Publication Detail

Construction and Traffic Analysis of Interstate 15 (Devore II) Concrete Pavement Reconstruction Project

UCPRC-RR-2008-05

Research Report

Download PDF

Suggested Citation:
Monismith, Carl L., Changmo Kim, Eul-Bum (E.B.) Lee (2008) Construction and Traffic Analysis of Interstate 15 (Devore II) Concrete Pavement Reconstruction Project. Institute of Transportation Studies, University of California, Davis, Research Report UCPRC-RR-2008-05

The California Department of Transportation (Caltrans) replaced about 5 kilometers (total 20 lane-kilometers) of concrete pavement on Interstate 15 in Devore, California. The I-15 Devore II rehabilitation project was completed in six weekend closures with around-the-clock construction in early 2007, with partial or full closures of one direction of the freeway. A traffic monitoring study with surveillance systems was conducted to validate the project’s transportation management plan (TMP), and to utilize the collected data for a better understanding of traffic flow characteristics at the work zone and traffic demand/capacity changes on highly trafficked urban highway projects. In addition, a construction productivity monitoring study was conducted to analyze productivity for the four construction activities; demolition, milling, Asphalt Concrete (AC) paving, and Portland cement concrete (PCC) paving. The traffic study showed that the overall impact of the work zone closure on the traveling public was manageable in most closures due to the efficient implementation of the project TMP. For example, a reduction of up to 70 percent of traffic demand during peak hours was achieved in on e weekend closure. Different lane closure configurations yielded different work zone capacity values. The construction study investigates productivity progress by comparison of gross rate, operating rate, and truckload for each construction activity. This study can help guide state agencies and transportation engineers in establishing adequate TMPs and construction stage plans to improve mobility and productivity on future highway rehabilitation projects