted on the nature
and variability of experience curves in industries as
diverse electric power, microchips, Japanese beer,
airframes, and automobiles (see [2-6] for examples). The
findings are generally consistent: for any given firm
there is often a uniform and unique rate of learning for
each individual production process and, under certain
conditions described below, for total product
manufacturing cost.

However, because rates of learning vary across a given
industry and between industries, it is difficult to forecast
the manufacturing costs for a specific firm in an
industry, especially in the absence of detailed and
proprietary cost data. However, while the variation in
observed rates of manufacturing cost improvement is
distinct, it is also of relatively modest extent. This
‘manageable’ level of uncertainty allows the average
industry-wide rate of cost improvement to be modeled
with a probabilistic experience curve framework that
provides for significant variation among firms.

2.1. Experience and Learning The experience
curve describes the cost path of a manufactured product,
beginning with the first and continuing to the 'nth’ unit
produced. This is a related concept to the ‘learning
curve,' but the learning curve describes only the
improvement in the efficiency of the labor component of
total manufacturing cost, whereas the experience curve
applies to the entire value added (i.e., all costs other than
materials costs). The concept of the experience curve
helps to explain why new technologies and products
maintain or increase their performance-to-cost ratios over
the course of time. The progress of a firm or industry
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along an experience curve for a mew technology
represents the steady decline in its inflation-corrected unit
cost of manufacture. These cost reductions are due to
four primary factors: scale economies, technological
improvements in production processes, improvements in
product design, and improved production worker and
organizational efficiency.

While many different functional forms for the
experience curve are possible and have been investigated,
the most commonly used expression is the simple log-
linear form shown in equation 1.

(logoflog2)
Cn=C1*Vn g 1)

Where:

Cn = Cost of value added to nth unit

C1 = Cost of value added to 1st unit
Vn = Cumulative production at nth unit
d = Experience curve slope

This relationship predicts that the constant dollar cost of
adding value to a product falls by a constant percentage
with each doubling of accumulated manufacturing
experience. For example, an 80% experience curve
would predict that the constant dollar cost of a product
will fall by 20% with each doubling of cumulative
production volume. Hence, cost reductions are relatively
dramatic during the early stages of manufacture, as scale
economies are captured and the production process is
perfected, and then drop off as doublings in volume take
longer to achieve. b

2.2. The Model-T Experience Curve One
classic example where the data fit a simple log-linear
experience curve model well is in the early history of the
automobile industry. Figure 1 depicts the decline in the
price of the Model T Ford from 1909 to 1918. During
this period, the price fell from over $3,000 (in $1958) to
under $1,000 [7].

$1958

Cumulative Units Produced (millions)

Source: [7]
Figure 1 Price Path of Model-T Ford ( 1909-1918)
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Figure 2 depicts the same data on a log-log scale,
showing a good fit to the straight line of a log-linear
experience curve with an 85% slope.
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Figure 2 Log-log Plot of Price Path of Model-T Ford

2.3. Experience Curve Slope Variation Due
to important variations within and between industries,
care must be taken in applying and interpreting
experience curves. According to one study of about 100
curves, slopes do vary significantly across industries, as
Figure 3 illustrates, but they are typically between 70
and 90% (implying cost reductions of 30 to 10% with
each doubling of accumulated output). While in some
cases a curve of a certain slope seems to describe the cost
path for most firms in an industry -- a 70% curve for
dynamic RAM chips is one example -- experience curve
slopes more often vary within an industry [4].

Experience Curve Slope

Source: [4]
Figure 3 Variation in Experience Curve Slope

Many explanations are possible for these variations in
experience curve slope. Variation between industries
might be explained by such factors as the degree of
product complexity, market structure, and industry
maturity. Variation among individual firms in the same
industry can occur for many reasons, including relative
levels of vertical integration, corporate work ethics,




research and development expenditures, access to
technical information, and so on. While considerable
efforts has been directed toward understanding these
variations, this remains an important area for further
research.

Through the duration of a product's passage through
one of its development stages (e.g. introduction, takeoff
and growth, maturity, etc.), however, industry-wide
aggregates of experience curve slopes appear to be
relatively stable [S]. Confounding the data somewhat are
the difficulties in applying experience curve analyses.
For instance, the use of product price data as a proxy for
actual manufacturing cost, due to the proprietary nature
of cost data, introduces considerable inaccuracy since the
relationship between manufacturing cost and retail price
may not be stable. An additional complication with
many studies is the difficulty in controlling for
variations in product performance, durability, and quality
over time. Experience curve analyses are most
convincing, and probably have the most predictive
power, where data are available for these variables.

In summary, experience curves are a function of
complex processes and are not automatic or easily
predicted. The use of a probabilistic type of analysis is
required in order to handle the significant level of
uncertainty involved.

3. COSTS OF BPM EV DRIVE SYSTEM
Consider the example of a 30-40 kW brushless
permanent magnet (BPM) motor-controller system for a
compact EV. Small numbers of these systems are
currently in prototype to low volume production by a
few U.S. and Japanese companies. While more attention
is currendy being focused on AC induction systems,
BPM systems offer some advantages: higher efficiencies
(due to lower rotor and excitation losses), better torque
control, and lower weights and volumes than their
asynchronous AC counterparts. Additionally, they are
able to run at lower system voltages (typically about
180V versus 300V or so for AC systems) with similar
levels of performance. These benefits are weighed against
higher materials costs (primarily for the rare earth
magnets used), and somewhat higher tooling costs in
production [8). In any case, we use the example of a
BPM system to illustrate the use of experience curves
and to provide some sense of the likely cost reductions
for electric powertrains.

Today's BPM systems are hand-built prototypes and
cost approximately $13,000 to manufacture (author
estimate, derived from current retail prices). As
production increases, one would expect sharp drops in
unit costs as fixed costs are spread over an increasing
number of units, workers become more familiar with
their operations and thus increasingly productive, astute
engineers and managers identify ways in which to
streamline and debug production processes, and new
equipment is devised and built to satisfy the unique needs
of producing the product.

Here we use a Monte Carlo experience curve
framework to quantify the likely cost reductions of the
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BPM EV drive system. The Monte Carlo simulations
use random number generators to compute large numbers
of input variables from probability distributions. In this
case, critical and uncertain experience curve slope and
materials cost variation parameters are characterized in
this way. This technique allows uncertainty to be carried
through the analysis, rather than masked through the
choice of discrete parameters or indirectly addressed
through the use of traditional sensitivity analysis.

In this analysis we consider two components, the
motor and the motor controller, to illustrate how
different assumptions for each component can be applied
and allowed to interact within the experience curve
framework. In principle, any number of components can
be individually modeled and then aggregated into an
overall experience curve for a complete product, such as
a complete vehicle. In the Model T example, above, the
curve presented is for the complete vehicle, but it can be
imagined that behind that aggregate curve are many
smaller curves for individual vehicle components.

Examining each component individually is a more
empirically sound approach to creating an aggregate
curve, but defining individual curves can still be
problematic. It is not known, for instance, how much
actual experience curve slopes vary within and between
industries, nor how much learning and experience is
shared between firms within (and perhaps even between)
industries. The following example is based on
reasonable assumptions that are supported by the present
state of knowledge. There is room for refinement, as
additional information becomes available on the actual
costs associated with the BPM drive system in volume
production and as a better understanding is obtained of
the cost dynamics within different industries.

3.1. Materials Costs In applying an experience
curve analysis, the first step is to obtain a good estimate
of the materials cost of the product. This is particularly
important where materials costs are a significant portion
of the total cost, or where they are volatile; in either case
they require consideration independent of the effects of
the experience curve. It may be useful to examine
inflation-corrected price trends for specific materials
when the volatile portion of the materials cost of the
product is driven predominantly by one or a few
materials, as in the case of lead for a lead acid battery.
One must interpret price trends carefully when making
forecasts, however, because of the volatility of many
resource prices and because prices of non-renewable
resources are not necessarily reliable indicators of
resource scarcity. It is exceedingly difficult to determine
the scarcity of a resource based on its inflation-corrected
price, because other factors besides scarcity, such as
market structure, interest rates, and regulation levels, all
affect economic indicators. Furthermore, the assumption
that we are moving linearly down the Ricardian ‘ladder’
of resource quality, from highest to lowest quality, is
not always correct [9].
Based on these considerations, economist R.B.
Norgaard concludes that economic indicators will only be



able to reflect scarcity under the impossible conditions
that resource allocators are perfectly informed of the
actual level of scarcity and of all future demand
conditions [9]. We must once again humbly
acknowledge the complexity, uncertainty, and
‘unknowability’ involved, and this leads us to incorporate
another probabilistic variable: the percentile annual
change in materials cost over time.

For this analysis, the current materials cost for the
motor has been taken from an analysis of a Unique
Mobility, Inc. BPM motor by Cuenca (1995) at the
Argonne National Laboratory. The cost breakdown, by
motor component, is presented in Table 1.

Table 1 Materials Costs for 32 kW BPM Motor

Component Cost ($1995)
Stator core 68
Stator winding 22
Housing 50
Rotor ° 26
Magnets 120
Attachment band 6
Shaft 3
Miscellaneous 30
Total 325
Source: [10]

An exact cost for the materials needed to manufacture
the controller is not readily available, but it can be
approximated by noting that controller costs are largely
driven by the costs of insulated gate bipolar transistors
(IGBTs), currently sold at prices of $75-100. The
controller for a 30-40kW motor would require 4 or 5
such devices, and adding the costs of a microprocessor
and other components leads us to an approximate
controller materials cost of $700. We must remember
that the correct cost of materials to consider is the
expenditures made by the OEM -- the final producer or
assembler of the product. Thus, the materials costs for
the controller include the cost to the OEM of finished
IGBTs, and not the costs of raw silicon and copper wire.

As a second probabilistic variable, in order to allow
materials costs to vary over time, we have introduced an
annual variation in each component's materials cost. In
accounting for the variation in the materials cost for the
BPM motor, we note that a significant portion (about
37%) of the materials cost is the cost of lightweight and
powerful rare earth magnet material. The use of these
materials (typically of the samarium-cobalt or
neodymium iron boron variety) has been enabled by
relatively recent breakthroughs in magnet materials, and
the current high cost might therefore be expected to drop
somewhat. The other components are primarily
common metals, which have shown a slow decline in
inflation corrected price over the last 100 years [11], but
which may or may not continue along the historical
trend. In light of these factors, we choose a relatively
conservative estimate of minus-one percent (-1%) for an
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average annual change in the cost of the motor materials,
with a standard deviation of 2.

For the motor controller, we again note that BPM
controller costs are largely driven by IGBT costs. The
cost of these devices is following its own experience
curve, and there are other complex issues involved such
as the potential for technological breakthroughs in the
materials and engineering needed to control the motor.
These 'breakthrough’ types of impacts are generally more
likely for complex electronic components than they are
for simple manufactured ones. As one example, at a
certain level of production volume, it becomes
economical to design an application-specific integrated
circuit to replace the assemblage of individual transistors
and other components that had previously been the most
economical solution. This substitution allows all future
units to experience lower materials costs, and it
synergistically reduces the weight and cooling load of the
entire controller unit.

Thus, there are 'break points' in materials costs where
certain technologies become economical. Already,
Toshiba America Electronic Components has reported
the development of a new, high-power IGBT design with
ratings as high as 2500V and 1000A [12)]. In the future,
the use of one of these new 'press-pack’ IGBTs may
replace the current costly practice of stringing together
several lower power IGBTs in parallel. Although not all
potential breakthroughs are realized, the possibility of
significant future materials cost savings does exist.
Given the opportunities for achieving materials cost
reductions in the controller unit, we choose a mean
annual cost variation of minus three percent (-3%), with
a standard deviation of 2.

In order to account for these annual fluctuations in
materials cost within the experience curve framework,
which itself is measured in units of cumulative
production and not calendar year, we need to assume a
rough market penetration scenario so that we know how
many years clapse between successive levels of
accumulated manufacturing experience. Due to the
logarithmic nature of the experience curve relationship,
increasingly more years of production are required to
achieve each successive level of cumulative production.
For example, under the production assumptions used
here, reaching cumulative production volume levels of
ten thousand, one hundred thousand, one million, and ten
million BPM systems requires two, four, nine, and
twenty years, respectively, from an initial production
level of 2,000 units. It is important to note, however,
that the experience curve framework can be fitted to any
projection of future production, and it can be fine tuned
as production actually occurs.

3.2. Experience Curve Assumptions In order
to apply the experience curve framework, it is necessary
10 assess the cumulative production levels for the motor
and controller, and the ratio in which they are expected to
be produced in the future. Establishing the current
cumulative production level upon which to base an
analysis can be accomplished through various means,




such as analyzing industrial census reports or
interviewing industry experts. The sensitivity of the
expericnce curve analysis to this parameter diminishes
with higher levels of accumulated production, so
assessing it carefully is particularly important in cases
where near-term costs are of interest.

For this example, we have assumed that
approximately 4,000 BPM motors and 2,000 motor
controllers have been produced to date, in the 30-40 kW
size range. These assumptions are based partly on serial
numbers of a BPM motor and controller system recently
purchased by UC Davis, and the knowledge that only a
few companies worldwide are producing BPM drivetrains
suitable for use in EVs. Furthermore, we assume that
one of every two BPM motors that are to be produced in
the 30-40 kW size range will be used in EV
applications, and that the future production ratio of
motors to controllers is thus 2:1.

Next, the experience curve exponent itself must be
specified for each component. Rather than choosing a
single value for this critical parameter, a Monte Carlo
method has becn employed whereby a mean and standard
deviation are chosen for the slope, which is assumed to
have a normal distribution among firms in the industry.
Random samples are then drawn from this distribution.
For this analysis, the motor mean slope and standard
deviation were assumed to be 80% and 1.5, and the
controller mean slope and standard deviation were
assumed to be 75% and 1.7. For each component, 1,000
random samples were chosen from the probability
distribution, costs were calculated at each of several
future cumulative production levels, and the values were
then combined into 1,000 composite cost figures for
each cumulative production level. Table 2 summarizes
the parameters chosen for this example.

Table 2 Parameters Used for Monte Carlo Simulation

Parameter Motor Controller
Mean curve slope 80% 75%
Std. deviation curve slope 1.5 1.7
Time O cumul. prod. (units) 4,000 2,000
Production factor 2x 1x
Mean ann. matls. cost var. -1% -3%
Std. dev. matls. cost var, 2.0 2.0

3.2. Results of Monte Carlo Simulation
The results of the Monte Carlo experience curve
simulation can be depicted in both graphical and tabular
form. Table 3 presents the results in terms of mean and
standard deviation of motor/controller system cost for
each of several future cumulative production levels.
These results show that BPM system costs have the
potential to drop significantly, perhaps even to as little
as $1200 with a high level of accumulated production

volume. The results also show that the level of
uncertainty in costs diminishes over time as well.

Table 3 BPM Drive System Cost Results

System Mean of Std.
Cum. Prod. Cost Deviation of
Level ($1995) Cost
2,000 12,960 n.a.

10,000 7,416 1,451

100,000 3,651 772
1,000,000 2,043 427
10,000,000 1,175 365

The graphical depiction of the cost results is perhaps
more useful because it allows one to see the evolution of
the probabilistic spread in costs as production
accumulates. Figures 4 and 5 depict this evolution.
Note in Figure 4 that the range of costs within one
standard deviation of the mean narrows as higher levels
of cumulative production are reached. Similarly, in
Figure 5 the frequencies of cost estimates near the mean
cost value increase with each successive production
level.

$1995 (thousands)
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Cum. Prod. Vol. (thousands)

Figure 4 Probabilistic Experience Curve for a 30-40
kW BPM EV Drive System
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Figure 5 Probabilistic Cost Forecast for a 30-40 kW BPM EV Drive System

4. CONCLUSIONS

Costs will drop dramatically as production scales up and
companies become more adept at manufacturing EVs and
their components. But some costs will drop more
rapidly and with more certainty than others.

We presented here an analysis for one particular drive
system. We found with the Monte Carlo experience
curve analysis that uncertainty in the future cost path for
a BPM drive system is greatest relatively early in the
‘take-off and growth' phase and then diminishes
somewhat in the later stages of the growth phase. The
range in cost is greatest before production becomes
‘learned-out’ and when annual production volumes are
variable, and then costs tend to converge toward the
materials cost. The effect of the annual materials cost
variation offsets this cost convergence to some degree, as
more years elapse and materials costs slowly diverge
from initial levels, but since the assumed mean
variations in materials costs are relatively slight,
convergence is the dominant effect.

While at first it may seem counter-intuitive that
drivetrain costs are more certain farther in the future,
consider that this scenario runs to 10 million units of
accumulated production. Unless the BPM EV drive
system becomes widely used, the product would not
progress down the experience curve very fast. Only if
production ramped up rapidly to a level of 500,000 units
per year would 10 million units be produced in twenty
years. This level of annual production, and the passage
of so much time, would virtually assure that the system
be manufactured at low cost. However, it should be
noted that it may be difficult to predict when each
successive level of cumulative production volume will
be achieved, due to uncertaintics in the market response
to EVs, the number of vehicles that automakers will
actually produce, and the degree to which BPM systems
share the market with AC induction sysiems.
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In the near term, volumes of production are relatively
uncertain, and therefore costs will be uncertain as well.
The cost difference between producing a batch of 1,000
or 100,000 systems today would be great due to
differences in economies of scale, the level of factory
automation, and so on. The experience curve framework
illustrated here can thus depict a range of cost variation,
but because of uncertain production volumes, and the
probabilistic style of this analysis, it cannot precisely
forecast a discrete cost at any particular point.

Because costs to a particular firm for developing and
commercializing a new product are related to the
particular expertise, resources, and organization of that
firm, and to their business plan, one cannot easily use
experience curves to forecast firm-specific costs of new
technologies and products. But experience curves do
have great value for strategic planning and policy
analysis. Experience curves are an appropriate and
powerful tool for forecasting industry-wide cost
reductions as a function of time, cumulative industry
output, and other aggregate variables. Company
planners can use experience curves to explore likely and
possible cost futures for different technologies, and
likely industry cost functions for those technologies.
Policy analysts can use experience curves to craft
appropriate R&D strategies and effective policies to
nurture potentially attractive technologies. At UC
Davis, we are developing detailed cost models for a range
of electric-drive technologies (from pure battery-powered
electric vehicles to fuel cell hybrids). The output from
these efforts will be sophisticated forecasts of future
electric vehicle costs and a set of forecasting tools that
can be refined as more experience and information is
acquired.
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