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-Abstract

In this paper we revisit various important issues relating to practical estimation of the
multinomial probit model, u’sing an empirical analysis of car ownership as a test case. To
provide context, a brief literature review of empirical probit studies is included. Estimates
for a full range of models, including specifications with random (uncorrelated and
correlated) taste variation and/or a general covariance structure for alternative-specific
errors, are obtained using a recently developed maximum likelihood estimation routine for
choice models. The results provide useful insights into specification and testing of probit
models, and the MLE algorithm demonstrates many desirable features, including useful
convergence diagnostics. Finally, a numerical comparison of Clark's approximation
versus numerical integration provides additional evidence against the use of Clark's

approximation in probit estimation.



1. Introduction

Beginning with McFadden (197;5) and the subsequent popularization of the
multinomial logit model in the social sciences, a substantial amount of research activity has
occurred in the area of diécrete choice analysis, with much of the work centering on travel
demand issues. The 1970's and carly 1980's witnessed numerous theoretical advances in
choice modeling, with suggestions for more flexible (and complex) classc;,s of models
which could in p?ink:iple capﬁm more realistic patterns of choice behavior than the logit
model. These include elimination-by-aspects (EBA), hierarchical elimination-by-aspects
(HEBA), elimination-by-strategy (EBS), generalized extreme value (GEV), tree extreme
value (TEV)/nested multinomial logit (NMNL), and multinomial probit (MNP) models--see
McFadden (1981). The most theoretically appealing of these is arguably multinomial
probit, which assumes that a group of decision makers may be modeled as coming from a
population of random utility maximizers, where the error components in the (unobserved)
utilities arise from a multivariate normal distribution.

Despite the obvious flexibilities and advantages of the multinomial probit model,
relatively few empirical results using this class of models have appeared in the published
literature. For example, consider the case of household car ownership, which is the subject
of an empirical analysis presented iatcr in this paper. Empirical studies of household car
ownership have so far used multinomial logit models (e. g., Ben-Akiva and Lerman 1974),
occasionally combined with linear utilization models (Train 1984) or ordered-response
probit models (Kitamura 1987), but to our knowledge, no study has adopted multinomial
probit models.

The limited appearance of MNP empirical applications is undoubtedly related to the
various computational difficulties associated with obtaining parameter estimates. First,
maximum likelihood estimation of complex nonlinear models is still problematic for many
practitioners, and the MNP model is more complex than most. The more useful

specifications require estimation of covariance parameters, and the properties of the
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likelihood function are virtually unknown in these circumstances. In addition, evaluating
the MNP choice probabilities requires integration of the multivariate normal probability
density, which is in general quite difficult, getting exponentially worse as the number of
alternatives in the choice set increases.

Most attention in the literature has focused on this last issue. For a time the primary
hopes for probit were pinned on the use of Clark's approximation (Clark 1961) for
evaluating choice probabilities--see Daganzo (1979). However, despite early encouraging
results, evidence casting serious doubts on this approach has emerged--see Horowitz, et.
al. (1982). Alternative approaches have been proposed by Sparmann, et. al. (1983),
Langdon (1984), and McFadden (1986); however, none of these approaches has yet led to
any published empirical results that we are aware of. On the other hand, numerical
integration for three- and four-alternative probit models has been cited as “"practical” in the
literature, yet there has been only one of these of which we are aware. The issue of the
unknown concavity properties of the MNP log-likelihood function is often raised as a
disadvantage, yet this in and of itself should not preclude applications.

Like the concavity issue, theré are other potential obstacles caused by MNP's inherent
complexity. The presence of covariance parameters, while providing flexibility, could
cause the model to collapse under its own weight in the absence of huge datasets. In
particular, a difficulty which has not been particularly well-addressed concerns whether one
can verify if the parameters in complex MNP model specifications are actually identified,
leading to the possibility of overparameterized models. This was highlighted by Dansie
(1985), who pointed out that a relatively simple and seemingly-innocuous model
specification was, in fact, unidentified. Poorly-behaved log-likelihood functions would
arise under such circumstances, perhaps causing numerical difficulties in parameter

estimation that could quickly overcome the most patient analyst. In any case, the parameter
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estimates, unbeknownst to the user, would not have valid interpretations under these
circumstances.

In this paper we revisit many of the above issues by taking advantage of a recently
developed maximum likelihood estimation routine which uses state-of-the-art numerical
optimization techniques, and is, we believe, much more efficient, reliable, and robust than
those used in previous applications of MNP. We examine a full range of model
specifications based on a linear-in-the-parameters MNP framework similar to those used by
Hausman and Wise (1978) and Albright, Lerman, and Manski (1977), and estimate models
using a recently collected data set on car ownership.

The utility model for car ownership is derived from basic economic assumptions, and
gives rise to a set of explanatory variables which, althou gh theoretically appealing, contains
an obviously high degree of collinearity. The specifications vary from simple to extremely
complex, beginning with IID probit, which makes extremely strong behavioral
assumptions regarding independence among alternatives, all the way to a very general
model involving fully correlated taste variation and non-IID alternative-specific errors. The
demands of these analyses provide an excellent platform from which to address practical
issues of probit estimation, including the testing of behavioral assumptions, examination of
alternative but equivalent model normalizations, the accuracy of Clark's approximation, and
the reliability and utility of numerical optimization algorithms.

Useful notation and definition of model specifications are developed in the next
section, and a review of empirical MNP results in the literature is presented in section 3.
Section 4 briefly describes the maximum likelihood al gorithm, and addresses convergence
issues. In section 5 we derive the utility model for car ownership which is used to obtain
the empirical results of section 6. We compare various model specifications, and discuss

the accuracy of Clark's approximation. Comments on practical issues related to the
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numerical computation of probit estimates are included in section 7, followed by discussion

and conclusions in section 8.
L

2. Linear-in-Parameters MNP Framework

Consider a sample of N households, indexed by n = 1, ..., N, with each choosing
one alternative from a set of J alternatives. Explanatory data are collected for household n
such that each of the J alternatives is characterized by K (generic) attributes, which are
stored in the K x J matrix X,. In what follows, we assume the following linear-in-

parameters random utility framework:
(1) Un = XnT(e + Sn) + u. + en, n= 1, caey N,

where Up, L, €q € RY, and 9, 8, € RK. The vector U, contains household n's
(unobserved) true utilities for the J alternatives, and the observed choice will be the one
with the largest utility. The K-vector (6 + &,) contains the attribute taste weights for
household n, where 0 is the mean taste weight for the population and &, is the
(unobserved) random deviation from the mean for household n, where E(8;) =0. The sum
(1t + &p) represents the effect of (unobserved) alternative-specific random errors on utility,
where jL is the mean and &, is random error with E(gg) = 0. This may be interpreted as the
effect of unobserved attributes of the individual and/or the alternatives. In the sequel, the
term “error" will refer to the alternative-specific errors associated with the €, term.

To get the multinomial probit model, one adds the theoretically appealing assumption

that both random terms have multivariate normal distributions:
) Sn ~ MVN(O, Z5), X5 € RKxK and g, ~ MVN(Q, Z), Z, € RIxJ

Note that pt in (1) could alternatively be represented via a formulation which allows dummy

variables in X;. However, by using (1) and (2) we choose to assume that the  and €
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terms are always independent. Now, the probability that individual n selects alternative j is

given by:
3) Pi(VU®, it Xn), Zu(Zs, Ze, Xo) = Prob[ Up;j > Upi for all i # j]
oo uj uj B uj
= I e o g J' . J' ¢(ul Vy, Zy)duy- - - duy
Uj=-o0 up=-co Uj.1=-00 Uj4]=-00 ujy=-oo

where Vy(6, p, Xn) = XpT0 + 1, Zy(Cs, Ze, Xp) = XnTZsX,, + ¢, and ¢(xl m, S) is the
multivariate normal density function with mean m and covariance S,

Various model specifications may be formulated by placing restrictions on the random
taste covariance matrix g and the error covariance matrix Zein (2). Three types of taste
variation are considered: (i) fixed (non-random) tastes with Xg = 0, (ii) uncorrelated
random tastes with 5 =D (a diggpnal matrix), and (iii) correlated random tastes with a
general covariance matrix X§. T:wc; types of errors are considered: (i) IID errors with Y=
k1, where k is a scale constant, and (ii) non-IID errors with a general Ze. Scaling in the
probit model is arbitrary, and we will assume that k=1 for the IID error specifications.
However, the specification of a "écncr " Z¢ requires special considerations since all
J(J+1)/2 parameters are not identified.

A complete development of identification and normalization results is beyond the
scope of this paper, but they may be found in Bunch (1989). Due to the structure of the
MNP model, only the covariance matrix for the differences of the error terms is estimable,
and in addition, one parameter may be fixed for scaling purposes. The maximum number
of identifiable parameters in X is therefore J (J-1)/2 - 1. For trinomial probit, one can
consider finding estimates for the two free parameters in the matrix C given by

b _[ 1 Czl] =[ O11-2031+033 621—631—032+033]
Ca C2 021—031—032+033  022-2032+033
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where the Gjj are elements of Z¢. In this study, model specifications containing a "general
Ze matrix" will mean that the specification includes the maximum number of identifiable
€rror covariance paramcter;, and consequently estimation can be performed using the
matrix C defined in equation (4). As discussed in section 6 below, such estimates may
correspond to many different possible normalizations of .

All possible combinations of the various covariance features yield the six MNP model
specifications used in our empirical analysis: these are summarized in Table 1, and it will
be convenient to refer to a specific model specification according to the functional form
assumed by Xy. In addition, the specification with X = I and Zg = 0 shall be termed an

IID probit model. Similar specifications using this framework have been estimated by

other authors, as described in the next section.

3. Empirical Multinomial Probit Results in the Literature

In this section, available empirical results using multinomial probit models are
reviewed. We are concemned with studies having more than two alternatives, with a focus
on factors which relate to practical estimation issues: the number of alternatives, type of
optimization algorithm, method of choice probability evaluation, types of model
specifications (e. g., random versus fixed taste weights, IID versus non-IID errors), and
number of exogenous variables. The intent is to establish the domain which encompasses

empirical results in the literature.

Hausman and Wise (1978)

This study, which we denote "HW78," estimates trinomial probit models of travel
mode choice using a subsample of a data set from the Washington, D.C. area. Four probit
specifications are used in the study. Using the notation of the previous section they are: (i)

IID probit with generic attributes only, i.e., t =0 and Zy = I, (ii) uncorrelated random
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tastes for generic attributes with zero-mean IID error terms, i.e., =0 and Xy = XTDX+],
(iii) D probit with alternative specific dummy variables, i.e., i is estimated and Ty =1,
and (iv) uncorrelated random tastes for generic attributes with alternative specific dummy
variables and non-IID error terms, i.e., Iy =XTDX+Z,. (They refer to these models as
independent probit, covariance probit, saturated independent probit, and saturated
covariance probit, respectively. They specify T via non-identical diagonal terms and zero
oﬁ'—éiagonal terms. This will be discussed in more detail later.)

All models are formulated with the same set of three explanatory variables and
estimated with 100 observations from the data set. The optimization method used is based
on the approach of Berndt, Hall, Hall, and Hausman (1974), which we will denote
"BHHH." The choice probabilities are evaluated numerically using Owen's method
(Owen, 1956; Johnson and Kotz, 1972). The gradient vectors for the search are calculated
using the analytic expressions given in the paper.

The IID probit model results were found to be quite similar to those from the logit
model, both in in terms of the estimated coefficients and log-likelihood values. This is
consistent with the analysis of Horowitz (1980). In addition, they found that including
uncorrelated taste variation on the generic attributes significantly improved their model's fit
to the data. The introduction of alternative-specific dummies and non-IID errors, on the
other hand, led to only marginal improvements. This was especially true for the p=0/Zy
= XTDX+I model versus the Zy = XTDX+Z, model: the introduction of it and 2¢ only
produced minute improvement. The latter model was the most general one considered, and
contained the most parameters (10). Correlated taste variation was not examined in the

HW78 study.
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Albright, Lerman and Manski (1977)

This study ("ALM77") appeared as a technical report on the development of a MNP
estimation program for the Federal Highway Administration, and includes an analysis of
trinomial travel mode choic:: using the same data source as HW78. There are numerous
differences between the two studies: ALM77 (i) uses many more observations than HW78
(557 versus 100), (ii) allows choice set size to vary where appropriate (J=2 or J=3), (iii)
uses a different set of attributes, and (iv) estimates a much more general model
specification.

The ALM?77 model specification framework differs from equation ( 1): it suppresses
K and assumes that alternative-specific errors may be incorporated by including dummy
variables in the matrix X, thus using "random taste variation" for the dummies to represent
alternative-specific errors. The empirical model estimated by ALM uses seven "attributes"
(including two alternative-specific dummies) and assumes fully correlated taste variation. It
is therefore similar to the most general specification in Table 1, except that the 8 and € terms
are not assumed to be independent. Constraints are necessary for identification purposes,
so that the model contains 34 parameters (versus 10 for the most general HW78
specification).

The optimization algorithm used is a simple gradient search technique, and the choice
probabilities are evaluated via Clark's approximation. The gradient vectors are calculated
via finite differences. The use of Clark's approximation is justified in the report by a study
involving test examples with three- and five-alternative choice sets; this study also appears
in Lerman and Manski (1981). Choice probabilities evaluated via both Clark's
approximation and a simulation method are compared, and ALM conclude based on these
examples that the Clark approximation is accurate. They also indicate that their gradient
search approach may be used with simulated probabilities, although they do not give an

empirical example, and such an approach seems impractical.
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ALM compare their 34-parameter p.robit estimates to the 7-parameter logit estimates
and conclude that the improvement in log-likelihood is much too small to justify use of

MNP for this dataset. §

Irim 2

This is yet another travel mode choice study, but in contrast to HW78 and ALMT77 it
is based on marketing survey data. The analysis uses attributes based on the respondents
“perceptions” of nine different mode characteristics. In addition to the standard time and
cost measures, measures were developed for such "perceptual” attributes as availability,
cleanliness, and personal safety. The analysis includes five alternatives, and eschews the
use of alternative-specific constants.

A variety of model specifications are estimated, including logit, IID probit, and the
HW78 maodel Zyy = XTDX+I, which this author calls the “perceptual interdependence"
model. In addition, three model specifications which assume non-IID errors (but no taste
variation) are estimated: unfortunately, none of these three appear to be identified, which
casts serious doubts on the intcrprct.ability of the results.

A sample of 490 households was used in the study, where 369 were used for
estimation purposes. The remaining 121 were used as a validation sample for purposes of
evaluating the competing model specifications. The maximum number of parameters in any
model appears to be 24. All the models were estimated using CI-IOMP-sé.c Daganzo and
Schoenfeld (1978)--in which probit choice probabilities are evaluated via Clark's
approximation. The optimization procedure uses a line search with a least-change secant
update to Davidon (1959) and Fletcher and Powell (1963), the so-called "DFP method."
See section 4. Gradients are evaluated by finite differences. There appears to have been
serious difficulties with obtaining the parameter estimates in this study. In addition to the

identifiability problems, we note that Currim reports log-likelihoods for the more general
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model specifications which are smaller than the IID probit log-likelihood. Since IID probit
is a nested special case in each instance, the validity of the results is highly questionable.

4

hnson and Hensher (1982

The MNP model is used here in a two-period panel analysis of travel mode choice.
There were two modes (“car” and "train"), and five model specifications were estimated.
Although four of the models are essentially binomial probit, the fifth incorporates
intertemporal correlation of the alternative-specific error terms and can be written as a
trinomial probit model, thus making the estimation problem comparable to HW78 and
ALM77.

Each model includes an alternative-specific dummy and three explanatory variables,
but none includes taste variation. Alternative cross-sectional formulations include lagged
indicators of past choice or utilities of past choice. The covariance matrix for the two-
period probit model is normalized by fixing the diagonal elements to one and leaving free
the covariance term, which represents serial correlation of the random error term. We note
that the error covariance matricgs for the four binary probit models appear to be
unidentified, including an inestimable covariance parameter--see Bunch (1989). This study

uses observations on 163 commuters, and parameters estimates are obtained using

CHOMP.

ill an (1981
This study examines decisions by retail firms regarding location and store-size.
There are seven possible locations and two possible sizes, giving a total of 14 alternatives
per choice set, the largest number of all the studies reviewed here. Seven attributes related
to revenues were used, but in addition all alternatives were characterized by combinations

of dummy variables for location and size. Three probit specifications were estimated: (i)

10
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IID probit , (ii) a model including taste variation on the cost attribute only, and (iii) a model
including taste variation on the cost, along with a variance parameter for each location, and
a correlation parameter between stores of different sizes. The sample included observations
on 181 stores.

Parameter estimates are obtained using CHOMP. ‘The authors indicate that there were
difficulties in obtaining the parameter estimates, and that the final results were extremely

sensitive to the starting point used.

am nd Srivastava (1984

This is a study from the marketing literature which develops a new multinomial probit
model and compares it to the IID probit and HW78 XTDX+I models on the basis of
goodness-of-fit and predictive validity. The authors refer to these models as proposed
multinomial probit (PMNP), IPROBIT, and random coefficients probit (RCP),
respectively. They emphasize the importance of estimating models in terms of attributes
only, so that the parameter estimates may be extended to predictions involving new
products.

The PMNP model speciﬁcs. a flexible covariance matrix in terms of weighted
Euclidean distances between the pairs of attribute profiles, where the importance weights
are the same as the taste weights in the utility function. The covariance matrix is a
parsimonious function of these distances, using three free parameters to capture the degree
and type of interactions between alternatives and the size of the random component in the
random utility formulation. From the discussion it appears that all models have been
correctly specified. '

In addition to simulation experiments involving five alternatives per choice set,
empirical data involving selection from a set of hypothetical wagers is used to estimate and

test the models. A wager consists of a vector of equally probable payoffs, and may be

11
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conveniently characterized by two attribuites (expected value and standard deviation). Each
choice set contained three wagers (J=3). Choices by 100 student subjects were observed,
where each subject made choices on 52 subsets. Estimations are performed using various
subsets of the pooled data, with the number of observations ranging from 2000 to 2600.
Predictive validity was measured by calculating log-likelihoods for subsets of the data not
included in the estimation ("holdout samples”). The choice probabilities in this study are
calculated using Clark's approximation, and the optimizations are performed using the
general constrained nonlinear programming algorithm GRG2 of Lasdon, Warren, and
Ratner (1982). This code uses the Broyden-Fletcher-Goldfarb-Shanno (BFGS) secant
update to approximate the Hessian--see section 4.

The authors conclude that PMNP performs slightly better than RCP based on log-
likelihood measures of fit, but they also perform calculations which demonstrate that for

this set of data the primary source of randomness is taste variation.

van Li 1

In a study of residential location analysis various multinomial probit models are
applied to such issues as decision .to move-or-stay, and choice of dwelling type. In the
latier case, seven dwelling types (detached single-family housing, semi-detached single-
family housing, etc.) are grouped into three classes to formulate trinomial probit models.
No taste variation is assumed in this study. The analyses, however, appear to suffer from
overparameterization of the covariance matrix, which casts doubts on the interpretability
and validity of the study's results. The overall study had a sample of 1107 households,
with varying numbers used for estimation, depending upon the particular model. As in

many of the above studies, CHOMP was used for obtaining the estimates.

12
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Summary

Although the theoretical advantages of the the multinomial probit model have often
been recognized, relatively few empirical results have appeared. Seven empirical studies
were found in the published literature, and relevant features of these have been summarized
in Table 2. There may be more that we have somehow overlooked, as well as unpublished
studies, but it is obvious that MNP has not become a commonplace technique for discrete
choice analysis.

It is surprising to us that only one study uses numerical integration for evaluating
choice probabilities, despite claims that three- or four-alternative studies are “practical.”
Six of the seven studies use Clark's approximation. For the two studies involving more
than three alternatives, this was a logical approach due to practical considerations; however,
five of the studies cguld in principle have used numerical iﬁtegration. Four of the studies
used CHOMP, so software availability would also appear to be an obvious factor.

Concerns about the accuracy of Clark's approximation could explain the small
number of published MNP studies. Only two of the studies were published after the
appearance of Horowitz, et. al. (1.982), which presents simulations demonstrating that
Clark’s approximation can be poor under some circumstances. Note, however, that some
of these results could have had problems due to a unidentified model specification--see
Dansie (1985). It would appear that the MNP estimation problems described in the
introduction have probably not been adequately addressed by the approaches attempted thus
far, and potential users of MNP are perhaps waiting for advances in computing to catch up
with the theory.

The HW78 and ALM77 studies use the same data source and fit models for the same
mode choice problem, but unfortunately raise more questions than they answer. HW78
conclude that their probit model is a significant improvement over logit, while in contrast

ALM77 conclude that their (more general) probit model is not an improvement over logit.

13
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ALMT77 use steepest descent and Clark's approximation, but more data points and a more
explanatory variables. HW78 use BHHH and numerical integration, but fewer data points
and fewer explanatory varigbles. Thus their basic conclusions are not robust to these
features of the analysis, and a more controlled comparison would have been illuminating.
Particularly disturbing is that a relatively large proportion of the studies we reviewed
(three of seven) contain major conceptual flaws, i.e., they use unidentified model
specifications. This indicates that MNP is not generally well-understood. Furthermore,
such misspecifications give rise to poorly-behaved log-likelihood functions and may have
resulted in unreported abortive attempts at probit estimation, further complicating the

advancement of the model in practical applications.

4. A New Algorithm for MNP Estimation

As noted above, there are two major computational concems in probit estimation: (i)
evaluation ofﬂthe chéicé probabilities and (ii) searching for a (local) maximizer of the log-
likelihood function. The former is important since evaluation of the multivariate normal cdf
is difficult and expensive. This makes the latter even more crucial, since the search must be
extremely efficient, requiring as few function evaluations as possible.

In this study we limit ourselves to three-alternative probit, and thus it will be practical
to compute choice probabilities via numerical integration, which also allows a comparison
of numerical integration versus Clark's approximation. The optimization algorithm used
here is based on the work of Bunch (1987, 1988), and Dennis, Gay, and Welsch (1981a,
b). It is specifically designed to find MLE's for probabilistic choice models, where any
particular choice model is coded as a separate module. The following sections include a

brief description of the algorithm, but a more detailed development is available in Bunch

(1987). In Bunch (1988), the numerical performance of the algorithm is compared to other

14
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popular methods (BHHH, DFP, and BFGS) for the MNL model and a non-IIA model due
to Batsell and Polking (1985).

There are two important questions that must be considered in formulating an iterative
search algorithm: (i) does it reliably converge to a local optimum from an arbitrary starting
point, and (ii) does it do so as quickly and as cheaply as possible. Algorithms satisfying (i)
are called globally convergent, and employ a global strategy. (Note: “global convergence"
should not be confused with "finding a global minimizer.") Two global strategies are the
well-known line search approach, and the more recently developed model trust region
approach. All empirical probit work until now has employed line searches; we use the
model trust region approach, described below. The speed with which the algorithm
converges to a local minimizer is generally dependent on the method used to approximate
the Hessian matrix, i.e., the local strategy. A search algorithm may be characterized by
particular combinations of global and local strategies. Another important issue is deciding
when to stop the algorithm. The next four sﬁbscctions discuss global and local strategies,
our algorithm, and stopping rules, respectively. The descriptions given below are
necessarily brief, and the reader is referred to Dennis and Schnabel (1983) for details of
nonlinear optimization techniques. In addition, note that the convention in the optimization
literature is to find local minimizers. Therefore the following discussion assumes that the
maximum likelihood estimation p}:gblem has been restated as a minimization problem by

taking the negative of the log-likelihood function.

4.1 Global Strategies

Let 1(x) denote the objective function, where x is the vector of parameters. As noted
above, most traditional iterative methods employ line searches. At the kth iteration a search
direction dy = - H"1VL(xy) is determined, where Hy is an approximation to the Hessian of

L(xp). A step is taken along this direction, and the new iterate is given by Xk+1 = Xk +

15
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ody, where a is the step length. One or'more values of & may be attempted until a new
point is identified which exhibits "sufficient decrease" in the objective function (negative
log-likelihood). Setting appropriate conditions on this process produces algorithms which
have good global convergence properties, but with step lengths of one near the solution.
When o = 1 the step is just di, the so-called "quasi-Newton step."

The algorithm used here employs the more recently developed model trust region
approach. The idea behind iterative techniques based on Newton's method is that, close to
the solution, the new iterate xi4+] is obtained by minimizing a quadratic model of the
objective functon L(x) using information available at the current iterate xx. Consider the

quadratic model m(s) given by

(5) mi(s) = L(x) + VL(x)Ts + % sTHs,

where s = x-xx and Hy is assumed to be positive definite. Finding the minimizer of my(s)
gives the quasi-Newton step di defined above. Suppose, though, that taking the quasi-
Newton step produces an increase in the objective function we are trying to minimize.
Then my is a poor model for L in the region containing the full quasi-Newton step.

However, there is some smaller region in which we can trust my to model L. If we

characterize this region by a sphere of radius dx about the current iterate xy, then we can

find the next iterate by solving the followin g constrained optimization problem:
©6) min my(s) subject to lislly < &y,

where llelly denotes the I2-(or Euclidean) norm. (While more complex norms could be
used, we have no need of such generality here. )

This approach, combined with appropriate rules for selecting dk, leads to algorithms

which are globally convergent. Close to the solution, both the line search and trust region
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methods should take full quasi-Newton éteps, S0 as to preserve the convergence properties

of the local strategy.

‘

4.2 Local Strategies

Choosing a "local slrategjr" is equivalent to choosing a method for determining Hy at
each iteration. The ideal choice is the true Hessian, i.e., Hy = V2L(xy), which gives the
very fast local convergence properties ("q-quadratic convergence") of Newton's method.
Unfortunately, calculating the true Hessian is extremely expensive, both computationally
and from the standpoint of writing computer programs.

Other choices for Hy are convenient, but slow ("q-linear"). These include steepest
descent (used by ALMT77), and BHHH (used by HW78). Actually, BHHH can be fast
under certain circumstances, but in general this cannot be guaranteed, and numerical tests
show that it can often be quite slow--see Bunch (1988). We note that BHHH is an analog
to the Gauss-Newton method for nonlinear least squares. Finally, the least-change secant
update methods (or “variable metric methods”) such as DFP (used in CHOMP) and
Broyden-Fletcher-Goldfarb-Shanno (BFGS) exhibit fast local convergence properties ("q-
superlinear")--see Dennis and S.chnabcl (1983). These methods use the gradient
inf.orma.tion obtained at each iteration to update a stored approximation to the Hessian.
There are two drawbacks to these methods: (i) they can take quite a number of iterations to
build up a reasonable approximation, and (ii) they ignore useful structural information
about the problem being solved.

The special structure of the MLE problem for probabilistic choice models produces an

expression for the Hessian which may be represented by

@) V2L(x) = C(x) + A(x),
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where C(x) may be readily computed usix;g information already available from the gradient
calculation--see Bunch (1987). Computing A(x) involves a matrix of second derivatives
for each observation, and is extremely expensive. BHHH approximates V2L(x) by
ignoring A(x). The least-change secant update methods (DFP and BFGS) discard C(x) and
approximate V2L(x) directly. Our algorithm calculates C(x) at each iteration, but builds up
an approximation to A(x). There are therefore two quadratic models available at each
iteration, defined by Hy! = C(xy), and Hy2 = C(x) + Ay, and the algorithm switches
between the two when one is performing better than the other ("model switching"), where
"performance” is evaluated via heuristics based on comparing the amount function decrease
predicted by the model versus the actual observed function decrease. So, the algorithm will
always perform at least as well as the BHHH method, and for difficult problems it retains

local g-superlinear convergence.

4.3 The Algorithm

The algorithm combines the model trust region with the model switching scheme
described above. The implementation is as described in Bunch (1987), where appropriate
modules have been added for the MNP model. The data arrays and some of the modules
are structured similar to those of Daganzo (1979). A SPEC module implements the model
specifications from Table 1, and various Cholesky factorizations are used to ensure positive
definiteness of the estimated covariance parameters.

The numerical integration routine was modified from one obtained from Mark
Schervish--see Schervish (1984). Schervish's routine makes use of a bivariate normal
routine due to Donnelly (1973), and since this study only involves three alternatives, the
relevant integration is actually performed by this routine. The Clark's approximation

routine was a coded version of the description in Daganzo (1979). Finite difference
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gradients were used, although future plans include developing modules for "direct"

evaluation of gradients using various analytical expressions.

4.4. Stopping Rules

One of the more tricky issues in parameter estimation concerns when to stop an
iterative search, and since probit estimation is a difficult problem this takes on added
importance. A feature of the model trust region implementation used in this paper is that it
naturally lends itself to a suite of stopping rules which has convenient diagnostic
interpretations when performing statistical parameter estimation. These were developed by
David M. Gay, and for a complete discussion see Gay (1982) and Dennis, Gay, and
Welsch (1981a, b).

There are three "favorable" stopping rules: x-convergence, relative function-
convergence, and absolute function-convergence. The first two hold when the relative step
size or the relative change in L(x), respectively, fall below their user-defined tolerances.
The third is included for the rare case in which both L(x*) = 0 and x* = 0, where x* is the
solution. Now, these rules are only good for cases in which the quadratic model is deemed
to be "trustworthy," and the Hcssia-n approximation appears to be positive definite. If one
of these favorable stopping rules does not hold, Gay (1982) shows that under reasonable
assumptions one of two remainin g conditions, “singular convergence" or “false
convergence," must hold.

Singular convergence occurs when the relative change in L(x) is small, but the
Hessian of L(x) appears to be singular (or nearly singular). This is a useful diagnostic for
probit estimation, since two different pfoblcms seem possible: (i) the model specification is
a priori unidentified, or (ii) multicollinearity in the data produces a MLE problem which is
effectively overparameterized. False convergence occurs when the step sizes are getting

small, but the iterates appear to be converging to a non-critical point, i.e., a point for which
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the gradiént is nonzero. This could indicate that the probit model is overparameterized to
the degree that the log-likelihood is unbounded. It could also occur if there are errors in
computing the probit modc}. Examples of the utility of these stopping rules appear in

section 7.

5. Formulation of Household Car Ownership Model
The model we use is based on the assumption that the household is the decision

making unit which maximizes its utility by choosing the number of cars to own. Let the

household utility be
(8) U(y, t, an) =T ya tB an‘t,
where
y = remaining (discretionary) income,
t = discretionary time,
Npw = number of non-work trips,
>0, and

O<a,B,1<1.

The number of non-work tn’p.s, Npw, is included in this formulation on the grounds
that, for a given amount of monetary and time resources, household utility can be optimized
by consuming them at optimal locations, which naturally induces traveling. Using this,

formulate household behavior as

)] Maximize U(y, t, Nnw) = my® B N, °
Subject to:
C(n) +y + S(h) + qawNpy, + g, Ny, = Y
= WT,
Ty +t+ t Npw + 1N, = aTl
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QF P ZH-dg<» 5o
) - T

S(h)

number of caré,
number of household members,

= number of adults,

<
total household income,

= wagerate,

total time spent at work,
total time available,
number of work trips,

average cost per trip for purpose k, where k = w (work), or
nw(non-work),

average trip time for purpose k,
cost of owning n cars, and
subsistence cost of a household of size h,

where all time, cost and trip variables are defined per unit time (a year, say). This

formulation is an extension of that in Beckmann, Gustafson, and Golob (1973) to include

the time constraint as well as the monetary budget constraint. Combining these two

constraints as in Becker (1965), solving the optimization problem and substituting the

optimal solution into the utility function, the logarithm of the indirect utility, V, can be

obtained as
(10) InVv
where
ag
Sk

ag + T In[WaT - C(n) - Sth) - Sy, Ny,] - B InW - T In Spy

Int+alna+BlnB+tint-(o+P+1t)In(o + B +1)
qk + Wik '

Note that Sy is the average generalized cost of a trip for purpose k.

Several assumptions and approximations need to be applied to this indirect utility

function to obtain an estimable functional form. The average cost of car ownership and the

subsistence expenditure are assumed to be linear functions of the number of cars and the

number of household members, respectively:
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where N is the number of destination zones. Then,

(16) 9 = InN + A; - a)q; - at;,
therefore,
L, _InN+A-Q
17) q‘+alt‘ = a
= r-s{y
where
_InN+ A
= ———, and
)|
= 1
s = ar

Note that N and A are common to all observations. Using this, generalized cost of travel

can be approximated as

(18a) Sy™ Ty - Sw&i ™

(18b) Saw™ = Tnw - Siw€iaw™

where superscript m refers to the mode of travel. Using the approximation

(19) Ina+b) = Ina+

which offers accurate results for a wide range of b when a is moderately large (5, say), we

rewrite the indirect utility for a household in zone i as

(20) InV = ag+tIn{WaT - C(n) - S(h) - S*Ny] - BIn W-tIn S,,*

*

_ N . . NoQi
= a°+tmIR'fWIR +5, I -BlnW

TS
STl Ty RO, e

nw

In 1 Nw g, Nulin”, g | Qi
Bo+Brinlg + BT %+ B3 I, tPalnW+BsQp,
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where superscript * refers to the mode used by the household, and
21) IR = WaT-C(n) - S(h)

The coefficients of this model are now estimable using commonly available explanatory

data. The only exception is B4, which is not estimable since InW is common and invariant

across the alternatives. These coefficients are related to the parameters defined earlier as

follows:
(22) [30 = ao-'tlnrnw,
Bl =1,
B2 = -1y,
BB = Sy
B4 = -B, and
b T Snw
BS rnw kd

The accessibility measure may be expressed in terms of measurable variables based on
some assumption of car allocation. For example, let Hik be a measure of car availability

for purpose k, and 0 <pix < 1. It may then be assumed that Q ,k* is a function of py,
(23) S)i’k"I = p'i,in,kc + (1 - “1,k)Ql,kt

where superscript c refers to car and t to transit. A simple measure of car availability may

be formulated as
g No. of cars
(242) Hiw = min{l, No. of workers )
= min{l, 3,— }, where w is the number of workers, and
’ No. of cars
(24b) Hinaw = min{l, No. of adults

= min[l,g- )
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6. Empirical Results .

Trinomial probit models of household car ownership are formulated using the indirect
utility derived above. The three-alternative choice set for all households is {no car, one
car, two or more cars}. Ax; important feature of this model estimation exercise is the fact
that the utility specification is theoretically deduced prior to analysis, and not formulated
through statistical search for an optimal empirically-derived model. One of the
consequences is highly collinear data, creating inclement conditions for model estimation.
This problem thus offers a useful test ground for the algorithm described in section 4.

The following analysis uses the model specifications in Table 1, and one of our
objectives is to examine the vario;xs possible nested model specifications, thereby testing
the behavioral hypotheses embodied in them. We first describe the data set, and then
discuss the car ownership model results obtained using numerical choice probabilities. We

then consider the accuracy of Clark's approximation.

6.1 Car Ownership Data Set

A subsample from the ongoing Dutch National Mobility Panel data set is used in this
study. The Dutch panel survey is a general purpose transportation panel survey of
approximately 1,500 houscholds in each wave, that are scattered across 20 municipalities
and intended to represent the Dutch population. The data set contains general demographic
and socioeconomic information, and trip information obtained from seven-day travel diaries
filled out by those household members who are at least 12 years old. The data file used in
this study also contains accessibility measures obtained from a nationwide network model
and a set of destination choice models (Geinzer and Daly 1981).

The use of this panel data set was motivated by the possibility of extending the cross-
sectional analysis presented here to a longitudinal analysis at a later time. For this reason,

households that participated in both the first and third waves of the survey, i.e., those
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participating both in April 1984 and in April 1985, are included in the sample for this
study. Eliminating households with missing values for the model variables produced a
945-household sample for model estimation.

The explanatory variables for the car ownership model are I, Ny/Ig, N Q" /Ig,
and Q,,*, defined in section 5 above, where the zone subscripts have been suppressed for
notational convenience. The functions C(n) and S(h) defined by equations (11) and (12)
use K; = 1200 Dfl per person and K = 1830 DAl per car, respectively. In equation (21)
for Ig, the quantity WaT was replaced by the household's reported total personal income.
In equation (23), the quantities Q; ™ for k = w, nw and m = c, t were represented by the
accessibility measures discussed above; "non-work" accessibilities were assumed to be

accessibilities to shopping destinations.

6.2 Estimation Re;ults

Maximum likcliho:9d parameter estimates for the logit model and the six MNP
specifications in Table 1 v;/crc obtained using the algorithm described in section 4. In this
section we examine results obtained when choice probabilities are evaluated via numerical
integration. Estimated coefficients for the four explanatory variables variables defined
abt;vc and two alternative-specific dummies, as well as log-likelihoods and goodness-of-fit
mee;sures, are summarized in Table 3. The coefficients generally have significant t-scores,
as well as t.he theoretically anticipated signs. For example, the coefficient of Ny /Ig
represents -1, and thus the negative signs shown in the table are expected.

We conclude that our empirical results generally support the economic model
formulation presented in section 5. Note that care should be taken in comparing the
absolute values of the coefficients from various models, since the scaling will depend upon

the particular specification used. However, the coefficients of the three models with IID
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error terms may be directly compared, and in addition relative coefficients may be
computed for comparison purposes, if necessary.

The estimated model coefficients do imply some minor deviations from the
theoretically constructed model. The fourth variable, Q_,*, has insignificant coefficients
across the models, suggesting that non-work travel is not a major determinant of household
utility. Secondly, the generally significant alternative-specific constant terms suggest that
some important explanatory variables which contribute to a household's utility for car
ownership have been omitted from the analysis. The coefficient estimates, t-statistics, and
log-likelihood of the IID probit model are very close to those obtained for the multinomial
logit model. This is consistent with previously reported results indicating that for practical
purposes these two models offer the same statistical results.

For the models including random taste variation, the coefficient estimates in Table 3
represent the expected coefficient values (or average taste wei ghts) for the sample
population. Consider the models containing IID errors: the expected tastes for the random
taste formulations tend to be larger in absolute value than the corresponding coefficient
estimates obtained from a fixed-taste model. (This also appears to be the case for the non-
IID error models, but as noted above, care should be taken with such comparisons.) We
first consider hypothesis tests of the various nested specifications, and then discuss other

interpretations of the numerical results.

Significance of Random Tastes and Non-IID Errors
The log-likelihoods presented in Table 3 can be used to test the significance of: (i) the

assumption of randomness in the model coefficients, and (ii) the presence non-IID
alternative-specific errors. Table 4 summarizes the results of likelihood-ratio (LR) tests that

may be performed on the various nested models.
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These LR test statistics offer evidence that tastes are random and error terms are not
IID. Statistics for comparing various taste variation hypotheses are presented in part (a) of
Table 4; results for the I error models and the non-IID error models appear separately.
For the IID error models, the LR statistic for the comparison of fixed tastes versus
uncorrelated random tastes has a highly significant value of 15.14 with four degrees of
freedom (4 dfs). For fixed tastes versus correlated random tastes LR = 18.28 (10 dfs), and
for uncorrelated random tastes versus correlated random tastes LR = 3.1 (6 dfs). The
results for models with IID errors thus reject the hypothesis of fixed tastes, although there
is no significant difference between the correlated and uncorrelated taste variation models,

On the other hand, the hypotheses of fixed tastes and uncorrelated tastes versus
correlated tastes are both rejected for models with non-IID errors. In any case, the
importance of allowing for random taste variation is evident.

The LR test statistic comparing the simplest model (IID probit) versus the most
complex model (correlated random tastes and non-IID errors) is 45.4 with 12 dfs, and thus
the IID probit model is clearly inadequéte. Interestingly, the LR for IID probit versus the
fixed taste/non-I1ID error model is not significant, while in contrast, the difference between
the correlated taste/IID error model and the correlated taste/non-IID error model is highly
significant (see part (b) of Table 4). This result demonstrates the danger of testing model
specifications without examining all possibilities; the hypothesis of IID errors could have

been aceepted if models with fixed tastes alone had been studied.

Random Taste Covariance Matrix (Zg)

Having established that correlated random tastes are important, further interpretation
of the results is naturally of interest. The estimated taste covariance matrix Xs and the

corresponding correlation matrix for the XTXZsX + Ze model are summarized in Table 5.
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This matrix includes some very large correlations. The correlation between the random
coefficients for -Ny/Ir and NwQy,*/Iy is large and positive, while the correlation between
Qqy" and both -Ny/Ig and Ny Qy,*/Ig are large and negative. This would indicate that
households placing large weights on work trip-related costs tend also to. place large weights
on workplace accessibility. And, thosé households placing large weight on shopping
accessibility will tend to place smaller weights on the work trip-related attributes.

Recall that a complicating factor with these attributes is the hi gh degree of
multicollinearity; this could be a factor in the high correlations. We estimated an alternative
three-attribute specification with -Ny,/Ig omitted: a LR test rejected the hypothesis that the

three- and four-attribute models were the not significamtly different.

Alternative-Specific Error Covariance Matrix (%)

The statistical analysis presented above rejected the assumption of IID error terms.
As discussed previously, a matrix C is obtained by our estimation routines for models

involving a “general X¢." Recall that the C matrix is defined by equation (4), which we

reproduce here for convenience:

1 Cu]_| 011720314033 021—031—032+033
(25) C= Co C
21 22 021—-03]—032+033  022-2032+033

So, C21 and Cjpg are the estimated quantities, expressed in terms of the ojj's which are
elements of X;.

From (25) it is obvious that only two of the Ojj terms are estimable and that the
remaining terms are arbitrary. Thus, many possible normalizations for X¢ may be
consistent with the estimated matrix C. We note, however, that one may not arbitrarily
choose any two-parameter expression for Xe. Three allowable choices (see Bunch, 1989)

are:

29



Multinomial Probit Model Estimation Revisited: Testing of New Algorithms and Evaluation of Alternative
Model Specifications for Trinomial Models of Household Car Owmership

1 o9 0]
(26) ):el =l 621 02 0 }:
.. 0 0 0.4
% oMWy 7
L0 0 O‘33J
and
G11 021 0
(28) I3 = o1 1 O
0 0 1

Unfortunately, these three normalizations cé)rrcspond to different behavioral
interpretations despite the fact that they are not a priori distinguishable. For example, X2
assumes that the unobserved errors for the various alternatives are completely uncorrelated
but with different variances. This could be the result of a large number of unobservable
factors that affect the utilities for the three alternatives in a totally random way. In contrast,
Zel or 23 might imply the presence of omitted variables that commonly occur in both
alternatives 1 and 2 but not in alternative 3. Note that Z¢1is a convenient normalization to
consider, since 021 = Cg) and 69 = Cys.

Assume that the indices {1, 2, 3} in (26) through (28) are assigned to the choice
alternatives {one car, two or more cars, no car}. Itis straightforward to calculate each Ze
matrix using our estimated values for C: these have been summarized in Table 6 for the
three models with non-IID errors, along with their correlation coefficients (where
appropriate).

First consider the Z¢l results. The model with no taste variation has a negative p in
contrast to the two models which include taste variation. The model including fully

correlated tastes produces a p equal to one, in contrast to p = 0.329 for the uncorrelated

30



Multinomial Probit Model Estimation Revisited: Testing of New Algorithms and Evaluation of Alternative
Model Specifications for Trinomial Models of Household Car Ownership

taste model. Recall that model XT 25X+Ze was preferred based on LR tests, and this
normalization is consistent with the interpretation that the one-car and two-or-more-cars
alternatives share unobserved attributes which are highly correlated, but do not share
attributes with the no-car alternative. While the very large p is interpretable, it also raises
troubling questions regarding the completeness of the model specification and/or the
problems with multicollinearity in the data. It might also raise concerns regarding the
quality of the maximum likelihood estimation results.

For both the Z¢2 and £.3 normalizations, the uncorrelated taste model is the only one
producing proper covariance matrices. The remaining two models both produce negative
variances in X¢2, and 2¢3's for which Ipl > 1. In particular, the correlated taste model
results are behaviorally inconsistent with these normalizations. This is not unexpected,
since it seems unrealistic that the one- and two-or-more-cars alternatives would have zero
correlation. Also, one might wonder about the assumption in (28) that the variances for the
two-or-more alternative and the no-car alternative are equal, but unequal to the one-car

variance. Based on these considerations, one might perhaps like to consider the following

candidate normalizations:
1 o7 0 7
(29) Ted = o1 1 O |,
L. 0 0 o33
[ 1 oy o3 ]
(30) T =| o 1 o3
| 031 o031 1 .J

Unfortunately, these normalizations are not identified even though they each appear to have
two free parameters--see Bunch (1989). This illustrates that, even though the MNP model

exhibits a considerable degree of flexibility, there are stll obstacles in formulation and
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estimation of intuitively appealing model specifications which can take into account

unobserved but correlated attributes.

<

6.3 Accuracy of Clark's Approximation

The data set, model specifications, and numerical algorithms compiled for this study
provide an opportunity for comparing estimation results obtained using numerical
integration versus Clark's approximation. Note that previous comparisons in the literature
(e.g., Horowitz, et. al.1982, Lerman and Manski 198 1) rely on simulated data.

Comparison results were obtained by taking the numerical integration (NI) parameter
estimates as the starting point for each model specification, and re-running the estimation
procedure using Clark approximation (CA) choice probabilities. Some useful measures are
summarized in Tables 7a and 7b, for the IID error and non-IID error models, respectively.
Both parts of Table 7 include: (i) the log-likeliiood of the NI estimates, evaluated using NI
probabilities, (ii) the log-likelihood of the NI estimates, evaluated using CA probabilities,
(iii) the log-likelihood of the CA estimates, evaluated using CA probabilities, (iv) the
relative difference between the NI and CA parameter estimates, i.e., coefficients plus
Cholesky parameters, and (v) the relative difference between the NI and CA coefficient

estimates only. The relative difference between two vectors a and b is defined by

'\/ )E(ak - by)?
(1) RDIFF(a, b) = —\ X1
p
\/ Y by?
k=1

In addition, part (b) of Table 7 includes the C matrix estimates and correlation coefficients

for comparison purposes.
Examination of Table 7a reveals that the NI and Clark estimation results are very

similar for the IID error models. This is perhaps to be expected for IID probit, since
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Clark’s approximation should be rcason:clbly stable in this simple case. On the other hand,
both XTDX+I and XTXgX+I potentially allow a much more flexible pattern of covariances
than IID probit or logit, and on the face of it could produce more difficult choice model
integrals to evaluate, thus possibly causing difficulties for the use of Clark's

approximation. In fact, the correlation matrices for estimated T parameters are:

1

0218 1
NI _
(32) Rs 0288 -0.872 1 '
0.837 0716 0292 1
and,
1
0218 1
CA —
(33) Rs 0260 -0.885 1 '

0870 0672 -0.250 1

which exhibit substantial correlation of taste variation. However, the largest RDIFF for the
IID error models is only 6.7%, and these results seem to support the use of Clark's
approximation for MNP models which include taste variation but not alternative specific
errors.

In contrast, Table 7b reveals that substantial differences occur between NI and CA
estimates for the non-IID error models. The log-likelihood values are extremely different
for all three models, and the relative differences in the estimates are quite large. In the case
of the XTQX+¥, model the relative difference between coefficient estimates exceeds
300%, and many estimates (both coefficients and taste covariances) were substantially
different, with some exhibiting large swings combined with sign changes. For the X and
XTDX+Z, rﬁodcls the relative differences for the parameter estimates are 26.6% and 50%,
respectively, and the relative differences for the coefficients exceed 35% for both models.
In addition, the Clark estimates for the C matrix are extremely different from the more

“reasonable” NI estimates, and are extremely ill-conditioned. It is worth noting that these
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examples probably represent an extremely stringent test of Clark's approximation: in
addition to the collinear data, the “true" (NI-estimated) C matrices are highly correlated, and
thus the integrals to be evaluated could be extremely difficult.

Another interesting feature of these results is that the Clark estimate for the most
general model XTX5X+X, has a smaller log-likelihood than either of the two more
restricted non-IID models. This is clearly a poor result, and in our experiments this
represented the only numerical evidence for multiple local optima. In an alternative run, we
used the XTDX+X, Clark estimates as the basis for a starting point and obtained a more
reasonable solution, i.e., a solution with a log-likelihood of -663.63.

The Clark log-likelihoods have been used to create the LR test statistics in Table 8,
which is the analog to Table 4 above. Note that an analysis based on Table 8 leads to a
different set of conclusions than those from Table 4. The hypothesis of IID errors is
always rejected, but the hypothesis of uncorrelated tastes is never rejected. The preferred
model would be XTDX+Z, rather than XTEgX+%,.

7. Comments on Numerical Estimation and Convergence

In addition to analyzing car ownership models, this study was regarded to be a useful
test of a new method for probit estimation. As noted above, the models estimated here
provide an excellent basis for testing. They are reasonably complex, cover an interesting
range of possibilities, and use observational empirical data which are likely to be collinear.
Although a detailed tabulation of numerical experiments is beyond the scope of this paper,
we make a few general comments about the experience gained in estimating these models,
and give some examples of the useful features of the algorithm described in section 4.

Numerous pathways were followed in generating the final set of numerical results for
this paper. Generally, the more simple models were estimated first, and the results of the

more simple models were appropriately modified for use as starting points in estimating the
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more complex models. Preliminary estimates were obtained for models without alternative-
specific dummies, and these results were used as starting points for the models with
dummies. Unfortunately, the dummies were always highly significant, as noted above.
Many of our preliminary runs used Clark's approximation due to speed considerations, and
the output of these runs were often used as starting points for the numerical integration
runs. Sometimes the Clark results provided poor starting points, i.e., points for which the
numerical integrals could not be calculated, and other pathways were taken.

We make the following observation: during the course of extensive numerical testing
we saw almost no evidence of multiple "strong” local optima. The one exception was the
Clark run discussed above. On the other hand, situations often arose in which the
“singular convergence" condition was raised, indicating: that the Hessian of the log-
likelihood was singular, or nearly so. Specifically, "singular convergence" was always
obtained for the following two models: Ty = XTDX+], and Zyy = XT 25X+, i.e., models
with random tastes and IID errors. Recall, though, that our LR tests rejected the
assumption of IID errors. Thus these results are consistent with a scenario in which the
specifications are (i) constrained to lie in an incorrect subspace, and (ii) are
overparameterized relative to the highly-collinear dataset when forced to lie in this incorrect
subspace. Because we are dealing with nonlinear models, the more general “correct”
specification may not be overparameterized relative to the dataset, even if the constrained
specification is.

Generally, the non-IID error models (and the IID probit model) converged with the
relative function-convergence condition. Convergence was slowest for the most complex
model, Xy = XTX§X+X,, with many small steps taken before the algorithm stopped.

Furthermore, for some starting points, the “singular convergence" condition was observed,
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and it is likely that this model--which has the most parameters of all the models tested (18)-
-has a relatively flat log-likelihood function.

To further illustrate the utility of this algorithm's features, we include some small
numerical examples which draw on the discussion of identification issues from the
previous section. The examples use the trinomial probit data set from Daganzo (1979, page
17), in which each alternative is characterized by a measurement on one generic attribute.
Assume there are no alternative-specific dummies, no taste variation, and that the mean of
the utilities is given by V = [0 aj, 01 a3, 6; a3]T for all specifications. The four
specifications are defined in terms of the following error covariance matrices:

"1 62 0

(34) Zi=| 6 1 0 |
. 0 01

1 62 0
(35) T3=| 67 1
. 0 0 63

o

p—

1 620
(36) Z2=| 02 63 0 |»
. 0 00

1 6, 64
37 Z4=| 02 03 05
| 04 05 66

Now, (34) and (36) are idcntiﬁed, while (35) and (37) are not, based on earlier
discussions. Furthermore, (34) is a special case of (35) and (36) is a special case of (37).
For a summary of numerical results using these examples, see Table 9. Note that the log-
likelihoods for the overparameterized specifications are always identical to the those for the

identified specifications. In every case but one, the algorithm gives an indication of the
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specification problem. In the remainirig case, the t-scores are insignificant for all the
parameter estimates. Singular convergence may be interpreted as in previous discussions.
False convergence occurs when the step sizes get very small, but the quadratic model is
inadequate. This could happen if the search direction is very steep, as might occur on the

side of a ridge with a flat bottom.

8. Conclusions

" In this paper we have revisited various issues relating to practical estimation of the
mﬁiﬁnomial probit model by applying state-of-the-art numerical methods to an analysis of
highly collinear empirical data and a wide range of model specifications. To set the
context, we included a brief review of empirical probit ;‘csults in the literature.

The MLE algorithm--which uses model trust regions and model switching--performed
very well on these problems, reliably and efficiently producing parameter estimates. Bunch
(1988) previously compared this algorithm to alternative methods and found it to have
advantages; although an analogous comparison of numerical methods using probit
examples is beyond the scope of this paper, we found the performance of the algorithm on
these problems to be encouraging.

In addition, the algorithm is shown to produce useful diagnostic information through
thc. various convergence conditions. For example, unidentified model specifications or
overparameterized models can sometimes be detected through the singular or false
convergence conditions, as demonstrated through some numerical examples. In our
empirical study, models with IID error terms produced the singular convergence condition
with both numerical integration and Clark approximation choice probabilities, and later tests
indicated that the assumption of IID errors was incorrect. An obvious next step is to test
the algorithm on cases involving more than three alternatives: this work is now underway

and should be the subject of a forthcoming paper.
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Our comparison of Clark's approximation versus numerical integration provides
additional evidence against the use of Clark's approximation. The Clark results for the
non-IID specifications are spbstantially different from the numerical integration results, and
the Clark non-IID covariance estimates are extremely ill-conditioned. Perhaps most
disturbing 1s that the likelihood ratio tests using the Clark results produce different
conclusions regarding the correct model specification. This finding is somewhat
discouraging, highlighting what is still a major difficulty in estimating MNP models:
evaluation of choice probabilities for choice sets with large numbers of alternatives. On the
other hand, recent advances in computer technology, including parallel and distributed
processing techniques in conjunction with improved algorithms like the one used here, may
in the short run push back the barriers to using numerical integration a bit more--see
Schervish (1988).

In addition to the more obvious numerical issues, the diSCl.lSSi(;‘I.l in section 6 illustrates
some important points regarding the selecti.on- and testing of model specifications. First,
we note that our study obtains estimates for a full range of specifications, including those
with correlated taste variation and non-IID errors. This turned out to be important: we
could not reject the most general model in our framework using a likelihood ratio test.
Thus, these empirical results are the first of which we are aware in which both correlated
taste variation and non-IID errors are found to be significant.

Second, we feel that identification issues for models with non-IID errors have received
insufficient attention in the literature. Although Albright, Lerman, and Manski (1977)
provide some useful discussion, there is a general lack of understanding among
practitioners that has resulted in a disturbing number of published papers containing

specification errors, as noted in section 3. This insidious problem, which is an outgrowth
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of the complexity of MNP, could prove to be as much of an obstacle to practical probit
applications as the more obvious computational issues.

Bunch (1989) provides the background material on identification which is used in
section 6 for obtaining the various possible behavioral interpretations of our non-IID error
covariance estimates. Specifically, the problem is that the estimates do not lead to a unique
normalization but to many possible equivalent normalizations, and it is therefore up to the
modeler to choose one. Fortunately, as our results illustrate, improper covariance matrices
can sometimes arise allowing some normalizations to be eliminated. The main point,
though, is that it is important for modelers to consider these interpretations as a necessary

part of their analyses.
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Table 1

Model Specifications for Linear-in-Parameters MNP Framework

Tastes*(5) Errors (gp) Xy
Fixed D I
Fixed Non-IID Ze
Random Uncorrelated D XTDX+
Random Uncorrelated Non-IID XTDX+Z,
Random Correlated 11D] XTZgX+1
Random Correlated Non-IID

XTEZ5X+%,




Table 2
Summary of Multinomial Probit Empirical Studies

No. of | No. of Max No. Taste Alt. Spec

Reference Alts? | Specsb NOBS® | Auributes | Variation? Constants | Prob/Optd
Hausman and Wise NI
(1978) 3 4 100 3 uncorr Y BHHH
Albright, Lerman, Clark
and Manski (1977) | 23 - 551 5 corr Y s
Currim (1982) 5 5 369 9 uncorr N %‘;}}‘
Johnson and Clark
Hensher (1982) 2,3 5 100 3 No Y DFP
Miller and Lerman . Clark
(1982) 14 3 181 7 1 variable Y DE
Kamakura and 2000, Clark
Srivistava (1984) 3 312600 2 uncorr N BEGS
van Lierop (1986) | 2,3 9 |<1107 3 . No Y (1:)11&%

2 Number of alternatives per choice set.
b Number of different model specifications estimated in the study.
€ Total number of observed choices in the data set (s).

d Method for calculating choice probabilities (NI = numerical integration, Clark = Clark's
approximation), and optimization method used in obtainin g maximum likelihood estimates--see text
for abbreviations.



TABLE 3
Alternative Models of Household Car Ownership
(Wave 1 Dutch Panel Data Set)

COEFFICIENT ESTIMATES

IID Error Terms Non-ID Error Terms
Fixed Random Taste Fixed Random Taste
Explanatory Variable Logit Taste Uncor. Cor. Taste  Uncor. Cor.
One Car Dummy . 1.99 1.90 221 2.16 90 1.10 1.80
11.2 127 8.8 9.8 7.6 6.0 124
Two Car Dummy 1.55 1.36 1.73 1.71 -.09 78 2.10
54 5.5 5% 5.3 -3 2.0 10.8
In(Ir) 1503 1380 17.65 17.74 7.10 8.17 12.90
. 10.8 13.2 6.3 6.4 2 6.0 7.7
Nw/Ir (x 100) -1.74  -1.75 -2.54  -3.20 -.94 -1.77 -1.34
-3.2 -3.2 -1.2 -1.2 -3.1 -1.3 -1.04
NwQy*/Ir (x 10) 291 2.92 3.68 3.94 1.67 2.15 2.42
5.3 5.4 3.2 2.9 5.3 3.0 3.7
Ones -.09 -.08 -.06 -.03 -.01 -.02 -0.19
-6 -.6 -4 -2 -.1 -2 -1.9
L(0) -1038.19 -1038.19 -1038.19 -1038.19 -1038.19 -1038.19 -1038.19
L(C) -801.14 -801.14 -801.14 -801.14 -801.14 -801.14 -801.14
L) -688.47 -689.26 -681.69 -680.12 -686.68 -677.81 -666.79
-2[L(0)-L(B)] 699.43 697.86 713.00 716.15 703.02 720.75 743.23
d.f. 6 6 10 16 8 12 18
-2[L(C)-LB)] 22532 22376 23890 242.04 22891 246.64 269.13
d.f. 4 4 8 14 6 10 16
1 - L(B)/L(0) 0337 0336 0.343 0.345 0.339 0347 0.358
1-L(B)L(C) 0.141  0.140 0.149 0.151 0.143 0.154 0.168

See text for definitions of explanatory variables. L(0) denotes log-likelihood for a naive model
which assumes equi-probable outcomes, L(C) is the log-likelihood for a model with alternative-
specific constants only, and IID covariance matrix; L(B) is the log-likelihood at the estimated

solution for the model.



TABLE 4
Likelihood Ratio Tests of the Significance of Random Tastes and
Non-IID Errors in: Car Ownership Models (Numerical Integration Results)

(@) Tests of Random Tastes

IID Error Terms Non-IID Error Terms
(Random __ Tastes) (Random___Tastes)
Uncor. Cor. Uncor. Cor.
Fixed LR 15.14 18.28 LR 17.73 39.78
Tastes df 4 10 df 4 10
Uncor. LR 3.14 LR 22.04
Tastes df 6 . df 6
(b) Tests of Non-IID Errors
Non-IID Errors
Fixed Random Tastes
Tastes Uncor. Cor.
oD LR 5.15 7.75 26.66

Errors df 2 2 2




1

TABLE §

Estimated Taste Covariance Matrix (Zs) and
Correlations for XTX5X + 3. Model

Explanatory variable In I NwlR ~ NoQwlR  Quu*  SE@®)
(x 100) (x 10)

In Ig 22.47 7.73 0.826 0462 474

-Ny/IR (x 100) 0.279 34.17 20.38 -2.55 5.85

NwQy*/Ir (x 10) 0.049 0.973 12.84 -1.54 3.58

OQnw* 0.223 -0.998 -0.984 0.190  0.44

Note: Covariances are shown in the upper triangular cells and correlation coefficien
shown in the lower triangular cells.

ts are



Table 6
Derived X¢'s Using Non-IID Model Estimates

Model Specification
Te XTDX + 3¢ XTYsX + 3¢
Normalization (Fixed Tastes) (Uncorrelated Tastes) (Correlated Tastes)

0 0 0 0 0 0 0 0 0
p1 -0.707 0.329 1

k 1 -0.526 0 1 0138 0 1 1142 0
2¢ [equation (26)] [-0.526 0.555 0] [0.138 0.175 0] [1.142 1.303 0]

1 1 1
%2 [equation (27)] [ -1.134 ] [ 0.043 ] [ 0.709 ]
-8.04 0.160 -0.345

3 2.602 -2.897 10.44 0.576 0.535 0.753
Yg [equation (28)] | -2.897 1 110576 1 0753 1 1

p3 -1.80 0.178 1.03




Table 7
Comparison of Clark Approximation (CA) and
Numerical Integration (NI) Results

(a) IID Error Models I XTDX +1 XTysX +1
LM - NI probs -689.26 -681.69 -680.12
L(gN) - CA probs -690.41 -682.36 -679.37
L(BCA) - CA probs -690.34 -681.94 -679.13
RDIFF(BNL, gCA) 0.015 0.078 0.0018
RDIFF(coersY, COEFECA) 0.015 0.067 2.6 x 105
(b) Non-IID Error Models e XTDX + 3¢ XTYsX + Y
LMY : NI probs -686.68 -677.81 -666.79
L(gND) - CA probs -704.32 -675.39 -702.79
L(BCA) - CA probs -672.48 -665.92 -676.76
RDIFF(gNL, gCA) 0.266 0.497 1.59
RDIFF(coerr™, coeprCA) 0.3621 0.391 3.10
o -0.527 0.138 1.131

T -0.069 0.015 1.701
o 0.555 0.175 1.279
& 0.0047 0.0002 2.895
pNt -0.707 0.329 1

pCA _ -1 1 1




TABLE 8

Likelihood Ratio Tests of the Significance of Random Tastes and
Non-IID Errors in Car Ownership Models (Clark Approximation Results)

() Tests of Random Tastes

IID Error Terms . Non-IID Error Terms
(Random __ Tastes) (Random Tastes)
; Uncor. Cor. Uncor. Cor.
Fixed LR 16.78 22.42 IR 13.12 17.70
Tastes df 4 10 df 4 10
Uncor. IR 5.64 LR 4.58
Tastes df 6 df 6
(b) Tests of Non-IID Errors
Non-IID  Errors
Fixed Random Tastes
Tastes Uncor. Cor.
D LR 35.72 32.06 31.00
Errors df 2 2 2




Table 9
Convergence Examples

Starting Pt.

Spec (0700581 Iterations Fevalsa L(OMLE)  Convergenceb
Eq. (34) [0, 0] 5 6 339.34 Rel-Function
Eq. (35) [0, 0, 1] T 10 339.34 Rel-Function®

0.2, 0.5, 1] 12 47 339.34 False

[0.1, 0.4, 1] 7 8 339.34 Singular
Eg. (36) [0, 0, 1} 7 8 335.33 Rel-Function
Eq. (37) [O(Lg?:j 36) 0--1d 2 1 335.33 Singular

2 Total number of function evaluations required.

b Type of convergence—see text.

C The t-scores for all estimates were insignificant.

d The estimates for (36) were used to get the starting point for (37).



