Publication Detail
UCD-ITS-RP-09-70 Journal Article Available online at: http://dx.doi.org/10.1111/j.1530-9290.2009.00138.x |
Suggested Citation:
Plevin, Richard J. (2009) Modeling Corn Ethanol and Climate: A Critical Comparison of the BESS and GREET Models. Journal of Industrial Ecology 13 (4), 495 - 507
New fuel regulations based on life cycle greenhouse gas (GHG) emissions have focused renewed attention on life cycle models of biofuels. The BESS model estimates 25% lower life cycle GHG emissions for corn ethanol than does the well-known GREET model, which raises questions about which model is more accurate. I develop a life cycle metamodel to compare the GREET and BESS models in detail and to explain why the results from these models diverge. I find two main reasons for the divergence: (1) BESS models a more efficient biorefinery than is modeled in the cases to which its results have been compared, and (2) in several instances BESS fails to properly count upstream emissions. Adjustments to BESS to account for these differences raise the estimated global warming intensity (not including land use change) of the corn ethanol pathway considered in that model from 45 to 61 g CO2e MJ−1. Adjusting GREET to use BESS's biorefinery performance and coproduct credit assumptions reduces the GREET estimate from 64 to 61 g CO2e MJ−1. Although this analysis explains the gap between the two models, both models would be improved with better data on corn production practices and by better treatment of agricultural inputs.
Keywords: biofuel; carbon emissions; climate change; greenhouse gases (GHG); industrial ecology; life cycle assessment (LCA)