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ABSTRACT

As a cost-effective alternative to field studies,
computer simulation is an often-used methodology to
study travel behavior. In this study, a PC-based computer
simulation was used to study the effects of information on
drivers' route choice and learning. Building on a prior
stage of simulation efforts, a new set of experiments was
developed with an expanded traffic network and various
levels of information given to subjects. This framework
allows one to investigate both en route and pre-trip route-
choice behavior and capture the effect of different levels
of information on drivers' learning and adaptive
processes.

The experiments were conducted in two generations
(stages). In the first-generation experiments, a simple,
two-route-alternative traffic network was developed.
Experiments conducted with this network provided the
authors with a set of extensive comments from partici-
pants. These insights were modeled using object-
oriented programming techniques to produce a better
subsequent design. Data from the first-generation
experiments were analyzed using neural network tech-
niques, and the neural network was trained using the
back-propagation method. The second-generation exper-
iments used a multiple-route, expanded network with
varying levels of information. Data obtained in this stage
are being analyzed using recurrent neural networks.
This paper describes the redesign of the network simu-
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lation with the experience gained in the first-generation
experiments. The paper also analyzes data obtained from
the experiment. )

Design of the network simulation involved the
following steps: Requirements analysis, data base
design, specifications of user-computer interface, design
of shortest-path module, software development, and
prototype testing and refinement. The simulator was
developed using an object-oriented programming lang-
uage, C++. A recurrent neural network has been built for
modeling of the data obtained in the second generation
experiments. This neural network will be used to predict
subjects’ choices of whether or not to follow the system-
provided advice, depending on their past experience. An
important feature of this neural network is that decisions
at previous nodes will be used as an input for the neural
network at subsequent nodes. This allows onc to model
participants' route-choice behavior at every node that
approximates a traffic intersection.

INTRODUCTION

Recently, there has been much interest in developing
advanced traveler information systems (ATIS) to aid
drivers make more informed route choices and alleviate
traffic congestion. Important issues in implementing
such systems include understanding how the ATIS will
affect driver behavior, how drivers adopt and learn to use
the ATIS, and how these changes impact the network.



Several methods have been used to study drivers' route-
choice behavior in the context of ATIS. These methods,
as summarized by Abdel-Aty et al,"” include: Field
experiments, route-choice surveys, interactive computer
simulation games, route~choice simulation and model-
ing, and stated preference approaches. Although
significant advances have been made in these studies,
their results also have suggested that more theoretical
and empirical investigations remain to be carried out in
order to gain a basic understanding of drivers' route-
choice behavior in the presence of information.

Research being performed at the University of
California at Davis is investigating various impacts of
ATIS on drivers' route-choice behavior. The goals of the
project arc to understand how people will adopt an ATIS,
learn how to usc it, and devise rules for trip planning.
The research efforts described in this paper cover only a
part of the larger project. Vaughn et al® describe the
experimental design of the driving simulator in detail.
This paper more briefly describes the experimental
design of the driving simulator and the application of
recurrent neural networks in the case of drivers' route
choices.

Route choice in a real-traffic environment is very
complex, and little experimental evidence exists as to
how drivers process information and select routes. ¥
Therefore, it was decided to analyze route-choice
behavior in a simpler, less complicated environment. [t
was felt that this would allow the effects of various
factors on route-choice behavior to be adequately
controlled and analyzed. The success or failure of ATIS
will be highly dependent on the quality of advice that can
be delivered to drivers. If a system consistently provides
bad information, drivers soon will begin to ignore the
advice and route-choice patterns will remain unchanged.
If accurate information is consistently provided, drivers
will most likely perceive a benefit from following the
advice and adapt their behavior to the advice. However,
providing and maintaining highly accurate information
is expensive and not always possible. How do drivers
perceive the provided information? If such thresholds do
exist, are they consistent for all drivers, or do different
types of drivers have different thresholds? Under what
conditions and how rapidly? In this study, rccurrent
neural networks are used to:

1. Model the drivers' decision processes based on
the information provided

2. To investigate with relation to driver and
network characteristics, how much of the
previous expericnce is remembered in presen|
route choices
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LIMITATIONS OF FIRST-GENERATION
ROUTE-CHOICE EXPERIMENTS

The first-generation of experiments used an inter-
active PC-based route-choice simulation to investigate
drivers' learning and pre-trip route choice behavior under
ATIS. For more information on experimental design,
analysis, results and neural network applncauons of this
work, one can refer to previous publlcatlons( 9 Even
though there are many limitations to the first-generation
experiments, it provided valuable results as well as
suggestions for survey design and for simulation design
that were not available in the literature at that time. That
experience also provided knowledge useful for con-
ducting lab experiments. Some of the limitations of the
previous experiment are listed below.

1. Network. In the first generation cxperiments.
the simulated network was a simple two-link
and one-decision-point road network.

2. Information content. The level of information
provided to the subjects was minimal. There was
no information about accidents and congestion
levels, which are important for ATIS users.

3. En route information. Navigation information
to drivers was not included.

4. Delay assignment. Delays assigned to links
were calculated using the relative ratio between
freeway and side road. In a realistic network,
however, the delays are distributed among the
network links in a random fashion or based on
type of road (e.g., freeway, neighborhood road,
etc.)

5. Sample characteristics. The subjects used in
the study were students at the University of
California, Davis. The experiments were
intended to examine the feasibility of the
artificial simulator. A more representative
population of drivers or commuters would have
given more realistic information.

6. Perception updating strategy. The results were
limited to a particular perception-updating
strategy. Past results suggest the importance of
perception-updating strategies and expericnce
factors. It was assumed in the previous study
that all variables were updated through onc
experience factor and that the experience factor
was the same for all drivers. However, because
of the difference in drivers' abilities to combine
and process information on route conditions.



drivers may give different weights to the
experience associated with travel on different
days. Therefore, a more realistic representation
of the updating process is required to associate
different sets of experience factors with different
drivers and different values of the experience
factor's variables with the same driver.

7. Experience factor. The experience factor was
not a continuous term. It varied by steps of 0.2
in the experiment. The basic aim of further-
generation experiments is to include past
experience as a continuous term using neural
networks.

8. Age. Driver age was not included in the input
list because all the subjects belonged to the same
age group.

9. Trials: Individual decisionmaking was mea-
sured between days, as opposed to during a
single trip. Measuring drivers' behavior in a
single trip is a major attribute to the success of
trip information systems.

10. Model performance. Conclusions concerning
route-choice behavior presume that the neural
network model correctly represented driver
route-choice decisionmaking processes. The
reliability of the results, however, depends on
the model specification itself. A more hybrid
neural network model would be needed to
reliably analyze driver route-choice behavior in
the presence of ATIS.

To improve the simulation and overcome some of
the limitations, a second generation of experiments was
developed and a new modeling technique using recurrent
neural networks was introduced.

EXPERIMENTAL DESIGN
Simulation

This simulation is developed as an interactive
program running on a PC platform. The screen
displayed to subjects is composed of three main windows:
A network window. an information window, and an
instruction window (Figurc 1). The simulation is
designed to be self-explanatory, with built-in instruc-
tions. The program also has an experimentation phase in
which subjects are allowed to make preliminary trials
and request help until they are familiar with the system
before proceeding to the actual simulation. No data are
collected in this cxperimentation phase, but the total
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length of time each subject spends experimenting with
the system is recorded for comparison purposes. Also, an
interface is provided to allow the experiment coordinator
to set up the desired experimental conditions that will be
in effect for the subject.

Driver’s Route Choice Simulator
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—
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cTrattic Information 15 given in Information window
<<< Press space bar for ctarting simulatioa >>>

Institute of Transportation Studies ucDavis

Figure 1. Screen display of driving simulator

Potential subjects are selected from the Sacramento
area by random digit dialing. Approximately 100 sub-
jects are recruited based on an initial screcning. The
subjects in this simulation are limited to commuters who
travel to work five days per week. Included within the
population of commuters are carpoolers (both drivers and
passengers) and drivers of single-occupant vehicles. The
sample is further segregated by such demographic cri-
teria as gender, education, driving experience, and age
The screening criteria are presented in Vaughn et al®

Road Network

The network window displays a hypothetical road
network (Figure 2). The network comprises three
primary routes from an origin to a destination. The
primary routes are a freeway and two arterial routes.
These primary routes are interconnected by series of
surface streets creating a network of 34 roadway links
and 23 intersections (or potential decision points). The
links running from nodes 2 to 22 make up the freeway
route, and the links running from nodes 3 to 23 and from
4 to 24 make up the two arterial routes.

Figure 2. Simulated network

A simulated vehicle (cursor) moves through the
network in response to decision inputs by the subject.
Driver's decisions are input via the keyboard and indicate
desired movements. The simulation currently uses a
1:30 time scale (2 seconds of simulated time = 60
seconds of real time).



Link Delay

Simulated network characteristics are pregenerated
and stored in a network data file. This data file contains
all of the network characteristics identified by travel day
and node number. The primary network characteristic is
delay. The delay is in two forms: Congestion delay
experienced on a link and stop delay experienced at
nodes or intersections. Furthermore, the congestion
delay is of two types:

®  Pure congestion
® Congestion caused by incidents.
Incident Delay

For this simulation, at least onc incident occurs
within the network on each simulated day. Also, inci-
dents are more likely to occur on the freeway than on
surfacc streets. For this simulation, the probability of an
accident occurring on a given travel day is 1.0. This
breaks down into the probability of the accident being on
freeway or arterial links is 4/5 and the probability of it
being on the surface streets is 1/5.

Stop Delay

From the first generation of experiments, the effects
of stop delays were observed to have a significant effect
on driver behavior. In this experiment, a stop delay
occurs as a result of stop signs or signalized intersections.
In Figure 3, nodes 8. 9, 13, 14, 18, and 19 are signalized
intersections; nodes 5, 6, 10, 11, 15, 16, 20, and 21 have
stop signs only on the surface street approaches. Nodes
2,7, 12, 17, and 22 represent freeway on/off ramps and
are not assigned stop delay in the simulation. At stop
sign locations, the vehicle tracking cursor will stop for an
appropriate amount of time, but at signals, stops are only
required when the light is red. Stop signs have been
assigned a delay value of two seconds for right turns and

Demonstration b
Feedback Network display
Teall runs
information Network Instruction
Cursor Node delay
Shortest Subj Inf
path Path level Signal Stop
-
Accident  Navigation Pre-trip Congestion

Figure 3. Object-oriented simulator design
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three seconds for left turns. In the simulation. a 50-
perecent probability of the light being encountered as red
is used for every signal.

Within this controlled, simulated travel environ-
ment, experimental treatments were applied consisting of
various levels of information. In addition, several block-
ing factors were considered, such as gender, age, and
education. For complete details, see Vaughn et al.”

The simulation applics four information treatments
and uses three blocking factors to make up the seven
experimental treatments. The information treatments are
labeled A through D, and the blocking factors are E
through G. All treatments have two lcvels and arc
described below:

A.  Incident with description. Red icon displaycd at
the location of a scvere incident. ycllow icon
displayed at the location of a moderate incident.
Also, the information window displays textually
the location and classification of the incident.
For example, "Severe accident on First Street
between F St. and G St."

B. En route guidance. Arrows indicating advised
turning movements and textual description of
advice at every intersection.

C. Pre-trip guidance. Minimum path displayed at
beginning of trip along with an estimate of the
travel time on the path for that day.

D. Congestion information. Color-coded links for
moderate and severely congested links, with
green indicating normal congestion, yellow
indicating moderatc congestion, and red indi-
cating severc congestion.

The three blocking factors:
E. Gender. Male or female.

F. Age. Young (40 vears old or lcss) or old
(greater than 40).

G. Education. High (some college or more) or low
(high school or less).

To investigate the effect of accuracy on decision and
learning processes, the information provided within the
stmulation was not always 100-percent accurate. Within
the simulation, the locational information of incidents,
however, was provided at 100-percent accuracy. Route
guidance/advice and congestion information was pro-



vided at 75-percent accuracy. This means that on 75
percent of the trial days, the guidance/advice or the
congestion information provided to the subject was
accurate, but on 25 percent of the trial days it was
inaccurate.

DATA COLLECTION

In addition to the data recorded by the experiment
coordinator, the simulation program recorded all of the
subjects’ decision inputs automatically and also stored
their responses to all questions asked during both the
initial interview survey and the simulation. A separate
data file was crcated for each subject and assigned a file
name that matched the subject ID number. Of the 100
completed simulations, 99 data files arc useable, (one
subject was inadvertently assigned an incorrect treatment
combination). These 99 files have been broken into three
separate data files, with increasing order of complexity.
Data from the simulation now reside in a subject file, a
daily file, and a decision file. This relational file struc-
ture was selected to support a phased schedule of analysis
and to create a file structure that could be merged to
support data analysis efforts. Decision data were used for
the current analysis. The first two files are analyzed in a
companion paper by Vaughn et al.?

From the total sample sct, 49 subjects were selected
for this analysis (Figurc 4). All these subjects had navi-
gation information displayed during their experiments.

Selected sample for node analysis

49%

Figure 4. Part of the sample selected for
node analyis

ANALYSIS OF SIMULATION DATA

Subjects conducted 20 days of trials. These 20 trials
are divided into three segments:

® A first scgment consisting of Days 1 to 6
¢ A middlc scgment consisting of Days 7 to 14

® A last segment consisting of Days 15 to 20,
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The analysis is based mostly on these segments to
observe changes in subjects' behavior from segment to
segment. For subjects' socioeconomic and travel charac-
teristics, one may refer to the companion paper by
Vaughn et al.” The term "system's decisions" was
defined to facilitate assessing the impact of the
simulation on subjects. It is defined as the number of
decision points (intersections) in the route suggested by
the system as pre-trip information before the subject
starts the simulation for the day. If user decision points
exceed the system's decisions, it means that the subjects
are trying different options and not just following the
system's advice.

Figure 5 indicates that subjects made more decisions
in the middle segment than in the first and last scgments.
This shows the usual phenomenon that when subjects arc
new to the network, they try to stick with a few familiar
routes. When subjects become familiar, they try many
options to evaluate the network and information system.
So the number of decisions increases. In the last segment
subjects are well experienced with the network and
information system, which helps the subject to minimizc
the number of decisions. Here the number of decisions
will reduce, but still exceed the system's decisions. In the
figure, the distribution of decisions for each day are also
listed. Figure 6 also supports the above argument. This
figure explains the distribution of average decisions per
day by the user shows how it compares with the average
decisions given by the system.

340
335%
330
3254

320+

3154

3104

Last

First Middle

Figure S. Distribution of number of
decisions among segments

Figure 7 indicates that female subjects have made
more decisions than male subjects. In the first segment,
female subjects deviated more from the system's
decisions than did male subjects. They made 11.35
percent more decisions than systems decisions compared
with 7.62 percent for males. In the middle segment,
female and male subjects made 2.07 percent and 1.78
percent more decisions respectively. and are close to
following the system's decisions. In the last segment,



subjects have incrcased their propensity to make more
decisions than the system's decisions (female subjects,
10.33 percent morc, and male subjects 7 percent more).

Averago Deciaions

~ - System

19

User

Figure 6. Distribution of average decisions per day
between system and user

Middle

Last

Figure 7. Distribution of average decisions between
system, male, and female

Figures 8 and 9 shows the deviation of other groups
from the system's decisions. Younger subjects have
made more decisions than older subjects. Younger
subjects made 10.37 percent more in the first segment,
3.41 percent more in the middle segment, and 11.33
percent more in the last segment than the system's
decisions. In comparison, older subjects made 9.24
percent more in the first segment. 0.89 percent more in
the middlc segment, and 8.17 percent more in the last
segment. Similarly. highly educatcd subjects have more
deviation from the system's decisions than less-educated
subjects. Highly educated subjccts made 9.23 percent,
3.52 percent. and 11 83 percent more decisions in the
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first. middle, and last scgments. respectively, and less-
educated subjects made 10.21 percent. 0.74 percent, and
7.5 percent more decisions in the first. middle, and last
segments, respectively. These results arc discussed later
in more detail later.

Last

Figure 8. Distribution of average decisions hetween
system, old, and young

Middle

Last

Figure 9. Distribution of average decisions between
system, less educated and high educated

Figurc 10 gives overall decision patterns of cach
group of subjects in the simulation cxperiments. In
general, subjects make 6.81 percent morc decisions than
the number of the system's decistons. Male subjects



Less education

]

High education

Old

Young

Female

Maie

Users

System

6 6.1
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Figure 10. Comparison of average decisions per day in different subject groups

" |Segment Total Accepted

Total acceptancy

First 1949 1724

Middle 2545 2323

Last 1910 1722
Freeway acceptancy

First 657 629

Middle 794 771

Last 597 579
Ramp acceptancy

First 278 207

Middle 247 200

Last 200 155
Artirial acceptancy

First 1014 888

Middie 1504 1352

Last 1113 988

Freeway

Ramp

3 O T T A e e

L T——

Side road

Last
Middle

First

l

Figure 11. Distribution of acceptancy rate for different road type advice
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make 5.23 percent more, and femalc subjects make 7.61
percent more than the system. Younger subjects make
8.08 percent more, and older subjects make 5.86 percent
more. Similarly, highly educated subjects make 8.08
percent more, and less-educated subjects make 5.86
percent more.

Figures 11 to 20 represent two types of data. The
table shown next to each figure represents absolute
values, and the figure represents percentages. In all these
figures, the analysis is based on the three different
segments defined earlier.

Figure 11 indicates the acceptance rate of system-
given advicc. The acceptance rates are 88.46 percent,
91.25 percent, and 90.16 percent in first, middle, and last
segments. In the casc of freeway advice, acceptance rates
are very high, 95.74 percent in the first segment, 97.10
percent in the middle, and 96.99 percent in the last. If
the advice is "take ramp" towards freeway, the accep-
tance rate is not significant compared with freeway or
arterial acceptance (74.46 percent, 80.97 percent and
77.50 percent). The arterial acceptance is 87.57 percent.
89.89 percent, and 88.77 percent in first, middle, and last
segments, respectively. This shows subjects arc more
receptive to freeway advice than arterial advice. The
small percentage of acceptance for ramp advice shows
that subjects are most open to using either freeways or
arterials before they start the trip. In other words,
switching between freeway and arterial is not that
common.

Figure 12 shows that male subjects' acceptance rate
is higher than the rate for female subjects. In the first
segment, both subjects have thc same acceptance rate
(88.4 percent), but in the middle and last segments, male
subjects have higher acceptance rates (92.67 percent and
90.90 percent) compared with female subjects (90.46
percent and 89.77 percent).

Figure 13 indicates that older subjects have high
acceptance rates ( 91.01 percent, 91.72 percent, and
91.21 percent) than younger subjects (85.56 percent,
90.76 percent, and 88.78 percent), and that the
acceptance rates of older subjects are almost constant
through all the segments. Highly educated subjects
(Figure 14) have a high acceptance rate in first two
segments (89.49 percent and 92.03 percent) than less-
cducated subjects (87.59 percent and 90.58 percent), but
in the last segment, their acceptance rate (89.05 percent)
is smaller than that of lcss-educated subjects (91.11
percent).

Figurc 15 to |7 show the freeway acceptance in each
group of subjects. In Figurc 15, male subjects arc more
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receptive to freeway advice than female subjects. Malc
subjects have 96.55 percent, 97.40 percent, and 98.40
percent acceptance in three segments compared with
95.20 percent, 96.91 percent, and 95.97 percent accep-
tance for females. The female acceptance rate is in-
creased in the middle segment and reduced in the last. In
the case of male subjects, however, the acceptance rate is
linearly increased from the first to the last segments.

Figure 16 indicates younger subjects have higher
and more variable acceptance rate (95.90 percent. 97.42
percent, and 97.06 percent) compared with the stable
acceptance rates (96.42 percent, 96.85 percent. and 96.92
percent) of older subjects. Similarly less-educated
subjects have higher and more variable freeway
acceptance rates (94.83 percent, 97.44 percent, and 97.14
percent) than the stable acceptance rates (96.76 percent.
96.70 percent, and 96.81 percent) of highly educated
subjects.

Figures 18 to 20 show the arterial advice acceptance
by different groups of subjects. In Figurc 18 malc
subjects are flexible in accepting arterial advice. In the
middle segment, they were at a high acceptance rate
(96.36 percent). Female subjects are more consistent in
the middle and last segments (87.71 percent and 87.42
percent) than in the first (85.50 percent).

In the casc of younger subjects (Figure 19), the
arterial advice is less acceptable (81.60 percent, 87.97
percent, and 84.74 percent) than it is for stable older
subjects (88.44 percent, 89.31 percent. and 88.76
percent). Highly educated subjects are very flexible in
accepting arterial advice (85.64 percent, 90.15 percent.
and 85.34 percent) when compared with the linearly
increased acceptance rates of less-educated subjects
(84.79 percent, 87.23 percent, and 88.43 percent). Most
of the results are supported by previous experiments and
findings reported in companion papers.

RECURRENT NEURAL NETWORKS

Artificial neural networks have been widely used to
model information processing. There is an increasing
interest in the application of hybrid neural network
techniques to transportation engineering. In recent
publications, different transportation applications arc
analyzed with simple neural networks. They include
classification and paitern recognition,” image
processing,” ® freeway-incident detection,” and driver
route-choice analysis.” This approach is being used by
the authors as a quick and efficient method to analyzc
route-choice behavior vis-a-vis conventional analysis
methods.”
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Male given adv. acceptancy

Segment |Given Accepted

First 726 642
Middle 941 . 872
Last 649 590

Female given adv. acceptancy

Segment |Given Accepted

First 1223 1082
Middle 1604 1451
Last 1261 1132

Figure 12. Gender distribution of system’s advice acceptance

A
Young given adv. acceptancy

Segment [Given Accepted
First 914 782
Middle 1180 1071

Last 829 736

Old given adv. acceptancy

Segment |Given Accepted

First 1035 942
Middle 1365 1252
Last 1081 986

1 ) i

Figure 13. Age distribution of system’s advice acceptance

1 | | |

|
High education adv. acceptancy
Segment |Given Accepted
First 894 800
Middle 1229 1131
Last 886 789

Low education adv. acceptancy

Segment |Given Accepted |[!
First 1055 924
Middle 1316 1192
Last i 1024 933]

[ [ T

Figure 14. Education level of system’s advice acceptance
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Male freeway acceptancy

Segment |Given Accepted

First 261 252
Middle 308 300
Last 250| 246

Female freeway acceptancy

Segment |Given Accepted

First 396 377
Middle 486 471
Last 347 333

Figure 15. Gender distribution of freeway advice acceptance

Young freeway acceptancy

264]

Segmen: |[Given Accepted
First 294 279
Middle 349 340
Last 272

Old freeway acceptancy

Segment |Given Accepted

First 363 350
Middle 445 431
Last 325 315

Figure 16. Age distribution of freeway advice acceptance

i
High education acceptancy

Segment |Given Accepted

First 348 330
Middle 430 419
Last 315 306

Low education acceptancy

Segment |Given Accepted
First 309 299
Middie 364 352
Las: 282 273}

Figure 17. Education level of freeway advice acceptance

T
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Male artirial acceptancy

Segment |Given Accepted
First 461 390
Middle 633 572
Last 399 344
Female artirial acceptancy

Segment |Given Accepted
First 821 702
Middie 1115 978
Last 914 799

First §

Middle
Last § ‘

Female
Male

t {

Figure 18. Gender distribution of arterial advice acceptance

[] []
Young artirial acceptancy :

Segment |Given Accepted
First 616 503
Middle 831 731
Last i 557 472;
i :
H ]
Old artirial acceptancy
Segment |Given Accepted
First 666 589
Middle -, 917 819
Last 756 671

]

i
High education accepta

ncy
Segment |Given Accepted
First 585 501
Middle 863 778
Last 604 516
Low education acceptancy
Segment |Given Accepted
First 697! 591
Middle 885: 772
Las: 709, 6271
! T

Figure 20. Education level of arterial advice acceptance
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In this study, the neural network consists of
processing elements arranged in three layers: An input
layer, a hidden layer, and an output layer. Processing
elements in adjacent layers are connected by links.
Output emitted from each processing element (node) is a
function of weighted outputs from processing clements
(nodes) in the preceding layer. For more information
about the theory of neural networks, see Rumelhart et
al."” and Yang et al.”

So far, the authors have been concerned with
networks that evolve to a stable pattern and can then be
used with a new set of data. An interesting investigation
involves the storing, recalling, and generating of time-
related networks. The present problem is to include
previous route choices in predicting the present route
choice. In other words, the driver is located at an
intersection in the network with system advice, and it is
to be investigated whether the driver will accept the
advice or not, depending upon his/her personal
characteristics and choices made at previous decision
points. In this analysis, there is an input node that gets
input from previous nodes of the neural network used. At
the beginning of the simulation, the driver will have no
past experience, and hence, there is no input for one of
the nodes. This makes the problem more complicated.
Present methods will avoid the first decision point and
train the neural network from the second decision point.
This is only possible in the case of one day's experience.
However, if there is a need to evaluate a driver's behavior
from the first point to the last point of his trial taking all
his experience into account, present ncural network
models are inadequate. Onc must turn to supervised
learning in more general networks, with connections
allowed both ways between a pair of urits, and even
within a unit itself. These are usually called recurrent
networks. These networks do not necessarily settle down
to a stable state, even with one time input.

Here the problem is investigated using simple
sequences that are synchronously updated by connecting
together a chain of neural networks. An explanation is
in order regarding how to design a sequential recurrent
network. Instead of scttling on a single network. it is
desired that predictions go through a predetermined
sequence usually in a nonclosed cycle. These networks
can rccognize sequences, or learn sequences incre-
mentally. The design of such networks is shown in
Figure 21.

A similar idca was carlier proposcd by Lapedes and
Faber.'" in their "master-slave" network, wherein the
master network calculates weights for the slave.
However. they had onc master unit for cach connection
in the slave nctwork and made the master network
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d1 s a output node for
starter and one of the
Input node for the
recurrent network

dgIs the number of the
dgdslon point

=& This arrow indicates
connection from that
node to all ather
nodes in the next
layer

Figure 21. Recurrent network for single-day history

calculate appropriate weights without using the slave for
feedback. In the present application. the starter will
gencrate an output that is the input for onc node in the
recurrent neural network. This node takes an input value
from the previous decision point output. Once all the
input nodes are filled with values, the recurrent network
starts functioning until the end of a single trial (day). For
example, if one wants to determine a current decision
using the last three decisions, the required sequential
neural network will have three starter and one recurrent
neural networks. The recurrent neural network will start
functioning after three starters make their decision
(Figure 22). From that point on, each decision point
replaces the oldest decision points by sequentially
moving decisions to the respective nodes. The arrows
between d,....d, show this action of transformation.

Recurrent networks are assigned three (asks:
Sequence recognition, sequence reproduction, and
temporal association. In the sequence-recognition task,
the network is required to produce a particular output
pattern when a specific input sequence is seen. This is
appropriate in the case of starter neural networks. They
just output a value that is used by the next starter or
recurrent network. Use of a simple back-propagation
training algorithm is planned for the starter networks.

In the second task, sequence reproduction, the
network must be able to generate the rest of a sequence
itself when it has all input values satisfied. The master
network has 1o generate an output when the output signal
reaches the input node, and the transformation of
previous experiences is done with respect to their
assigned nodes in the network. This is sometimes known
as auto association or pattern completion of dynamic
patterns. It would be appropriatc for learning a sct of
decisions from the data collected. In other words, if there
are data available about personal characteristics and



network characteristics, it is easy to define what the
decision pattern is going to be.

The last task, temporal association, includes a static
group of input nodes that are input to all the starter and
master networks. In this case, personal characteristics
arc always static for all neural networks. Neural network
characteristics will change from one decision point to
another.

Training

In this paper, some of the validation results werc
rcported regarding performance of the neural network
model. First, a neural network was trained with onc
back-nodc experience. In the training cycle, the training
vectors are presented (o the ncural network in sequential
order from first node of choice to last node of choice.
The number of processing elements in the hidden layer
was varied from three to seven in investigating the effect
on network performance. During the training, the values
of learning and momentum rates were set (o be 0.2 and
0.9 respectively, and were kept constant. It can be seen
that the first 500 cycles of training lead to a sharp

reduction in the squared output errors. After 9,000
cycles of training, no significant improvement was
observed, but training continued up to 10,000 cycles. At
this point, one can plan on extending the network design
to train daily route-choice decision patterns of single
drivers and groups of drivers. Once a neural network has
been stabilized, it is desirable to conduct further analysis
of modeling drivers' route choice behavior.

SUMMARY

In this study, a neural network model is developed to
predict a driver's route-choice bchavior under ATIS.
Data used for analysis werc collected from lcarning
experiments carried out at the University of California at
Davis using an interactive computer simulation. A serics
of validation experiments with different route-choicc
structures was first conducted to test the feasibility of the
approach. The neural network model is found to
reasonably predict a driver's route choicc. The
constructed neural network model is then used to explore
the specific driver route~choice mechanism under ATIS.
The manner in which drivers update their perception of
travel conditions was investigated, including the relative
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impact of previous travel experiences on different days
and the route advice provided by the information system.

It was found that most subjects make route choices
based mainly on their recent experiences. This may
indicate that the drivers' short-term acceptance of advice
is a function of their experiences, and if they are given
poor information they arc unlikely to follow the system
advice in immediate subsequent trips. Over time,
however. they may return to following system advice if
the system performs well. Route-choice behavior also
was related to the characteristics of the respective routes
and varied significantly from driver to driver. The
choice to use the freeway seems (o be reasonably modeled
by the author's approach and indicates a significant use
of recent travel cxperiences in updated choices with
information. Choices to use the side road do not fit
hypothesized behaviors, but this may be partially a
function of sample-sizc limitations. There appear to be
significant differences both between and within subjects
regarding the choice to use the freeway or surfacc street;
more refined models need to be tested in this area. Using
the experience in this experiment, a new simulator is
being designed to include most of the realistic conditions.
Initial test results show that the recurrent neural network
is suitablc for observing drivers' route-choice behavior
using past experience.
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