AUTOMATED TRANSIT PATHWAYS

Reuben M. Juster, University of Maryland | College Park, Center for Advanced Transportation Technology

Automated transit could evolve in a number of ways. To ensure that everyone designs around the same vision, please use this document as the reference for how transit will become autonomous for today’s design workshops. The graphic at the end shows how the degree of automation and segregation for each type of transit will evolve. The narrative will refer to the numbered icons that appear on the graph using {1}, {2}, … symbols.

2015 - CURRENT

Most transit today operates under manual operation. Bus transit {1} usually operates on roads with mixed traffic, though the growth of bus rapid transit has led to some lines operating in separated right of ways (Institute of Transportation Policy and Development, 2014). There has been limited automation in bus operations. The Vehicle Assist and Automation (VAA) project developed and deployed a revenue service 60-foot articulated bus with automated steering control on the Eugene, Oregon EmX Bus Rapid Transit line. The system utilizes magnetic markers embedded into the pavement to guide the system. The onboard bus driver still controls the speed (Tan & Huang, 2014). Rail based transit {4} can utilize automated safety features (adaptive train control) or can be completely automated. If they are completely automated, then the rail transit has to be completely segregated from other transportation.

Automated rail transit can be considered automated guideway transit (AGT) which operates in two forms: automated people movers (APM) and automated transit networks (ATN) (US Office of Technology Assessment, 1975). Automated people movers, systems which move people along predefined paths, like the Vancouver Skytrain, have been the AGT of choice with many new systems under construction or in the planning phase. APMs system layouts can be similar to their non-automated counterparts (light rail, heavy rail). In addition, APM systems can also feature small loops with branches like AirTrain JFK (ACRP, 2010). Manually operated rail transit lines that have been converted to automated operation like the Paris Métro converted Line 1 to automated operations in 2012 {5}. Autonomous Bus Rapid Transit (BRT, BRT Basics) lines that operate on their own right-of-way, but also contain at grade intersections with regular streets have successfully begun operations {2}. More ATN systems, larger than the systems operating in 2014, have begun to pop up over the globe, but they still fulfill only first-mile and last-mile service {8}. These ATN systems are also used to transport freight across short distances. Manual para-transit has become a greater financial burden on transit agency with an increase demand from an aging population. Driverless para-transit been implemented more widely, but only in areas with limited high speed vehicles such as pedestrian malls and campuses {11}.

2020

With rising labor costs, more and more transit systems are converting existing rail lines into APMs, similar to how the Paris Métro converted Line 1 to automated operations in 2012 {5}. Autonomous Bus Rapid Transit (BRT, BRT Basics) lines that operate on their own right-of-way, but also contain at grade intersections with regular streets have successfully begun operations {2}. More ATN systems, larger than the systems operating in 2014, have begun to pop up over the globe, but they still fulfill only first-mile and last-mile service {8}. These ATN systems are also used to transport freight across short distances. Manual para-transit has become a greater financial burden on transit agency with an increase demand from an aging population. Driverless para-transit been implemented more widely, but only in areas with limited high speed vehicles such as pedestrian malls and campuses {11}.

2035

New implementations of ATNs have gone beyond their role as just a supplementary transit mode {9}. In areas of large scale development such as large brownfield or mixed-use greenfield projects have been designed around ATN, as opposed to ATN being designed around existing development. These large developments also feature automated buses, but in brownfield areas, buses are still manual {3}. In addition, public transit agencies have begun building their own or contracting out ATN systems. Freight companies are allowed to use these ATN networks for a fee paid to the public transit agency. The majority of fixed rail transit has become automated {6}. Para-transit has been partially taken over by autonomous vehicle service providers and in some cases, pod cars fill the role of para-transit {9, 12 respectively}.

demonstrated with the CityMobil2 and Navia do exist, but they still in the experimental/pilot study stage (Induct Technology, n.d.; CityMobil2, n.d.).
Automated transit has been fully integrated in society (13) and all sizes of transit operate together on the surface and grade-separated infrastructure unsegregated by vehicle type. People who live in urban areas use ATN for the majority of their short and medium haul journeys. Very few transit systems are manual. Para-transit has been fully taken over by autonomous vehicle service providers.

2050

GLOSSARY

Automated Guideway Transit (AGT): Automated fixed-guideway transit includes any type of transit that is completely driverless and motion is constrained by a guideway/rail (US Office of Technology Assessment, 1975).

Automated People Mover: Systems [that] are fully automated and driverless transit systems that operate on fixed guideways in exclusive rights of way (ACRP, 2010). This can include systems as small as a simple two station layout or as large as ones that resembles automated tradition urban rail transit such as light rail or heavy rail.

Automated Transit Networks (ATN): A transit system that has ability to take passengers direct from their origin to their destination without making any intermediate stops. Think of it as system consisting of multiple driverless taxi that do not have to deal with surface traffic. Recently built ATN systems located at London Heathrow Airport and Masdar City feature ATN vehicles that are typically smaller than typical other vehicles including cars with a capacity of around 4-6 passengers per vehicle. The Morgantown Personal Rapid Transit system, opened in 1975, features vehicles that can carry 20 passengers. Typical ATNs travel at speeds up to around 30 mph. ATN currently operated on their own grade separated right-of-way and are considered a form of AGT. With improved automation technology and or automation penetration rates, it is conceivable that ATN could include segments with mixed traffic (ATRA IG, 2014).

Personal Rapid Transit (PRT): A type of ATN that utilizes small vehicles (4-6 passenger capacity) and does not facilitate ride sharing (US Office of Technology Assessment, 1975).
REFERENCES

PICTURE REFERENCES:

Wikipedia.org, 2009
Time Magazine, 2011
Wikipedia.org, 2009
UltraPRT, 2009
Gold Sponsors!

National Center for Sustainable Transportation

Silver Sponsors!

MINETA
MTI
NREL
ITS-Michigan

Bronze Sponsors!

NCIT

Supporters and Donations of Time and Expertise

Workshop Organizers
Shannon Sanders McDonald, AIA, Assistant Professor, Architecture, Southern Illinois University Carbondale
Caroline Rodier, Ph.D., Associate Director, Urban Land Use and Transportation Center, University of California at Davis
Reuben M. Juster, EIT, Faculty Research Assistant, University of Maryland College Park, Center for Advanced Transportation Technology

Scenario Discussion Leaders
Dr. Patrick Sherry, National Center for Intermodal Transportation (NCIT), University of Denver
Kit Krankel McCullough, Taubman College of Architecture and Urban Planning
Bruce F. Donnelly, Planning consultant and writer, Office of Bruce F. Donnelly
Dr. Stan Young, NREL: National Renewable Energy Lab and University of Maryland
Reuben M. Juster, EIT, Faculty Research Assistant, University of Maryland College Park, Center for Advanced Transportation Technology
Dr Marc Wiseman, Vice President, Ricardo Strategic Consulting
Alex Kade, CIV US ARMY TARDEC (US)