Publication Detail
Conceptual Design of a Fossil Hydrogen Infrastructure with Capture and Sequestration of Carbon Dioxide: Case Study in Ohio
UCD-ITS-RP-05-34 Presentation Series Hydrogen Pathways Program Download PDF |
Suggested Citation:
Ogden, Joan M., Nils Johnson, Christopher Yang, Meng-Cheng Ni, David Z. Lin, Joshua Johnson, José; Figueroa (2005) Conceptual Design of a Fossil Hydrogen Infrastructure with Capture and Sequestration of Carbon Dioxide: Case Study in Ohio. Institute of Transportation Studies, University of California, Davis, Presentation Series UCD-ITS-RP-05-34
Proceedings of the 4th Annual Conference on Carbon Capture and Sequestration DOE/NETL (CCS 2005), Arlington, VA, May 2 - 5, 2005
Researchers at the University of California, Davis, in support of the Department of Energy's Fossil Energy programs, are developing engineering/economic/geographic models of fossil hydrogen energy systems with carbon capture and sequestration. In this paper, we present initial results from an ongoing assessment of alternative transition strategies from today's energy system toward widespread use of H2 from fossil fuels as an energy carrier with capture and sequestration of CO2. This study is coordinated with the National Energy Technology Laboratory Carbon Sequestration program and hydrogen modeling efforts at UC Davis and within the USDOE such as H2A. In the future, we plan to utilize data on CO2 sequestration sites from the NATCARB program, and the Regional Sequestration Partnerships. Our model for the design and economics of a fossil H2 energy system with CO2 sequestration considers a number of factors including:
Researchers at the University of California, Davis, in support of the Department of Energy's Fossil Energy programs, are developing engineering/economic/geographic models of fossil hydrogen energy systems with carbon capture and sequestration. In this paper, we present initial results from an ongoing assessment of alternative transition strategies from today's energy system toward widespread use of H2 from fossil fuels as an energy carrier with capture and sequestration of CO2. This study is coordinated with the National Energy Technology Laboratory Carbon Sequestration program and hydrogen modeling efforts at UC Davis and within the USDOE such as H2A. In the future, we plan to utilize data on CO2 sequestration sites from the NATCARB program, and the Regional Sequestration Partnerships. Our model for the design and economics of a fossil H2 energy system with CO2 sequestration considers a number of factors including:
- Cost and performance of component technologies making up the system (e.g. fossil energy complex including CO2 capture technology and co-production of hydrogen and electricity, CO2 pipelines and hydrogen storage, distribution and refueling stations).
- The location and characteristics of the CO2 sequestration site (storage capacity, permeability, reservoir thickness),
- The location, type, size and geographic density of the H2 demand.
- Cost, location and availability of primary resources for H2 production such as coal or natural gas.
- Location of existing energy infrastructure and rights of way.