Publication Detail
Southern California Ozone Exposure Disparities Under Different Emissions Control Strategies in a Low-Carbon Future
UCD-ITS-RP-25-03 Journal Article |
Suggested Citation:
Zhao, Yusheng, Yin Li, Yiting Li, Anikender Kumar, Michael J. Kleeman (2025)
Southern California Ozone Exposure Disparities Under Different Emissions Control Strategies in a Low-Carbon Future
. Science of The Total Environment 963Environmental justice (EJ) has emerged as a critical consideration when planning new air pollution control strategies. In this study we analyze how traditional ozone (O3) control strategies for the year 2050 will affect exposure disparities, defined as departures from the population average exposure, for O3 and oxides of nitrogen (NOx) in Southern California. Future air quality fields were simulated using a chemical transport model under five emission scenarios that explore a range of traditional controls that target the largest sources of precursor emissions using a novel O3 source apportionment technique but without considering exposure disparities. We find that traditional O3 control strategies reduce O3 exposure disparities by <1.6 % and reduce NO2 exposure disparities by <9 % in Southern California. For the Black and African residents living in the urban core of Los Angeles, the relative NO2 exposure disparities increase from +23.1 % to +66.2 % and O3 exposure disparities increase from −3.3 % to +0.1 % due to NOx emissions reductions mainly in outlying regions and the NOx-rich environment in the urban core. Additional analysis shows that complete elimination of NOx emissions from Los Angeles International Airport (LAX) would reduce the NO2 exposure disparities by up to 50 %, but there is currently no practical method to achieve this goal. The results of the current study highlight the challenge of simultaneously attaining O3 standards and reducing exposure disparities for O3 and NO2 in cities with NOx-rich urban cores. Reducing emissions by region may be a solution to this challenge.
Key words:
environmental justice, exposure disparity, ozone, ozone source apportionment, NOx control, CTM