Light Duty Vehicle Technology: Opportunities & Challenges

John German
American Honda Motor Co., Inc
August 23, 2007
Asilomar Conference on Transportation and Climate Policy
3 Issues for the Future Automobile:

- Energy Supply & Demand Sustainability
- Climate Change
- Urban Air Quality
Emissions & Energy Issues

& Technology Directions

Importance of issues

Energy concerns

(Sustainability)

Fuel cell

Flexible fuel vehicle

CNG

Clean diesel

Hybrid

Gasoline engine improvement

Climate change

(CO2, GHG)

Air pollution

(VOC, NOx, CO)

Today

CVCC

LEV

ULEV

PZEV

1990

1995

2000

2005

2010

2015

2020

2030

Hybrid

Today
Honda’s Powertrain Progress for CO2 reduction

- **Civic IMA**
- **Accord IMA**
- **Insight IMA**
- **Civic GX CNG**
- **V6**
- **i-VTEC**
- **i-DSI**
- **Gasoline DI**
- **Cylinder deactivation**
- **Gasoline HCCI**
- **Diesel**
- **Clean diesel**
- **High efficient gasoline engine**
- **Base engine improvement**
- **FCV Fleet test**
- **Research for mass production**
- **HEV expansion**
- **FCV development for future**
- **CO2 reduction**
Technology
Honda VTEC Combustion:
(Variable valve Timing and lift, Electronically Controlled)

- HIGHER EFFICIENCY
- LOWER EMISSIONS
- GREATER PERFORMANCE

Near-Term Market Introduction - Advanced VTEC with continuously variable intake valve timing and lift
New Variable Cylinder Management

All 6 Cylinders

Rear rocker shaft (4 channels)

4 Cylinders

Rear rocker shaft (4 channels)

3 Cylinders

Rear rocker shaft (4 channels)

Front Bank

Rear Bank

New Active Control
Engine Mount

Active Noise Control

Drive by Wire

Torque Converter Lockup
Long Torsion Spring
Transmission Advances

Computer controls are enabling a variety of improved transmission designs

• Dual-clutch automated manual
 – Smooth shifting and potentially cheaper
 – But launch concerns (no torque converter), huge investment

• Continuously Variable Transmission (CVT)
 – Excellent city efficiency and extremely smooth
 – Can deliver steady-state engine speeds to facilitate HCCI
 – But torque limited, highway efficiency lower (belt friction), huge investment

• Improved shift points and lock-up strategies
 – Low investment

• Lapillier 6- to 8-speed automatics

Not yet clear which is most cost-effective
– all may co-exist
Incremental FE Technology

- Engine technology
 - High specific output (including 4 valve/cylinder)
 - Variable valve timing/lift
 - Cylinder deactivation
 - Direct injection
 - Precise air/fuel metering
 - Lower engine friction
 - Turbocharging
- Transmission efficiency
 - 5/6/7/8 speed
 - CVT
 - Dual-clutch automated MT
- Reduced losses
 - Lightweight materials
 - Low drag coefficient
 - Low resistance tires
 - Lower accessory losses

Cost and value issue
- These technologies are continuously being incorporated into vehicles.
- However, consumers value other attributes more highly, such as performance, safety, utility, and luxury.
- Putting in technologies just to improve fuel economy may not be valued by customers.

Fuel Economy Improvement - ????
Depends on how much is already incorporated into fleet and synergies (or lack of synergy) between technologies
1. During lean burn operation, the NOx adsorbent in the lower layer adsorbs NOx from the exhaust gas.

2. As needed, the engine management system adjusts the engine air-fuel ratio to rich-burn, wherein the NOx in the NOx adsorption layer reacts with hydrogen (H2) obtained from the exhaust gas to produce ammonia (NH3). The adsorbent material in the upper layer temporarily adsorbs the NH3.

3. When the engine returns to lean-burn operation, NH3 adsorbed in the upper layer reacts with NOx in the exhaust gas and reduces it to harmless nitrogen (N2).
Diesel Market Potential in US

- Diesels good for towing, low rpm power, and highway efficiency
 - Hybrids get better fuel economy in city driving
- Diesels are currently cheaper than hybrids, but are not cheap
 - $1500 for 4-cyl., $2000-$3000 for V-8
 - Tier 2 emission standards will add cost
 - Hybrid costs will come down in the future
- Will public recognize improvements in noise, vibration, smell, starting, and emissions?
- Pickup customers want a “tough” diesel, not a wimpy quiet one
- Must compete with improved gasoline engines and hybrids
- Europe refineries already shipping unwanted gasoline to US
 - Can refineries adjust output if US also shifts to diesels?
- Market split?
 - Diesels for larger vehicles and rural areas
 - Hybrids for smaller vehicles and urban areas
Hybrid Output Characteristics

CIVIC HYBRID

- **116 lb-ft** (Engine + Motor Assist)
- **87 lb-ft** (1.3L Engine only)
- **93 HP**

Torque (lb-ft)

Engine Revolution (rpm) x 1000
Attractive Hybrid Features

Integrated Electric Motor

Low Operating Cost: Fuel Savings!

Best “Idle” Quality: Beats any Luxury Car!

Superior Driving Range: Fewer Trips to the Station!

Pride of Ownership: Social Benefits!
Dedicated Honda Hybrid

- All-new, more affordable, dedicated hybrid car
- Launched in North America in 2009
- Annual North American sales volume target of 100,000 units
- Target price significantly lower than the current Civic Hybrid
Hybrid Synergies

• More efficient electric pumps and compressors
 – Beltless engine
• Part-time 4wd
• Extend operating windows for Atkinson cycle and cylinder deactivation
• Provide quasi-steady-state load conditions for HCCI/CAI operation (especially with CVT)
• E-turbo
 – High electric power – supercharger boost
 – When power is not needed, use exhaust energy to drive e-turbo and recharge battery
Plug-In Hybrid Payback

Table 8, Plug-In Hybrids, ACEEE, Sep 2006

<table>
<thead>
<tr>
<th></th>
<th>Hybrid</th>
<th>Plug-In, 40-Mile range</th>
<th>Plug-In vs. Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near-term Incremental costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery</td>
<td>$2,000</td>
<td>$17,500</td>
<td>$15,500</td>
</tr>
<tr>
<td>Other incremental costs</td>
<td>$1,500</td>
<td>$1,500</td>
<td>0</td>
</tr>
<tr>
<td>Annual fuel savings</td>
<td>$480</td>
<td>$705</td>
<td>$225</td>
</tr>
<tr>
<td>Payback (years)</td>
<td>7.3</td>
<td>27.0</td>
<td>68.9</td>
</tr>
<tr>
<td>Long-term Incremental costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery</td>
<td>$600</td>
<td>$3,500</td>
<td>$2,900</td>
</tr>
<tr>
<td>Other incremental costs</td>
<td>$1,000</td>
<td>$1,000</td>
<td>0</td>
</tr>
<tr>
<td>Annual fuel savings</td>
<td>$480</td>
<td>$705</td>
<td>$225</td>
</tr>
<tr>
<td>Payback (years)</td>
<td>2.9</td>
<td>6.4</td>
<td>12.9</td>
</tr>
</tbody>
</table>

Assumptions include:
12,000 miles per year, hybrid FE of 50 mpg, conventional vehicle FE of 30 mpg, 50% of plug-in miles on electricity, $3.00/gal, no discounting of fuel savings, no FE penalty for additional weight of plug-in batteries, no battery replacement for plug-in
Next-generation Gasoline Engines

Camless Valve Actuation
- Lift sensor
- Upper spring
- Coil
- Armature
- Yoke
- Hydraulic tappet
- Lower spring

HCCI Engine
- Improvement in fuel economy: 30%

Honda Prototype Engine Base (Electro-magnetic valve)

Heat release rate
- dQ/dθ [J/deg]

Crank angle [ATDC deg]

Requires increasing the self-ignition region
Potential Operating Modes

Assumes camless valve actuation, direct injection, e-turbo

![Graph showing different operating modes with engine speed on the x-axis and engine IMEP on the y-axis. Modes include Boosted – Otto cycle, Boosted – 2-stroke, boosted – Atkinson cycle, NA – Atkinson cycle, boosted – HCCI, NA – HCCI, and Electric Motor Only.](image-url)
Civic GX Natural Gas Vehicle

Range = 200-240 mi
CO$_2$ reduction \sim20%
Performance = Gasoline
Near Zero Emissions
Demonstrated reliability and durability
Satisfied customers

CARB AT-PZEV, EPA Bin2 ILEV
The Home Refueler / Civic NGV

• “Phill” : Home Refueling
• World debut in California (Honda with Fuelmaker)
• Expands AFV marketability with home refueling device

• Maintenance free
• Quiet
• Certified for home use
• Easy to use
• 110 volt
• Gas detection
Next FCX Model Direction

Timing: 2008 model year

- Low Floor
- Compact Fuel Cell Components
- V-flow stack technology
- 270 mile range (concept car)
Home Energy Station

Home Refueling with Co-generation of Heat and Electricity

Natural gas → Reform → Fuel cell → Inverter → Refine → Compress → Storage tank → Hydrogen

Reformated Gas

Home Refueling with Co-generation

Cooperative development with Plug Power
Crystal Ball is Unclear

• **Improved conventional engines keep raising the bar**
 – Lower fuel consumption reduces the benefit from alternative technology

• Ultimate goal is fuel cells, but timing unclear (not near term)
 – Plug-in hybrids might prolong fossil fuel era

• Hybrid technology is progressing rapidly
 – Costs coming down
 – Synergies with other technologies developing
 – Consumer features will develop

• Diesels for rural areas and larger vehicles, hybrids for urban areas and smaller vehicles?

• CNG may appeal to a segment who dislikes refueling

• Multiple transmission designs likely
Challenge is customer’s low value of fuel economy

• Real cost of driving very low
• Performance, utility, comfort, safety valued more highly
• Most only consider fuel savings during ownership period
Real Gasoline Price

Real Gasoline Prices
(2007 $ per gallon)

$0.00
$0.50
$1.00
$1.50
$2.00
$2.50
$3.00
$3.50

Motor Gasoline Retail Prices, U.S. City Average, adjusted using CPI-U

Jun-07
$3.05
Real Gasoline Prices and In-Use Fleet MPG
(2007 $ per gallon)

In-Use MPG from Transportation Energy Data Book: 2007
Gasoline Cost per Mile

Real Gasoline Cost for Cars - Cents per Mile
(2007 $ per gallon)

Jun-07
$3.05
Real Fuel Cost - % of Disposable Income

Real Fuel Cost of Driving a Passenger Car 10,000 Miles
% of Per Capita Disposable Income

BEA, Table 2.1, Personal Income and It's Disposition

Jun-07
$3.05
In-depth interviews of 60 California households’ vehicle acquisition histories found no evidence of economically rational decision-making about fuel economy. (Turrentine & Kurani, 2004)

- Out of 60 households (125 vehicle transactions) 9 stated that they compared the fuel economy of vehicles in making their choice.
- 4 households knew their annual fuel costs.
- None had made any kind of quantitative assessment of the value of fuel savings.
A random sample of consumers gave generally consistent answers to the same question asked from two directions.

David L. Greene, IAEE/USAEE Meetings, Washington, DC, July 10, 2004 – “Why don’t we just tax gasoline? Why we don’t just tax gasoline”
Fuel efficiency has increased by about 1.3% per year since 1987. However, this has all been used to increase other attributes more highly valued by the customer, such as performance, comfort, utility, and safety.
Fuel efficiency has increased by about 1.5% per year since 1987. However, this has all been used to increase other attributes more highly valued by the customer, such as performance, comfort, utility, and safety.
What matters to the consumer is **NET VALUE**

“Economically rational” consumer (14 year payback) – net value is $500 or less for up to a 60% increase in MPG

Price and Value of Increased Fuel Economy to Passenger Car Buyer, Using NRC Average Price Curves

Assumes cars driven 15,600 miles/year when new, decreasing at 4.5%/year, 12% discount rate, 14 year vehicle life, $2.00/gallon gasoline, 15% shortfall between EPA test and on-road fuel economy.

Greatest net value to customer at about 36 MPG
Most consumers value only 3 years of fuel savings – broad range of indifference to FE improvements

Consider manufacturer’s risk in redesigning all product to increase MPG

Price and Value of Increased Fuel Economy to Passenger Car Buyer, Using NRC Average Price Curves

Greatest net value to customer at about 30 MPG

Assumes cars driven 15,600 miles/year when new, decreasing at 4.5%/year, 12% discount rate, 14 year vehicle life, $2.00/gallon gasoline, 15% shortfall between EPA test and on-road fuel economy.
Incentives/Mandates are Needed

- Fuel price is a good lever for vehicle choice and VMT
 - Gas taxes “should” be raised
- Fuel price is NOT a good lever for technology
 - Technology cost and fuel savings balance
 - Little influence on highly complex and emotional purchase decisions
- Role of Federal government is to reflect full fuel savings and externalities in performance-based requirements or incentives
The Real Barrier - Leadtime

• Market is very competitive: new technologies = huge risks
 – Manufacturer at a competitive disadvantage if the selected technology ultimately proves to be more expensive
 – Even worse is widespread adoption of a technology that does not meet the customer expectations for performance and reliability.
 • Hurts manufacturer’s reputation
 • Sets back acceptance of the technology for everyone (GM diesel)

• Must allow time to ensure quality and reliability
 – Rigorous product development process – 2-3 years
 – Prove in production on a limited number of vehicles – 2-3 years
 – Assess impact of higher volume and further development on costs before committing to a single technology
 – Spread across fleet – 5-year minimum product cycles

• Costs increase dramatically if normal development cycles are not followed
 – Greatly increases development costs, tooling costs, and the risk of mistakes
Finding 15. Technology changes require very long lead times to be introduced into the manufacturers’ product lines. Any policy that is implemented too aggressively (that is, in too short a period of time) has the potential to adversely affect manufacturers, their suppliers, their employees, and consumers. Little can be done to improve the fuel economy of the new vehicle fleet for several years because production plans already are in place. The widespread penetration of even existing technologies will likely require 4 to 8 years. For emerging technologies that require additional research and development, this time lag can be considerably longer.
FE Mandates in Japan and Europe

• Europe 1995-2008:
 – CO2 reduced from 185 gCO2/km in 1995 to 140 in 2008
 – Annual FE improvement rate: 2.2% per year

• Europe 2008-2012 goal:
 – Further reduce CO2 emissions to 130 grams/km by 2012
 – Annual FE improvement rate: 1.9% per year

• Japan 2005-2016:
 – Increase economy from 13.6 km/l in 2005 to 16.8 in 2016
 – Annual FE improvement rate: 1.9% per year
Summary

• Benefit and cost of individual technologies is not the real issue
 – Technology clearly can dramatically improve **efficiency**

• Real concerns are:
 – How to get technology applied to fuel **economy** when customers value other features more highly
 – How to get customers to care about fuel **economy** when fuel costs are so low
 – Rate at which technology can be introduced without increasing costs and adverse consequences

• You can push beyond 2% per year improvements, but the potential for adverse consequences, increased cost, and consumer backlash rises exponentially –

 Do you want to live with the consequences?