RP-91-22

MIDAS: A TRAVEL DEMAND FORECASTING TOOL BASED ON A DYNAMIC
MODEL SYSTEM OF HOUSEHOLD DEMOGRAPHICS AND MOBILITY

Final Report’

Ryuichi Kitamura
and
Konstadinos G. Goulias

Institute of Transportation Studies
' and
Department of Civil Engineering
University of California, Davis
Davis, CA, 95616
USA

June 1991




Preface

The genesis of this effort to develop a dynamic simulation model system for household
demographics and mobility dates back to the summer of 1987 when crude simulation ruas
were made on SPSSx at Bureau Goudappel Coffeng (BGC), almost as an afterthought of a
project for DVK. The intent of the exercise was to illustrate how dynamic models can be
used in forecasting and scenario analysis. The model system was comprised of an ordered-
response probit model of household car ownership, a linear trip generation model, and a
binary-logit modal split model. The model components were all "dynamic” in the sense
that they contained lagged dependent variables, representing the state of the behavioral
process at the last observational period. The representation of household demographics

and socio-economics, on the other hand, was extremely simple.

At that time, research had commenced at BGC with a probe into dynamic characteristics of
travel behavior and addressing the validity of cross-sectional models, especially their
applicability to forecasting.' The new stream of research was in part motivated by the
observation that the economic recession of 1978 - 1983 resulted in much smaller reductions
in mobility than cross-sectional models had indicated. The need to clearly distinguish long-
term and short-term responses (or elasticities) was pointed out (Goodwin, 1987); the roles
of behavioral inertia and response lags in short-term behavioral responses recognized; and
the treatments of long-term and short-term responses in existing forecasting models

studied.

This project was conceived when the still ongoing evolution of dynamic travel behavior
analysis was in its infancy. Critical in this evolution has been the availability of the Dutch
National Mobility Panel data set (see Baanders and Slootman, 1989; Golob, et al, 1986;

van der Loop, 1988; van Wissen & Meurs, 1989). As more waves of data became



available, more extensive analyses and more elaborate model developments were made
possible. It was in this context that the proposal was made to Projectbureau that a
simulation model system be developed integrating a micro;analytic demographic accounting
system and a dynamic household car ownership and mobility model system. It was
intended that the Dutch Panel data set be the principal data source for the model

development effort.

This report summarizes the cumulative results of the MIDAS development effort. It is
based on the 1989 report, however many sections have been extensively modified and new
sections have been added. Section 3 was modified to incorporate new results of household
type transition analyses. Section 5.5 was introduced to describe the new income models
used in MIDAS. In section 6 the trip generation models have been entirely redeveloped,
and a new modal split model and travel distance models have been introduced. Section 7 is
a new section which presents the results of a validation analysis of the mobility model

components. Sections 8 and 9, also new sections, contain the forecasting results.

The project is an innovative approach based on entirely new concepts and methods.
MIDAS itself has been revised numerous times with a number of parameters introduced
and updated to better replicate household evolution and represent more extended ranges of

scenarios.

The primary objective of the project is to demonstrate that travel demand forecasting using
micro-simulation with dynamic models and parameters estimated by the Dutch Panel data,
is praciical and meaningful. This objective has been fulfilled. Moreover, MIDAS is now
able to entertain endless "what if" questions. With its forthcoming PC version, MIDAS

could be utilized extensively as a versatile decision support tool for Dutch transportation
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planning and policy analysis. However, the software should be tested rigorously prior to

its distribution to other users.
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1. Introduction

The Dutch National Mobility Panel (Golob, et al., 1986; van der Loop, 1988; van Wissen
and Meurs, 1989) has contributed tremendously to the development of dynamic travel
behavior research by offering a unique and rich data set that has made possible the
examination of many aspects of travel behavior that could not have been studied with cross-
sectional data. This panel data set has been applied to the more traditional subject areas of
mode use, car ownership, trip generation, and trip chaining, and to more novel subject

areas such as habitual behavior, response lags, and adaptation behaviorl.

A new approach to travel demand forecasting is proposed in this study in which the
following two concepts are integrated to form a simulation model of household travel. The
first is the dynamic model of travel behavior. Panel data enable us observe changes, thus
making possible the development of models that relate behavioral changes to changes in
contributing factors. Using. such dynamic models, future behavior can be predicted by
extending longitudinally observed changes. It is in this respect that the use of dynamic
models in forecasting is critically different from the use of cross-sectional models which,
unfortunately, involves the untested assumption that future behavior can be depicted by

longitudinally ei:trapolating cross-sectional variations (see Kitamura, 1990).

The development of dynamic models in this study is a continuation of earlier work by one
of the authors (Kitamura, 1987a, 1988a). That study, which used the Dutch National
Mobility Panel data and was funded by Dienst Verkeerskunde (DVK), formulated a
dynamic model system of car ownership and mobility, and discussed its application to
forecasting. This present study adopts the model system, refines it, and uses it as a
component of the forecasting model system developed in the study.
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The second concept is the notion of demographic accounting system2. The research results
accumulated in the past decade or so have offered ample e\./idence that household structures
and lifecycle stages have profound impact on household travel (Kitamura, 1988c). Despite
this finding, transportation planners have considered demographic and socioeconomic
forecasting to lie outside their regime. At the same time, available demographic forecasts
unfortunately have not provided data that are adequate for models typically used in
transportation planning, e.g., individual- or household-based disaggregate choice models.
In particular, the majority of travel demand models are developed through multivariate
statistical analysis that fully takes advantage of the information available in the data.
Demographic and socioeconomic forecasts, on the other hand, do not in general offer a
multivariate distribution. They therefore do not necessarily capture the correlation that
exists among variables typically used in travel demand models. The result is a dubious

basis for travel demand forecasting.

In this study, a demographié accounting system is developed using data from Waves 1, 3,
5, 7 and 9 of the Dutch National Mobility Panel data set, covering the four-year period of
April 1984 through April 1988. This accounting system is integrated with an econometric
model system of household car ownership and mobility, to form a model system that
replicates the evolution of households through lifecycle stages and, at the same time,

determines their transportation system use.

An effort by the Transport Studies Unit group at Oxford University to develop a
demoéraphic accounting system for transportation planning led to a simulation model called
MIDCAT (Goodwin, Dix and Layzell, 1987). This earlier effort forms a basis for the
present study. MIDCAT itself, however, is not adopted in this study due to the availability

of the Dutch Panel data which offer a more extended range of modeling possibilities for the
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study. It is also due to the system of car ownership and mobility models which calls for

more detailed accounting of household and person characteristics.

The resulting model system, MIDAS, is a simulation model that can be used to evaluate a
variety of scenarios for transport policy development. Employment, income, driver's
license holding, household lifecycle stage, and education levels are among the variables that
are internally generated in the simulation, then used to predict household car ownership and
mobility. Thus many explanatory variables that are exogenous for other forecasting models

are endogenous in MIDAS.

MIDAS provides parameters which can be adjusted by the user to manipulate these
internally generated demographic and socio-economic variables to represent future
scenarios of interest. Changes in highway and transit levels of service can be represented
by modifying accessibility measures that are used in the car ownership model. In these
scenario analyses, MIDAS does not forecast future behavior through longitudinal
extrapolation of cross-sectional variations; its forecast is firmly based on longitudinally

observed patterns of changes.

MIDAS embodies the causal structure underlying socio-demographic evolution of a
household. This leads to several advantages. It simulates household changes and,
therefore, is capable of accounting for changes at the behavioral decision unit in a manner
compatible with disaggregate models of travel behavior. Consisting of many interlinked
components, each dealing with a pertinent socio-demographic element (e.g., employment
and dﬁver's license holding), MIDAS can be readily modified to adapt to a specific
scenario. Also because of its structure, MIDAS performs forecasting while realistically
replicating and extrapolating the internal correlation among variables that contribute to

household car ownership and mobility. In these respects, MIDAS is believed to be more
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useful as a planning tool than aggregate time series models which treat behavioral processes

as a black box.

Many components of MIDAS have dynamic model structures, and forecasts are made along
the time dimension with an increment of one year. MIDAS can therefore be applied to
examine how a particular growth path will influence car ownership and mobility levels.
For example, it can be used to evaluate the impacts of a gradual increase in gasoline prices,
or to evaluate their sudden hike. MIDAS can also be used to measure short-term and long-
term changes and evaluate the difference between short-term elasticities and long-term

elasticities of mobility levels.

These advantages, however, must be critically appraised in future effort as MIDAS is still
in its developmental stage. Also it must be kept in mind that there are certain disadvantages
due to the fact that MIDAS is a dynamic model system. Most importantly, the model
system is complex and requires more extensive and detailed data. The appropriateness of
extrapolating observations obtained in four years (April 1984 through April 1988) for long
range forecasting needs to be thoroughly examined. It has not been examined how the fact
that the data were collected during a period of economic expansion has affected the model
estimation. Incorporating supply-demand interaction, the impact of regional economy,
threshold effecfs, and non-linear responses, is beyond the scope of the current effort.
Despite these limitations, the study results indicate that the approach taken has been more

than worthwhile, and the outcome is a useful and versatile policy tool.
The specific tasks of the project are:
- Improve the car ownership and mobility model system developed

earlier for DVK (Kitamura, 1987a, 1988a) by integrating it with a
4



demographic simulator, including trip distances as endogenous
variables of the model system, and, if possible, travel costs as

explanatory variables,

- Perform simulation experiments to develop long term forecasts for

the year 2010 based on the data used in the preparation of SVV II,

- Compare the forecasts with other comparable forecasts (Gunn, van

der Hoom and Daly, 1987; van den Broecke, 1988),

- Derive short-term and long-term elasticities to changes in income,
employment, and driver's license holding, and compare the results

with other forecasts (van den Broecke, 1988), and

- Evaluate the results and develop recommendations for future effort.

The emphasis in this report is to introduce the concept of dynamic models of household
demographics as well as car ownership and mobility, to offer a detailed account of the
structure of the components of the simulation system together with discussions on the
underlying assumptions and model development processes, and to present the results of the

simulation and compare them with other forecasts.

This report is organized as follows. In the next section, the overall modeling approach and
the structure of MIDAS are presented. In particular, the use of household types as a major
modeling element is discussed, and the scheme used to define household types is
described. Following this, the transition among household types is discussed in Section 3

together with a set of logit models used in MIDAS to simulate the evolution of household

5



types. Section 4 presents the results of a causal analysis of employment, driver's license
holding, and personal income (Although the resulting causal models were not considered
robust enough to be used as forecasting models, they nonetheless offered a basis for the
many modeling decisions that had to be made during the development of MIDAS). The
demographic component of MIDAS and its program elements are described in detail in
Section 5. Section 6 describes the mobility component of MIDAS, which consists of a car
ownership model, motorized-trip generation models, a modal split model, and trip distance
models by mode. Section 7 reports the results of a validation exercise where predictive
accuracy of the models in the mobility component is examined using Wave-10 data that
were not used to estimate them. Section 8 contains descriptions of MIDAS input
parameters and discusses the weighting procedure applied to the sample households used in
MIDAS simulation runs. In Section 9, MIDAS forecasting results are presented and
compared with other existing forecasts, car ownership and mobility growth under different
income growth scenarios are evaluated, and short-term and long-term elasticities are

examined. Section 10 contains a summary and recommendations.

1a sample of travel behavior studies using the Dutch National Mobility Panel data set can be found in
Goulias and Kitamura (1989, 1991), Golob (1986, 1989, 1990), Golob and Meurs (1986, 1987),Golob and
van Wissen (1988), Golob, van Wissen and Meurs (1986), Goodwin (1987), Kitamura (1987a, 1987,
1987c, 1988a, 1988b, 1989a, 1989b), Kitamura and Bovy (1987), Kitamura and Bunch (1990), Kitamura
and van der Hoorn (1987), Meurs, van de Mede, Visser and van Wissen (1987), Meurs, Gloerich, van de
Mede, Visser and Klok (1987), Recker, Golob, McNally and Leonard (1987), and van der Hoorn and
Kitamura (1987).

2 See Bachman, O'Malley and Johnston (1978), Davidson (1972), Juster and Land (1981), Land and Rogers
(1982), Land and Spileman (1975), Orcutt, Caldwell and Wertheimer (1976), Spengler and Duncan (1956),
Rossi and Gilmartin (1980), Schoen (1988), Willis (1971).



2. Structure of MIDAS

This section offers an overview of the modeling approach taken to develop MIDAS, and
presents a broad picture of how it replicates household evolution over time. Following
this, the household type classification scheme used in the study is described. The transition
among household types is a governing relationship in MIDAS; changes in many household
and personal attributes are conditioned on household type transition. The discussions in

the second half of this section and Section 3 are directed to this subject.
2.1. Framework

The mechanisms underlying changes in household attributes are difficult to identify. This
is in part due to the fact that many attributes are so intricately interwound that identifying
the primordial factors that trigger changes is almost impossible. For example, consider the
labor force participation by married women and the presence of pre-school children in the
household. Does a woman choose to stay home because of the presence of children, or

does she (and her household) choose to have children, and therefore leave the labor force?

Furthermore, it is likely that many causal structures exist that apply to a given change. For
example, a recerﬁ analysis of trip chaining behavior (Kitamura, Nishii and Goulias, 1990)
report that several alternative causal structures explain observed behavior equally well,
suggesting that there are many causal relationships that underlie observed behavior. In
some instances it may be the presence of children that prevents a woman from participating
in the labor force, and in other occasions it may be a woman's conscientious choice to

leave the labor force in order to raise children.



Developing a simulation model of household evolution is not a trivial task because it
requires a model of causal relationship underlying changes in household attributes. As the
above example indicates, even the well studied event of birth becomes a difficult subject to
model. Yet, erroneous forecasts may result if the inter-relationships among variables are
not properly accounted for. Obviously a model would require a set of simplifying
assumptions to be operational. Modeling household evolution is further complicated
because of interactive changes at two levels: the household and the individual. The
attributes of a household will change as a new member enters it or its existing member exits
from it. Its attributes may also change when its members' attributes change. Changes at
these two levels must be consistently reproduced for a simulation model to properly
function. In MIDAS, the evolution of household characteristics and mobility over time is
replicated in a recursive manner by simulating transitions in the household type, changes in
the attributes of household members, changes in car ownership, and levels of mobility.

The overall dynamic structure of MIDAS is presented in the block diagram of Figure 2.1.

The transition between household types is viewed as the most fundamental element of
household evolution in MIDAS. Ample evidence exists in the literature demonstrating the
importance of household lifecycle in travel behavior analysis and demand modeling. The
household types used in MIDAS are closely related to the concept of lifecycle stage.
MIDAS treats the progression of a household through lifecycle stages as the basic building
block of its dynamic structure. Changes in person attributes and mobility are modeled

around a model of household type transition.

Given a transition in the household type, new household members are generated, or
existing household members are eliminated, and member characteristics are altered in
MIDAS. The transition in household types thus serves in MIDAS as a control that

constrains the number and characteristics of household members.
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All pertinent person attributes are endogenously determined in MIDAS, including:
education, driver's license holding, employment, and personal income. All person
attributes at time t are assumed to be dependent on those of time t - 1, and to change
randomly over time (with the obvious exceptions of age, which changes deterministically,
and sex, which does not change). Thus the household types and person attributes are

viewed as stochastic processes in MIDAS (Figure 2.2).

The attributes of household members are aggregated to determine household attributes,
such as the number of workers, number of drivers, and total household income.
Household car ownership is determined given these household and person attributes and
the level of car ownership in the previous period. The mobility of a household is then
randomly determined, given the household and person attributes and car ownership.
Previous analyses of the Dutch Panel data set in general indicate that the relationships
among household and person attributes, car ownership, and mobility are unidirectional,
with household and person attributes influencing car ownership, which in turn influencing
mobility. The reverse relationship is conceivable. For example, a high mobility level may
cause the acquisition of a car at some later time. Availability of a car in a household may
encourage its non-driver members to acquire a driver's license. These reverse causal
relations are not assumed in the current version of MIDAS as Figure 2.1 indicates. This,
however, is not fo imply that reverse relationships do not exist. In fact further research is
needed in this area to gain more refined and precise depiction of the dynamics in household

evolution and mobility.
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2.2. Household Classification

Five household types are used in MIDAS. These are

Single-person households (Singles),
Households of a man-woman couple (Couples),
Nuclear family households (Families),
Single-parent households (Single Parents), and
Other households (Others).

This classification is based on the belief that the composition of adult members of a
household is closely associated with its travel behavior. Thus households are classified into
the following three broad categories: single-adult households, two-adult households, and
others. The first two are each further divided into two categories according to the presence
or absence of children: singles and single parents; and couples and families. This is based
on the major conclusion of the activity-based travel analysis that children of a household
importantly influence the travel patterns of its adult members (Goodwin, 1983; Jones, et
al.,1983). The classification also reflects the notion of lifecycle (Jones, et al, 1983;
Kostyniuk and Kitamura, 1982). The ages of the members of the household are not used
to define household categories in this study because they are variables used in various

model components of MIDAS.

The analysis preceding the development of MIDAS used a more detailed classification
scheme that included "extended families" (nuclear families plus "other" individuals) and
"extended couples" (man-woman couples plus other individuals) in addition to the above
five categories. These two categories are grouped together with "other" households in

MIDAS due to the limited sample size of these categories.
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A household is classified into one of the five household types on the basis of the number of
adult men, number of adult women, each member's position in household as recorded in
the Dutch Panel data file, and number of children. The classification process is

summarized in Figure 2.3.

The frequency distribution of household types thus defined is presented in Figure 2.4 for
Waves 1, 3, 5, and 7 of the Dutch Panel survey. The distribution varies noticeably across
waves due to attrition and sample refreshment. The majority (85 to 90%) of the Dutch
Panel households fall in the first three household types; 15 to 20% of the households are

singles, approximately 25% are couples, and 45 to 50% are families.

The distribution of household types is presented in Table 2.1 by municipality class. A clear
tendency emerges from this table. Single persons tend to be in larger metropolitan areas
(BOV's) while families tend to be in commuter communities and smaller communities in
rural settings. The fraction of single-person households exceeds 30% in larger urban areas
(BOV's), but is below 10% in smaller communities that are not served by train. Nuclear
family households, on the other hand, account for less than 30% in the largest urban areas
(BOV-Large), while their fractions exceed 50% in smaller communities. The correlation
between the household type and the size of urban area is evident and reflects preferences in
residential location choice. (This correlation is not reflected in the current version of
MIDAS which does not include a residential location compouént. Consideration of it is

obviously essential when the scope of MIDAS is extended to include residential choice.)
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1. Household Type is Single Person when:

Household Size=1

2. Household Type is Couple when:

Number of Men =1, and
Number of Women = 1, and
Number of Heads = 1, and
Number of Wives = 1, and
Number of Children = 0, and
Number of Other Members = 0

3. Household Type is Family when:

Number of Men = 1, and
Number of Women = 1, and
Number of Heads = 1, and
Number of Wives =1, and
Number of Children > 0, and
Number of Other Members = 0

4. Household Type is Single Parent when:

Number of Men + Number of Women = 1, and
Number of Children > 0, and
Number of Other Members = 0

5. Household Type is Other when:

The Household cannot be classified in any of the above.

Figure 2.3
Household Classification Scheme
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Household Type Frequencies in Wave 1 and in Wave 3
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Table 2.1.a
Distribution of Household Types by Urban Area Class in Wave 1

Household Type

Area Class Single Couple Family Single P. Other Total
BOV-Large 56 50 52 16 8 182
(308)  (27.5) (28.6) 8.8  (4.9) (100)

BOV-Small 92 71 86 19 12 280
(29 (254 (30.7) 68)  (4.3) (100)

BOS 58 97 147 39 17 358
(16.2) (27.1) (41.1) (109) (4.7 (100)

Community 38 75 112 28 7 260
withTrain = (146)  (288) @3.1) (108) (27 (100)
Community 7 34 69 7 4 121
withoutTrain 5y (23.7) (57.0) (58  (3.3) (100)
Others 49 134 313 43 24 563
8.7 (23.8) (55.6) (1.6)  (4.3) (100)

Total 300 461 779 152 72 1764
(17.0) (26.1) (44.2) 8.6 (4.1 (100)

( ): Row Percentage



Table 2.1.b
Distribution of Household Types by Urban Area Class in Wave 3

Household Type

Area Class Single Couple Family Single P. Other Total
BOV-Large 66 75 75 23 12 251
(263) (299 (29.9) 92)  (48) (100)

BOV-Small 67 57 78 15 14 231
(29.00  (24.7) (33.8) 65 (6.1 (100)

BOS 39 61 136 28 16 280
(13.9)  (218) (48.6) 100)  (5.7) (100)

Community 26 55 108 13 3 205
with T, = a3nh .~ g (52.7) 63)  (15) (100)
Community 17 ' 37 92 12 5 163
without Train 14 4 (227 (56.4) 74 @1 (100)
Others 48 121 339 39 10 557
(8.6) (21.7) (60.9) (7.0 (1.8) (100)

Total 263 406 828 130 60 1687
(15.6)  (24.1) (49.1) @7 T 3:6) (100)

( ): Row Percentage



Table 2.1.c
Distribution of Household Types by Urban Area Class in Wave §

Household Type

Area Class Single Couple Family Single P. Other Total
BOV-Large 64 59 51 19 7 200
(G20)  (29.5) (25.5) 9.5 (3.5 (100)

BOV-Small 119 68 84 13 14 208
(39.9)  (22.8) (28.2) 44 @7 (100)

BOS 78 97 168 38 15 396
(19.7)  (24.5) (42.4) (9.6) (3.8 (100)

Community 41 76 129 17 7 270
withTrin 159y (28.1) (47.8) (63)  (2.6) (100)
Community 15 2 80 7 3 132
withoutTrain 1y oy (20.5) (60.6) 63)  (23) (100)
Others 54 125 326 30 18 553
9.8)  (22.6) (59.0) (5.4  (33) (100)

Total 371 452 838 124 64 1849

(20.1) (24.4) (45.3) 6.7) (3.5) (100)
( ): Row Percentage _



Table 2.1.d
Distribution of Household Types by Urban Area Class in Wave 7

Household Type

Area Class Single Couple Family Single P. Other Total
BOV-Large 63 68 72 18 11 232
@72  (29.3) (31.0) 78)  (4.7) (100)

BOV-Small 109 63 89 13 19 293
(72  (2L5) (30.4) (4.4) (6.5 (100)

BOS 76 108 153 32 17 386
(197  (28.0) (39.6) 83)  (4.4) (100)

Community 30 79 117 20 9 255
with Tl Ldalgy: v 4(31.0) (45.9) 78 (3.5 (100)
Community 15 26 82 8 4 135
without@eain, - W IHE - (193) (60.7) 59 (3.0 (100)
Others 59 149 359 38 18 623
98)  (23.9) (57.6) 6.1) (29 (100)

Total 352 493 872 129 78 1924
(183)  (25.6) (45.3) 67  (4.1) (100)

( ): Row Percentage



2.3 Summary

In MIDAS, household evolution over time is modelled at two levels: the household and the
individual. The building block of the household evolution is the household type transition.
Around this transition, household members are made to change education, driver's license
holding, employment, and personal income. The classification of household types consists
of single person, couple, family, single parent, and all other households. Evolution in
MIDAS is achieved by first determining the household type transition, then updating each
household member's characteristics (attributes), and finally simulating the household
mobility measures. All transitions are determined probabilistically. This procedure is
repeated continuously until the final year of simulation. An investigation on the possible
limitations of MIDAS due to the lack of a component of relocation is outlined. This will be

further elaborated upon in Section 10.
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3. Household Type Transition

Household type. transition probabilities are an essential element of the MIDAS
sociodemographic component. An analysis of the information in the 5 odd-numbered panel
waves (Waves 1, 3, 5, 7, and 9) has led to the adoption of tabulation schemes and
weighting procedures that are different from those in the earlier effort (Kitamura and

Goulias, 1989).
3.1 Selectivity in Panel Participation

Theoretical considerations and empirical evidence in the literature (e.g., Goodwin, 1987,
Kitamura and Bovy, 1987) suggest that panel survey participants tend to present low
frequencies of household type change. This conjecture stems from the consideration that
participation decision by panel respondents may be influenced by changes in the
household. For example, the members of a household may be less willing to continue to
participate in a panel survey after a divorce, death in the family, or other events that lead to
a change in the household type. Also it is likely that changes in household type are
sometimes concurrent with changes in residential location, reducing the likelihood of
continued participation in the survey. If such tendencies are in fact present but are not
taken into account in the analysis, then biased estimates of household type transition
probabilities will result. In this study a probabilistic model of attrition is developed and

applied in a weighting procedure that is designed to eliminate possible attrition bias.

In light of the recognition that the sample of households in the Dutch Panel data may not
represent the transition of household types in the population, effort was made to include
external demographic information to verify results obtained from the Panel data. Data from

a number of sources have been collected and reviewed for possible inclusion as external

22



information in the anal)./sis of household type transition. Unfortunately, available statistics
are not comparable with the analytical framework of this project. Both the PRIMOS and
LIPRO transition probabilities are person-based. Usefulness of the information from these
sources in the present study is limited because it can be used as an external check only for
single-person households. Another incompatibility is the household type classification;
MIDAS has adopted a classification scheme that is radically different from the one in
PRIMOS or LIPRO. Furthermore, our inspection revealed certain inconsistencies in the
person-based transition probabilities furnished to us. Due to these difficulties, it was
decided not to devise an elaborate procedure to match the person-based transition
probabilities and the household-based transition probabilities in MIDAS (External
information is used to develop a set of weights that are applied to Panel households for

forecasting, see Section 8.)

Another possibility is the use of weights developed by Bureau Goudappel Coffeng. These
weights were developed by comparing the distribution of households by income, lifecycle
stage, and municipality of residence, between the Dutch Panel sample and the OVG
sample. The BGC weights are not used in the analysis of this section because these three
stratification variables are included in the household type transition models developed in
this section; thus their effects are already accounted for in the estimation of MIDAS
household type transition models.

Due to these limitations in the available information, external validation of household type
transition probabilities obtained from the Dutch Panel sample is difficult to perform.
Conseduently eliminating possible biases in statistics obtained from the Dutch Panel sample
becomes crucial. The analysis of attrition is extremely important because of the possible
correlation between attrition and household type transition discussed above (non-response

bias upon the initial attempt of contact, on the other hand, is not considered to play a major
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role here because no systematic relation is anticipated between initial response and

household type transition afterwards).

3.2 Multi-Wave Attrition

The participation of respondents in the Dutch Panel has been extensively discussed in
Wissen and Meurs (1989). Their analysis, however, is primarily person-based while
MIDAS is constructed using the household as its base unit. This calls for a household-
based analysis of panel participation, which is the subject of this section. Figure 3.1
schematically presents the participation of households across the five survey waves. Note
the large number of households leaving the panel between waves (they shall be hereafter
called "leavers"). Intermittent participation (as opposed to continuous participation in every
wave) is very infrequent; once a household leaves the panel, the chance of it returning is

negligibly small.

As reported in Wissen and Meurs (1989), the new participants in later waves are
substantially different from the continuing participants (or "stayers") from the initial wave.
In addition, the households that left the panel are also substantially different from the
stayers (Kitamura and Bovy, 1987). If this self-selective attrition is systematically related
to household type transition, then the sample will lead to biased inferences. The approach

taken in this study to account for systematic attrition is discussed below.

The availability of measures of household attributes in earlier panel waves permits the
construction of probabilistic models of attrition. These models can be used to develop
weights to correct for attrition biases (Hensher, 1987). Kitamura and Bovy (1987) have

shown that such weights can be constructed for trip generation analysis, based on a system
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of trip generation models and a probabilistic model of attrition. In the present study, the
weights used to account for attrition are developed based on a probabilistic multi-wave

attrition model, formulated as an ordered response probit model (see Maddala, 1983).

Household panel participation is viewed as an ordered response which depends on
background variables such as the educational level and the composition of the household.
The number of waves that the household took part in the panel is used to define response
categories (as in the other analyses of this study, only odd-numbered waves are
considered). Intermittent participation is so infrequent that it is not differentiated in the
analysis, i.e, the number of waves is enumerated the same way whether they are
consecutive or not. The measure, however, is approximate because even-numbered waves
(2, 4, 6, and 8) can not be incorporated due to their absence in the data file used in the
project. The resulting error is not systematic and it is anticipated that it will not bias the

outcome of the analysis.

The definition of the variables used in the model is presented in Table 3.1 and the
estimation results are summarized in Table 3.2. The sample of the analysis consists of all
the households which participated in the first wave. In the Table, a positive coefficient
estimate of a variable implies that households with larger values of that variable have higher
probabilities of staying in the panel longer. In agreement with the earlier analysis of
attrition between Wave 1 and Wave 2 (Kitamura and Bovy, 1987), education is a major
determinant of panel participation. The positive effect of mobility (TRIPS/NPRCRD) is

also evident in the results.

Using this multi-wave attrition model, a weight is formulated for each household and for
each wave as the reciprocal of the probability that the household will participate in that

wave. For example, consider a household which participated in the wave-1 survey. If the
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Table 3.1

Definition of Variables and Participation Levels in the
Ordered Response Probit Model of Multi-Wave Attrition

Variable Definition
NPRCRD Number of respondents in the household
CHLD11- Number of children less than 11 years old.
CHLD11+ Number of children more than 11 years old.
SINGLE 1if a single person household; 0 otherwise.
COUPLE 1 if the household is a couple; 0 otherwise.
FAMILY 1 if the household is a family; O otherwise.
SGLPRN 1 if a single person household; 0 otherwise.
ELEM 1 if the highest level of education in the household is elementary
school; 0 otherwise.
PROF 1 if the highest level of education in the household is professional
school; 0 otherwise.
HSCH 1 if the highest level of education in the household is high school; 0
otherwise..
MIDPRO 1 if the highest level of education is; 0 otherwise.
WORKERS Number of employed persons in the household.
LOINC 1 if the total annual personal income in the household is less than
dfl 17000 ; O otherwise.
HDNOJOB 1 if the head of the household is unemployed; 0 otherwise.
DRIVERS Number of drivers in the household.
ONECAR 1 if the household owns one car; 0 otherwise.
TWOCAR 1 if the household owns two or more cars; 0 otherwise.
TRIPS/NPRCRD Number of trips made divided the number of respondents.
BOVLARGE 1 if the household resides in large metropolitan area with a transit
. district; O otherwise.
Dependent Variable Cumulative
Number of Waves Participated Frequency Frequency
1 ; 679 679
2 173 852
3 179 1031
4 38 1069
5 610 1679




Table 3.2

Ordered Response Probit Model of Multi-Wave Attrition

”~~

Varjable p t
NPRCRD ~0.066 -0.50
SINGLE 0.487 2.18
COUPLE 0.533 2.82
FAMILY 0.501 2.49
SGLPRN 0.456 1.91
ELEM -0.628 -4.88
PROF -0.248 -2.92
HSCH -0.257 -2.98
MIDPRO -0.229 -2.67
ONECAR -0.082 -0.92
TWOCAR -0.292 -2.15
BOVLARGE -0.419 -4.26
WORKERS -0.078 -1.28
DRIVERS 0.063 1.14
LOINC -0.275 -3.03
CHLD11- 0.115 2.14
CHLD11+ -0.005 -0.04
TRIPS/NPRCRD 0.016 6.71
HDNOJOB -0.031 -0.32
ay 0.345 1.10
oz 0.631 2.01
a3 0.926 2.95
oy 0.990 3.15
N 1679
L(0) -2237
L(c) -2170
LBy -2059
21(0)-L(Py) 357
2AL-LB) 222

¥ Chi-square distributed with degrees of freedom 1656
** Chi-square distributed with degrees of freedom 1660



probability that this household participates in the wave-3 survey is estimated by the model
as 0.8, then the wave-3 record of this household will be weighted by 1.25 (= 1/0.8).
Weights thus computed are used in some of the tabulations of household type transition

presented below.

3.3 Household Type Transition Frequencies Based on Alternative Pooling

Schemes of Multi-Wave Observations

A set of logit models is used in MIDAS to describe the transition between household types.
One logit model is formulated for each "origin" household type. (Suppose a household
belongs to type i in period t - 1, and type j in period t. Then we may say that the household
made a transition from the origin state, i, to the destination state, j, between periods t -1 and
t.) This increases sample size requirements because a sufficiently large number of
observations is needed for each household type. Accordingly records from the five odd-
numbered waves are combined, or "pooled," to form a large data set while treating them as
if they came from two time points, say, t - 1 and t. Note that a transition from a household

type to itself implies that the household did not change its type.

The frequency of transitions among household types is summarized in Table 3.3 as a
matrix. Transitions are observed over a period of one year using the five household types
described in the previous section. A pooled data set of wave pairs is used to prepare the
transition frequency matrix. In this pooled data set, paired observations from Waves 1 and
3, Waves 3 and 5, and Waves 5 and 7 are combined together. This data set shall be called

the "repeat" data set.

It is clear from the table that the transition in household types is far from being volatile.

The large frequencies of diagonal cells indicate that the type of a given household tends to
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Table 3.3
Household Type Transitions of the Repeat Data Set

Household Type at t+1
Household
Type att Singge Couple Family  Single Par. Other Total
Single 8 7 7 7 26 904
(94.8) (0.8) (0.8) (0.80) (2.9) (100)
Couple 19 1200 78 0 18 1315
(1.4) (91.3) (5.9 (0.0) (1.4) (100)
Family 2 57 2545 46 16 2666
(0.1) 2.1) (95.5) (1.7 (0.6) (100)
Single Par. 10 3 38 298 36 385
(2.6) (0.8) (9.9) (77.4) (9.4) (100)
Other 13 34 9 9 110 175
(7.4) (19.4) (5.1) (5.1) (62.9) (100)
Total 901 1301 2677 360 206 5445
(16.5) (23.9) (49.2) (6.6) (3.8) (100)

( ): Row percentage



be the same when observed one year apart. The result, however, may be due to panel
attrition, if households tend to drop out of the panel when their compositions change. The

generality of this finding, therefore, must be carefully examined.

Salient transitions (arbitrarily defined as those with 25 or more observed transitions) are:
couples to families, families to couples, families to single parents, single parents to
families, and others to couples. Most salient transitions involve couples, families, and
single parents. Singles, on the other hand, are relatively detached from the rest. This
transition matrix obtained using the Panel sample households thus indicates that singles

tend to remain as singles over time.

Frequencies of household type transitions are tabulated using another data set that is
obtained using a different pooling scheme. The first repeat, data set included all observed
transitions. If a household participated in all five odd-numbered waves, then it offers four
observations of transition. The results are presented in Table 3. In the second data set, on
the other hand, only the first transition observed for each household is included. This data
set shall be named "no-repeat" data set because no household has repeated observations in

it. The results are summarized in Table 3.4.

The household transition matrix from the no-repeat data set presents higher frequencies of
households changing household types than that from the repeat data, supporting the
conjecture that panel participation and household type transition are correlated. The
difference between the two, however, is rather small. Some of the characteristics of these

transition frequency matrices are summarized below.
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Household Type Transitions of the No-Repeat Data Set

Table 3.4

Household Type at t+1
Household
Type at t-1 Single Couple Family  Single Par. Other Total
Single 390 3 4 5 14 416
(93.8) (0.7) (1.0 (1.2) (3.4) (100)
Couple 8 531 42 0 11 592
(1.4) (89.7) (7.1) (0.0) (1.9) (100)
Family 1 27 983 26 6 1043
(0.1) (2.6) (94.2) (2.5) (0.6) (100)
Single Par. 5 0 22 118 9 154
3.2) (0.0) (14.3) (76.6) (5.8) (100)
Other 6 20 2 4 60 92
(6.5) (21.7) (2.2) (4.3) (65.2) (100)
Total 410 581 1053 153 100 2297
(17.8) (25.3) (45.8) (6.7 (4.9 (100)

( ): Row Percentage



Transition from Single: The repeat data show that 94.8% of singles remained
single one year later, while 5.2% changed status. The no-repeat data show that a
slightly smaller 93.8% of singles remained single and 6.2% changed status. The
probabilities of no change as reported by the LIPRO study are always below 0.9 for
individuals of at least 14 years old. The no-repeat data set offers transition

probabilities that are closer to the LIPRO results.

Transition from Couple: The repeat data set yields a 91.3% probability of no
change in household type, while the no-repeat data set offers a corresponding
probability of 89.7%. Again the no-repeat data set indicates more frequent changes

in household type. Transition to Family is most frequent from Couple.

Transition from Family: Family is the household type that is most stable,
presenting the largest probability of no change; the repeat data set indicates 95.5%
and no-repeat data set shows 94.2%. Transitions to Couple and Single Parent are
most frequent. The estimated transition probability from Family to Single Parent is
noticeably larger in the no-repeat data set than in the repeat data set (2.5% vs.

1.7%).

Transition from Single Parent: Single Parent is a household type that is more
volatile than the above three, with a much lower frequency of remaining within its
own category (77.4% in the repeat data set and 76.6% in the no-repeat data set). In
the no-repeat data, the estimated transition probability to Family (14.3%) is
noticeably larger than that indicated by the repeat data (9.9%), while the transition

probability to Other is smaller (5.8% vs. 9.4%).
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Transition froni Other: This is the most unstable household type with the
probability of transition to itself of 62.9% in the repeat data set and 65.2% in the
no-repeat data. Due to the heterogeneous nature of this household type, no logit

model is developed to explain transitions from this state (see Section 3.6).

In conclusion, the no-repeat data set which is least influenced by selective attrition exhibits,
in general, less stability in household type transition. It can be expected that estimating
logit models using the no-repeat data will yield better results. However, additional

analyses are needed before selecting a data base.
3.4 Weighted Transition Frequency Tables

Weights developed using the attrition model presented in Table 3.2 are used in tabulating
the household type transition frequency tables shown in Tables 3.5 and 3.6. Table 3.5 is
based on the repeat data set, while Table 3.6 on the no-repeat data set. It is notable that the
application of the weights have increased the stability in transition. Contrary to our
expectation, households that changed household types did not necessarily have a higher
estimated probability of leaving the panel. The use of attrition weight is nonetheless
justifiable and preferable in light of the high attrition rate in the panel data.

The differences between the two weighted transition tables are examined using
approximate statistical measures (they are approximate because the two tables are not
independent and also because the frequencies are inflated due to weighting). However,
while the two are different, their difference is not substantial. In fact, the application of the
weights has decreased the differences between the two tables based on the two data pooling
schemes. Thus the pooling scheme is not expected to substantially influence the result of

logit model estimation.
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Table 3.5
Weighted Household Type Transitions of the Repeat Data Set

Household Type at t+1
Household
Type at t Single Couple Family  Single Par. Other Total
Single 1806 15 12 16 49 1898
(95.2) (0.8) (0.6) (0.8) (2.6) (100)
Couple 28 2205 126 0 32 2391
(1.2) (92.2) (5.3) (0.0) (1.3) (100)
Family 2 98 3641 70 29 3840
(0.1) (2.6) (94.8) (1.8) (0.8) (100)
Single Par. 16 4 21 521 67 629
2.5) (0.6) (3.3) (82.8) (10.7) (100)
Other 35 68 13 10 283 409
(8.6) (16.6) (3.2) (2.4) (69.2) (100)
Total 1887 2390 3813 617 460 9167
(20.6) (26.1) (41.6) (6.7) (5.0 (100)

( ): Row Percentage



Table 3.6
Weighted Household Type Transitions of the No-Repeat Data Set

Household Type at t+1
Household
Type att Single Couple Family  Single Par. Other Total
Single 865 6 8 12 26 917
(94.3) 0.7) (0.9) (1.3) (2.8) (100)
Couple 10 966 67 0 21 1064
0.9 (90.8) (6.3) (0.0 (2.0) (100)
Family 0 46 1395 37 12 1490
(0.0) 3.1) (93.6) (2.5) (0.8) (100)
Single Par. 9 0 11 199 19 238
(3.8) (0.0) (4.6) (83.6) (8.0) (100)
Other 11 45 2 2 151 211
(5.2) (21.3) (0.9) (0.9) (71.6) (100)
Total 895 1063 1483 250 229 3920
(22.8) (27.1) (37.8) (6.4) (5.8) (100)

( ): Row Percentage



3.5 Stationarity and Higher-Order History Dependence

The use of pooled data is based on the assumption that the transition matrix remains stable
over time. This stationarity assumption was statistically examined in the study. The results

offered empirical evidence that the transition matrix is indeed stable over time.

Another assumption examined in the course of this study is that of history independence.
The presentation of household type transitions in the matrices of Tables 3.3 though 3.6
assumes that the household type at time t is dependent on that at time t - 1, but the history
prior to time t - 1 does not influence the household type at t. In other words, household
type transition is assumed to be conditionally independent of the past given the household

type of the previous time period,;
Pr{H(t) | H(t-1), H(t-2), H(t-3)...] = Pr[H(t) | H(t-1)]

where H(t) denotes the household type at time t, and Pr[A | B] represents the conditional

probability of event A given event B.
A statistical examination of this history independence assumption offered an indication that
the assumption is not valid. An attempt to construct a model with higher-order history

dependence, however, ran into the problem of insufficient sample size. For example,

consider the following second-order history dependent model:

Pr{H(t) | H(t-1), H(t-2), H(t-3)...] = Pe[H(t) | H(t-1), H(t-2)]
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The household type at t, H(t), is now influenced by the household type at t - 2, H(t-2), as
well as the household type at t - 1, H(t-1). Estimation of this model, however, requires
data from three time points (t, t - 1, and t - 2), significantly reducing the sample size.
Furthermore, it is extremely rare that a sufficient number of observations are available to
estimate the probability of transitions that involve infrequent household types such as single
parents and others. For these reasons, such elaborate representation of history dependence

is not adopted in the current form of MIDAS.
3.6 Logit Models of Household Type Transition

An extensive set of variables is examined for inclusion in the models of household type
transition. These variables include often-used person attributes, such as age, sex,
employment, license holding, and income. In addition, a wide range of variables are
defined to represent many additional household characteristics, e.g., employment of the
household head, employment of the spouse of the head and the number of children by age
group. The definition of the variables used in the analysis is presented in Table 3.7. The

resulting models are described below.

Transition from Single: Due to the limited frequency of transitions from Single to
the other household types, the model is formulated as a binary response model
involving the transition from Single to Single (no change) and from Single to other
(change in household type). The age, gender, education, income and employment
status of the person are the explanatory variables of this model (Table 3.8). The
. model coefficients indicate that individuals of 18 to 25 years old tend to change their
status. The variable, HD18-35, is suppressed in the model to avoid complete linear
dependency among the age variables. On the other hand individuals older than 35

years are less likely to change. Non-employed single individuals tend to remain as
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Table 3.7
The Variables Used in Logit Model Formulations

Variable Definition

HD18-35 1 if the age of the head of the household is between 18 and 35 years.

HD25-35 1 if the age of the head of the household is between 25 and 35 years.

HD35-65 1 if the age of the head of the household is between 35 and 65 years.

HD65+ 1 if the age of the head of the household is above 65 years

WF18-35 1 if the age of the spouse of the household is between 18 and 35 years.

CHLDO06 Number of children less than 6 years old.

CHLD11 Number of children between 6 and 11 years old

CHLD17 Number of children between 12 and 17 years old

CHLD18 Number of children at least 18 years old.

MALE 1 if the head is male.

HDNOIJOB 1 if the head is unemployed

WFNOJOB 1 if the spouse is unemployed

HDHIEDUC 1 if the head of the household has at least a University degree

WFHIEDUC 1 if the spouse of the household has at least a University degree

SQRTINC Square root of the total personal income (dfl) divided by 1000.

Definition of Household Types

SINGLE 1 if the household is a single person

COUPLE 1 if the household is composed of two adults of different gender

FAMILY 1 if the household is composed of two adults of different gender and
there is at least one child

SGLPRN 1 if the household is composed of an adult and at least one child

OTHER i 1 if the household is not part of any of the above categories




Variable

Table 3.8

Logit Model of Transition from SINGLE

-~

p

t

Weighted
B

intercept
HD25-35
HD35+
MALE
HDNOJOB
HDHIEDUC
SQRTINC

1.1662
0.5665
1.4189
-0.3365
1.6037
0.0929
0.0018

1.07
1.07
2.27
-0.78
2.71
0.21
0.24

1.4250
0.6380
1.5396
-0.3405
1.6850
-0.0083
-0.0001

1(0)
Lo

TS
2L0)-LP))
2AL0)-L(B))

Observed Frequencies
SINGLE-SINGLE
SINGLE-OTHER

-281.4
-96.3

-86.3
390.1
20.0

380
26

376
26

Total

406

402

* t-statistics are not consistent due to weighting.



singles. The other variables are not significant in either weighted or unweighted

logit models.

Transition from Couple: The age and education of the head of the household and
the employment status of the spouse are the explanatory variables of the model of
transition from Couples (Table 3.9). The model is specified for three destination
states: Couple, Family, and Other and Single Parent lumped into-one category. A
couple tends to remain to be a couple when the head of the household is over 65
years old and is highly educated. When the spouse is 18 to 35 years old, the couple
is less likely to remain as a couple. The spouse's age is obviously related to the
probability of having a child, thus making the transition from a couple to a family.
A transition to another household type is more likely when the spouse is not

employed.

Transition from Family: The model is specified for three destination states: Family,
Couple, and Other (Table 3.10). Variables representing the number of children by
age group comprise the explanatory variables of the model. The presence of pre-
school children (O to 6 years old) or children in the primary-school age (7 to 11
years old) leads to a higher probability of remaining as a family, while the presence
of children of at least 18 years old increases the chance of changing to another
household type. A variable representing the agé of the head of the household has

been examined, but found to be insignificant.
Transition from Single Parent: This model is specified for two destination states:

Single Parent and Other (including Single, Couple, Family, and Other). The

probability of remaining as a single parent is expressed as a function of the gender
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Table 3.9
Logit Model of Transition from COUPLE

Weighted
Variable p t B t+
Intercept(1)* 4.7456 8.89 4.6927 11.69
Intercept(2)** 0.8128 2.71 0.6979 3.00
HDNOJOB 0.6527 1.65 0.8508 2.75
HD35-65(2) -0.0880 -0.17 0.0168 0.04
HD65+ 0.3352 0.46 0.0265 0.05
WFNOJOB -1.0475 -3.22 -1.1470 -4.42
WF18-35 -1.7987 -3.64 -1.7785 -4.81
L(0) -650.4
L(c) -234.2
LB -209.0
-2(1(0)-L(By) 882.7
2ALQLE) 50.3
Observed Transitions
COUPLE-COUPLE 531 518
COUPLE-FAMILY 42 41
COUPLE-OTHER 19 19
Total 592 578

* Intercept for Couple to Couple
** Intercept for Couple to Family

+t-statistics are not consistent due to weighting.

Note: Since the model is trinomial, variables can appear in two out of the three alternatives. The
number in the parenthesis indicates where the variable is included



Logit Model of Transition from FAMILY

Table 3.10

Weighted
Variable B ¢ B ¢+
Tntercept(1)~ 2.9616 8.00 2.8937 10.05
Intercept(2)** -0.2007 0.77 -0.1418 0.70
CHLDO06 1.3605 2.62 1.5454 3.47
CHLD17 1.5442 4.39 1.4802 5.46
CHLD18 -0.9389 2.57 -0.8429 2.97
HD18-35 0.1036 0.20 0.1470 0.34
1(0) -1145.9
L(c) -270.9
LB -241.1
2((0)-L(By) 1809.5
2AL-LEY) 59.5
Observed Transitions
FAMILY-FAMILY 983 979
FAMILY-COUPLE 27 27
FAMILY-OTHER 33 32
Total 1043 1038

* Intercept tor Couple to Couple
** Intercept for Couple to Family

*+t-statistics are not consistent due to weighting.



Table 3.11
Logit Model of Transition from SINGLE PARENT

Weighted
Variable JB t Ly, t*
Intercept 2.2266 4.49 2.3473 6.27
MALE -1.8860 -3.47 -2.1748 -5.29
HD35-65 -0.0739 -0.13 -0.1732 -0.41
L(0)= -89.4
L(c)= -55.6
LBy= -49.9
2(1(0)-L(Py) 79.1
2ALELEy) 11.5
Observed Transitions
1. SGLPRN-SGLPRN 109 106
2. SGLPRN-OTHER _ 20 20
Total 129 126

* t-statistics are not consistent due to weighting.



of the head. The estimation result indicates that single fathers are more likely to
change their single-parent status than are single mothers (Table 3.11). The age of
the head of the household does not seem to influence the household type transition

for single parent households.

These logit models are used in MIDAS to determine the probabilities that a given household
will make a transition to the respective destination states. These probabilities are in turn
used to simulate transition of household types. Due to limitations in the sample size, it was
not possible to formulate logit models such that a transition probability is determined for
every pair of household types. For those pairs for which logit models are not formulated,

observed transition frequencies are used as transition probabilities.

3.7 Summary

In this section the adoption of tabulation schemes and weighting procedures for the
household type transition are explained. The topics presented are selective panel attrition
and household type transitions, alternative data pooling schemes and household type
transitions, and models depicting household type transitions. The use of weights based on
a multi-wave ordered response probit model showed that panel attrition does not bias the
household type transitions substantially. The no-repeat pooling data scheme (in which
households appear in the data set only once) is preferred to the repeat pooling scheme (in
which households appear in the data set for as many times as they responded to the panel
survey) because it exhibits less stability in household type transition and is least influenced
by selective panel attrition. Four logit models of household type transition are estimated
using the no-repeat data set. Two versions for each model are presented—one for the

attrition-weighted data set and one for the unweighted data set. In MIDAS the probability
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that a given household will make a transition is determined based on the logit models

estimated from the no-repeat data set.
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4. Preliminary Analysis of Person Attributes

The development of MIDAS is preceded by a series of causal analyses of demographic and
socioeconomic characteristics of household members. The methodology and the results of
the causal analyses are summarized in this section. The analysis is a preliminary
investigation aiming at the identification of the causal structures that determine household
members' employment, personal income, and driver's license holding. The resulting
causal models are not used in MIDAS because the analysis did not lead to parsimonious
and robust models. Nevertheless the results of this analysis have offered useful insights
that are the basis of the model development discussed in the next section. The log-linear
model of cross-classification table analysis is used here because of the ease it offers in
evaluating many alternative causal structures (the VMS version of the BMDP Statistical
Package is used in the log-linear analysis of this section). For a comparison of the log-
linear model and the structural equations modelling approach with binary response

variables, see van Wissen and Golob (1990).
4.1. Method

The log-linear model is appealing when the variables involved in an analysis are categorical
with relatively few categories. It determines an expected number of observations in each
cell of a cross-classification table. The expected cell frequency is modeled using the "main
effects" and "interaction effects” of the variables used to formulate the table (these effects
are quite analogous to those in the analysis of variance, ANOVA). The effects are
combined in a multiplicative form such that the logarithm of an expected cell frequency is

expressed as a linear combination of the effects (hence the term, log-linear model).
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For example, consider a three-way classification table defined by three variables, X, Y, and
Z. Leti, j, and k be categories of X, Y, and Z, respectively. A saturated log-linear model,

which exhausts the degrees of freedom and completely replicates the observation, can be

presented as
In[m(i,jK)] = p+ UG) + V() + W(K)
+ UV(i,j) + VW(,k) + UW(i,k) + UVW(i,j k)
where
m(i,j,k) = expected frequency of cell (i,j,k),
n = grand mean,
U(i), V(), Wk) = main effects of X (= i), Y (= j), and Z (= k), respectively,
UV(i,)) = interaction effect of X (= i) and Y (=), etc., and
UVW(i,j,k) = interaction effect of X (= i), Y (= j) and Z (= k).

An important difference exists between ANOVA and log-linear models. In ANOVA there
is the distinction between a response (dependent) variable and explanatory (independent,
or, grouping) variables. Log-linear models can be applied without such distinction.
ANOVA attempts to account for the variation in the response variable using the main and
interaction effects of the explanatory, or classification, variables. In the log-linear model
approach, it is attempted to assess and "describe the structural relationship among the

variables corresponding to the dimensions of the table" (Fienberg, 1973).

A set of nested log-linear models can be used to evaluate whether a certain causal
relationship fits the observations represented as a cross-classification table (Goodman,
1973). In this analysis, many alternative causal structures are tested and most plausible

ones are chosen to describe selected attributes of household members.
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The definition of a few new terms introduced in this section is due at this point. The
relation between factors observed at the same time point is designated as a "synchronous
relation” or "synchronous link." A synchronous relation can be assumed between the
employment status of a household member at time t and his/her personal income also at
time t. The association of a factor with itself across time points is called an "inertial link."
A good example is the relation between a household member's personal income at time t-1
and that at time t. The association between different factors across different time points is
called a "cross-lagged link," e.g., employment at time t-1 and income at time t. An ordered
combination of factors and links is called a "causal chain" and represents how factors

influence each other.

Causal chains are developed for the following critical attributes of the household members

as the response variables:

Employment at time t (Employed, Not Employed),
Personal income at time t (Low, Medium, High), and

Driver's license holding at time t (Yes, No),

where the categories used are presented in the parentheses. The following personal

characteristics are considered as input (explanatory) variables:

Age att,

Gender,

Education att,
Employment at t-1,

Personal income at t-1, and
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Driver's license holding at t-1.
The distinction between explanatory and response variables is derived by considering the
nature of the variables used. For example, age cannot be influenced by personal income
but personal income can be influenced by age. Therefore, age may be used as an
explanatory variable and personal income as a response variable.

4.2. Causal Chain for Employment

The causal analysis performed for employment involves five variables:

AGE(Y) [A]
EDUCATION(Y) [E]
GENDER (S]
EMPLOYMENT(t-1) [0]
EMPLOYMENT(t) [U].

EMPLOYMENT(t) is the response variable. The series of models considered as possible
causal chains are presented in Table 4.1. The models are described in the table using the

symbols shown above in brackets.

Each model is specified as a set of effects, e.g., [AES,EQ,A0,SO,0U]. AES represents
the three-way interaction term involving A (AGE(t)), E (EDUCATION(t)), and S
(GENDER), and EO is the two-way interaction of E (EDUCATION(t)) and O
(EMPLOYMENT(t)). All models are hierarchical, and the inclusion of an interaction effect
implies that the lower-order interaction effects and main effects nested in it are also included

in the model. For example, the inclusion of effect AES implies that two-way interaction
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effects, AE, ES, and AS, and main effects, A, E, and S, are also included in the model.
Thus the model, [AES,EOQ,A0,SO,0U], comprises AES, AE, ES, AS, EO, AO, SO, OU,
AE S, 0, and U.

Figure 4.1 presents the causal chain developed for employment. The chain is based on
model [AES,A0,SO,0U]}, which was chosen because it effectively explains the variation in
the observation with its relatively simple structure. This choice, however, is éubjectively
made balancing the model's fit and simplicity. Also note that none of the models presented
in Table 4.1 fits the observation well as indicated by the large %2 values, suggesting that no

parsimonious causal structure will be able to well explain employment status.

The significant links are the inertial link between EMPLOYMENT(t-1) and
EMPLOYMENT(t), and the synchronous link between EMPLOYMENT(t) and AGE(t).
The former link indicates the presence of strong continuity and inertia in employment
status. The latter reflects such immediately recognizable associations as young and

employed, or old and retired.

Other important linkages include the synchronous link between GENDER and
EMPLOYMENT(t), which reveals the presence of gender differences in labor force
participation. Also, important is the synchronous link between EDUCATION(t) and
EMPLOYMENT(t), revealing the anticipated relation that education influences the
probability of employment. Finally, the three-factor interaction involving AGE(t),
GENDER, and EDUCATION(t) is significant, suggesting cohort effect in female

participation in labor force.
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Table 4.1

Selected Log-Linear Models of Employment

Model d.f. x2 a
1] AES,E0,A0,SO,0U 40 237.29 0.0000
2] AES,E0,A0,SO,AU,0U 30 176.13 0.0000
3] AES,EO,A0,SO,SU,0U 39 215.14 0.0000
4] AES,EO0,A0,SO,EU,0U 39 232.56 0.0000
5] AES,EOQ,A0,0U 41 607.77 0.0000
6] AES,EO,SO,0U 43 794.23 0.0000
7] AES,A0,SO,0U 41 240.67 0.0000
A = AGE(t)
E = EDUCATION(t)
S = GENDER

0 = EMPLOYMENT(Y)
U = EMPLOYMENT(t-1)
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4.3. Causal Chain for Personal Income

In the causal analysis of personal income, the employment status is viewed as its primary
determinant. In addition to the variables and linkages involved in the employment causal
chain, past personal income, INCOME(t-1) with symbol P, is introduced into the causal
chain. The symbol used for personal income at t, INCOME(t), is I. A selected set of the

models considered in the analysis is summarized in Table 4.2.

The model chosen is [AES,AO,EO,SO,0lEIAILSI,OU,IU,IP]. The causal chain implied
by this model is presented in Figure 4.2. The significant linkages in this causal chain are:

- the synchronous link between INCOME(t) and AGE(t), presumably reflecting the

effect of seniority or experience,

- the link between INCOME(t) and GENDER, which reveals income differences

between men and women,

- the'association between INCOME(t) and EDUCATION(t) exhibitiné the anticipated
correlation between education level and wage, and

- the link between INCOME(t) and EMPLOYMENT(t) and the link between
INCOME(t) and EMPLOYMENT(t-1).

The implication that the past employment status (EMPLOYMENT(t-1)) influences the
current income is quite noteworthy. Also included in the causal chain are links present in
the employment causal chain, including the inertial link between EMPLOYMENT(t-1) and
EMPLOYMENT(t) and the links between EMPLOYMENT(t) and age, gender, and

education.
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Table 4.2

Selected Log-Linear Models of Personal Income

Model d.f.

%2

a

1] AES,EO,A0,SO,0LELAILSIOU,

EU,IU,EP,OP,IP 247 501.81 0.0000
2] AES,EO,A0,SO,0LELALSLOU,

IU,EP,OP,IP 248 504.15 0.0000
3] AES,E0,A0,SO,0LELALSI,0U,

EU,EP,OP,IP 249 575.20 0.0000
4] AES,E0,A0,SO,0LELALSILOU,

EU,IU,OP,IP 249 514.58 0.0000
5] AES,E0,A0,S0,0LELALSIO0U,

EU,IU,EP,IP 249 516.09 0.0000
6] AES,E0,A0,SO,0LEIALSLOU,

EU,IU,EP,OP 298 211241  0.0000
7] AES,E0,A0,SO,0LELLALSIOU,

IU,OP,IP . 250 516.93 0.0000
8] AES,E0,A0,S0,0LELALSI,OU,

EU,OP,IP 251 587.97 0.0000
9] AES,E0,A0,S0O,0LELALSIOU,

IU,IP 252 596.69 0.0000
A =AGE(t) .
E = EDUCATION()
S = GENDER

O = EMPLOYMENT(t)

U = EMPLOYMENT(t-1)
= INCOME(t)

P = INCOME(t-1)
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44. Causal Chain for Driver's License Holding

A causal chain for driver's license hdlding, LICENSE(t), is developed following similar
steps. The factors present in this causal chain are: AGE(t) [A], GENDER [S),
EDUCATION(t) (E], EMPLOYMENT(t) [O], INCOME(t) [I], and past driver's license
holding (LICENSE(t-1)) [D]. . As before the symbols used are indicated in the brackets.
The symbol for LICENSE(t) is L. Selected log-linear models are summarized in Table 4.3,
and the final causal chain, which is obtained from Model 1 of Table 4.3, is shown in

Figure 4.3.

The analysis shows that links exist between age and license holding, gender and license
holding, education and license holding, employment and license holding, and income and
license holding. The most important is the inertial link between driver's license holding in
the past (t-1) and that of the present (t). The significant inertial linkages found commonly
for employment, and license holding form the basis for the use of a Markovian transition

mechanism to simulate these i)exsonal attributes in MIDAS.
4.5 Summary

In this section a preliminary investigation on the possible causalities among person
attributes is examined. Through the formulation of causal chains, factors affecting critical
attributes of household members are selected. The log-linear model structures analyzed are
used as modelling guidelines for MIDAS' socio-demographic component. The most salient
finding is that age and gender together with a lagged structure or inertial link (e.g. past
employment) are more likely to depict the evolution of person attributes more closely.
Most importanity, the significant inertial links for employment and driver's license holding

suggest that Markovian transition models should be used for employment and driver's
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license holding. For the personal income a more complex structure may be needed to

represent most of the significant effects.

58



Table 4.3

Selected Log-Linear Models of Driver's License Holding

Model

d.f.

%2

1] AES,EO,A0,SO,OlELAILSI,
IL,AL,SL,EL,OL,DL

2] AES,EO,A0,SO,OlLELALSI,
IL,SL,EL,OL,DL

3] AES,EO,A0,S0,0lLELALSI,

IL,AL,EL,OL,DL

4] AES,EOQ,A0,SO,0l,ELALSI, .

IL,AL,SL,OL,DL

5] AES,E0,A0,S0,0LELAISI,
IL,AL,SL.EL,DL

6] AES,E0,A0,SO,OLEIAILSI,
ALSLELOLDL

7] AES,E0,A0,SO,OLELALSI,
IL,AL,SL,EL,OL

249

251

250

250

250

251

251

578.40

609.95

588.12

582.91

647.60

688.66

2902.42

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

A = AGE(t)

E = EDUCATION(t)

S = GENDER

O = EMPLOYMENTY()
I = INCOME(1)

L = LICENSE(t)

D = LICENSE(t-1)
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S Socioeconomic and Demographic Component of MIDAS

MIDAS is a simulator of household characteristics and mobility. Its aim is to realistically
recreate the progression of a household through life cycle stages, and simulate changes in
the household members' socioeconomic attributes and demographic attributes, such as
employment status and driver's license holding, then to use these endogenously generated
socioeconomic attributes to forecast household car ownership and mobility. The
understanding gained through the causal analysis reported in the previous section is fully
utilized in the development of MIDAS. The socio-demographic components are integrated
with mobility components (car ownership, trip generation, modal split , and travel distance

by mode) to form a comprehensive simulation system.

In the simulation, a household member will age, form an independent household, gain
employment, obtain a driver's license, marry, give birth, and so on. The size and
composition of the household will change accordingly. A household member may be
added to a household through a marriage, or a household may be split into two through a
divorce. A child will leave his parents and form a new household. Such changes are
probabilistically generated in the simulation. The model parameters that determine the

probability of these events are obtained from the Dutch Panel data set.

Many household and person characteristics are correlated with each other. For example,
the employment status of a woman is related to the number of small children. There is
strong association between the age of the head and the age of the spouse of a household.
The ages and number of children in a family are strongly associated with the age of the
mother. It is critically important that these internal correlations are accurately reflected in
the simulation. MIDAS achieves this by specifying the probability of a change as a

function of pertinent household and person characteristics.

61



5.1 Household Type Transition

For each household in the simulation, its characteristics are first read from an input file
comprising records of sample households from the Dutch Mobility Panel data set.
Following this, the transition between household types is simulated for each time period
(one year is used as the time interval of the simulation). This process is based on the set of
logit models described in Section 3 that determine transition probabilities for each
household considering its attributes, e.g., the adult household members' age, education,

employment, and presence of children by age group.

Given a transition from a household type to a new type, the household attributes are
modified to conform to the new household type. This sequential process is based on the

following identity:

Pr[H(t), X(t) | H(t-1), X(t-1)]
= Pr[X(t) | H(t), H(t-1), X(t-1)JPe[H(t) | H(t-1), X(t-1)]

where H(t) is the household type at time t, and X(t) denotes a vector of household

attributes.
A set of subroutines has been developed to probabilistically change the attributes of

household members, generate new members, or to remove individuals from the household.

Table 5.1 summarizes the subset of subroutines that are called in the simulation program
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Table 5.1
MIDAS Subroutines Used in Connection with
Household Type Transition

Household Type Transition
To: .

From: Single Couple Family SglPmt  Others

Single VANISH MARRIG MARRIG  BIRTH MOVEIN

Couple DIVORC @) BIRTH ®) MOVEIN
SURVIV

Family DIVORC  MOVEOT FERTIL  DIVORC  MOVEIN
SURVIV MOVEOT  SURVIV

SglPmt  MOVEOT (b) MARRIG FERTIL  MOVEIN

MOVEOT ~ MOVEOT
Others DELETE =~ DELETE  DELETE  DELETE @)

(@) No change assumed

(b) The transition assumed to be impossible
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for respective pairs of household types while Figure 5.1 summarizes the algorithm

followed in moving households and persons from one year to the next.

The composition of a household may change even when the household type remains
unchanged. For example, the birth of a second child obviously increases the household
size, but the household type will remain the same. Such changes without changes in
household type are accounted for in MIDAS by examining the possibility that a new
member will be introduced or an existing member will leave the household. For example,
subroutines FERTIL and MOVEOT are called in connection with the transition from family
to family, or from single parent to single parent, when the number of children is two or

more.

The routine VANISH, called in connection with the transition from single to single,
accounts for the possibility that the member of a single-person household passes away,
thus the household vanishes. The possibility that a household dissolves is also examined
in subroutine AGING, which is called before the transition of household types are
simulated. If subroutine AGING indicates that one (or more) of the household members
will pass away (or leave the household), then no further change in household composition
is assumed. Otherwise, subroutine TRANS is called to examine the possibility of change

in the household iype.
5.2 Birth and Death

The probability that a woman in a household will give birth to a child in a given year is
expressed as a function of the age and employment status of the woman, and the number of
children that already exist in the household. Observed frequencies obtained from the Dutch

Panel data set are used to determine the probability.
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A birth may be implied by a change in the household type (e.g., a couple to a family). In
such cases, the logit models of houseﬁold type transitions depict the probability of a birth.
For example, the probability of a transition from couple to family is expressed as a function
of the man's age and education, and the woman's employment status. The event of birth is

randomly generated in the simulation using these probabilities.

The probability of death is considered as a function of the age and sex of the individual.
The death rate is determined from the decrease in the size of each age group in the

population, provided by van den Broecke. The following relation is used:
A't+S)/A(t) = (1 - )8

where A(t) is the size of an age group that contains individuals of age i to i + 5, measured
in year t; A'(t+5) is the size of the same cohort measured at time t + 5 (therefore contains

individuals of age i + Sto i G 10); r is the death rate for the age group.

A single-person household is removed when a death takes place in the simulation. The
possibility of death is also considered in connection with the transition from couple (or
family) to single'(or single parent). If a death does not take place in the simulation, then the
transition is regarded as a result of a divorce, and the household is split into two

households.
5.3 Independent Households Formed by Children

The event of "leaving the nest," i.e., a child moving out and forming an independent

household, is modeled as a function of the age, sex, and employment status of the child.
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Similar to the case of birth, this event is implied by household type transition from family
to couple, or from single parent to single. The probabilities of these transitions are

represented by the logit models as fun.ction of the number of children by age.

When the event of nest leaving takes place in the simulation, a new household is added to
the data file with a certain probability (this represents the probability that the new household
will remain in the same municipality). The evolution of this new household is simulated

through the rest of the simulation period.
5.4 Employment

The employment status of a person is determined using transition matrices developed by
sex and age group (Table 5.2). Each matrix contains the probability of change in
employment from one status to another. For example, the two-by-two matrix for men in
the 18 to 24 age bracket indicates that a person who is employed at time t will also be
employed at time t + 1 with probability 0.929, and will not be employed with probability
0.071. Similarly, a person who is not employed at time t will gain employment with

probability 0.160, and remain unemployed with probability 0.840, at time t + 1.

The use of transition matrices reflects the assumption that the probability of employment in
period t + 1 depends on the employment status of period t. It is evident from the table that
men in the age brackets of 35 to 44 and 45 to 55 have extremely high probability of
continuous employment. A child is assumed to be not employed until he reaches the age of

18 yeafs old.

67



Table 5.2

Employment Status Transition Matrix

By Age and Gender

Men Women

Not Not
Age Employed Employed Employed Employed
18-24  Employed .929 .071 .882 .118
Not Employed .160 .840 129 871

25-34 Employed 967 033 .865 .135
Not Employed .354 .646 .094 .906

35-44  Employed 982 .018 .909 .091
Not Employed 435 .565 072 .928

45-54  Employed 992 008 854 146
Not Employed .130 .870 .097 .903

55-64  Employed .878 122 1.000 .000
Not Employed .024 976 .019 .981

65 Employed .750 .250 .000 1.000
Not Employed .014 .947 .000 1.000

Total Employed .966 .034 .881 .119
Not Employed 167 833 .075 925




5.5 Income Models

Given the employment status, the personal income is determined using a set of models.
Each model is formulated with a lagged dependent variable and a serially correlated error
term. Thus the persdnal income at time t is assumed to be determined in part by the
personal income at time t - 1. It is also assumed that the unexplained effect of time t - 1 and

that of time t are correlated with each other.

Models are developed for the four possible combinations of the employment status at time t
- 1 and time t: (not employed, not employed), (employed, not employed), (not employed,
employed), and (employed, employed). Two models are estimated for each status pair
using data from Waves 1, 3, 5, 7 and 9. The square-root of annual income is the
dependent variable of one of the models, while the income itself is used as the dependent
variable of the other. The results are summarized in Tables 5.3 and 5.4. Note that the
income of an unemployed person is not automatically assumed to be 0 (possible association
between the error term of the income model and the change in employment status is ignored

in this analysis).

Both types of models offer similar behavioral indications for each employment status pair.
Age, sex, and household size are the most significant variables in the models for status pair
(not employed to not employed), while sex and education are most dominant and age has
relatively smaller effects in the model for (employed to employed). Sex and age are
important contributing factors in the models for the remaining pairs with changes in

employment status.

Striking is the mostly insignificant coefficients of the lagged dependent variables. Only the

models for (employed to employed) have significant coefficient estimates, but the
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Table §.3

Personal Income In YAnnual D.FI71000, by Employment History -
Employed int-1 and Unemployed in t-1 and t
Unemployed in t and t-1 Unemploved in t Emploved in t Emploved in t and t-1
Variable p t p t p t p t
Intercept 1.68° 12.7 1.99 3.5 321 105 ~ 325 346
AGE2544 1.21 144 0.76 1.7 0.25 1.2 0.51 6.8
AGE4564 1.35 15.2 1.65 4.0 0.39 1.3 0.71 9.4
AG65+ 2.76 26.4 1.96 2.7 0.71 1.2 0.82 2.0
MALE 1.45 25.1 2.45 9.6 0.98 6.7 145 38.6
HIEDUC 0.18 2.9 0.33 1.2 0.33 222 0.48 12.2
CHLD11 0.30 4.2 0.76 2.9 -0.01 -0.1 0.09 24
CHLD17 0.18 3.2 0.65 2.5 -0.21 -1.5 0.00 0.0
CHLD18 0.48 8.1 0.42 1.7 0.41 2.9 -0.02 -0.6
HHSIZE -0.68 -16.1 -0.73  -4.5 -0.28 -2.8 -0.10 -4.3
INCOME(t-1) _ 0.01 0.8 0.07 1.0 0.05 1.5 0.03 3.8
p 0.39 20.4 -0.02 -0.2 0.07 1.0 0.37 18.6
N 2926 166 250 2388
R2 0.866 0.746 0.622 0.843
Replication
Predicted 1.555 2.482 3.078 4.717
Observed 1.578 2.500 3.239 4.723
MAE 0.760 1.145 0.802 0.429
MSE 1.026 2.047 1.070 0.359
Prediction
N 1327 95 96 1206
Predicted 1.828 3.104 3.100 4.817
Observed 1.916 3.120 3.366 4.948
MAE 0.770 1.068 1.081 0.485
MSE 1.061 1.954 1.947 0.429
R2 ~0.883 0.737 0.289 0.861
P = coefficient of serial correlation
MAE = Mean absolute error, average of the absolute difference between observed and estimated value
MSE = Mean square error, average of the squared difference between observed and estimated value

Definition of Variables used in the Income Models

AGE2544 1 if the age of the head of the houschold is between 25 and 44 years.
AGE4564 1 if the age of the head of the household is between 45 and 64 years.
AG6S+ 1 if the age of the head of the household is above 65 years

MALE 1 if the head is male.

HIEDUC 1 if the head of the household has at least a University degree
CHLD11 Number of children less than 11 yeras old.

CHLD17 Number of children between 11 and 17 yeras old

CHLD18 Number of children at least 18 years old.

HHSIZE Household size



Table 5.4 d -
Personal Income In Annual D. F1/1000, by Employment History

Employed in t-1 and Unemployed in t-1 and

Unemployed in t and t-1 Unemployed in t Employed in t Emploved in t and t-1
Variable B t p t B t B t
Intercept 4.09 6.3 3.89 1.4 10.53 5.6 939 128
AGE2544 5.76 14.0 4.74 2.1 3.01 2.4 4.89 8.3
AGEA4564 7.62 17.6 11.07 53 4.20 2.3 731 121
AG65+ 13.84 27.0 15.07 4.0 6.32 1.8 7.79 24
MALE 7.42 26.4 12.88 9.8 6.77 7.4 11.56 38.9
HIEDUC 1.05 33 2.94 2.1 2.71 2.9 4.50 14.4
CHLD11 1.06 3.1 4.00 3.0 0.23 0.2 0.86 2.7
CHLD17 0.76 2.7 3.47 2.6 -0.89 -1.0 0.19 0.7
CHLD18 1.59 5.5 1.72 1.3 2.47 2.8 -0.27 -0.9
HHSIZE -2.41 -11.6 -3.08 -3.7 -1.78 -2.9 -0.57 -2£_
INCOME(t-1) 0.01 1.2 0.11 1.9 0.05 1.4 0.06 5.7
p 0.41 22.2 -0.08 -1.0 0.07 1.1 i.38 19.1
N — 2926 166 250 2388
Correlation 0.869 0.773 0.629 0.857
Replication
Predicted 6.531 10.356 11.479 23.506
Observed 6.539 10.865 12.196 23.509
MAE 3.381 5.721 5.028 3.588
MSE 22.555 55.655 40.748 21.761
Prediction
N 1327 95 96 1206
Predicted 7.804 14.080 11.427 24.692
Observed 8.316 ’ 14.000 13.266 25.967
MAE 3.780 6.346 6.640 4.261
MSE 30.539 68.555 77.687 30.499
Correlation 0.882 0.748 0.312 0.884
P = coefficient of serial correlation
MAE = Mean absolute error, average of the absolute difference between observed and estimated value

MSE = Mean square error, average of the squared difference between observed and estimated value



highly significant with t-statistics of around 20 for both (employed, employed) and (not

employed, not employed).

The results indicate that annual income is not as stable as one might have thought; the
income of year t is not significantly influenced by the income of year t - 1, unless the
person was employed in both periods. Unobserved factors exert similar influences over
time when the employment status does not change, as indicated by the highly significant
coefficients of serial correlation. Presumably there are individual-specific income effects
that are longitudinally stable. The estimation results suggest that those who were earning
more (or less) than the amount expected for an otherwise identical individual would do so
over time unless the employment status changes, but the exact earning tends to vary over

time.

The models estimated here all offer extremely good fit to the data as the high R2 values
indicate. In order to evaluate further the models' usefulness in forecasting, they were
"validated" using the Wave-10 data that were not used in model estimation. Wave-10
income was predicted using the observed Wave-10 explanatory variables and the coefficient
estimates obtained using the data from Waves 1 through 9. The results are shown also in
Tables 5.3 and 5.4. It is evident from the tables that these models not only "replicate" the
data used for estimation well, but "predict" incomes in the data not used for their
estimation. It is worthy to note that the "prediction" R2's are almost as good as, and in one
occasion better than, the "replication" R2's. Only exceptions are the models for the (not
employed, employed) pair. Overall, the usefulness of these models in forecasting is evident

through this validation analysis.

Since there are no discernible differences between two classes of models, the ones

specified for annual income itself are used in MIDAS. The personal incomes of household
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members are added up in the simulation to obtain total household income. It is important to
note that the employment transition matrices and the parameters of the income models are
estimated using data obtained in a périod of economic expansion (1984 through 1988).
These parameters must be appropriately adjusted if the model is to be applied for a period
of stable economy or economic recession. This adjustment requires examination of the
impact of regional and national economy on the parameters of these model components,

which is obviously outside the scope of this study.
5.6 Driver's License and Education

The driver license holding is determined using transition matrices similar to those for
employment status (Table 5.2). Compared with the transition matrices for employment
status, the matrices of Table 5.5 in general have larger diagonal elements, which
correspond to the transition from licensed to licensed, or from non-licensed to non-
licensed. This implies that license holding status is less variable than employment status.

Also notable is the stability in the transition probabilities across the age groups.

The level of education is an important variable as the causal analysis has indicated.
Because education is among the explanatory variables used in the MIDAS mobility
component, it is necessary to determine education levels for those household members that
are internally generated in the simulation process. This determination is not based on

detailed modeling of education levels as it is clearly beyond the scope of this study.

For children that are generated in the simulation, their education levels are determined
randomly using the distribution of education levels by sex, obtained for individuals of 18
through 28 years old in the panel data. Education levels of new members that enter a

household through a marriage are determined using the correlation between the education
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Table 5.5

Driver's License Holding Status Transition Matrix

By Age and Gender

Men Women

Not Not
Age Licensed Licensed Licensed Licensed
18-24  Licensed .988 012 1.000 .000
N e ] 232 .768 176 824
25-34  Licensed 974 026 975 .025
Natlicenaed .103 897 .000 1.000
35-44  Licensed 987 .013 983 017
Not Licensed .059 941 077 923
45-54  Licensed 978 .022 .989 .011
Not Licensed 111 889 .000 1.000
55-64  Licensed .986 014 957 .043
Not Licensed .063 938 .015 .985
65 Licensed 962 .038 1.000 000
Not Licensed .000 1.000 .061 939
Total ~ Licensed 980 .020 981 019
Not Licensed 128 872 .056 944




through 28 years old in the panel data. Education levels of new members that enter a
household through a marriage are determined using the correlation between the education
levels of married men and women. Fbr example, the probability that a man (or, a groom)
has a given education level is determined by the education level of the woman (the bride)

who has been a member of the household in the simulation.

The education levels of new "other" household members (not the head, spouse, or their
children) are determined using the distribution of education levels of "other" individuals by
age and sex, obtained from the Dutch Panel data. Further discussions on the generation of

new individuals can be found in the following section.
5.7 Attributes of New Household Members

A set of personal attributes needs to be generated whenever a new household member is
introduced in the simulation. As discussed earlier, in case where a new person enters a
household through a marriage, his/her age and education level is determined based on the
existing member's age and sex. The new member's employment and income are then

determined given his/her age and sex.

For a newborn member of a household, only sex is determined at the time of birth; the rest
of person attributes are determined when he/she reaches the age of 18, using the

probabilities of employment, license holding, and income as described above.
The person attributes of "other" household members are determined as follows. First, the

age and sex of the "other" individual are randomly generated based on the age of the head

of the household. Given age and sex, employment, license holding, education, and
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income, are randomly determined base on the observed distribution of the attributes of

"other" persons, by age and sex.

§.8 Household Dissolution

A household is split into two, or eliminated from the simulation, after a divorce or other
events that cause its dissolution. If children are present in the household, they are
randomly assigned to the respective parents. The current version of MIDAS assumes that
the mother will have the custody of a child with a probability of 75%. This, however, is an

arbitrary assumption that should be improved in the future with appropriate data.

MIDAS assumes that only a fraction of newly formed households (formed through
divorces or by children gaining independence) remain in the simulation. In preliminary
simulation runs of this study, 15% of new households are retained. This may be viewed to
represent the case where 15% of divorced household members or children leaving the
parents remain in the same area. The particular value, 15%, is chosen because, with this
rate, new households roughly replace households that disappear due to death, and keep the
total number of households in the simulation stable over simulation years. Thus this value
represents a demographically stable region. The parameter can be increased or decreased to

reflect demograpﬁic growth or decline.

5.9 Summary

The socioeconomic and demographic component of MIDAS is made of a set of subroutines
that probabilistically change the attributes of existing household members, generate new
members and their attributes, and remove individuals from existing households during the

simulation. These subroutines use models of household type transition, models of birth
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and death, transition matrices of employment, models of personal income, transition
matrices of driver's license holding and education, and probabilistic assignment methods of

values to new household member's attributes.

The household type transition models are the logit models of Section 4 for the most
frequent transitions, while for the less frequent transitions observed panel data transitions
are used. The probability of a woman in a household having a child is given as a function
of age and employment status of the woman, and of the number of children in the
household. The probability of death is a cohort-based death rate. The employment status
of a person is determined based on observed transition matrices by age groupl. Similarly,
transition matrices have been used for driver's license holding and education. The models
of personal income are a set of four dynamic models by employment history (i.e., for a
person that is employed at t and t-1, unemployed at t and t-1, employed at t and
unemployed at t-1, or unemployed at t and employed at t-1). The models include lagged

dependent variables and serial correlation.

The attributes of new household members are computed in a similar fashion to the attributes
of old household members. The possible household dissolution is determined based on the
possible occurrence of a divorce or a death. Children are allowed to form new households
based on age, gender and employment status of the child. When a new person enters a
household through a marriage, his/her age and education level is determined based on the
partner's age and sex. The new member's employment and income are then determined
given his/her age and sex based on the same models and parameters used for the other

household members.

In this way the progression of a household through life cycle stages is recreated and

changes in the household members' socioeconomic and demographic attributes are
g grap
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simulated. These endogenously generated socioeconomic and demographic attributes are

then used to forecast household car ownership and mobility using the models in the

mobility component.

! In MIDAS two kinds of transition matrices have been used. The first was obtained from the Dutch
National Mobility Panel data set and the second from published CPB transitions.
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6. Mobility Component

The MIDAS mobility component consists of a car ownership model, household motorized-
trip generation models, a modal split model, car-trip distance models, and transit-trip
distance models. All models are formulated for weekly totals. Note that these mobility
measures are obtained from the Dutch Panel Survey results in which only those household
members of at least 12 years old were requested to report trips, and trips made by
individuals below 12 years of age are not reflected in the measures. Consequently the

MIDAS mobility component does not reflect trips made by individuals below 12 years old.
6.1. Approach

The effort of this study sought to improve the modal split model developed in the earlier
effort which had been found to over-estimate transit trips (Kitamura, 1987,1988). Use of
the accessibility measures now available to the project and other attempts, however, did not

lead to appreciable improvemént of model performance.

The primary reason for this failure is believed to be the infrequent transit trips made by the
Panel households. For example, among the 977 households that participated in Waves 3,
5, and 7, and were included in the data base of this model development, the average 1986
(Wave-5) number of train trips is only 0.71 trip per week per household, and the number
of BTM (bus, train, and metro) trips is 1.94. On the other hand, the total number of
person trips is 55.42, and the number of car trips is 16.84 per week per household.
Transit trips thus represent only a small fraction of total person trips, with many

households generating no transit trips at all.
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Another difficulty is the lack of accurate level-of-service (LOS) measures. Elaborate
accessibility measures developed by the Hague Consulting Group (Geinzer and Daly,
1981)are incorporated in the car owne;rship model of this study. However, accessibility
measures are by definition not developed for specific pairs of origin and destination. Only
trip-based LOS data that are available are developed by BGC. However, these LOS
measures have been developed only for the work trips (for the mode used and an alternative
mode) that were made by those individuals who changed job locations during the Panel
survey period. Therefore the attributes of the competing modes that serve the origin and

destination of a trip in the Panel data file, are in most cases unavailable.
These considerations have led to the decision to develop

1. a trip-end (pre-distribution) modal split model that applies to the total number of

motorized trips generated by the household over a one-week period, and

2. a new improved estimation procedure that accounts for the presence of a large

number of households whose trips are exclusively by either car or public transit.
The results are presented in Section 6.5. Further details on the estimation method used to
obtain the MIDAS modal split model and its performances relative to other estimators can
be found in Goulias and Kitamura (1991).

6.2. Car Ownership Model

An ordered-response probit car ownership model is used to determine household car

ownership in MIDAS. As in the model developed previously for the Dutch Ministry of
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Transport [Kitamura, 1987a,1987b,1988), the model determines the probability that a

given household will have no car, one car, or two or more cars.
6.2.1. Model Structure and Estimation Method

The ordered-response probit model probabilistically describes the choice of an alternative
from among a set of ordered discrete alternatives. A household's choice of the number of
cars to own, falls in this class of choice. The model assumes the presence of a latent
variable which cannot be directly measured, but is related to the observed choice—~the
number of cars owned in this case. Corresponding to a level of car ownership is a range of

the latent variable value which is defined by unknown threshold values.

Mathematically, the model can be described as

AL = a'X(i) + 81D(it-1) + 65D (ist-1) + £(iyt)

0, ifA(it) < q
Y(it) = 1, ifq<A@l) =r
2 if r < A(i,t)

where i refers to the household and t represents the time (year), and

A(i,t) = latent variable for household i at time t,
X(i,t) = vector of explanatory variables,

g(i,t) = random error term,

Y(i,t) = number of cars available,

Dq(it-1) =dummy variable that takes on a value 1if Y(it-1) = 1;
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0 otherwise,
D4(i,t-1) = dummy variable that takes on a value 1 if Y(i,t-1) = 2;
0 otherwise,
q,r = threshold parameters,

a  =vector of model coefficients, and

81, 85 = scalar coefficients.

The two dummy variables (D1(i,t-1), Dy(i,t-1)) represent the car ownership level in the

previous period. The model formulation here thus assumes that the car ownership level at
time t is dependent upon the level at time t - 1. The two dummy variables as a set act as a
"lagged dependent variable" and characterize the change in car ownership as a history

dependent process.

Given a set of explanatory variables (X(i,t)), the objective of model estimation is to
determine o, 81, 85, q, and r. This can be accomplished using the maximum likelihood
method. Because of the inclusion of the lagged dependent dummy variables in the model,
however, problems arise under the likely condition that the error terms are serially
correlated, namely, «(i,t-1) and &(i,t) are statistically not independent. If this in fact is the
case, the coefficient estimates obtained will be inconsistent (i.e., they are biased and the
bias cannot be corrected by increasing the sample size. Note that the estimation problems
discussed in this section are generic problems and are not due to the characteristics of the

specific data set used).
To account for this problem, a correction term, Q[d(t-1)], developed after Heckman, is

introduced into A(i,t) before estimating unknown coefficients (see Kitamura, 1987, and

Kitamura and Bovy, 1987, for the definition of the correction term). With this correction
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term, the maximum likelihood estimation yields consistent estimates with lagged dependent

variables and serially correlated errors.

This, however, introduces a new problem. The variance of the error term, e(i,t), will not
be constant but vary across households (heteroskedasticity), making the estimates of test
statistics inconsistent. In the model estimation of this study, weights are used to reduce the
effect of the heteroskedasticity. The procedure used here, however, is still incomplete and
standard error estimates (therefore estimated t-statistics) are believed to be not consistent.
Further developmental effort is needed in the future for consistent estimation of discrete
choice models with lagged dependent variables and serial correlation (see Kitamura and

Bunch, 1989, for related resulits).

Another problem is that of initial conditions. The model presented above requires
observation of car ownership from the preceding time point (t - 1), but obviously, this is
not available for the first time point in a panel survey. Furthermore, the development of the
correction term to account for serial correlation requires data from three time points to
estimate a model of car ownership at time t, because it requires a lagged dependent variable
model of car ownership at time t - 1, which must be estimated using data fromt-1andt-
2. Using the correction term thus developed, another lagged dependent variable model can

be estimated for time t, using data from tand t - 1.
These considerations led to the following five stage process for weighted maximum

likelihood estimation of the ordered-response probit model with the correction term. This

procedure is used in the estimation of the model presented in the next section:
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Stage 1. Initial Condition Model: An ordered-response probit model which uses data
from one time point, is developed to predict the level of car ownership at time

t = 1 as an initial condition.

Stage 2. Lagged Dependent Variable Model: An ordered-response probit model with a
lagged-dependent variable is developed using data from t = 0 and 1, and a

correction term obtained from the initial condition model of Stage 1.

Stage 3. Weighted Lagged Dependent Variable Model: The lagged dependent variable

model of Stage 2 is re-estimated with weights.

Stage 4. Lagged Dependent Variable Model on 3 Time Points: The model of Stage 3 is
applied to observations from t = 0 and 1 to obtain Q[d(t-1)]. The model is
estimated using data from t = 1, and 2, together with the correction term thus

obtained.

Stage 5. Weighted Lagged Dependent Variable Model on 3 Time Points: The model of

" Stage 4 is re-estimated with weights.

The model coefficients are estimated using the maximum likelihood method in all stages. It
is emphasized that the procedure used is tentative in nature; it is believed to offer better
coefficient estimates than a naive estimator which ignores serial correlation, but the

efficiency and standard-error estimates are yet to be improved.
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6.2.2. Estimation Results

The model is estimated using household records of Waves 1, 3, 5, and 7! of the Dutch
National Mobility Panel survey. The results of this five stage estimation are summarized in
Table 6.1 in terms of the coefficients of the latent variable, A(i,t), threshold values, qandr,

their t-statistics, and overall goodness-of-fit statistics.

Note that records are "pooled" to increase the sample size. For example, records of all
households in the survey are put together to form a sample of 4,101 households to estimate
the Stage 1 model for initial conditions. Households in wave pairs (Waves 1 and 3, Waves
3 and 5, and Waves 5 and 7) are pooled to form a data base for Stage 2 and Stage 3
estimation, and those in wave triples (Waves 1, 3, and 5, and Waves 3, 5, and 7) are
pooled for Stages 4 and 5. This results in different sample sizes across stages as shown in

Table 6.1.

The explanatory variables of the model are: number of drivers, number of workers,
household income (INCOME), number of children of over 18 years old (CHILDREN
18+), work trip accessibility difference ({ACCESS(work)), and shopping trip accessibility
difference (dAACCESS(shop)). In order to represent non-linear effect, the number of
drivers and the number of workers are each represented by a set of two dummy variables

(ONEDRIVER, MULTIDRIVERS; and ONEWORKER, MULTIWORKERS).

The accessibility measures represent the car and transit service level available for residence
zones. The accessibility differences used in the model are based on accessibility indices
developed by the Hague Consulting Group using a set of destination choice models

(Geinzer and Daly, 1981). The difference, (auto accessibility) - (transit accessibility), is
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Table 6.1

Five Stage Estimation Results of
Ordered-Probit Car Ownership Model

Stagel Stage 2 Stage 3 Stage 4 Stage S
0 t 0 t 6 t 6 t
ONECAR(t-1) 2.398 15.13 2.397 15.13 2.815 18.79 2.817 19.17
MULTICARS(t-1) 4.474 15.13 4.472 15.13 5.271 22.59 5.104 22.70
a t a ¢ a t a t a t
ONEDRIVER 2.201 23.54 1.405 9.00 1.405 9.00 1.271 5.40 1.230 5.28
MULTIDRIVERS 2.949 29.47 1.832 10.27 1.831 10.27 1.683 6.77 1.616 6.60
ONEWORKER 0.101 1.83 0.238 3.09 0.238 3.09 0243 2.11 0239 2.14
MULTIWORKERS 0201 2.79 0.273 277 0.272 2.77 0.170 1.19 0.173 1.25
INCOME 0.015 8.89 0.006 2.52 0.006 2.52 0.004 1.28 0.005 1.41
CHILDREN 18+ 0.351 10.10 0.283 6.05 0.283 6.05 0.214 3.40 0212 3.50
dACCESS(work) 0.190 2.07 0.087 0.72 0.087 0.72 0.093 0.54 0.111 0.66
dACCESS(shop) 0208 2.44 0.107 0.96 0.107 0.96 0.020 0.13 0011 0.07
Q[d(t-1)] -0.031 -0.37 -0.032 -0.37 -0.414 -5.83 -0.435 -6.56
q 2.582 21.03 2.880 15.95 2.880 15.95 2.922 10.29 3.037 10.35
r 5.326 38.70 6.571 32.07 6.571 32.07 6.709 21.24 6.846 21.00
L(0) -4505.4 -3951.7 -3951.7 -1986.3 -1986.3
L(C) -3570.1 -3107.0 -3107.0 -1520.0 -1520.0
(o) -2304.5 -1167.9 -1167.9 -559.4 -552.1
-2[L(0)-L(@)] 4401.8 5567.7 5567.7 2853.8 2868.4
-2[L(C)-L(@)] 2531.2 3878.3 3878.3 1921.3 1935.9
N 4101 3597 3597 1808 1808




taken for work and shopping trips, respectively, and used in the estimation. The same

values of the accessibility measures are used in all four waves.

The estimation results indicate that the number of drivers in a household is the most
important determinant of the number of cars owned by the household. Also very
significant is the number of children who are at least 18 years old, and the presence of a

worker. All these variables contribute positively to household car ownership.

The income and accessibility variables are significant in the Stage 1 initial condition model
and Stage 3 weighted lagged dependent variable model, but not in the final, Stage 5
weighted lagged dependent variable model with serial correlation. The insignificance of the
accessibility variables is presumably due in part to the fact that the values of these variables
do not change across waves. Despite their statistical insignificance, these variables are
included in the car ownership model of MIDAS because of their importance in policy
contexts and because the estimation results offer theoretically supportable signs of the

coefficients.

The estimation results indicate that the car ownership level of the previous time period
(lagged dependent variable expressed by a set of two dummy variables) is extremely
significant, and that the serial correlation of the error term is negative as shown by the
coefficient of the correction term, Q[d(t-1)]. The same results were obtained in the
previous effort (Kitamura, 1987b, 1988) in which a similar ordered-response probit model
was estimated without applying weight. Table 6.1 indicates that the results of unweighted
Stage 2 and weighted Stage 3 are virtually identical, and that the difference between Stage 4
and Stage 5 is very slight. This estimation thus offers an empirical indication that the effect

of the heteroskedasticity introduced by the use of the correction term is very slight.
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Therefore the consistency of the standard-error and t-statistic estimates may not have been

impaired.
6.3. Dynamic Motorized-Trip Generation Models

A weekly household motorized-trip generation models, developed using data from Waves
1,3,5,7, and 9, are summarized in Table 6.2. Trip generation models are developed

separately for households with cars available and those without a car available.

Demographic and socioeconomic variables are the major variables in the model: number of
diary keepers (NDIARIES), number of women (NWOMEN), number of men (NMEN),
number of workers (NWORKERS), income categories (INCOME2, INCOME3,
INCOME4), multi-car ownership (MULTICARS), number of drivers (NDRIVERS),
household type (SINGLE, COUPLE, FAMILY, SGLPARENT), and area type (BOV-
Large, BOV-Small, RAIL, NORAIL), and a lagged dependent variable (NTRIPS(t-1)).

In the model for car owners, the number of diary keepers, number of workers, multi-car
ownership, number of drivers, and household type indicators are the most significant
variables. The results also show that households in the highest income group make more
trips than do othénvise identical households. A similar set of variables is significant in the
model for non-car owners with the differences that the household type indicators are not
significant and the income effect is monotonous with households in a higher income group
making progressively more trips. Quite notable is the significant coefficient of BOV-Large,
indicating that no-car households residing in a large urban area with well developed transit
systems tend to make more trips than comparable households in less transit-oriented urban
areas. The result is an interesting empirical indication of the effect of transit development

upon trip generation of carless households.
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Table 6.2 ,
Household Weekly Motorized-Trip generation Models*

Car Owners Non-Car Owners
Variable B t B t
Constant 2.87 -1.0 -1.78 -0.6
NDIARIES 4.54 6.6 5.92 7.1
NWOMEN 0.69 0.7 -2.03 -1.9
NWORKERS 2.08 3.4 2.39 2.5
INCOME2 -1.18 -1.2 1.06 0.9
INCOME3 -0.88 -1.1 1.33 1.2
INCOME4 2.85 3.2 5.95 3.3
MULTICARS 8.90 7.9
NDRIVERS 4.38 5.7 3.82 49
SINGLE 7.77 2.7 -0.17 -0.1
COUPLE 11.49 4.7 1.09 0.4
FAMILY 10.77 4.4 -4.27 -1.6
SGLPARENT 7.35 2.7 -0.60 -0.2
BOV-Large -0.47 -0.2 6.11 3.9
BOV-Small -2.79 -1.6 2.03 1.4
RAIL 1.75 1.1 2.54 1.4
NORAIL -2.92 -1.5 2.38 0.9
NTRIPS(t-1) 0.04 1.4 -0.02 0.7
P 0.44 13.0 0.29 5.1
N 1630 348
R2 0.759 0.718

* Formulated for the weekly total of car-trips as driver, car-trips as passenger, bus, tram,
metro, and train trips

INCOME2 . 1 if annual household income is between dfl 17,000 and dfl 24,000
INCOME3 1 if annual household income is between dfl 24,000 and dfl 36,000
INCOMEA4 1 if annual household income is more than dfl 36,000



Each motorized-trip generation model is dynamic with a lagged dependent variable and a
serially correlated error. Hatanaka's two-stage method (Hatanaka, 1974) is used in the
estimation the trip generation models and the trip distance models described in Section 6.5.

The software package used is LIMDEP (Greene, 1990).

The coefficient of serial correlation (p) is significant in both models, while that of the
lagged dependent variable is insignificant. The models thus indicate the presence of
positive serial correlation (or "heterogeneity,") but state dependence is not present. This
contrasts with the ordered-response probit car ownership model presented in the previous
section, which showed significant positive coefficients of the lagged dependent car
ownership dummy variables, which imply positive state dependence. The car ownership
model also showed a significant negative coefficient of the correction term, indicating the

presence of negative serial correlation.
6.4. Modal Split Model

As noted earlier, LOS data are not available to describe trip characteristics by alternative
modes that connect given origin and destination zones. Modal split models that can be
developed with this limitation are not trip-interchange (post-distribution) models that focus
on modal compeiition at the disaggregate trip level. Before the discussion of the trip-end

modal split model used in MIDAS, the rationale behind it is discussed in further detail.

6.4.1. Rationale behind the Modal Split Model

Analysis of travel survey data quite often encounters the problem of limited supply-side
information. While the interview survey data offer detailed measurements of household

and person characteristics, measurements of urban land development and transportation
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system characteristics are available only in terms of aggregate zonal averages, or often not
available at all. This is almost inevitably the case when a sample is taken from many
geographical areas to represent a nation-wide population. Collecting land use information
to cover the entire sample area and network data by travel mode for all trip records in the
data set, would be too costly, if possible at all. Consequently forecasting models need to
be developed using data with limited information, together with whatever supplementary

information available.

This applies to the development of modal choice models using the Dutch National Mobility
Panel data set. Land use and transportation network data for the 20 municipalities from
which the panel sample was initially drawn, are yet to be compiled (the number of
municipalities in which the panel respondents resided is said to be over 100 because of
migration). The only measures available on the supply-side are a rough indicator of transit
service level by municipality, and accessibility measures by mode based on destination

choice models developed in an earlier study (Geinzer & Daly, 1981).

Post-distribution modal choice models that focus on modal competition at the trip level,
cannot be developed with the Dutch Panel data. This, although more policy sensitive, is
not possible because information on the attributes of alternative modes is not available
(except for, as noted earlier, a very limited number of work trips made by respondents who
changed their residence locations). However, because the data set contains weekly travel
information, it presents many travel mode choices repeated by the same household
members. These repeated choices may be collectively explained by accessibility or other

macroscopic level-of-service indicators.

Furthermore, mode choice may be made considering not each individual trip but a series of

linked trips to be made by the individual as a whole. Then the attributes of trips by
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alternative modes between a given origin and destination pair may not be as influential as
one might think. To the contrary, household car ownership, the number of drivers in the
household, overall level of transit dev.eloprnent, and other socio-demographic attributes
may be the major determinants of weekly household modal split. From this viewpoint, the
appropriate measure of mode choice is the relative frequency of trips made by a particular
mode rather than the mode chosen for each trip. These considerations motivate the

modeling effort reported here.
6.4.2. Binomial-Logistic Model of Weekly Household Mode Choice

In the development of a modal split model for weekly household trips, the assumptions are
made that: a) choices of modes made over a one-week period can be viewed as repeated
binary choices between the automobile (as either a driver or a passenger) and public transit;
and b) there exists a fixed probability that governs these repeated binary choices, that is
unique to each household. Then, the number of public transit trips a household makes over
a one-week period, given the total number of motorized trips, has a binomial distribution,

PrKi =k| Ti=1] = L) praepy

?

k=0,1,2,3, T;

where

K = the number of transit trips made by household i,
T, = the total number of motorized trips made by household i, and
P; = the probability that a randomly chosen trip made by household i will use public

transit,

t
( k )= t!/k!(t - k)! (binomial coefficient),
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t = positive integer representing a possible (or observed) total number of motorized
trips, and
k = non-negative integer, no greater than t, representing a possible (or observed)

number of public transit trips.

Note that k may take on either 0 (0% transit trips) or t (100% transit trips). The problem
that arose during the earlier model development effort, i.e., the presence of many
households which made no public transit trips at all, or those which made no car trips at all,
is no longer a problem here because the probabilistic formulation of weekly household

mode choice behavior here accounts for such extreme cases.
Now, let P; be represented by the following logistic function:

Pi = 1/[1 + exp(-B'X;)]
where

X; = a vector of explanatory variables for household i, and

B = a coefficients vector.

Combining this logistic probability function with the above binomial distribution function

leads to the "binomial-logistic model" of weekly mode choice.

The model can be estimated by the maximum likelihood method. It has been shown
(Goulias and Kitamura, 1991) that the likelihood function is concave everywhere, and
convergence is guaranteed and quick with the Newton-Raphson algorithm. Goulias and

Kitamura (1991) have shown that the binomial-logistic model is superior in data replication

93



than the widely used minimum chi-square approaches (Berkson, 1944, 1953; Gart and
Zweifel, 1967; Gart, et al., 1985; Haldane, 1955). For details, see Goulias and Kitamura
(1991).

6.4.3. Estimation Resplts

The results of maximum likelihood estimation using a pooled data set consisting of records
from Waves 1, 3, 5, and 7 are presented in Table 6.3. As noted earlier, convergence was
rapid with Netwon-Raphson algorithm. The model is highly significant with likelihood-

ratio chi-square exceeding 6,800 with 17 degrees of freedom.

The number of diary-keepers in the household, number of cars available, number of drivers
and level of public transit availability are the major variables that most significantly
influence rﬂode choice (a positive coefficient estimate for an explanatory variable implies
that households with larger values of that variable tend to have larger probabilities of transit
use). In particular, the results indicate that households without a car available (ZEROCAR)
and households in a large urban area with a regional transit district (BOV-Large) tend to

have higher fractions of public transit trips.

The model's repliéation capability is excellent, with the correlation coefficient between the
predicted probability (P;) and observed relative frequency (ki/t;) exceeding 0.65. The

relative error in the average choice probability is within 1%.

One advantage of the binomial logistic model with a constant term is its ability to replicate
observed frequency of choices exactly, in this case the number of transit trips (and
therefore the number of car trips; see Goulias and Kitamura, 1991). The correlation

coefficient between observed and predicted numbers of transit trips is again high,
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Mode Choice Binomial-Logistic Model on Pooled Data

Table 6.3

”~~

Variable p t
Constant -3.91 -57.4
NRECORDS 0.46 39.1
NWOMEN 0.15 9.6
NWORKERS 0.09 7.4
INCOME2 -0.09 -2.5
INCOME3 0.16 5.0
INCOME4 0.41 11.4
ZEROCAR 3.02 77.2
ONECAR 0.70 23.1
NDRIVERS -0.40 -28.6
SINGLE -0.08 -1.6
COUPLE -0.60 -12.9
FAMILY -0.74 -16.5
SGLPARENT -0.32 -6.0
BOV-Large 1.20 51.5
BOV-Small 0.30 11.6
RAIL 0.41 16.6
NORAIL -0.45 -10.3
L(C) -37209

L) -22878

% 28661

N 6787

P .

Observed 0.165

Predicted 0.164

% Error -0.7%

R2 0.666

MAE 0.139

MSE 0.046

NT

Observed 3.05

Predicted 3.05

% Error 0.0%

R2 0.661

MAE 2.70

MSE 19.13

L(C) = Value of Log-likelihood function with constant only

L(B) = Value of Log-likelihood function at convergence

P = Proportion of transit trips

NT = Number of transit trips

MAE = Mean absolute error, average of the absolute difference between observed and estimated value

MSE = Mean square error, average of the squared difference between observed and estimated value



exceeding 0.65. This modal split is used in MIDAS to assign the total motorized trips
generation by a household (estimated by the model of Section 6.3) to the automobile and

public transit.
6.5. Trip Length Models

Car- and transit-trip length models are developed to predict average trip length (in km) by
mode using household attributes. As before, the models are developed for car-owning
households and no-car households separately, and each model is formulated with a lagged
dependent variable and serially correlated error (Tables 6.4 and 6.5). Essentially the same
set of explanatory variables as in the motorized-trip generation models, is used in these

models.

The models fit the data not as well as the trip generation models as indicated by the lower
R2s. In the most significant, car-trip length model for car owners, the lagged dependent
variable is not significant with a positive coefficient, while serial correlation is significant.
The car-trip length model for no-car owners shows a non significant negative coefficient of
serial correlation and a significant and positive lagged dependent variable coefficient. The
lagged dependent variable is not significant whereas serial correlation is significant for car

owners and insighiﬁcant for non-car owners in the transit-trip length models.
6.6 Summary
The MIDAS mobility component consists of a car ownership model, household motorized-

trip generation models, a modal split model, car-trip distance models, and public transit-trip

distance models. All models are formulated for household weekly totals. These mobility
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Car-Trip Length Models

Table 6.4

ﬁCar Owners

Non-Car Owners

”~~

Variable B

”~~

B

t t

Constant 16.18 33 6.48 0.3
NRECORDS 1.42 2.0 -5.36 i17
NWOMEN -1.48 -1.5 4.38 1.1
NWORKERS 1.68 27 -6.14 -1.7
INCOME2 0.20 0.2 -7.45 -1.6
INCOME3 . 0.30 0.4 8.76 2.0
INCOMEA4 0.34 0.4 11.49 1.6
TWOCAR+ 0.81 0.1

NDRIVERS -1.75 2.2 -1.33 1.4
SINGLE 1.34 0.5 10.78 1.0
COUPLE 0.76 0.3 9.90 0.9
FAMILY -0.13 -0.3 24.48 2.3
SGLPARENT -4.30 -0.5 16.07 1.5
BOV-Large -2.50 -1.5 0.58 0.1
BOV-Small -2.90 -1.0 3.16 0.6
RAIL -1.41 -1.9 7.08 12
NORAIL -0.39 -1.0 9.45 1.2
Car-Trip Length(-1) 0.36 1.1 0.28 2.9
P 0.29' 7.3 -0.13 -0.2
N 1625 265

R2 0.417 0.333




Transit-Trip Length Models

Table 6.5

Car Owners

Non-Car Owners

~

B

p

Variable t te
Constant 22.84 1.9 16.58 1.2
NRECORDS -1.23 -0.4 2.06 0.6
NWOMEN -4.29 -1.2 -4.75 -1.0
NWORKERS -0.33 -1.0 -1.90 -0.4
INCOME2 -2.81 -0.6 1.50 0.3
INCOME3 -3.05 -0.8 -4.33 -0.8
INCOME4 6.33 1.5 2.58 0.3
TWOCAR+ 10.06 1.9

NDRIVERS -1.60 -0.5 7.57 1.9
SINGLE 9.76 0.7 12.70 1.0
COUPLE 17.42 1.6 2.74 0.2
FAMILY 18.99 1.9 9.46 0.8
SGLPARENT 29.38 2.5 6.78 0.5
BOV-Large -18.57 2.4 -12.52 -1.9
BOV-Small 9.96 1.6 2.27 0.3
RAIL -9.78 -1.6 -2.03 -0.2
NORAIL -11.82 -1.6 -14.26 -0.9
Car-Trip Length(-1) -0.03 -0.5 -1.19 0.3
P 0.20 2.8 0.14 1.5
N 514 239

R2 0.283 0.282




measures are obtained from the Dutch Panel Survey results in which only household
members of at least 12 years old were requested to report trips. Therefore, trips made by
individuals below 12 years of age are not reflected in the forecasts. An ordered-response
probit car ownership model is used to determine the probability that a given household will
have no car, one car, or two or more cars. The model is a dynamic model, i.e., it contains
two dummy variables indicating past car ownership levels, with correction terms to account
for serially correlated errors. The estimation of this model requires a complex procedure
composed of five stagesl. The two motorized trip generation models, one model for car
owners and the other for non-car owners, are dynamic with lagged dependent variables and
serially correlated errors2. Similarly, car-trip length and transit-trip length models are
developed to predict average trip length (in km) by mode using household attributes. The
models are developed for car-owning households and no-car households separately, and
each model is formulated with a lagged dependent variable and serially correlated error.
The relative frequency of trips made by transit is modelled through the use of the binomial
logistic formulation. The socio-demographic components (in section 5) are integrated with
the mobility component (conSisting of the models of car ownership, trip generation, modal

split, and travel distance by mode) to form a comprehensive simulation system.

1 The estimation of this model was completed before the wave 9 and 10 data set became available. Since
the five stage estimation method is time consuming and the added advantage of including Wave 9 in the data
set was judged to be marginal, the model estimated with waves 1,3,5, and 7 is used in MIDAS. The
appropriateness of this judgement is conformed in the validation section (Section 7).

2 For the trip generation models, the trip length models, and the modal split model, data formed by pooling
waves 1,3,5,7,and 9 have been used.
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7. Validation

The Dutch National Mobility Panel Survey spanned over a period of five years (1984-
1989) with a total of 10 waves of which 8 involved weekly trip diary surveys (Wissen &
Meurs, 1989). Data derived from five odd-numbered waves (1, 3, S, 7, and 9) have been
used to estimate components of MIDAS. Information from the last wave (Wave 10) is now

available, offering the opportunity to use it to validate the model components.
7.1. Procedure and Criteria

In this validation exercise, the models in the MIDAS mobility component are used to
predict Wave-10 mobility measures using observed explanatory variable values from the
Wave-10 data (plus observed mobiiity measures of Waves 7 and 9 when the model is
dynamic). Predictions thus obtained are then compared against observed measures in the
Wave-10 data. The MIDAS mobility components are formulated to predict longitudinal

changes. Their predictive acéuracy is examined against observed longitudinal changes.

This validation method resembles the test of robustness of regression coefficients where a
subset of the sémple is set aside for validation and not used in estimation. One important
difference is that the validation effort of this study is based on longitudinal data; instead of
setting aside a subset of behavioral units for validation, a subset of observational time

points (Wave 10, in this case) is set aside for validation.
Another unique feature of this validation effort is that forecasts are produced in simulation

by generating random variables for the error terms of the respective models. The intent is

to validate the models in an environment that is closest to the one they are applied in, i.e.,
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micro-simulation. If applicable, serially correlated errors are generated using the estimated

coefficients of serial correlation.

If the models replicate Wave-10 observations well, it offers evidence that the models are
capable of providing adequate short-term forecasting by replicating the sample closely.
However, it should be recognized that observed Wave-9 and Wave-10 explanatory variable
values are used in the validation. The explanatory variables are thus treated as exogenous
in this validation effort. (These variables are endogenous in MIDAS, and their future
values are internally generated in the simulation. Examining the accuracy of the forecasts of

these explanatory variables is beyond the scope of the effort here.)
The following criteria are used in the validation of continuous mobility measures:
- difference between the observed average and the predicted average,
- percent error of the predicted average,
- mean absolute error,
- mean square error, and
- correlation coefficient between the observations and predictions.

Used for the level of household car ownership, which is a discrete mobility measure, are:

- distribution of observed and predicted numbers of cars, and

- percent of cases correctly predicted.

In the rest of this section, the results of validation effort are presented for the car ownership

model, motorized-trip generation models, and modal split model.
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7.2. Car Ownership Model

The MIDAS car ownership model (Section 6.2) is dynamic with lagged dependent
variables, correlated errors, and Heckman correction terms to account for correlated errors
(validation of an earlier, simpler car ownership model developed for DVK using the same
data base can be found in Kitamura, 1988). This makes forecasting with this model a
complex task. Data from three time points are needed to compute the correction terms and
lagged dependent variables that are both needed to predict Wave-10 probabilities for the
respective levels of car ownership. A random number is then generated to determine a
Wave-10 car ownership level. Table 7.1 compares observed and predicted household car

ownership levels for Wave 10.

The first part of Table 7.1 presents the average of five simulation runs, and the second the
average of 100 runs. In both cases, car ownership levels are correctly forecast for
approximately 90% of the sample households. The average number of cars per household
is predicted to be 0.922, while the observed Wave-10 average is 0.945. The error is within

2.5%.

There is a slight tendency to under-predict car ownership; the marginal total of multi-car
households is under-predicted by 20 (160 vs. 140) and that of no-car households over-
predicted by 9 (229 vs. 238) in the first table. The tendency is somewhat lessened in the
second table. This result may be a reflection of asymmetry in household behavior
dynamics (Clarke, et al., 1982; Goodwin, 1977, 1987; Jones, et al., 1990; Kitamura,
1989; Kitamura and van der Hoorn, 1987). In particular, maintaining a car which has
already been acquired involves only marginal maintenance costs; thus changes in
contributing factors in the direction of fewer cars may not immediately lead to a disposal of

the car. Representation of this possibly asymmetry in car ownership behavior
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Table 7.1
Model Validation with Wave-10 Observations:
Car Ownership Model

Five Simulation Runs

Predicted

Observed Zero Cars One Car Two+ Cars Total
Zero Cars 217 12 0 229
(%) 17.2 0.9 0.0 18.1
One Car 21 816 39 876
(%) 1.7 64.5 3.1 69.2
Two+ Cars 0 59 101 160
(%) 0.0 4.7 8.0 12.6
Total 238 887 140 1265

188 70.1 11.1 100
% of cases correcly classified = 89.7
One Hundred Simulation Runs

Predicted

‘Observed Zero Cars One Car Two+ Cars Total
Zero Cars 219 10 0 229
(%) 17.3 0.8 0.0 18.1
One Car 20 820 36 876
(%) N 1.6 64.8 2.8 69.2
Two+ Cars . 0 51 109 160
(%) 0.0 4.0 8.6 12.6
Total 239 881 145 1265

18.9 69.6 11.5 100

% of cases correctly classitied = 90.7



remains as a future task (initial modeling effort can be found in Kitamura, 1989). Overall

accuracy of the car ownership model is well demonstrated in this validation study.
7.3. Motorized-Trip Generation Models

Table 7.2 summarizes the validation results of the motorized-trip generation models
reported in Section 6.3. Two models have been formulated, separately for car-owning
households and car-less households. The models are also dynamic with lagged dependent

variables and serially correlated errors.

Predictions are produced with two different methods: (a) using observed Wave-10 car
ownership to classify sample households to car-owning households and car-less
households and to exogenously determine the value of the multi-car dummy in the model
for car-owning households (MULTICARS; see Table 6.2); and (b) using simulated Wave-
10 car ownership levels to classify households and to endogenously determine the value of
MULTICARS. The latter method, which more closely represents MIDAS simulation
forecasting, is subject to additional errors in household classification (leading to the

possibility of applying a wrong model) and in the value of MULTICARS.

The results indicate that the models are performing very well, in particular the one for car-
owning households. The larger errors observed for the model for car-less households are

presumably due to the fact that the model is based on a much smaller sample.

Quite noteworthy is the result that the endogenous prediction method (b) is producing
percent errors in predicted averages that are comparable to the exogenous method (a). The
result is encouraging because predicted averages are perhaps the single most frequently

used measure in forecasting.
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Table 7.2
Model Validation with Wave-10 Observations:
Weekly Motorized-Trip Generation Models

Five Simulation Runs

Car Owners Non Car Owners

(a) (b) (a) (b)

N 1036 229

Trips Observed 321 12.1

Trips Predicted 32.9 31.2 13.0 13.0
%Error 2.65% -2.64% 7.51% 7.26%
Mean Abs. Error 9.2 10.6 5.7 5.9
Mean Square Error 134.6 182.6 51.1 58.0
R2 0.725 0.620 0.648 0.597

One Hundred Simulation Runs

Car Owners Non Car Owners
(a) (b) _(a) (b)

N 1036 229
Trips Observed 32.1 12.1
Trips Predicted 329 32.7 13.0 13.8
%Error 2.65% 1.81% 7.51% 14.21%
Mean Abs. Error 9.2 9.3 5.7 5.8
Mean Square Error 134.6 138.4 51.1 52.9
R2 0.725° 0.714 0.648 0.654

(a) : Observed car ownership levels are used as input.

(b) : Simulated car ownership levels are used as input

Mean Abs. Error= Mean absolute error, average of the absolute difference between observed and estimated
value

Mean Square Error= Mean square error, average of the squared difference between observed and estimated
value

Note: The measures shown have been computed using the observed car ownership to classify the households
into car owners and non-car owners.



Although the endogenous method is inferior in terms of the other measures in the results
with five simulation runs, differences between endogenous and exogenous predictions
appear to diminish with one hundred simulation runs. The result is extremely important as
it suggests that the accuracy of forecasts using endogenously generated explan.atory
variables, as is the case for MIDAS, can be improved to levels comparable to forecasts

using observed explanatory variables by increasing the number of simulation runs.

The prediction errors tend to be positive, over-predicting Wave-10 trip generation. This
may have been caused in part by under-reporting of trips in Wave 10 due to panel fatigue.
The effect of panel fatigue on the coefficient estimates needs to be examined in a future

effort.
7.4. Modal Split Model

The weekly household modal split model of Section 6.4 is validated similarly through
simulation. The analysis here used Wave-10 observed explanatory variable values. The
model's performance is evaluated in terms of the fraction of transit trips and the number of
transit trips. The Wave-10 observed number of motorized trips is used together with a
predicted fraction of transit trips to obtain the latter measure. The results are summarized in

Table 7.3.

In each simulation run, the number of transit trips is randomly generated for each
household according to a binomial distribution. The two parameters of the binomial

distribution are determined as follows: The probability of transit choice predicted by the

modal split model (= 1/(1 + exp(-BX;)) is used as the probability of a "success," and the

observed number of motorized trips is used as the total frequency of choices. The ratio of
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Table 7.3
Model Validation with Wave-10 Observations:
Weekly Household Modal Split Model

Five One Hundred
Simulation Runs Simulation Runs
Proportion of
Transit Trips
Observed 0.140
Pred (1) 0.146 0.146
%Error 4.65% 4.65%
Pred (2) 0.134 0.144
% Error 4.5% 3.2%
Mean Absolute Error 0.121 0.127
Mean Square Error 0.040 0.038
Correlation 0.637 0.654
‘Number of
Transit Trips
- Observed 2.9
Predicted 2.7 3.0
% Error 8.4% 0.7%
Mean Absolute Error 2.9 3.0
Mean Square Error 22.7 21.2
Correlation 0.519 0.551

Mean Absolute Error= Mean absolute error, average of the absolute difference between observed and
estimated value

Mean Square Error= Mean square error, average of the squared difference between observed and
estimated value

Pred(1) = Average of (1/(1+exp(-p'x)) across observations.

Pred(2) = Obtained by simulation



the simulated number of transit trips to the total number of trips is used as a simulated

transit choice probability.

The model is again performing quite well. Its forecasting errors are in most cases within
+5%. The results again show that forecasting accuracy can be improved by increasing the
number of simulation runs. In particular, the Wave-10 number of transit trips is very well

predicted with 100 simulation runs.

The series of validation analyses presented in this section has indicated that the mobility
models perform quite well. In fact the correlation coefficients between observed and
predicted Wave-10 mobility measures are quite often as good as those obtained during
model estimation; the models are not only replicating observed behavior well but also
predicting future (i.e., Wave-10) behavior with comparable accuracy. The analysis of this

section lends support to the simulation forecasting reported in Section 9.
7.5 Summary

In this section an overview of the short-term forecasting ability of the mobility component
is presented. The dynamic car ownership model, the first model in the sequence of
mobility models; is shown to perform very well. It correctly predicts the observed car
ownership of Wave 10 in 90.7% of the cases. The mechanized trip generation models are
formulated separately for car-owning households and no-car households and are dynamic
with lagged dependent variables and serially correlated errors. The validation results
indicate that the models are performing very well, in particular the one for car-owning
households for which errors are within 3%. The weekly household modal split model is
also validated through simulation. The model's performance is evaluated in terms of the

fraction of transit trips and the number of transit trips. Again the model is performing quite
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well. Its forecasting errors are in most cases within +5%. The results show that
forecasting accuracy can be further improved by increasing the number of simulation runs.
In particular, Wave-10 number of transit trips are very well predicted with 100 simulation
runs. This exercise has revealed that these models do not offer the same predictive ability.
This is in part due to the fact that some measures of travel behavior are intrinsically more
difficult to predict than others. Also it is conceivable that some measures are temporally
less stable than others. Accuracy requirements for model components of a dynamic
simulation system are not well understood yet. These are areas where improvement is
needed in future effort. Overall the analysis of this section supports the simulation

forecasting reported in Section 9.
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8. Application of MIDAS to Forecasting

As noted earlier, forecasting with MIDAS is different from conventional approaches to

forecasting. Fundamental differences lie in the facts that

- MIDAS uses dynamic model components that are based on observation of changes

over time,

- MIDAS forecasting is based on micro-analytic simulation in which households

"march" and evolve along a simulated time axis, and

- As a result many demographic and socio-economic variables that are typically
exogenous, are endogenously determined in MIDAS. Mobility forecasts are based on

these endogenously generated household and person attributes in MIDAS.

Most model parameters are estimated using subsamples from the Dutch Panel data set. A
subsample of Dutch panel households is also used in the simulation. Observed household
and person attributes of 1984, 1985 and 1986 are used as initial conditions; demographic
and socioeconomic attributes and mobility levels of these (and internally generated new)

households are simulated year by year to 2010 in MIDAS.

In this section, the input parameters to MIDAS are briefly reviewed. Following this, the
procedure used to weight the Panel households for forecasting by MIDAS is described.
Some adjustments made to some of the MIDAS parameters are then discussed. Attempts to
develop micro-simulation models can be found in Mackett (1985) and Miller, et al. (1987).
The former is based on cross-sectional data, while the primary concern of the latter is

residential mobility.
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8.1. MIDAS Input Parameters and Modifiers

The parameters in MIDAS can be classified into two categories. The first category contains
the coefficients of the dynamic models in the mobility component, and the income models
in the demographic component. These coefficients have been estimated using subsamples
of the Dutch Panel data set using econometric methods, and embedded in the MIDAS
programming code. The second category contains parameters 6f the demographic

components, most of which represent probabilities associated with changes.

Most of the parameters in the demographic component are treated as input data. This is to
facilitate their individual adjustment for versatile scenario analysis. The MIDAS software
package contains 16 sets of parameters representing probabilities of various demographic
and socioeconomic changes. The default values stored in 16 separate MIDAS input files,
have been estimated using the Dutch Panel data set. These parameters can be modified to
represent a particular scenario of interest (e.g., an increase in women's labor force
participation). In maintaining MIDAS, effort will be made to update these parameters as
more robust statistics become available. These 16 sets of parameters are summarized in

Table 8.1.

In addition, the following input parameters can be used for quick modification of MIDAS

default settings:

- RINF modifies annual growth rate in personal income (1.0),

- BFCTR modifies birth probabilities (0.0),

- MEFCTR and FEFCTR modify male and female employment transition probabilities,
respectively (0.0),
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h Table 8.1
MIDAS Demographic Input Parameters*

1 The probabulity that a woman in a household will give birth in a given year, by
employment, number of children in the household, and age of the woman.

~ 2 The probability that a child in a household will leave the household in a given year, by
age, sex, and employment.

3 Probability distribution of the age category of a male adult in a household given his
spouses age category.

4 Probability distribution of the age category of a female adult in a household given her
spouses age category.

$ Probability of employment by age and sex (for new household members)

6 Probability of holding a driver's license, by age and sex (for new household
members)

7 Probability distribution of the education category of a male adult, given that of the
female adult in a household (for new household members)

8 Probability distribution of the education category of a female adult, given that of the
male adult in a household (for new household members)

9 Probability distribution .of the number of children in a household, by the age of the
female adult

10 Probability distribution of the age of the youngest child by the age of the female adult
11 Joint distribution of the age and sex of the head by household type

12 Probability that an "other" household member is employed, by his/her age

13 Probabilit); distribution of the education category of an "other" member

14 Transition probability of employment by age and sex

15 Transition probability of license holdings by age and sex

16 Probability of death in a given year, by age and sex
*Default values have been estimated using Dutch National Mobility Panel samples
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- MLFCTR and FLFCTR modify male and female license holding transition
probabilities, respectively (0.0),

- SGFCTR modifies single-to-single household type transition probability (0.0),

- CPFCTR modifies couple-to-couple household type transition probability (0.0),

- FMFCTR modifies family-to-family household type transition probability (0.0), and

- SPFCTR modifies single parent-to-single parent household type transition probability
(0.0),

where their default values are shown in parentheses. BFCTR through FLFCTR are applied
in MIDAS as follows:

Pm = 1/[1 + exp(<Z + FCTR))]
where

Z = In(Po/(1 - Po))
and

P;n = modified probability, and

P, = original probability.

SGFCTR through SPFCTR are used as additive terms in the logit transition probability
models. For details, see MIDAS User's Manual (Goulias,1991).
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8.2. Household Weighting

MIDAS simulates the evolution of a subset of those Dutch Panel households that
participated in Waves-1, 3, and S (many models in MIDAS are’ dynamic, requiring
observations from three time points in the simulation). Because of the initial sampling
scheme and attrition, this subset of Panel households does not represent the Dutch
population. Because only participants of multiple waves are included in the subsample, it
is unlikely that existing weights (BGC, 1984) are applicable here (see Table 8.2).
Therefore a new set of weights is developed for this particular subsample using available

nationwide statistics.

The weights are developed with the principle of making the distribution of household sizes
in the MIDAS subsample agree with the nationwide distribution (although the use of
household type is more desirable, no comparable nationwide statistics were available for
this analysis). Let ¢ be a column vector containing the nationwide household size

distribution. Using available statistics for 1985 (CBS, 1988),

¢' = (cq, ¢, -vy C5)

= (0.279, 0.293, 0.151, 0.190, 0.087)
where

cj = relative frequency of households with i persons, i = 1, 2, .., 4, and

cs = relative frequency of households with 5 or more persons.

Now let A be a § x 5 matrix of ajj, and w be a column vector of wj, where
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ajj = frequency of households of type j with size i in the MIDAS subsample, and
wj = weight for household type j, j = 1 (singles), 2 (couples), 3 (families),
4 (single parents), and 5 (others).
Then the weights, W, can be determined by solving the system of linear equations,
Aw =cN
where

N = total number of households after the weights are applied,

which can be set as desired. In the MIDAS runs presented in this report, N = 1135 is

used, with the weights determined as

Singles 4.6
Couples 1.5
Families 0.95
Single Parents 3.1
Others 1.3

8.3. Comparable Statistics

Often representing the probability of changes and being estimated using a longitudinal data
set, many of the MIDAS parameters do not find comparable statistics estimated on larger

nationwide samples. The attempts to obtain estimates of household type transitions that are
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Table 8.2
Distribution of Household Types and Household Size:
Dutch Panel 1984-87, 1982 WBO, and 1982 ORIN

Dutch National Mobility Panel

MIDAS 1984 1985 1986 1987 WBO* ORIN+

Sample Wavel Wave3 WaveS Wave 7 1982 1982
Singles 94 17.0 156  20.1 18.3 7.2 73
Couples 2312t 26.1 24.1 244 256 21.1 16.7
Families 584 442 490 453 453 71.7 76.0

Single Parents 6.9 8.6 7.7 6.7 6.7
Others 251 4.1 3.6 3.5 4.1

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0

+The category for families includes single parents and others.
Note: CBS statistics for 1985 indicate that the fraction of single-person households is
27.7%, substantially larger than the WBO and ORIN figures.
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comparable to the household type definition used in MIDAS were unfortunately

unsuccessful.

One notable exception is employment status transition probabilities, which have been
tabulated using CBS st tistics by age and sex into a comparable format (Table 8.3). Quite
surprisingly, the CBS transition probabilities depict much higher stability in employment
than do Panel transition probabilities. By comparing Tables 5.2 and 8.3, it is clear that the
diagonal elements of CBS transition matrices are always greater, indicating stability. This
is quite contrary to the expectation that transition probabilities estimated using a panel
sample tend to be biased to over-represent stability because respondents whose job status
changed are more likely to leave the panel. Preliminary MIDAS runs were made using both
Panel and CBS transition probabilities, but no appreciable differences were found in the

simulation results.
8.4. Summary

Forecasts with MIDAS are produced using dynamic model components that are based on
observation of changes over time, and they are based on micro-analytic simulation in which
households "march" and evolve along a simulated time axis. As a result many
demographic and socio-economic variables that are typically exogenous, are endogenously
determined in MIDAS. Mobility forecasts are based on these endogenously generated

household and person attributes in MIDAS.

The model parameters used in the dynamic models are estimated using subsamples from the
Dutch Panel data set. There are 16 sets of parameters that represent various demographic
and socioeconomic changes. These parameters can be modified to represent a particular

scenario of interest (e.g., an increase in women's {abor force participation).
P
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CBS Arbeidskrachtentellingen, 1977, 1979, 1981 and 1983

Table 8.3
Employment Status Transition Matrix by Age and Sex Based on

Men Women
Not Not

Age Employed Employed  Employed  Employed
18 -24 Employed 979 .021 926 074
Not Employed .136 .864 .135 .865
25-34 Employed 994 .006 971 .029
Not Em'ployed 251 .749 .033 967
35-44 Employed 994 .006 971 029
: Not Employed 251 749 033 967
45 - 54 Employed 969 .031 937 063
Not Employed 134 .866 .003 997
55-64 Employed 943 .057 903 097
Not Employed .017 .983 .001 999
>65 Employed 585 415 .665 335
Not Employed .000 1.000 .000 1.000
Total Employed 977 .023 913 .087
Not Employed .082 918 036 964

Note: Average of transition probabilities observed between 1976-77, 1978-79,1980-81,

and 1982-83.
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A subsample of Dutch panel households is used in the simulation.This subsample does not
represent the Dutch population because of the initial sampling scheme and attrition. Since
only participants of multiple waves (stayers) are included in the subsample, it is unlikely
that existing weights are applicable in this case. Therefore a new set of weights is

developed for this particular subsample using available nationwide statistics (CBS, 1988).

Employment transition probabilities have been tabulated by age and sex using CBS
statistics in a format comparable to the format in MIDAS. Contrary to the expectation that
transition probabilities estimated using a panel sample tend to be biased to over-represent
stability, the CBS transition probabilities depict much higher stability in employment than
do Panel transition probabilities!. Preliminary MIDAS runs were made using both Panel
and CBS transition probabilities, but no appreciable differences were found in the
simulation results. The results presented in this report are obtained using the CBS

employment transition probabilities.

1 Note that a similar finding is reported in Section 3 for the household type transition

probabilities.
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9. Simulation Experiment

The evolution of household demographics and socio-economics, car ownership, and
mobility, is simulated with MIDAS using the expanded Panel household sample described
in the previous section. A simulation period of 25 years is used that starts in 1986, when
the Wave 5 survey was conducted, and ends in 2010. One year is used as the time
increment in the simulation. Therefore the characteristics of each sample household is
updated 25 times in the simulation. All simulation runs reported here assume a retention
rate of 15%, i.e., 15% of households newly generated are kept in the simulation (see
section 5.8). The deletion of the remaining households may interpreted to represent out-

migration from the study area.

Before proceeding, it is repeated that many variables that are exogenously determined and
given as input parameters to other forecasting models, are endogenous to MIDAS and are
internally generated during simulation. Because of this, it is not possible to exactly match
the socio-economic and deinographic factors in MIDAS to those in other forecasting
scenarios. It was viewed more meaningful to use MIDAS to observe the socio-economic
and demographic evolution in The Netherlands. The mobility forecasts thus obtained can
then be compared with existing forecasts with the understanding that the principle of

forecasting is fundamentally different in MIDAS.

The tenet of MIDAS has been to extract salient longitudinal relationships in the Dutch
National Mobility Panel data, and extend them into the future. One of the fundamental
tasks charged to this project is to examine whether such dynamic forecasting is practical
and meaningful at all. Because of this, manipulation of the MIDAS parameters that have
been estimated using the Dutch Panel data is kept to the minimum; only a parameter to

control income growth (RINF) is manipulated in the simulation exercise reported here to
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represent CPB "referentie,” "optimistisch" and "pessimistisc " growth scenarios. As noted
earlier, however, many parameters are built in MIDAS to enable a wide range of scenario

analysis.

In this section, the results of a "baseline" MIDAS run are first presented. The baseline run
assumes an income growth rate similar to the CPB "referentie" scenario. The baseline
results are then compared in Section 9.2 to the CPB "referentie" socio-economic and
demographic scenario, observed OVG mobility measures, car ownership forecasts by van
den Broecke, and mobility forecasts by the national model. MIDAS forecasts with high
and low income growth scenarios are presented in Section 9.3. Finally in Section 9.4,
short-term and long-term aggregate income elasticities of car ownership and selected

mobility measures are presented.
9.1. Baseline MIDAS Forecasts

The MIDAS baseline forecast represents an income growth of 72% by year 2010 (closely
approximating the CPB referentie growth rate of 65%). The results are presented in Table
9.1 for year 1986 (base year), 1995, 2000, 2005 and 2010. All MIDAS results presented
in this section are averages of five simulation runs repeated for each simulation case using

different seeds for random number generation.

Simulation results are given for household size, labor force participation, license holding,
automobile ownership, and for five mobility measures: number of motorized trips, number
of car trips, number of transit trips, driver vehicle-kilometers, and transit passenger-
kilometers. The evolution of these demographic, socioeconomic, and mobility measures

through the 25 year simulation period is shown in Figures 9.1. All mobility measures are

121



Table 9.1
Baseline MIDAS Forecasts: 1986 - 2010

Base
Year MIDAS Forecasts
s 1986 1995 2000 2005 2010 Growth

Population (x 106)* 14.5 15.1 4.1%

Population, = 12 Years Old (x 106)++ 12.3 13.0 6.5%

Household Size 2.53 2.31 2.16 2.02 1.92 -24.3%

Labor Force Participation* 502% 51.7% 49.3% 46.3%  42.6%

Average Income per Employed Person 100 138 146 158 172

Number of Licensed Drivers (x 10)** 7.45 10.34 38.8%
Percent of Licensed Drivers 51.4%  59.5% 63.4% 66.5%  68.5%

Number of Automobiles (x 106)** 5.03 7.19 43.0%
Automobiles per Person 0.35 0.40 0.43 0.46 0.48 37.3%
Automobiles per Household 0.88 0.92 0.92 0.93 0.91 4.0%
Automobiles per Driver 0.68 0.67 0.67 0.69 0.70 3.0%

Number of Motorized Trips per Week
Per Person 9.68 11.76 12.29 12.69 13.00 34.3%
National Total (x 106)** 118.6 169.6 43.0%

Number of Car Trips per Week
Per Person 8.67 10.60 11.05 11.46 11.79 36.0%
National Total (x 106)"* 106.3 153.8 44.8%

Number of Transit Trips per Week
Per Person 1.01 1.16 1.24 1.23 1.21 20.1%
National Total.(x 10%)** 12.3 15.7 27.9%

Vehicle-Kilometers Driven per Week
Per Person : 92.4 135.3 134.1 146.0 151.2 63.6%
National Total (x 106)** 1132 1972 74.2%

Transit-Passenger Kilometers Trips per Week
Per Person 24.1 37.7 41.0 41.7 41.2 70.9%
National Total 296 538 81.9%

.. _— _— _— . — ..~ —— - — "~
+CPB "referentie” scenario.
++Van den Broecke Social Research (1987a, Deel I, p.3, Deel IV, Table 1).
The 2010 figure adjusted to agree the CPB forecast.
Among individuals of 15 years old and over (CPB), or 18 years old and over (MIDAS).

**MIDAS forecasts are expended using the national population (of individulas of 12 years old and over r for
mobility measures).
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weekly totals including trips made on weekend. Nationwide figures are developed by
multiplying national population estimates (used in the CPB referentie scenario) to the per-

capita figures generated by MIDAS.

In presenting these absolute values of mobility measures, it is noted that the MIDAS
mobility forecasts are based on the mobility component estimated using the Dutch Panel
data together with base-year trip rates reported in the 1986 Dutch Panel survey. It has been
reported that reported trip rates in the Dutch Panel data are subject to biases due to under-
reporting of trips (See Section 9.2.2). Therefore the absolute mobility forecasts reported in
this section must be carefully interpreted, and more emphasis should be placed on relative

changes in their values rather then their absolute values.

The results show a rapid decrease in household size, gradual decline in labor force
participation, and increases in the driver population and household car ownership. All
mobility figures show substantial increases, in particular driver vehicle-kilometers and

transit passenger-kilometers.

Household size declines from the initial 2.53 in 1986 to 2.16 in year 2000, and 1.92 in
year 2010. This represents a much more rapid decrease than the CPB scenario (2.3 in
2010). However, CBS statistics indicate that the average number of persons per
househoid declined from 2.95 in 1975 to 2.54 in 1985 (CBS, 1988). This represents a
decline of over 0.4 person per household in a decade, or 0.041 person per year. The above
decrease forecast by MIDAS, i.e., 0.37 person in the first 15 years and 0.24 in the
following 10 years, may in fact accurately reflect the observed trend. The continuing
decline in the twenty-first century depicted by MIDAS may reflect the aging of the
population. Should there be reasons to believe that this trend may change in the future,

then MIDAS is capable of generating forecasts reflecting such changes.
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9.2. Comparison with Other Forecasts

The baseline MIDAS forecasts are compared to available forecasts (or scenarios) and
observed mobility measures in this section. They include: CPB referentie socio-economic
and demographic scenario, observed OVG mobility measures, driver license holdings and

car ownership forecasts by van den Broecke, and mobility forecasts by the national model.
9.2.1. CPB Referentie Scenario

A comparison of the MIDAS baseline forecasts and the CPB referentie scenario is given in
Table 9.2. Some discrepancies in the base-year figures are presumably due to the
uniqueness of the Panel subsample used in MIDAS. As noted in Section 8.2, weighting
based on household size was applied to the Panel sample, and led to the MIDAS base-year

average household size of 2.53, which closely approximates the CPB average of 2.59.

As discussed earlier, MIDAS results show much faster decline in household size. MIDAS
also forecasts faster increase in the driver population in terms of the percentage of licensed
drivers arﬁong the nationwide population. The discrepancy between the MIDAS and CPB
results is much smaller for the percentage in the adult population (individuals of 18 years
old and over). The MIDAS results, which use Panel-based transition probabilities of
license holding, show a similar probability that an adult individual will be holding a
driver's license in 2010. The apparent discrepancies in the number of licensed drivers and
their percentage in the entire population, are therefore caused by the difference in the 2010
age distribution in the CPB scenario and that simulated by MIDAS. MIDAS depicts mﬁch

more rapid aging of the Dutch population.
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Table 9.2
Comparison of MIDAS Forecasts and

CPB Referentie Scenario

CPB* MIDAS
1986 2010 1986 2010
Population (x 106) 14.5 15.1
Population, = 12 Years Old (x 106)*+ 12.3 13.0
Household Size 2.59 2229 2.53 1.92
Labor Force Participation* 41% 46% 50.2%  42.6%
Average Income per Employed Person 100 165 100 172
Numbser of Licensed Drivers (x 106)°** 7.11 9.30 7.45 10.34
Percent of Licensed Drivers in Population 49.0% 61.6% 514%  68.5%
Percent among 18 Years Old and Over 66.1% 72.6% 71.2% 73.3%
Number of Automobiles (x 106)** 4.54 7.90 5.03 7.19
Automobiles per Person 0.31 0.52 0.35 0.48
Automobiles per Household 0.81 1.20 0.88 0.91

+CPB "referentie" scenario.

++Van den Broecke Social Research (1987a, Deel I, p.3, Deel IV, Table 1).

The 2010 figure adjusted to agree the CPB forecast.

* Among individuals of 15 years old and over (CPB), or 18 years old and over (MIDAS).

**MIDAS forecasts are expanded using the national population.



MIDAS forecasts the number of cars per person in 2010 to be 0.48. This is slightly
smaller than the value, 0.52, in the CPB referentie scenario. The number of cars per
household forecast by MIDAS is smaller than the CPB value by 24%, largely because of
the decline in household size in the MIDAS simulation. The MIDAS forecast of nationwide

fleet size is approximately 9% smaller than the CPB value.

In comparing these results, it should be noted that MIDAS utilizes an elaborate dynamic
household car ownership model. Although the assumptions underlying the CPB car
ownership scenario are not known to the project team (the scenario appears to be after van
den Broecke; see Section 9.2.3), it is conceivable that the national 2010 fleet size of 7.90
million vehicles was obtained by extrapolating observed trends, rather than building a
model of household car ownership. Car ownership forecasts in MIDAS, on the other
hands, reflect changes in the number of drivers, number of workers, number of driving-

age children, and household income at the disaggregate household level.

Another important difference is the decline in labor force participation shown by MIDAS.
Earlier in the study, two sets of preliminary simulation runs were conducted, one using the
employment status transition probabilities estimated using the Panel sample, and the other
using thoée estimates by CBS. These runs did not show any appreciable difference in the
results. The decline in labor force participation shown by MIDAS, therefore, cannot be
attributed to incorrect parameter values for individual labor force participation. It is
conceivable that the CPB forecast of an increase from 41% of the adult population (15
years old and over) in 1986 to 46% in 2010, is based on some assumption that is not
shared by MIDAS, e.g., increased labor force participation by women. Again, the
philosophy behind the MIDAS results reported here is to use the Panel-based paramet‘cr
values without modification. Should forecasts based on such assumptions be desired,

MIDAS is capable of incorporating them.
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9.2.2. Observed 1982 OVG Mobility Measures

Dutch national mobility statistics available in Moning (1983) are used to examine the
representativeness of the Panel sample used in MIDAS simulation forecasting. The results
are summarized in Table 9.3. Although the survey years are not exactly comparable (the
OVG trip rates are from 1981, travel distances from 1982; the base year MIDAS mobility
statistics are 1986 observations), the two sets of mobility measures are quite comparable, in

particular travel distance measures.

The MIDAS base-year trip rates are consistently below the 1981 OVG trip rates (it is
believed that the OVG mobility measures are averages over all days of the week including
Saturdays and Sundays). For example, the motorized-trip rate is 17% below the
comparable OVG trip rate. This may be due to the well documented trip under-reporting in
the Dutch Panel survey (Golob and Meurs, 1986; Meurs, van Wissen and Visser, 1989).
As noted earlier, this should be kept in mind in interpreting the mobility forecasts provided

by MIDAS.
9.2.3. Van den Broecke's Forecasts

Based on his innovative cohort model, van den Broecke produced driver's license holdings
and car ownership forecasts for the Netherlands (van den Broecke, 1987a, 1987b, 1988).
His forecasts are compared with MIDAS forecasts in Table 9.4. The driver population and
the national car ownership forecasts by van den Broecke are identical to those in the CPB
referentie scenario; apparently the former have been incorporated in the latter. The

differences between the MIDAS license holding and car ownership forecasts and the
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Table 9.3

Comparison of MIDAS Base-Year Mobility Measures with

1982 OVG Observations

ovG*

1978

1982
T

Population (x 108)*
Population, = 12 Years Old (x 106)++

Number of Motorized Trips per Week
Per Person

National Total (x 105)°*°

Number of Car Trips per Week
Per Person

National Total (x 106)°**

Number of Transit Trips per Week
Per Person

National Total (x 106)**

Vehicle-Kilometers Driven per Week
Per Person 93.8

National Total (x 105)°**

Transit Passenger-Kilometers Trips per Week
Per Person 20.3

National Total (x 106)°**

11.69

10.57

1.12

93.8

21.7

==

*Moning (1983). The OVG trip rates are for 1981.
+CPB "referentie" scenario.

++Van den Broecke Social Research (1987a, Deel I, p.3, Deel 1V, Table 1).

The 2010 figure adjusted to agree the CPB forecast.

MIDAS
1986

14.5
12.3

9.68
118.6

8.67
106.3

1.01
12.3

92.4
1132

24.1
296

**MIDAS forecasts are expanded using the national population of individulas of 12 years old and over.



Table 9.4
Comparison of MIDAS Forecasts with van den Broecke's
License and Car Ownership Forecasts

VDB! MIDAS

1985 2010 1986 2010

Population (x 106)* 14.5 15.1
Population, = 12 Years Old (x 106)++ 12.3 13.0
Labor Force Participation* 31% 38% 36.2%  39.8%
Average Income per Employed Person 100 170 100 172
Number of Licensed Drivers (x 106)°** 6.90 9.30 7.45 10.34
Percent of Licensed Drivers 48.0% 61.0% 514%  68.5%
Number of Automobiles (x 106)** 4.50 7.90 5.03 7.19
Automobiles per Person 0.31 0.52 0.35 0.48
Automobiles per Household 0.88 0.91

1Van den Broecke/Social Research (1987b), "Middenscenario"
+CPB "referentie" scenario.

++Van den Broecke Social Research (1987a, Deel I, p.3, Deel IV, Table 1).
The 2010 figure adjusted to agree the CPB forecast.

*Percentage of employed persons in the total population.
**MIDAS forecasts are expanded using the national population.



corresponding CPB values have been discussed in Section 9.2.1.

Quite interestingly, a good agreement.exists between van den Broecke and MIDAS in the
2010 labor force participation forecasts (represented here as the percentage of employed
persons in the total population). MIDAS assumes practically the same income growth rate
as in van den Broecke. Considering the fundamental differences in data and methodology,
the compatibility between the van den Broecke forecasts and MIDAS results, including

driver's license and car ownership, is quite striking.
9.2.4. National Model

The Dutch National Model provides the only mobility forecasts available to this study
(Vrolijk, Gunn and van der Hoorn, 1987; Gunn, van der Hoorn and Daly, 1987). The
results are summarized in Table 9.5 along with MIDAS forecasts (the National Model
forecasts used here assume changes in demographic factors, driver's license holding and
car ownership, but no changes in accessibility and congestion). The differences in

household size and labor force participation are similar to those seen earlier.

Quite notably, the 2010 driver's license holding in the National Model forecasts is
practically identical to the forecast by MIDAS. Driver's license holdings are forecast in
National Model using a set of discrete choice models formulated at the household level.
Thus it is not a simple extrapolation of observed trends. MIDAS forecasts are based on
transition probabilities of license ownership, while van den Broecke's forecast relies on
license ownership probabilities assumed for respective population age cohorts. It is
noteworthy that these three, entirely different forecasting methods have produced 2010

driver population forecasts that are within 12% of each other.
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X Table 9.5
Comparison of MIDAS Forecasts with National Model Forecasts

National Model* MIDAS
1986 2010 1986 2010 Growth

Population (x 105) 14.3 15.1 - 14.5 15.1

Population, = 12 Years Old (x 106)*+ 12.3 13.0

Household Size 2.70 2.29 2.53 1.92

Total Workforce (x 106) 4.6 6.1

Labor Force Participation* 39.2%  48.5% 50.2%  42.6%

Number of Licensed Drivers (x 105)** 6.6 10.4 7.45 10.34
Percent of Licensed Drivers 46.2%  68.9% 51.4%  68.5%

Number of Automobiles (x 109)** 4.3 7.9 5.03 7.19
Automobiles per Person 0.30 0.52 0.35 0.48
Automobiles per Household 0.81 1.20 0.88 0.91

Change in Weekday Vehicle-Kilometers2 +72%

Vehicle-Kilometers Driven per Week
Per Person 92.4 151.2 63.6%
National Total (x 105)** 1132 1972 74.2%

Change in Weekday BMT Passenger-Kilometers2 -7%

Change in Weekday Rail Passenger-Kilometers2 -2%

Transit Passenger-Kilometers per Week
Per Person 24.1 41.2 70.9%
National Total (x 105)** 296 538 81.9%

W
#Vrolijk, Gunn and van der Hoorn (1987), Gunn, van der Hoorn and Daly (1987)

++Van den Broecke Social Research (1987a, Deel I, p.3, Deel IV, Table 1).
The 2010 figure adjusted to agree the CPB forecast.

* Among individuals of 15 years old and over (CPB), or 18 years old and over (MIDAS)

**MIDAS forecasts are expanded using the national population (of individulas of 12 years old and over for
mobility measures).

1Estimated using the total population and the number of households used in the National Model study.
2Read from a graph in Gunn, van der Hoorn and Daly (1987).



Vehicle-kilometrage forecasts are again strikingly similar between MIDAS and the National
Model. The National Model's forecasts an increase of 72% by year 2010. The

corresponding MIDAS forecast is a virtually identical increase of 74.2%.

The forecasts of public transit use are drastically different between the two, however. The
National Model predict a slight decrease in public transit passenger-kilometers by 2010.
MIDAS, on the other hand, forecasts an increase of over 80%. No changes in accessibility

and levels-of-service are assumed in both forecasts.

This discrepancy in public transit use between MIDAS and the National Model is perhaps
the single most important discrepancy. Unfortunately there is no other comparable forecast
available to this study to infer which forecast depicts a more likely picture of the future.
Both forecasts are based on elaborate model systems formulated at the household level.
One important difference is that the National Model is formulated using cross-sectional data
and longitudinal changes in population compositions are represented by weighting
households. MIDAS, on the other hand, is based on longitudinal data and simulates
household evolution over time. Investigation of the relative advantages and disadvantages
of these two distinct model systems for long-range forecasting appears to be well

warranted.

9.3. Scenario Analysis: Income Growth Effect

As an example to show how MIDAS can be used for scenario analysis, two additional
simulation runs were made to produce the income growth in the CPB "optimistisch"

scenario and the one in the "pessimistisch" scenario. The results are summarized in Table

9.6 and Figures 9.2a and 9.2b.
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Table 9.6

Comparison of Three Income Growth Scenarios .,
Base MIDAS Forecasts for 2010
Year by Income Growth Rate
1986 Low Middle High ’
Population (x 106)* 14.5 15.1 15.1 15.1
Population, = 12 Years Old (x 106)++ 12.3 13.0 13.0 13.0
Household Size 2.53 1.89 -25% 1.92 -24% 1.90 -25%
Labor Force Participation* 50.2% 42.3% 42.6% 42.2%
Average Income per Employed Person 100 141 172 220
Number of Licensed Drivers (x 106)** 7.45 1031 38% 10.34 39% 10.34 39%
Percent of Licensed Drivers 51.4% 68.3% 68.5% 68.5%
Number of Automobiles (x 106)** 5.03 6.86 36% 7.19 43% 7.57 51%
Automobiles per Person 0.35 0.45 0.48 0.50
Automobiles per Household 0.88 0.86 0.91 0.95
Automobiles per Driver 0.68 0.67 0.70 0.73
Number of Motorized Trips per Week
Per Person 9.68 12.50 29% 13.00 34% 13.51 40%
National Total (x 105)"* 118.6 163.0 37% 169.6 43% 176.3 49%
Number of Car Trips per Week
Per Person 8.67 11.28 30% 11.79 36% 12.26 41%
National Total (x 106)"* 106.3 147.1 38% 153.8 45% 159.9 50%
Number of Transit Trips per Week
Per Person 1.01 1.22 21% 1.21 20% 1.25 25%
National Total (x 106)"* 12.3 159 29% 15.7 28% 16.3 33%
Vehicle-Kilometers Driven per Week
Per Person 92.4 1423 54% 151.2 64% 156.4 69%
National Total (x 106)** 1132 1856 64% 1972 74% 2040 80%
Transit Passenger-Kilometers Trips per Week
Per Person 24.1 39.2 63% 41.2 1% 42.5 76%
National Total 296 512 73% 538 82% 554 87%

—

+CPB scenario.

++Van den Broecke Social Research (1987a, Deel I, p.3, Deel 1V, Table 1).

The 2010 figure adjusted to agree the CPB forecast.
* Among individuals of 15 years old and over (CPB), or 18 years old and over (MIDAS).
**MIDAS forecasts are expanded using the national population (of individulas of 12 years old and over - for

mobility measures).
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Household size and driver’s license holding are assumed to be independent of income in
MIDAS. The slight differences found for these variables across the three scenarios are
purely due to random variations in the simulation, and should vanish if the number of

repetitive simulation runs is increased for each scenario.

More importantly, employment is assumed to be independent of household income or wage
rates in the current version of MIDAS. In fact employment decision is likely to depend on
both household income and wage rates. For example, a secondary worker in a household
may choose to work or not to work depending on the income provided by the principal
worker. The secondary worker may also decide to participate or not to participate in the
labor force depending on the wage rates available. The current version of MIDAS uses a
simple probabilistic approach to employment, and does not reflect these aspects of labor
force participation decision. MIDAS can be refined by incorporating a more realistic

employment decision model in the future.

The number of cars is forecast to increase by 36% by 2010 under the pessimistisch growth
scenario, 43% under the referentie scenario, and 51% under the optimistisch scenario.
Clearly a higher income growth rate leads to a higher level of car ownerships, but these car
ownership growths are not as fast as the income growths (41%, 72% and 120%,

respectively).

At the nationwide level, motorized-trip rates grow virtually at the same pace as car
ownership. Car trip rates also show growth rates similar to those of car ownership.
Nationwide growth rates in vehicle-kilometers range from 64% for the pessimistisch

scenario to 80% in the optimistisch scenario.

Public transit trip rates, on the other hand, show more complex growth pattemns; the trip
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rate is slightly higher for the pessimistisch scenario (29%) than for the referentie scenario
(28%), while it is the highest for the optimistisch scenario (33%). Apparently two forces
are at work. When income growth ié slow, the lower car ownership level leads to more
frequent use of public transit. On the other hand, higher income implies more long distance
rail trips, leading to the highest transit trip rate with the optimistisch scenario (the analysis
of the Dutch Panel data set in Section 6.4.3 has shown that transit use is positi\;ely
correlated with income). Transit passenger-kilometrage, on the other hand, grow with

income.

The scenario analysis of this section indicates that transit use will increase under any
income growth scenario examined here. Income growth and accompanying car
ownership growth are not detrimental to transit use. In fact the analysis here shows that
both transit trip rates and passenger-kilometrage grow fastest under the fastest income

growth scenario.
9.4. Long-Term and Short-Term Elasticities

One of the advantages of simulation forecasting based on dynamic models is its ability to
replicate the dynamics inherent in the process under investigation. Changes in car
ownership or mbbility may not immediately follow a change in a contributing factor, but
may involve response time lags. If that is the case, then the impact of a change in a
contributing factor cannot be assessed in its entirety until delayed responses take place and
their repercussions are complete. With the dynamic models with lagged dependent
variables capturing such effects, MIDAS is a dynamic simulation model system ideal for

the analysis of behavioral processes.

In this section, the year-to-year changes in mobility measures produced by MIDAS are
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used to evaluate possible differences in short-term and long-term growth rates. The intent
of the analysis is to shed light on the effect, on the value of an elasticity measure, of the
time interval with which it is measﬁred. Aggregate elasticities are used as measures of
behavioral change. (It must be noted that an aggregate elasticity is not necessarily identical
to the elasticity that would be observed for each individual behavioral unit. Positive
changes and negative changes cancel each other out as an average measure of change is
computed. This information loss in aggregation would lead to aggregate elasticities that
tend to under-represent behavioral sensitivity. If study objectives warrant, the MIDAS is

capable of producing such disaggregate elasticities.)

Suppose it is desired to evaluate the elasticity of Y with respect to X, i.e., how responsive

Y is to a change in X. A measure of the elasticity may be defined as

E = (dY/Y)/(dX/X),

namely, the ratio of the relative change in Y to the relative change in X. However, if Y
does not change instantaneously after X changes, or X changes gradually over time, then
the above ‘elasticity measure depends on the time interval, A, used to measure dX and dY as
well as the time, t, when X and Y are measured. Accordingly E becomes a function of A

and t, as
E(t,4) = {(Y(t+4) - Y())(X(t+4) - X(1))} {X(t)/Y(t)}

Note that dY is replaced by the difference, Y(t+A) - Y(t), and dX by X(t+4) - X(T). IfA
is relatively long (say, a decade), then the resulting E(t,A) may be called a "long-term
elasticity," while if A is short (a few months or a year), then it may be called a "short-term

elasticity." Suppose Y changes instantaneously as X changes, while X changes
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continuously with time, t. Further let,
Y(t) = F(X(t)).
Then an elasticity measure using interval A is
E(t,4) = {(F(X(t+4)) - FX(O)/(X(t+4) - X)) HX®/Y(®)}-
Now, suppose X changes monotonously over time, i.e.,
X(t) < X(s) or X(t) > X(s) foranyt<s.
Namely X either increases or decreases over time. Then, for a givent,

{F(X(t+A4)) - FX(©)}X(t+A) - X(1)) decreases with A if d2F/dX2 < 0,
{F(X(t+A)) - F(X(1)) }/(X(t+4) - X(1)) increases with A if d2F/dX2 > 0,
and
{F(X(t+4)) - FCX()}(X(t+4) - X(1)) is constant if d2F/dX2 = 0.
Then assuming ihat X()/Y(t) > 0 for a givent,
E(t,A) decreases with A if d2F/dX2 < 0,

E(t,A) increases with A if d2F/dX2 > 0, and

E(t,4) is independent of A if d2F/dX2 = 0.
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Thus the relationship between long-term and short-term elasticities depends on the
functional relationship between X and Y. The true relationship between X and Y may not
be contemporaneous and X may chaﬂge in non-monotonous manner. Thus the simplified
discussion here may not be immediately applicable to represent observed behavioral
dynamics. Nonetheless, the discussion shows that functional relationship between X and Y

is one of the factors that influence long-term and short-term elasticities.

Aggregate elasticities of car ownership, trip rate, and vehicle-kilometers with respect to
income, are evaluated using A =1, 2, 4, 6, and 10 years. The results for Year S through
Year 25 of the simulation with the referentie scenario are used in this computation. The

averages and standard deviations of the elasticities are summarized in Table 9.7.

The results for car ownership and vehicle-kilometrage offer clear indications that their
aggregate elasticities decline as the time interval for evaluation, A, increases. If the above
assumption of contemporaneous relations between average car ownership and average
income can be accepted, then the result implies that average car ownership is a concave
function of average income; the marginal increase in average car ownership gradually
declines as average income continues to increase. Similar results can be observed for
vehicle kilometrage. The results for trip rate, on the other hand, suggest that average trip
rate is linearly felated to average income; if the latter continues to increase, the former

would also continue to increase at the same rate as the former.

The analysis of this section has shown that MIDAS is capable of generating simulation
output that would enable analyses that would otherwise be difficult to perform. Although
the analysis here used aggregate elasticities, MIDAS output can be easily generated such

that elasticity measures can be evaluated at the household level.
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Table 9.7
Aggregate Income Elasticities of
Car Ownership, Trip Rate, and Vehicle-Kilometrage by

Time Interval for Evaluation (A)

Car Ownership

A=1 A=2 A=4 A=6 A=10
Average Elasticity 141 1.25 1.05 1.02 1.00
Standard Deviation 1.85 1.04 26 .18 13
Time Points 20 19 17 15 11
Trip Rate

A=1 A=2 A=4 A=6 A=10
Average Elasticity .57 .63 .68 .63 58
Standard Deviation 1.10 .61 31 .16 06
Time Points 20 19 17 15 11
Vehicle-Kilometrage

A=1 A=2 A=4 A=6 A=10
Average Elasticity 1.08 .83 .68 .65 .65
Standard Deviation 2.18 90 41 31 25

Time Points 20 19 17 15 11




9.5 Summary

The evolution of household demographics and socio-economics, car ownership, and
mobility is simulated with MIDAS using the expanded Panel household sample described
in Section 8. A simulation period of 25 years is used that starts in 1986, when the Wave §

survey was conducted, and ends in 2010. The time increment in the simulation is one year.

The baseline run of MIDAS assumes an income growth rate similar to the CPB "referentie"
scenario. The results show a rapid decrease in household size, gradual decline in labor
force participation, and increases in the driver population and household car ownership.
All mobility figures show substantial increases, in particular for vehicle driver-kilometers

and transit passenger-kilometers.

Comparing the MIDAS baseline results to the CPB "referentie" socio-economic and
demographic scenario, it is found that MIDAS results show much faster decline in
household size. MIDAS also forecasts a faster increase in the driver population in terms of
the percentage of licensed drivers among the nationwide population. The discrepancy
between the MIDAS and CPB results is much smaller for the percentage in the adult
populatioh (individuals of 18 years old and over). The MIDAS results show a similar
probability that an adult individual will be holding a driver's license in 2010. The apparent
discrepancies between MIDAS and CPB are caused by the difference in the 2010 age
distribution in the CPB scenario and that simulated by MIDAS. MIDAS depicts much

more rapid aging of the Dutch population.

MIDAS forecasts the number of cars per person in 2010 to be 0.48. This is slightly
smaller than the value obtained (0.52) in the CPB referentie scenario. The number of cars

per household forecast by MIDAS is smaller than the CPB value by 24%, largely because

143



of the decline in household size in the MIDAS simulation. The MIDAS forecast of
nationwide fleet size is approximately 9% smaller than the CPB value. Another important
difference is the decline in labor fc:;rce participation shown by MIDAS results. This
difference between MIDAS and CPB may be the outcome of an assumption not shared

between the two, e.g., increased labor force participation by women.

MIDAS's motorized trip rates are 17% below the comparable OVG trip rates. This may be
due to the well documented trip under-reporting in the Dutch Panel survey. This should be
kept in mind in interpreting the mobility forecasts provided by MIDAS. A good agreement
exists between van den Broecke's models and MIDAS in the 2010 labor force participation
forecasts. MIDAS assumes practically the same income growth rate as in van den Broecke.
Considering the fundamental differences in data and methodology, the compatibility
between the van den Broecke forecasts and MIDAS results, including driver's license and

car ownership, is noteworthy.

Vehicle-kilometrage forecasts are strikingly similar between MIDAS and the National
Model. The National Model forecasts an increase of 72% by the year 2010, while the
MIDAS increase is 74.2%. The National Model predicts a slight decrease in public transit
passenger-kilometers by 2010. MIDAS, on the other hand, forecasts an increase of over
80%. This is tt;e only important discrepancy between MIDAS and the National Model.
The salient difference between the two is that the National Model is formulated using cross-
sectional data and longitudinal changes in population compositions are represented by
weighting households while MIDAS is based on longitudinal data and simulates household

evolution over time.

Analysis with two additional income growth scenarios has been conducted to study

MIDAS' performance and illustrate the possible use of this forecasting package. The
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scenarios depict the income growth in the CPB "optimistisch" scenario and the one in the
"pessimistisch" scenario. The results indicate that the number of cars is forecast to increase
by 36% by 2010 under the pessitﬁistisch growth scenario, 43% under the referentie
scenario, and 51% under the optimistisch scenario. Clearly a higher income growth rate
leads to a higher level of car ownership, but this car ownership growth is not as fast as the
income growth (41%, 72% and 120%, respectively). At the nationwide level, motorized-
trip rates grow virtually at the same pace as car ownership. Car trip rates also show growth
rates similar to those of car ownership. Nationwide growth rates in vehicle-kilometers

range from 64% in the pessimistisch scenario to 80% in the optimistisch scenario.

Public transit trip rates, on the other hand, show more complex growth patterns; the trip
rate is slightly higher for the pessimistisch scenario (29%) than for the referentie scenario
(28%), while it is the highest for the optimistisch scenario (33%). This is the result of two
tendencies. On one hand, when income growth is slow, the lower car ownership level
leads to more frequent use of public transit. On the other hand, higher income implies
more long distance rail trips, leading to the highest transit trip rate in the optimistisch
scenario. Therefore, when income increases rail trips increase and when income decreases
the trips made by bus-tram-metro increase. Also, transit passenger-kilometrage increases
with income because of the increase in rail trips. In summary, the scenario analysis of this
section indicateé that transit use will increase under any income growth scenario examined
here. In addition, the analysis in this section shows that both transit trip rates and

passenger-kilometrage grow fastest under the fastest income growth scenario.

Aggregate elasticities computed from the MIDAS output are used to study the relationship
between income growth and mobility measures. The elasticities are computed for different
time intervals. The results for car ownership and vehicle-kilometrage offer clear indications

that their aggregate elasticities decline as the time interval for evaluation increases. This
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implies that average car ownership is a concave function of average income; the marginal
increase in average car ownership gradually declines as average income continues to
increase. Similar results can be obse.rved for vehicle kilometrage. The elasticities for trip
rate suggest that average trip rate is linearly related to average income. This indicates that
income and trip rates increase at equal rates. Elasticities of this type can be computed to
study the relationships between any pair of variables of interest. For example the effect of
increases in drivers license holding can be simulated and elasticities constructed to

investigate the possible lagged effect this increase may have on car ownership and mobility.
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10. Conclusion

The study leading to the development of MIDAS represents an entirely innovative approach
to travel demand forecasting. Unlike the conventional approach of taking externally
produced demographic and socio-economic forecasts and using them as input to a cross-
sectionally estimated model system, MIDAS generates demographic and socio-economic,
as well as car ownership and mobility forecasts internally through micro-simulation. A
system of dynamic models estimated using the Dutch National Mobility Panel data set is

applied in the simulation.

The effort has been motivated by the recognition that no external demographic and socio-
economic forecasts are furnished at levels that meet the data requirements of sophisticated
discrete choice models currently used in transportation planning. Specifically, no external
forecasts are produced to provide a multivariate distribution of the array of explanatory
variables typically used in travel choice models, at the levels where these models are
formulated, i.e., households or individuals. It has also been motivated by the recognition
of the dubious assumption inherent in the use of cross-sectional models in forecasting:
behavioral changes over time can be forecast using cross-sectional variations observed at

one point in time.

The 2010 forecasts produced by MIDAS clearly indicate that MIDAS is capable of serving
as a decision support tool for transportation planning and policy development. MIDAS
forecasts are in general similar to other existing forecasts, including those offered by CPB.
Important differences are that: 1) MIDAS depicts a much faster decrease in household size,

and 2) MIDAS forecasts a decline in labor force participation.
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These discrepancies are viewed as a result of the differences in the assumptions underlying
the respective forecasts. Although the exact assumptions used in the other forecasts are not
known to the project team, it is conceivable that the CPB employment forecasts adopted the
assumption that women's labor force participation will continue to increase to 2010.
MIDAS, on the other hand, uses the employment transition probabilities observed during a
part of the Dutch Panel study (1984 - 1988). The MIDAS household size forecasts are also
based on observed changes during the Panel period. The decline shown by MIDAS
forecasts is in fact, slightly less than that observed between 1975 and 1985.

These assumptions can be modified in MIDAS using the input parameters which have been
furnished precisely for this purpose (see Section 8.1). This was intentionally ignored in
this study; as the primary objective of the project is to demonstrate that long-range travel
demand forecasting can be practically and meaningfully performed using micro-simulation
with a system of dynamic models and parameters estimated using the Dutch National

Mobility Panel data.

MIDAS forecasts practically the same levels of increase in the driver population and
vehicle-kilometers as the 2010 National Model forecasts. On the other hand, it forecasts
somewha.t slower growth in the national car park under an income growth rate that is
comparable to the one in the CPB referentie scenario. Most importantly, MIDAS forecasts
that, by 2010, transit trips will increase by 20% per person and by 28% nation-wide. It
also forecasts a 71% increase in the average public transit passenger-kilometers per person,
and an 82% increase in the nation-wide passenger-kilometers. These forecasts vary
drastically from the National Model forecasts which indicates a slight decline in public
transit passenger-kilometers. Probing into the source of this difference is a subject for

future research. If such an investigation is made comparing the National Model and
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MIDAS, it will offer an ideal setting for detailed and practiéal evaluation of the relative

advantages and disadvantages of cross-sectional vs. dynamic forecasting.

The forecasting exercise reported in Section 9 has offered evidence that MIDAS is a
credible forecasting model system. One of its strengths lies in the fact that MIDAS
internally generates pertinent demographic and socio-economic factors while maintaining
coherent relationships among themselves. This is a significant advantage for MIDAS as a
policy tool. Any parameter can be modified by the user to represent the scenario of interest;
MIDAS will automatically simulate the repercussions that follow and reflect them in its
mobility forecasts. For example, suppose the parameters associated with employment are
modified to represent increased labor force participation by women. This will automatically
lead to an increase in household income, a decrease in the number of births, and possibly a

change in car ownership and mobility.

Despite the relatively small data base used in the estimation of its model components, and
the fundamentally different principles it is based on, MIDAS has produced plausible
forecasts that are comparable with existing forecasts. Overall, the main objective of the
project, to examine whether dynamic models can serve as a decision support tool in
transportation planning, has been successfully achieved. MIDAS is able to entertain a wide
range of "what if" questions while providing internal consistency that is unmatched by any
other transportation demand forecasting model. The large number of model parameters can
aid in most closely representing any policy scenario of interest. These are advantages

which MIDAS has over conventional cross-sectional forecasting models.

However, it cannot be over-emphasized that the use of dynamic models and micro-
simulation in travel demand forecasting and policy analysis, is yet in its infancy. It will

require continuous and intensive research effort before dynamic models and simulation
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become a practical tool for planners and policy analysts. MIDAS, perhaps the first full-
fledged dynamic simulation forecastipg system in the transportation planning field, is not
yet a completed tool. In fact, its current version needs to be improved in a number of
ways. In particular, several important dimensions in transportation planning are yet to be
incorporated into MIDAS (e.g., residential and employment location). Also, MIDAS, as it
stands now, has only limited sensitivity to transportation supply characteristics, e.g.,
highway congestion, fuel prices, public transit service levels, and automobile purchase
prices and maintenance costs. These considerations have led to the development of the

following recommendations for enhancing the usefulness of MIDAS as a policy tool.
Recommendations

Outlined below are various directions for improvement spanning from the more
"pragmatic" visual input-output enhancement to the more complex modelling of migration

and relocation.

1. Identify those parameters that are essential to represent policy scenarios for long-

range transportation forecasting, and incorporate them into MIDAS.

This can be best achieved through meetings involving likely MIDAS users and the
research team members. This will enable further development of a tailor-made
policy analysis tool which can probe into specific policy questions for the

Netherlands.
2. Enhance the MIDAS demographic component through

- development of a component to represent regional immigration and outmigration,
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- further causal analysis of the Dutch National Panel Data using structural equations
models to better represent the causal structure leading to changes in household
structure and employment,

- analysis of OVG household data, and

- further effort to identify external data sources for model validation, preferably by a

Dutch-speaking researcher(s).

The social and travel behavior of newly relocated residents may be substantially
different from the behavior of the established residents. The introduction of a
migration component, together with a residential location component (see 5 below)
will allow MIDAS to reflect regional growth and capture the differences among ex-
migrants, new in-migrants and established residents. The use of external data will
fine tune MIDAS to more exactly represent the Dutch population and replicate its

changes with improved accuracy.

3. Enhance the MIDAS mobility component by

- feﬁning the modal split and distance models by disaggregating the public transit
mode into inter-urban (rail) and intra-urban (bus, tram, and metro),

- refining the trip generation, modal split, and trip distance models by formulating
them for work trips and non-work trips separately, and weekday trips and
weekend trips separately,

- identifying and incorporating better indicators of highway and public transit
levels-of-service into the mobility component models,

- analyzing the effect of panel fatigue and trip under-reporting on coefficient

estimates of the mobility component models, and
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- developing a more efficient consistent estimation procedure of a model system that

involves dynamic discrete choice models.

These modifications are recommended to improve the accuracy of the MIDAS
mobility component and make its outcome more informative for policy analysis. In
particular they address the current weakness that MIDAS is not sensitive to supply
variables. The inclusion of better level-of-service indicators will allow the users to
study the impact of network improvements on travel behavior in both short and
long terms. Estimation techniques for dynamic model systems are rapidly
improving, and MIDAS should take advantage of new methods which may lead to

more precise estimation and accurate forecasts.
4. Make the PC version of MIDAS user-friendly by

- making MIDAS menu-driven,
- providing graphic diéplays of simulation results, and
- internally generating dissemination-ready summary tables (similar to Table 9.1 of

this report).

The usefulness of a software package largely depends on its user-friendliness.
MIDAS' output is made of tables of forecasts for the 25 simulation years. The
tables and figures in Section 9 were produced by post-processing the MIDAS
output tables. This is a time consuming exercise. A software component which
generateé dissemination-ready summary tables can be designed to facilitate the
inspection of the simulation results and to reduce the time needed for report

preparation.
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5. Develop a model component for residential location such that household relocation
behavior (either within or outside the same urban area) and new or immigrating

households' location choice can be represented by MIDAS.

It is well known that employment search, residential location, car ownership, and
travel behavior are interconnected processes. The development of a model system
that integrates these processes will allow more realistic analysis of travel demand
and regional growth. In addition, more accurate prediction of trip length will be

possible by introducing residence and employment location into the model system.

6. Conduct a comparative study of the Dutch National Model and MIDAS as long-
range forecasting tools and determine the relative advantages and disadvantages of

cross-sectional vs. dynamic forecasting.

Further investigation is required to determine the advantages and disadvantages of
dynamic forecasting methods relative to cross-sectional methods. The advantages

of dynamic methods that motivated this research include:
- Forecasting based on dynamic models does not rest on the untested assumption of
cross-sectional forecasting, i.e., cross-sectional variations observed at one point

in time, can be extrapolated over time to forecast future behavior;

- Dynamic models with lagged dependent variables in general offer improved

predictive accuracy, at least in short-term forecasting;
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- Dynamic models are able to represent dynamic aspects of travel behavior such as
response lags (e.g., the time lag between the time a household member obtains a

driver's license and the time when the household acquires a new car);

- Consequently, dynamic micro-simulation can represent causal relationships more
realistically as a "cause" does not lead to an "effect" instantaneously in the real
world (e.g., consider changes in land use as a result of residential and

employment location);

- Dynamic micro-simulation is able to forecast the evolution of an urban population
while maintaining, at disaggregate household or person levels, coherent

relationships among socio-demographic factors that contribute to travel demand;

- A dynamic micro-simulation system contains many internal linkages whose
parameters can be modified to represent a much wider range of scenarios, while
allowing to capture all the repercussions of the changes assumed in a growth

scenario;

- The time dimension is explicit in dynamic forecasting, permitting the evaluation of

different policy implementation stages; and
- Changes in demand can be forecast along a continuous time axis.
On the last point, it is worthy to note that dynamic micro-simulation is able to

forecast the evolution of a national car park — e.g., how conventional cars are

replaced by catalytic-converter equipped cars.
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The experience gained during the development of MIDAS is in agreement with

these expectations. At the same time, it has been recognized that:
- A dynamic micro-simulation model system is complex;

- The development of a dynamic demographic micro-simulation model requires a

large amount of data;

- Readily available population statistics may not be useful in developing a dynamic

demographic micro-simulation model;

- The estimation of a dynamic mobility model requires more data than does a

corresponding cross-sectional model;

- The estimation of dynamic models using panel data requires additional attention

due to panel attrition, conditioning and fatigue;

- The accuracy of forecasts produced by dynamic micro-simulation is more difficult
to evaluate than the accuracy of forecasts produced by a cross-sectional model;

and

- It is difficult to determine the level of accuracy required of each model component

in order to achieve a given level of accuracy in demand forecasts.

The research into the use of dynamic models and micro-simulation in travel demand
forecasting has just begun. There are numerous questions that need to be

answered. A detailed, comparative analysis of the National Model and MIDAS will
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offer a setting where these questions can be examined. The experience so far
gained with MIDAS indicates that this will lead to the development of improved

tools for transportation planning and policy analysis.
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Appendix A
Missing Accessibility Data

The accessibility indices in the data files given to the project by the Hague Consultancy Group
(HCG) are formulated using a zone system which is not compatible with the system used in the
Dutch National Mobility Panel data files. Thus, a conversion procedure was needed in order to use
the HCG accessibility indices in the MIDAS mobility component models. The conversion
consisted of identifying the correspondence between the zones used in the HCG files and the Panel
files. For some of the zones, this conversion was straightforward because a HCG zone was
identical to, or completely contained, a Panel zone. In the reverse case where a HCG zone is a part
of a Panel zone (therefore the latter contains more than one HCG zones), the conversion had to be
performed manually. During the summer of 1989, the HCG data files and Panel Data files were
matched for the first time, but only for those zones where conversion can be made automatically.

This resulted in a small number of Panel zones for which accessibility indices were missing.

The last two waves of the Dutch Panel survey data were not available in 1989. During 1990, the
matching procedure for the accessibility indices was reconvened for the data files from Waves 9
and 10. In summer 1990, the procedure was repeated at Bureau Goudappel Coffeng (BGC) to see
if any additional accessibility indices could be added to the panel for the earlier waves as well.
This, however, did not result in any substantial gain of information as accessibility indices were

identified only for 10 additional households.



