What do greenhouse gas scenarios tell us?

Dawn Manley, Amy Askin, Garrett Barter, Tom Stephens, Jake Ward, Joann Zhou

14th Biennial Conference on Transportation Energy and Policy
Asilomar Conference Grounds
Pacific Grove, CA

August 7, 2013

Scenario analyses explore possible futures and pathways

- What mix of technologies can achieve aggressive GHG reduction or fuel economy targets?
- How do the different projections compare with respect to 2030 and 2050 goals?
- Why do analyses on the "same" topic yield different findings?
- What should we consider as we compare and contrast scenario results?
 - Context/intent
 - Key questions
 - Scope
 - Assumptions
 - Methods and approach

Consider context of recent studies with scenarios for GHG emissions & petroleum consumption reduction

- National Petroleum Council Advancing Technology for America's Transportation Future
 - Request from DOE Sec. Chu to NPC. Included participation from over 300 individuals with primary leadership from oil & gas industry
- DOE EERE Transportation Energy Futures
 - DOE study conducted by national laboratories (ANL, NREL, ORNL)
- National Resource Council Transitions to Alternative Vehicles and Fuels
 - Convened by NRC in response to Congressional mandate in Senate FY2010 energy & water appropriations bill
- Energy Information Agency Annual Energy Outlook 2013
 - Annual best projection by EIA of key energy production, demand, and prices through 2040

Key questions and scope for these major US studies

- NPC entire transport sector
 - What actions can industry and government take to stimulate technological advances (alternative fuels and advanced vehicles) and market conditions to reduce lifecycle GHG by 50% relative to 2005 by 2050?
- TEF entire transport sector with emphasis on underexplored opportunities
 - What combination of strategies could achieve deep reductions in petroleum consumption & GHG emissions?
- NRC LDV efficiency, biofuels, electrification, H2
 - What combination of policies could achieve substantial reductions
 50% by 2030 and 80% by 2050 in petroleum consumption & GHG emissions?
- AEO entire energy economy
 - Where will the US energy economy likely be in 2040?

Pathways through scenarios highlight factors that influence outcomes

Unpacking scenarios highlights additional complexity: AEO forecasts

Inputs & models used to generate scenarios vary: VISION, LVChoice, fuels & infrastructure for NPC

Inputs & models used to generate scenarios vary: VISION, Autonomie, MA3T for TEF

Inputs & models and spectrum of scenarios vary: VISION, LAVE-Trans with policy for NRC

Key difference: Input policy assumptions and impacts

AEO incorporates current policies & assumes that current laws/regulations are largely unchanged (including sunset dates)

- ARRA tax credits
- CAFÉ standards
- RFS2
- CA AB32, LCFS, Low Emission Vehicle Program

TEF: Assumed vehicle subsidies with ARRA tax credits (courtesy of Changzheng Liu, ORNL)

- Incorporated infrastructure costs in fuel price rather than subsidies
- Technology cost included in vehicle cost

NRC Figure 5.31: Assumed BEV & PHEV subsidies in optimistic EV technology scenario

• Fuels & carbon tax, mileage fee, infrastructure subsidies

Intermediate difference: Light duty vehicle mix

AEO Figure 73: Sales of LDV using nongasoline technologies

TEF Project Overview and Findings Slide 10: Advanced vehicles have the potential to dominate the LDV market by 2050

NPC Figure 2-10: Ranges of 2050 LDV share in 2050 including all fuel-vehicle systems

NRC Figure 5.32: LDV sales for optimistic plug-in electric vehicle scenario

Difference in output: Fuel consumption

AEO Figure 6: Transportation energy consumption by fuel (quadrillion BTU)

Projected 2050 Petroleum Use and Potential Reductions

TEF Project Overview & Findings Slide 18: Projected 2050 petroleum use & potential reductions

NPC Figure ES-10: Range of 2050 on-road fuel consumption assuming all alternatives commercialized

NRC Figure 5.33: Changes in petroleum use & GHG emissions versus 2005: Optimistic plug-in EV scenario

Difference in output: GHG emissions

AEO Figure 111: Energy-related CO2 emissions in two cases with three levels of emissions fees (MMT)

TEF Project Overview & Findings Slide 19: CO2 emissions (MMT)

NPC Figure ES-11: Range of impact of demand, fuel efficiency improvements, & alternative fuel-vehicle systems on 2050 LD fleet GHG emissions

NRC Figure 5.33: Changes in petroleum use & GHG emissions versus 2005: Optimistic plug-in EV scenario

Observations

- Consider context, key questions, scope of scenario analyses
- Examine assumptions, inputs, intermediates
 - These can be embedded in methods/models
- Presentation of results vary
 - Side-by-side comparisons of inputs, intermediates, outputs aren't necessarily apples-to-apples
- Scenario interpretation is complicated

Acknowledgements

- DOE/EERE Vehicle Technologies Office
- Alicia Birky TA Engineering, Inc.
- Ian Sutherland, Clay Phillips GM
- Changzheng Liu ORNL

Thank you!