Publication Detail

Effects of Increased Weights of Alternative Fuel Trucks on Pavement and Bridges

UCD-ITS-RR-20-70

Research Report

UC ITS Research Reports

Suggested Citation:
Harvey, John T., Arash Saboori, Marshall Miller, Changmo Kim, Miguel Jaller, Jon Lea, Alissa Kendall, Ashkan Saboori (2020) Effects of Increased Weights of Alternative Fuel Trucks on Pavement and Bridges. Institute of Transportation Studies, University of California, Davis, Research Report UCD-ITS-RR-20-70

California’s truck fleet composition is shifting to include more natural gas vehicles (NGVs), electric vehicles (EVs), and fuel cell vehicles (FCVs), and it will shift more quickly to meet state greenhouse gas (GHG) emission goals. These alternative fuel trucks (AFTs) may introduce heavier axle loads, which may increase pavement damage and GHG emissions from work to maintain pavements. This project aimed to provide conceptual-level estimates of the effects of vehicle fleet changes on road and bridge infrastructure. Three AFT implementation scenarios were analyzed using typical Calif. state and local pavement structures, and a federal study’s results were used to assess the effects on bridges. This study found that more NGV, EV, and FC trucks are expected among short-haul and medium-duty vehicles than among long-haul vehicles, for which range issues arise with EVs and FCs. But the estimates predicted that by 2050, alternative fuels would power 25–70% of long-haul and 40–95% of short-haul and medium-duty trucks. AFT implementation is expected to be focused in the 11 counties with the greatest freight traffic—primarily urban counties along major freight corridors. Results from the implementation scenarios suggest that introducing heavier AFTs will only result in minimal additional pavement damage, with its extent dependent on the pavement structure and AFT implementation scenario. Although allowing weight increases of up to 2,000 lbs. is unlikely to cause major issues on more modern bridges, the effects of truck concentrations at those new limits on inadequate bridges needs more careful evaluation. The study’s most aggressive market penetration scenario yielded an approximate net reduction in annual well-to-wheel truck propulsion emissions of 1,200–2,700 kT per year of CO2 -e by 2030, and 6,300–34,000 kT by 2050 versus current truck technologies. Negligible effects on GHG emissions from pavement maintenance and rehabilitation resulted from AFT implementation.

Key words: Trucks, electric vehicles, emissions, alternate fuels, greenhouse gasses, pavement distress, pavement performance, highway bridges, life cycle analysis