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INTRODUCTION

Advanced transportation technologies, ranging from the provision of real-time
traffic flow information to fully automated in-vehicle control systems, are promoted
as a means of not only reducing congestion, but also to make vehicle travel "...more
energy efficient and environmentally benign".! In this paper, we explore the air
quality implications of deploying advanced technologies, hereafter referred to as
Intelligent Vehicle Highway System (IVHS) technologies.

Because motor vehicles account for such a huge proportion of air pollutant
emissions in urban areas — about half the hydrocarbon and nitrogen oxide
emissions, and over 80% of carbon monoxide emissions, according to government
estimates - any changes in the number and use of vehicles could have a relatively
large effect on total urban emissions. While government forecasts of air pollutant
emissions anticipate vehicles playing a shrinking role relative to other sources -
because of increasingly stringent new and in-use vehicle emission standards -
recent evidence suggests that the vehicle pollution problem is actually much worse
than reported. And thus the actual proportion of vehicle emissions in the urban
emission inventory is actually much greater than indicated above. A recent
National Research Council study? concludes that motor vehicles emit 2-4 times as
much hydrocarbon and carbon monoxide pollutants as estimated by the U.S.
Environmental Protection Agency (USEPA) and California Air Resources Board
(CARB).

1. U.S. Department of Transportation (1990); National Transportation Strategic Planning
Study; Washington, D.C.; March 1990.

2. National Research Council (1991); Rethinking the Ozone Problem in Urban and Regional
Air Pollution; National Academy Press; Washington, D.C.; 1991.
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This problem of emission underestimation has important analytical implications for
IVHS implementation - it indicates that the state of knowledge of emission
estimation is poor. Given this poor state of knowledge, it is impossible to
determine in a definitive manner the overall emission impact of IVHS. What is
possible, and what we do in this paper, is to examine fundamental relationships
between travel and emissions that are relevant to IVHS implementation, and
explore preliminary evidence of likely IVHS emission impacts. Current research at
the University of California, Davis, is aimed at quantifying these effects more
precisely.

OVERVIEW OF EMISSION EFFECTS

The implementation of IVHS — where IVHS is defined broadly to include
advanced traffic and traveler information systems and automated vehicle control
systems (i.e., ATMS/ATIS/AVCS) - will have a mixed effect on emissions (and
energy use). The two principal effects of IVHS, from an emissions perspective, are
the following: 1) increased road capacity, leading to more tripmaking and therefore
an emissions increase; and 2) better traffic management, better use of traffic
information, and use of automated controls, leading to more efficient travel and
smoother flows (less variation in vehicle speed), and therefore an emissions rate
decrease. The net effect is impossible to determine at this time because the impact
on tripmaking is still uncertain and, as suggested above, the relationship between
speed, acceleration, and emissions is poorly understood.

An assessment of changes in vehicles mile traveled (VMT), trips, and congestion
are important because they affect emissions from the vehicle activity side - VMT
because emissions are a function of how much a vehicle is used, trips because
vehicles emit a large proportion of their emissions during the first few minutes of a
trip when the engines are cold, and congestion because slow and erratic speed
profiles result in much greater emissions than smooth travel at moderate speeds.
Indeed, it is sometimes argued that unrestrained traffic congestion may be "... the
single largest contributor to poor air quality and wasteful fuel consumption”.> That
may be true for emissions as we indicate below.

The complex tradeoffs between increased travel demand, changes in congestion
delay, and improved smoothness of traffic flow are the subject of this paper.
Below, we first examine the effects of IVHS on tripmaking, and then on driving
cycles and driving conditions -- in both cases with respect to emission impact.

3. Euler, Gary W; Intelligent Vehicle/Highway Systems: Definitions and Application; The
Jourmnal; November 1990; pp. 17-22.



IMPACTS ON TRIPMAKING

The use of IVHS information, management, and control technologies could have
the following effects on tripmaking:

-generate more and longer trips because of faster travel times;

-generate longer trips as a result of diversions;

-generate shorter trips through access to better information about
routes and destinations;

-shift trips to single occupant vehicles because of faster travel times;

-shift trips to transit and paratransit if advanced information and
traffic management technology is applied to and favors those
modes.

In general, the use of better traffic information for travelers will result in shorter and
fewer vehicle trips — because drivers will not get lost, will find parking more easily,
will choose the shortest route, and will switch in some cases to transit and
paratransit (e.g., carpools and jitneys) — although it may also result in some longer
trips as drivers take detours to avoid accidents and congested routes.

As indicated above, more and better use of real-time traffic and routing information
should result in somewhat less vehicle travel. Fully deployed ATMS/ATIS in those
areas currently experiencing severe congestion may yield significant
improvements. The benefits of traffic monitoring and control can be seen in the
City of Los Angeles, where computerized traffic monitoring and control of street
signalization and ramp metering systems have increased average speeds in
localized areas by 14%, reduced travel time by 13%, reduced stops by 35%, energy
consumption by 12%, and emissions of hydrocarbons and carbon monoxide by
10%.4 Many believe that these benefits can be readily extended, by providing
information and route recommendations to vehicle drivers throughout the system;
although, there is not yet an analytical or empirical basis for these claims.
Computer simulations for the Santa Monica freeway in Los Angeles indicate that
route guidance systems are not likely to provide significant benefits during
recurrent congestion conditions, although route guidance systems are likely to yield
significant travel time savings during incident-related congestion.5,5

4. Shladover, Steven E. (1991); Potential Contributions of IVHS to Reducing Transportation's
Greenhouse Gas Production (PATH Technical Memorandum 91-4); Institute of Transportation
Studies, University of California, Berkeley; Berkeley, CA; August, 1991.

S. Varaiya, Pravin, and Shladover, Steven E. (1991); Sketch of an IVHS Systems Architecture
(UCB-ITS-PRR-91-3); Institute of Transportation Studies, University of California, Berkeley;
Berkeley, CA; February 2, 1991.

6. Al-Deek, H., M. Martello, A. May, and W. Sanders (1988); Potential Benefits of In-Vehicle
Information Systems in a Real Freeway Corridor Under Recurring and Incident Induced Congestion
(UCB-ITS-PRR-88-2); Institute of Transportation Studies; University of California, Berkeley;
Berkeley, CA; 1988



Anticipated reductions in tripmaking believed to result from greater use of
information may be somewhat overstated. It can be argued that the provision of
perfect information can lead to even higher congestion levels: when individuals
make route decisions designed to minimize their travel time, congestion can be
increased in some areas, yielding a a net increase in total travel time for all trips.’
Amott, de Palma and Lindsey argue that providing more information may simply
cause drivers to change departure times, condensing the peak period and possibly
exacerbating net congestion.? Nevertheless, de Palma suggests that it may be
possible to reduce total travel times by designing efficient information systems that
provide information selectively.”

The introduction of automated vehicle controls will have a more predictable effect
on tripmaking than information and traffic management. By increasing roadway
capacity and making travel easier and faster, automated controls will clearly
increase vehicle travel. Fully automated traffic lanes are anticipated to increase
freeway traffic flow rates from today's 2000-2200 vehicles per lane per hour to as
much as 3600-7200 vehicles per lane per hour, with the possibility of vehicles
operating at speeds of 60 mph or more.

The increases in vehicle travel resulting from the use of automated controls are
related to several phenomena: latent demand for travel, more dispersed land use
patterns, longer trips, and shifts to single-occupant vehicles.

If travel speeds increase and congestion and travel times decrease, then more
people will travel more.? But how many people will travel how much more? How
much latent demand is there for travel on congested urban freeways? The answer
is currently not known.5.10

One reason individuals will travel more is because they (and employers) want to
take advantage of cheaper land, which is usually at the periphery of urban areas.
Urban and suburban land use densities are likely to decrease, or at least not increase
as much as they would otherwise. There is evidence that as jobs follow individuals
to the urban periphery, door-to-door travel times may not necessarily increase; but
even if door-to-door travel times do not increase, trip distances and therefore
emissions may. Varaiya and Shladover suggest that if the effective speed on new
systems were twice the speed on the existing congested system, people might
choose to live up to twice as far from their workplaces without having to spend

7. de Palma, Andre (1992); A Game-Theoretic Approach to the Analysis of Simple Congested
Networks; Transportation Economics; Volume 82, Number 2; May 1992.

8. Amott, de Palma and Lindsey (1990)

9. Stafford, Frank P (1990); Social Benefits of IVHS Systems; Automated Highway/Intelligent
Vehicle Systems: Technology and Socioeconomic Aspects; Warrendale, PA: Society of Automotive
Engineers, Inc.; 1990; pp. 77-82.

10. Johnston, Robert A., and Dorriah L. Page (1991); A Preliminary Systems-Level Evaluation
of Automated Urban Freeways; 2nd International Conference on Applications of Advanced
Technologies in Transportation Engineering: Minneapolis, Minnesota; April 10, 1991.




more time traveling.> IVHS-induced suburbanization would be consistent with the
suburban sprawl patterns that have occurred over the past forty years since the
advent of limited-access highways; nonetheless, increased travel will lead to further
increases in transportation energy consumption and vehicle emissions.

The question of mode shifts is also difficult to answer definitively. The diversion
from higher-occupancy modes, such as buses and carpools, to single-occupant
vehicles, would yield an increase in VMT. The impact is difficult to discem,
however, without more detailed modeling of interactions between travel time, trip
generation, and mode choice.

In summary, the use of some IVHS technologies will result in increased use of
vehicles, the use of others will result in less vehicle use, and still others will have
mixed effects. Ideally, the magnitude of each of the above effects could be
measured.

Indeed, if IVHS is to be seriously considered as an environmentally-benign
congestion management tool, tripmaking effects will need to be measured.
Unfortunately, at this time, for most of these effects neither theoretical nor
empirical evidence exists to make such a determination

IMPACTS ON DRIVING CYCLES AND EMISSIONS

Greater use of information and automated controls will lead not only to changes in
the number and length of trips, but also to changes in the speed and acceleration
profiles of the trips. Changes in speed profiles could prove to have a larger effect
on emissions than changes in tripmaking.

Speed profiles would change as a result of changes in congestion levels, spatial
shifts in congestion, use of automated controls, and shifts in trips between different
types of road facilities. For instance, if the number of accidents and the volume of
stop-and-go traffic could be reduced, speeds would be higher and smoother. With
some IVHS options, spatial shifts in congestion, and therefore speed profiles,
would occur in a complex fashion. For instance, if some roads were automated, say
freeways, and others were not, then congestion is likely to be spatially pushed onto
connecting roads serving the freeways.

Figures 1 to 3 present the relationships between speed and emissions for
automobiles, as embodied in the emission model (EMFACT7F) currently used by the
CARB. These figures present the multiplier that determines the emission rate for
any operating speed, compared to the average emissions for the vehicle class at 16
mph (the baseline emission rate, which is a component of the Federal Test
Procedure). Thus, in Figure 1, the carbon monoxide emission rate (grams/mile) at
30 mph is modeled to be roughly 60% of the baseline exhaust emission rate for an
average speed of 16 mph. The relatively steep curves suggest that maintaining



average speeds at a moderate level — not too slow nor too fast, say between 20 and
60 mph — can yield substantial emission reductions. The speed correction factor
curves are derived from test cycles that employ varied average speed, but none of
the test cycles are characterized by extremely smooth flow. Thus, as we indicated
above, the emission benefits IVHS systems that provide smooth flows for moderate
to high speeds are probably even greater than indicated by Figures 1 to 3.

Figures 4 and 5 present two speed "traces" used by the USEPA to test motor
vehicles. The first is the highway fuel economy test, intended to represent a typical
speed profile for vehicles operating on a relatively uncongested urban freeway.

The second cycle is the SC36 test cycle, which can might be considered typical for
vehicles operating on a very congested urban freeway. In practice, speed profiles
vary greatly. Current research sponsored by the California Air Resources Board
into what speed profiles are typical for various urban areas is likely to help establish
baselines for measuring the potential benefits of IVHS systems.

If speed profiles could be smoothed, by reducing stop-and-go driving conditions
and increasing free flow speeds, significant emission reduction and fuel economy
benefits may be achieved. By eliminating acceleration and deceleration
components of a vehicle trip, inertial energy losses are minimized, and emissions
associated with these modes of activity are avoided. Although it is still impossible
to specify the magnitude of these emission benefits, as explained below, the
benefits may be large enough to balance the increased emissions resulting from the
increased tripmaking of IVHS. Ty

Earlier it was noted that actual vehicle emissions - especially reactive organic
gases and carbon monoxide —- now appear to be much greater than previously
realized.2 Much of this underestimation may be related to the unrepresentative
driving cycle tests (¢.g., the codified Federal Test Procedure) used in measuring
vehicle emissions and to develop existing emission models).11.1213 These tests do
not include speeds over 57 mph nor sharp accelerations (i.e. greater than 3.6
mph/sec), both believed to be very high-emitting activities.

Power enrichment (acceleration) and motoring (deceleration) events are discrete
vehicle activities capable of producing significant emissions, but are not currently
modeled.1415.1617.1819 Indeed, recent laboratory testing indicates that high

11. Carlock, Mark (1992); Overview of Exhaust Emission Factor Models; In: Proceedings,
Transportation Modeling: Tips and Trip Ups; Air and Waste Management Association; Pittsburgh,
PA; March 1992.

12. Darlington, Thomas L., Patricia E Korsog, and Robert Strassburger (1992); Real World and
Engine Operation: Results of the MVMA/AIAM Instrumented Vehicle Pilot Study; Proceedings of
the 85th Annual Meeting of the Air and Waste Management Association; AWMA; Pitisburgh, PA;
June 1992.

13. California Air Resources Board (1992); Methodology to Calculate Emission Factors for
On-Road Motor Vehicles; Technical Support Division; Sacramento, CA; 1992.

14. Califomia Air Resources Board (1991); Modal Acceleration Testing; Mailout No. 91-12;
Mobile Source Division; El Monte, CA; March 20, 1991.



acceleration rates are significant contributors to instantaneous emission rates, and
that one sharp acceleration may cause as much pollution as does the entire
remaining trip.!!

Second-by-second monitoring of vehicle exhaust emission data has recently
become feasible, and modal testing of motor vehicles is now being conducted both
in the laboratory and on the road. The Motor Vehicle Manufacturers Association
(MVMA) and Association of International Automobile Manufacturers (AIAM) has
recently undertaken an extensive program aimed at assessing in-use motor vehicle
emissions. By instrumenting a number of vehicles and monitoring oxygen
concentrations before and after the catalyst, data can be used to identify non-
stoichiometric, high emission, operating modes. Preliminary results indicate that
changes in operating mode can yield on-road emission increases.!2

Second-by-second laboratory tests also indicate that changes in operating mode
yield increased emission rates. Figures 6 and 7 present second-by-second emission
estimates for a utility vehicle operating under parts of the Federal Test Procedure
(FTP) and the Highway Fuel Economy Test (HFET). Figure 6, representing a
portion of the FTP cycle, clearly illustrates that hydrocarbon and oxides of nitrogen
"emission puffs" occur, and are likely associated with either the high rates of
acceleration or deceleration. (The time delay associated with analytical equipment
response is unclear, roughly 4-6 seconds, so associating the specific modal event
with the resulting emission puffs is not possible from this test.) Surprisingly, even
vehicle operations at a relatively stable high speed flow show some variability in
emission rates that may be associated with accelerations and decelerations, even
though the rates of acceleration and deceleration at these speeds are low (see Figure
7, representing a portion of the HFET). Research in the area of modal emission
rates is ongoing. As new data and analyses become available from vehicle
manufacturers and academia, the tools for analyzing the emission rate impacts of
IVHS flow smoothing will evolve.

15. Benson, Paul (1989); CALINEA4 - A Dispersion Model for Predicting Pollutant
Concentrations Near Roadways (FHWA/CA/TL-84/15); State of California Department of
Transportation, Division of New Technology and Research; Sacramento, CA; November 1984,
Revised June 1989.

16. Groblicki, Peter J. (1990); Presentation at the California Air Resources Board Public
Meseting on the Emission Inventory Process; General Motors Research Laboratories; Warren, MI;
November 5, 1990.

17. Calspan Corporation (1973a); A Study of Emissions from Light-Duty Vehicles in Six
Cities; Buffalo, NY; Prepared for the Environmental Protection Agency (Document #APTD-1497),
Office of Mobile Source Air Pollution Control; Ann Arbor, MI; March 1973.

18. Calspan Corporation (1973b); Automobile Exhaust Emission Surveillance (PB-220 775);
Buffalo, NY; Prepared for the Environmental Protection Agency (Document #APTD-1544), Office
of Mobile Source Air Pollution Control; Ann Arbor, MI; May 1973.

19. Kunselman, Paul, H.T. McAdams, C.J. Domke, and M.E. Williams (1974); Automobile
Exhaust Emission Modal Analysis Model; Calspan Corporation; Buffalo, NY; Prepared for the
Environmental Protection Agency (Document 460/3-74-005), Office of Mobile Source Air Pollution
Control; Ann Arbor, MI; January 1974.



Once the relationships between speed, acceleration, and emissions are better
understood, one must specify and then compare the baseline non-IVHS conditions
to the future IVHS scenarios. Baseline conditions can be modeled using typical
speed profile traces, perhaps similar to Figures 4 and 5, once those profiles are
developed for the urban areas in question. Although analysis of IVHS impacts on
modal emissions are somewhat speculative at this time, sensitivity analyses can be
conducted.

Another critical analytical issue is to specify the microscopic behavior of vehicles

- operating with IVHS technologies. For instance, two trips may have the same
average speed, but very different speed profiles and emissions (e.g., one trip may
be traveled at a smooth speed, and another traveled part of the time in stop-and-go
congestion and part of the time at high freeway speeds). Expressed more formally,
two vehicle trips with the same "average speed" can be composed of significantly
different modal characteristics (stops, starts, acceleration rates, time at idle, etc.).
As indicated above, the empirical models used to develop the speed correction
factors for motor vehicle emission rates do not account for modal operations such
as acceleration and deceleration;2021.22 research by ourselves and others is aimed at
improving modal emissions analyses and integrating that work into network travel
models.

Better tools are needed to assess the impacts of changes in modal operations,
because traffic flow tradeoffs resulting from IVHS and other transportation
improvement strategies are complex.- Consider for example the effect on driving
conditions of "improving" one part of the highway system: doing so pushes
congestion elsewhere, and does so in a non-linear complex manner. For example,
ramp metering causes congestion on the freeway onramp, but reduces congestion
on the freeway upstream of the onramp. In an ongoing study at UC Davis using
travel demand models for the Sacramento region, Johnston and Page find that on a
systemwide level, automation of freeways would result in large reductions in
vehicle-hours of delay on the freeways, but large congestion increases on the
collectors and arterials that feed into the freeway system.!® Their model does not
yet incorporate land use feedbacks; if it did, one would expect the spatial
congestion shift from freeways to arterial and collector roads to be even more
exaggerated.

20. Energy and Environmental Analysis (1991); Speed Correction Factors for the Updated
Version of MOBILE4; Arlington, VA; Prepared for the U.S. Environmental Protection Agency;
Ann Arbor, MI; Contract No. 68-CO-0065, Work Assignment #3; August 1991.

21. Guensler, Randall, and Simon Washington (1992); Mobile Source Speed Correction
Factors, Phase II: Alternative Model Specifications for EMFACTF; Institute of Transportation
Studies; University of California, Davis; Davis, CA; forthcoming 1992.

22. Guensler, Randall, and Anne B. Geraghty (1991); A Transportation/Air Quality Research
Agenda for the 1990's (91-87.2); Air and Waste Management Association, 84th Annual Meeting
Proceedings; Pittsburgh, PA; June 1991.



The emission tradeoffs between improved flows on freeway links and degraded
flows on non-automated connector surfaces is unclear at this time. Acceleration
profiles on automated system access ramps are likely to change, probably
increasing significantly, and the acceleration/deceleration profiles of the high speed
automated flow are likely to be eliminated through computer control.
Unfortunately, modal emission rates and relationships for the future vehicle fleet
are relatively unknown at this time, and potential tradeoffs cannot be evaluated
without further analysis of existing and future data. As additional second-by-
second emission profiles become available for modern vehicles that are likely
candidates for IVHS incorporation, these tradeoffs will become more clear (at least
for those vehicles for which data become available). However, it is likely that the
projected emission effects that result from specific modal operations will play a
very important role in determining which vehicles will ultimately be selected for
IVHS incorporation. Individual vehicle emission behavior and final IVHS vehicle
fleet profiles are inextricably linked.

In any case, limiting congestion analysis to only one improved component of the
transportation system, without analyzing impacts both upstream and downstream of
the improvement, may result in large positive and negative estimation errors. Thus,
the effects of IVHS must be analyzed as a system, before the congestion, and
therefore emission, effects of IVHS can be estimated.

CONCLUSIONS

The implementation of IVHS technologies could dramatically alter our
transportation system. For regulatory, legal, and design reasons, it is urgent that the
emission impacts of IVHS be understood. IVHS encompasses a wide variety of
technologies. The implementation of some technologies will increase emissions,
others will decrease emissions.

Two sets of analytical activities need to be modified and improved to measure these
emissions effects: 1) travel demand models need to be modified and upgraded to
consider different traffic flow relationships and to be more sensitive to microscale
changes; and 2) emissions models need to represent relationships between speed,
acceleration, and emissions more accurately. When these analytical tools are
available, various IVHS scenarios can be tested. At this time, it is impossible to
determine the net effect of IVHS implementation on air pollutant emissions -
especially for internal combustion engine vehicles.

Because emissions from electric vehicles are not significantly affected by modal
operations, it is quite probable that the comprehensive IVHS systems of the future
will be limited to use by electric vehicles only.



0@

maL

Figure 1
Speed Correction Factor
(Multiple of the Average Emission Rate at 16mph)
vs. Average Vehicle Speed
in EMFAC7F

Carbon Monoxide
Post 1987, Fuel Injected Vehicles
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Figure 2
Speed Correction Factor
(Multiple of the Average Emission Rate at 16mph)

vs. Average Vehicle Speed
in EMFAC7F

Hydrocarbons
Post 1987, Fuel Injected Vehicles
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Figure 3
Speed Correction Factor
(Multiple of the Average Emission Rate at 16mph)
vs. Average Vehicle Speed
in EMFACT7F

Oxides of Nitrogen
Post 1987, Fuel Injected Vehicles

Average Speed (mph) Sacramento, CA; July 1992
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Figure 6

1990 Caravan - FTP Segment
Hot Stabilized Mode
Second-by-Second Speed and Emission Data
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Figure 7
1990 Caravan - HFET Segment
Hot Stabilized Mode
Second-by-Second Speed and Emission Data
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